
Avoiding Error LNK2001 Unresolved External Using DEFINE_GUID
PSS ID Number: Q130869

The information in this article applies to:

 - Microsoft Visual C++ 32-bit Edition, versions 2.0, 2.1, and 4.0

SUMMARY
=======

A GUID must be initialized exactly once. For this reason, there are two
different versions of the DEFINE_GUID macro. One version just declares an
external reference to the symbol name. The other version actually
initializes the symbol name to the value of the GUID. If you receive an
LNK2001 error for the symbol name of the GUID, the GUID was not
initialized.

You can make sure your GUID gets initialized in one of two ways:

 - If you are using precompiled header files, include the INITGUID.H header
 file before defining the GUID in the implementation file where it should
 be initialized. (AppWizard-generated MFC projects use precompiled
 headers by default.)

 - If you are not using precompiled headers, define INITGUID before
 including OBJBASE.H. (OBJBASE.H is included by OLE2.H.)

MORE INFORMATION
================

Here is the definition of DEFINE_GUID as it appears in OBJBASE.H:

 #ifndef INITGUID
 #define DEFINE_GUID(name, l, w1, w2, b1, b2, b3, b4, b5, b6, b7, b8) \
 EXTERN_C const GUID CDECL FAR name
 #else

 #define DEFINE_GUID(name, l, w1, w2, b1, b2, b3, b4, b5, b6, b7, b8) \
 EXTERN_C const GUID CDECL name \
 = { l, w1, w2, { b1, b2, b3, b4, b5, b6, b7, b8 } }
 #endif // INITGUID

Note that if the symbol INITGUID is not defined, DEFINE_GUID simply defines
an external reference to the name.

In INITGUID.H, you find (among other things):

 #undef DEFINE_GUID

 // Other code . . .

 #define DEFINE_GUID(name, l, w1, w2, b1, b2, b3, b4, b5, b6, b7, b8) \
 EXTERN_C const GUID CDECL __based(__segname("_CODE")) name \

 = { l, w1, w2, { b1, b2, b3, b4, b5, b6, b7, b8 } }

By including INITGUID.H after OBJBASE.H, DEFINE_GUID is modified to
actually initialize the GUID.

NOTE: It is important to make sure that this is done exactly once for each
DLL or EXE. If you try to initialize the GUID in two different
implementation files and then link them together, you get this error:

 LNK2005 <symbol> already defined.

Additional reference words: kbinf 2.00 2.10 4.00
KBCategory: kbole kberrmsg
KBSubcategory: VCGenIss

BUG: ASSERT in OLECLI1.CPP When Copying Embedding to Clipboard
PSS ID Number: Q152072

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC), included with:
 - Microsoft Visual C++ for Windows, versions 1.5, 1.51, 1.52
 - Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2, 4.0, 4.1

SYMPTOMS
========

When you attempt to copy an embedding in an in-place active object to the
clipboard, the result is an ASSERT in OLECLI1.CPP. Specifically, the ASSERT
occurs in the COleClientItem::XOleClientSite::GetMoniker() function on the
following line of code:

 VERIFY(pThis->m_lpObject->SetMoniker(OLEWHICHMK_OBJREL,
 *ppMoniker)==S_OK);

CAUSE
=====

When you copy an embedding to the clipboard, a number of data formats are
placed on the clipboard, including link source information. The link source
information contains a moniker used to locate the document in which the
embedding resides.

When the container assigns a moniker to an embedded object, it will call
the object's IOleObject::SetMoniker() function. The object will then call
the container's IOleClientSite::GetMoniker() function to construct a
composite moniker based on the container's moniker. This is done because
the container may have changed its moniker while the object was not
running.

When the embedded object calls IOleClientSite::GetMoniker() to get the
container's moniker, COleClientItem::XOleClientSite::GetMoniker() ASSERTs
on the aforementioned line of code because pThis->m_bMoniker had not been
set to TRUE when the moniker was assigned during a previous call to
COleClientItem::XOleClientSite::GetMoniker().

The problem is located in the following section of the
COleClientItem::XOleClientSite::GetMoniker() function located in
OLECLI1.CPP:

 // notify the object of the assignment
 if (dwAssign != OLEGETMONIKER_TEMPFORUSER &&
 *ppMoniker != NULL && !pThis->m_bMoniker)
 {
 VERIFY(pThis->m_lpObject->SetMoniker(
 OLEWHICHMK_OBJREL, *ppMoniker) == S_OK);
 pThis->m_bMoniker = TRUE;
 ASSERT_VALID(pThis->m_pDocument);

 pThis->m_pDocument->SetModifiedFlag();
 }

The pThis->m_lpObject->SetMoniker() call results in the object calling
COleClientItem::XOleClientSite::GetMoniker() again. Because pThis-
>m_bMoniker is being set after the pThis->m_lpObject->SetMoniker() call,
the subsequent call to pThis->m_lpObject->SetMoniker() returns with an
error code of E_FAIL, triggering the ASSERT.

RESOLUTION
==========

To work around this problem, you must override the default IOleClientSite
interface implementation in COleClientItem. This can be done by adding an
interface map to the class in your project that is derived from
COleClientItem and setting pThis->m_bMoniker to TRUE before calling pThis-
>m_lpObject->SetMoniker() from your custom GetMoniker() function.

The code below illustrates how to override the COleClientItem-derived
object using the OCLIENT MFC sample application.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

MORE INFORMATION

Sample Code

 // Code to be added to CRectItem class definition in RECTITEM.H
 class CRectItem : public COleClientItem
 {
 // ...original declarations in CRectItem class go here...

 // Interface Map
 BEGIN_INTERFACE_PART(OleClientSite2, IOleClientSite)
 STDMETHOD(SaveObject)();
 STDMETHOD(GetMoniker)(DWORD, DWORD, LPMONIKER*);
 STDMETHOD(GetContainer)(LPOLECONTAINER*);
 STDMETHOD(ShowObject)();
 STDMETHOD(OnShowWindow)(BOOL);
 STDMETHOD(RequestNewObjectLayout)();
 END_INTERFACE_PART(OleClientSite2)

 DECLARE_INTERFACE_MAP()
 };

 // XOleClientSite2 functions to be added to RECTITEM.CPP
 BEGIN_INTERFACE_MAP(CRectItem, COleClientItem)

 INTERFACE_PART(CRectItem, IID_IOleClientSite, OleClientSite2)
 END_INTERFACE_MAP()

 STDMETHODIMP_(ULONG) CRectItem::XOleClientSite2::AddRef()
 {
 METHOD_PROLOGUE_EX_(CRectItem, OleClientSite2)
 return pThis->ExternalAddRef();
 }

 STDMETHODIMP_(ULONG) CRectItem::XOleClientSite2::Release()
 {
 METHOD_PROLOGUE_EX_(CRectItem, OleClientSite2)
 return pThis->ExternalRelease();
 }

 STDMETHODIMP CRectItem::XOleClientSite2::QueryInterface(
 REFIID iid, LPVOID* ppvObj)
 {
 METHOD_PROLOGUE_EX_(CRectItem, OleClientSite2)
 return pThis->ExternalQueryInterface(&iid, ppvObj);
 }

 STDMETHODIMP CRectItem::XOleClientSite2::SaveObject()
 {
 METHOD_PROLOGUE_EX(CRectItem, OleClientSite2)
 ASSERT_VALID(pThis);
 return pThis->m_xOleClientSite.SaveObject();
 }

 STDMETHODIMP CRectItem::XOleClientSite2::GetMoniker(
 DWORD dwAssign, DWORD dwWhichMoniker, LPMONIKER* ppMoniker)
 {
 METHOD_PROLOGUE_EX(CRectItem, OleClientSite2)
 ASSERT_VALID(pThis);

 USES_CONVERSION; // note, must #include afxpriv.h

 COleDocument* pDoc = pThis->GetDocument();
 ASSERT_VALID(pDoc);
 ASSERT(ppMoniker != NULL);
 *ppMoniker = NULL;

 switch (dwWhichMoniker)
 {
 case OLEWHICHMK_CONTAINER:
 // return the current moniker for the document
 *ppMoniker = pDoc->GetMoniker((OLEGETMONIKER)dwAssign);
 break;

 case OLEWHICHMK_OBJREL:
 {
 if (!pDoc->IsKindOf(RUNTIME_CLASS(COleLinkingDoc)))
 break;

 // don't return relative moniker if no document moniker

 LPMONIKER lpMoniker = pDoc-
 >GetMoniker((OLEGETMONIKER)dwAssign);
 if (lpMoniker == NULL)
 break;
 lpMoniker->Release();

 // relative monikers have to handle assignment correctly
 switch (dwAssign)
 {
 case OLEGETMONIKER_ONLYIFTHERE:
 if (!pThis->m_bMoniker)
 break; // no moniker assigned, don't return one
 // fall through...

 case OLEGETMONIKER_TEMPFORUSER:
 case OLEGETMONIKER_FORCEASSIGN:
 {
 // create item moniker from item name
 TCHAR szItemName[OLE_MAXITEMNAME];
 pThis->GetItemName(szItemName);
 CreateItemMoniker(OLESTDDELIMOLE, T2COLE(szItemName),
 ppMoniker);

 // notify the object of the assignment
 if (dwAssign != OLEGETMONIKER_TEMPFORUSER &&
 *ppMoniker != NULL && !pThis->m_bMoniker)
 {
 pThis->m_bMoniker = TRUE;
 VERIFY(pThis->m_lpObject->SetMoniker(
 OLEWHICHMK_OBJREL, *ppMoniker) == S_OK);
 ASSERT_VALID(pThis->m_pDocument);
 pThis->m_pDocument->SetModifiedFlag();
 }
 }
 break;

 case OLEGETMONIKER_UNASSIGN:
 pThis->m_bMoniker = FALSE;
 break;
 }
 }
 break;

 case OLEWHICHMK_OBJFULL:
 {
 // get each sub-moniker: item & document
 LPMONIKER lpMoniker1, lpMoniker2;
 GetMoniker(dwAssign, OLEWHICHMK_CONTAINER, &lpMoniker1);
 GetMoniker(dwAssign, OLEWHICHMK_OBJREL, &lpMoniker2);

 // create composite moniker
 if (lpMoniker1 != NULL && lpMoniker2 != NULL)
 ::CreateGenericComposite(lpMoniker1, lpMoniker2,
 ppMoniker);

 // release sub-monikers
 RELEASE(lpMoniker1);
 RELEASE(lpMoniker2);
 }
 break;
 }
 return *ppMoniker != NULL ? S_OK : E_FAIL;
 }

 STDMETHODIMP CRectItem::XOleClientSite2::GetContainer(LPOLECONTAINER*
 ppContainer)
 {
 #ifdef _DEBUG
 METHOD_PROLOGUE_EX(CRectItem, OleClientSite2)
 #else
 METHOD_PROLOGUE_EX_(CRectItem, OleClientSite2)
 #endif
 ASSERT_VALID(pThis);
 return pThis->m_xOleClientSite.GetContainer(ppContainer);
 }

 STDMETHODIMP CRectItem::XOleClientSite2::ShowObject()
 {
 METHOD_PROLOGUE_EX(CRectItem, OleClientSite2)
 ASSERT_VALID(pThis);
 return pThis->m_xOleClientSite.ShowObject();
 }

 STDMETHODIMP CRectItem::XOleClientSite2::OnShowWindow(BOOL fShow)
 {
 METHOD_PROLOGUE_EX(CRectItem, OleClientSite2)
 ASSERT_VALID(pThis);
 return pThis->m_xOleClientSite.OnShowWindow(fShow);
 }

 STDMETHODIMP CRectItem::XOleClientSite2::RequestNewObjectLayout()
 {
 return E_NOTIMPL;
 }

Additional reference words: 1.50 1.51 1.52 2.00 2.10 2.20 4.00 4.10
KBCategory: kbole kbbuglist
KBSubcategory: MfcOLE

BUG: Blob Persistent Data Incorrect for Ported OLE Control
PSS ID Number: Q142211

The information in this article applies to:
 - The Microsoft Foundation Classes (MFC) included with:
 Microsoft Visual C++, 32-bit Edition, version 4.0 and 4.1

SYMPTOMS
========

An OLE control using PX_Blob(), created using the Control Developer's Kit
(CDK) that shipped with Visual C++ 2.2 or earlier and saved in a Visual
Basic 4.0 form, may give undefined behavior if the control is ported to
Visual C++ 4.0 or 4.1 and the Visual Basic form containing the control is
reopened.

CAUSE
=====

OLE Controls created using the CDK that shipped with Visual C++ 2.2 or
earlier did not implement the IPersistPropertyBag interface. Controls
created with Visual C++ 4.0 or 4.1 do implement IPersistPropertyBag.

The undefined behavior is due to Visual Basic's implementation of
IPropertyBag. Visual Basic is currently adding a 20-byte header to a blob
property's persistent data, and expecting that header to be in any blob
persistent data previously saved. In the case of controls created
previously to Visual C++ 4.0 or 4.1, IPersistPropertyBag, which corresponds
to the container's IPropertyBag was not implemented. Therefore, the
container used a different means to serialize the blob data which did not
attach a 20 byte header. The undefined behavior may behave a number of ways
including the blob data being reinitialized, blob data being initialized
incorrectly, or the control not being created altogether.

WORKAROUND
==========

To read in the blob data correctly, you must force the container to use an
interface other than IPropertyBag to serialize the data. In this case, a
20-byte header will not be expected and the blob data should be read in
properly. The technique demonstrated in the "Sample Code" section of this
article unexposes the control's IPersistPropertyBag interface thereby
forcing the container to use an interface other than IPropertyBag to read
in the blob data.

STATUS
======

Microsoft has confirmed this to be a bug in Microsoft Visual Basic 4.0.
We are researching this problem and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION

================

Sample Code to Demonstrate Workaround

The following is a step by step process to unexpose the IPersistPropertyBag
interface in an OLE control generated with Visual C++ 4.0 or 4.1. This is
most easily done by implementing a new interface map, which does not expose
the IPersistPropertyBag interface.

1. In the declaration of your COleControl derived class (in the header
 file), add a DECLARE_INTERFACE_MAP() macro if there isn't one already
 there.

 class CBlobTestCtrl : public COleControl
 {
 ...
 DECLARE_INTERFACE_MAP()
 };

2. In the .cpp file for the control, implement a new interface map
 specifying all but IID_IPersistPropertyBag.

 BEGIN_INTERFACE_MAP(CBlobTestCtrl, CWnd) // use CWnd not COleControl
 INTERFACE_PART(CBlobTestCtrl, IID_IOleObject, OleObject)
 INTERFACE_PART(CBlobTestCtrl, IID_IConnectionPointContainer,
 ConnPtContainer)
 INTERFACE_PART(CBlobTestCtrl, IID_IOleControl, OleControl)
 INTERFACE_PART(CBlobTestCtrl, IID_IPersist, PersistStorage)
 INTERFACE_PART(CBlobTestCtrl, IID_IPersistMemory, PersistMemory)
 INTERFACE_PART(CBlobTestCtrl, IID_IPersistStreamInit,
 PersistStreamInit)
 INTERFACE_PART(CBlobTestCtrl, IID_IOleInPlaceObject,
 OleInPlaceObject)
 INTERFACE_PART(CBlobTestCtrl, IID_IOleInPlaceActiveObject,
 OleInPlaceActiveObject)
 INTERFACE_PART(CBlobTestCtrl, IID_IDispatch, Dispatch)
 INTERFACE_PART(CBlobTestCtrl, IID_IOleCache, OleCache)
 INTERFACE_PART(CBlobTestCtrl, IID_IViewObject, ViewObject)
 INTERFACE_PART(CBlobTestCtrl, IID_IViewObject2, ViewObject)
 INTERFACE_PART(CBlobTestCtrl, IID_IDataObject, DataObject)
 INTERFACE_PART(CBlobTestCtrl, IID_ISpecifyPropertyPages,
 SpecifyPropertyPages)
 INTERFACE_PART(CBlobTestCtrl, IID_IPerPropertyBrowsing,
 PerPropertyBrowsing)
 INTERFACE_PART(CBlobTestCtrl, IID_IProvideClassInfo,
 ProvideClassInfo)
 INTERFACE_PART(CBlobTestCtrl, IID_IProvideClassInfo2,
 ProvideClassInfo)
 INTERFACE_PART(CBlobTestCtrl, IID_IPersistStorage, PersistStorage)
 END_INTERFACE_MAP()

REFERENCES
==========

MFC Technical Note #38 about "MFC/OLE IUnknown implementation"
Inside Ole Second Edition by Kraig Brockschmidt

Additional reference words: 4.00 4.10
KBCategory: kbprg kbole kbbuglist
KBSubcategory: CDKIss MfcOLE

BUG: C4003 When Building Wrapper For Word.Basic 7.0 Object
PSS ID Number: Q148223
--
The information in this article applies to:

 - The ClassWizard included with:
 Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2, 4.0
--

SYMPTOMS
========

Attempting to build the ClassWizard-generated wrapper for the Word.Basic
object by using the type library included with the Microsoft Word 95
Developer Kit (Wb70en32.tlb) results in this error:

 warning C4003: not enough actual parameters for macro 'ExitWindows'

CAUSE
=====

This problem is actually caused by a macro defined in the Windows SDK
header file Winuser.h. Winuser.h redefines ExitWindows() to map to the
Win32 SDK API ExitWindowsEx(). This poses a problem for any C++ classes
that need to implement a member function named ExitWindows(). The
Word.Basic object exposes an automation method called ExitWindows(). When
ClassWizard reads the type information contained in the Word type library
(Wb70en32.tlb), it generates a class containing a member function called
ExitWindows(). Attempting to compile this class generates the C4003 error.

RESOLUTION
==========

Here are two ways to work around this problem. If your application doesn't
make use of the ExitWindows() SDK function, you can undefine the macro by
including the following line of code before the definition of the class
that contains the ExitWindows() member function.

 #undef ExitWindows

However, a more straightforward workaround is to rename the ExitWindows()
member function for the problem class. For example, rename
WordBasic::ExitWindows() to WordBasic::_ExitWindows().

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 2.00 2.10 2.20 3.00 3.10 3.20 4.00
KBCategory: kbole kbbuglist

KBSubcategory: WizardIss

BUG: ClassWizard Incorrectly Reads LPDISPATCH Params from .TLB
PSS ID Number: Q131044

The information in this article applies to:

 - The ClassWizard included with:

 - Microsoft Visual C++ for Windows, versions 1.5, 1.51, and 1.52
 - Microsoft Visual C++, 32-bit Edition, versions 2.0 and 2.1

SYMPTOMS
========

ClassWizard generates improper COleDispatchDriver derived member functions
for methods that contain one or more LPDISPATCH* parameters. Specifically,
ClassWizard generates member functions using a LPDISPATCH parameter instead
of LPDISPATCH*. In other words, the asterisk (*) is missing.

RESOLUTION
==========

To correct this problem, you must edit the COleDispatchDriver derived
member directly.

For example, assume there is a type library (.TLB file) for an object that
supports a method that returns a void and accepts an LPDISPATCH* as its
only parameter. When ClassWizard reads the .TLB file, it generates a new
class from COleDispatchDriver. The method for the member function that
returns a void and accepts an LPDISPATCH* parameter ends up with this
incorrect definition:

void ITestObject::TestMethod(LPDISPATCH lpDispPtr)
{
 static BYTE BASED_CODE parms[] =
 VTS_DISPATCH;
 InvokeHelper(0x1, DISPATCH_METHOD, VT_EMPTY, NULL, parms,
 lpDispPtr);
}

To correct this problem, change the parameter type to LPDISPATCH*, and
modify the parms[] array so that it contains a corresponding VTS_PDISPATCH
entry instead of VTS_DISPATCH, as illustrated here:

void ITestObject::TestMethod(LPDISPATCH* lpDispPtr)
{
 static BYTE BASED_CODE parms[] =
 VTS_PDISPATCH;
 InvokeHelper(0x1, DISPATCH_METHOD, VT_EMPTY, NULL, parms,
 lpDispPtr);
}

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 1.50 1.51 1.52 2.00 2.10 noupdate
KBCategory: kbole kbbuglist
KBSubcategory: WizardIss

BUG: Control Container Support Only Works in Primary Thread
PSS ID Number: Q152075

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC), included with:
 Microsoft Visual C++, 32-bit Edition, versions 4.0, 4.1

SYMPTOMS
========

When using the ActiveX control container support built into MFC, controls
should only be created and used in the primary thread. The primary thread
is the thread created automatically for you during startup of the MFC
program. Starting other threads and trying to use MFC's built-in control
container support will cause unpredictable and erratic behavior of the
primary thread and any other threads that attempt to display ActiveX
controls. This problem will occur whether you use a UI thread or a worker
thread.

CAUSE
=====

This situation appears to occur because the afxOccManager is stored as a
process local variable.

RESOLUTION
==========

There is no reliable workaround for this issue at this time. If your
program uses ActiveX controls, make sure they are displayed in the primary
thread only.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

MORE INFORMATION
================

This situation can be reproduced by creating an Appwizard generated app
that supports ActiveX control containment. Create a dialog in the first
thread that displays an ActiveX control. Add a class to your project
derived from CWinThread that will create a secondary thread. Also, add
another dialog to the project that contains an ActiveX control that will be
created as a modeless dialog by the secondary thread when the secondary
thread starts up. This can be done in the CWinThread's InitInstance method.
Build the app. When the app is run, if you show the dialog that contains
the ActiveX control in the first thread, the second thread will no longer

be able to create ActiveX controls. Conversely, if the second thread shows
its dialog first, the primary thread will not be able to create ActiveX
controls. If you attempt to create ocx controls in more than one thread,
you will also get an access violation in OLE32.dll when the program
terminates.

Additional reference words: 4.00 4.10 ocx
KBCategory: kbole kbbuglist kbprg
KBSubcategory: MfcOLE

BUG: DAO SDK's CdbRecordset::Requery() May Fail
PSS ID Number: Q152318

The information in this article applies to:

 - The DAO SDK included with:
 Microsoft Visual C++, 32-bit Edition, version 4.0, 4.1

SYMPTOMS
========

Attempting to invoke the DAO SDK's CdbRecordset::Requery() method of the
CdbRecordset class when the recordset has been opened with dbOpenDynaset
and dbDenyWrite, may result in an error message similar to the following:

 Unhandled exception in <YourApp>.exe (DAO3032.DLL):
 0xC0000005: Access Violation

CAUSE
=====

Within the implementation of CdbRecordset::Requery found in DBDAO.CPP (line
1645), the casting of a COleVariant method is performed incorrectly. The
cast is performed as:

 Var.pdispVal = (LPDISPATCH)pq();

The correct implementation should be:

 Var.pdispVal = (LPDISPATCH)pq->GetInterface();

RESOLUTION
==========

Derive a new class from CdbRecordset and override the Requery method with
the following:

 VOID CdbRecordset::Requery(CdbQueryDef *pq) // = NULL
 {
 DAORecordset* prs = (DAORecordset *)GetInterface();
 COleVariant Var;

 //Manually load the Query Def as a dispatch
 if (!pq)
 {
 Var.vt = VT_ERROR;
 Var.scode = DISP_E_PARAMNOTFOUND;
 }
 else
 {
 Var.vt = VT_DISPATCH;
 Var.pdispVal = (LPDISPATCH)pq->GetInterface();
 }

 DAOMFC_CALL(prs->Requery(Var));
 }

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 4.00 4.10
KBCategory: kbprg kbole kbbuglist
KBSubCategory: kbnocat

BUG: Default OLE Container w/ Splitters Faults on View Closure
PSS ID Number: Q148139

The information in this article applies to:

 - The AppWizard included with:
 Microsoft Visual C++, 32-bit Edition, version 4.0

SYMPTOMS
========

An AppWizard application generated with OLE Container and Splitter Window
support will generate an Access Violation when a splitter pane containing
an in-place active item is closed. The Access Violation occurs when you try
to call m_pView->AssertValid() from the COleClientItem::AssertValid()
function.

CAUSE
=====

The AppWizard fails to add an OnDestroy() member function to the view class
to deactivate the in-place active object when the view containing the
in-place active object is destroyed. When the view containing the active
object is destroyed, the remaining view is resized. Because the object in
the destroyed view was not properly deactivated, the subsequent call to
GetInPlaceActiveObject() in the view's OnSize() function erroneously
detects an in-place active COleClientItem object.

RESOLUTION
==========

To work around the problem, add the following handler for the WM_DESTROY
message to your view class:

void CYourView::OnDestroy()
{
 CView::OnDestroy();

 COleClientItem* pActiveItem =
 GetDocument()->GetInPlaceActiveItem(this);
 if (pActiveItem != NULL && pActiveItem->GetActiveView() == this)
 {
 pActiveItem->Deactivate();
 ASSERT(GetDocument()->GetInPlaceActiveItem(this) == NULL);
 }
}

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes

available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Create an SDI or MDI application with AppWizard. Select OLE Container
 support in Step 3, and select the "Use split window" check box in the
 Windows Styles tab of the Advanced Options dialog in Step 4.

2. Build a DEBUG version of the application, and run it.

3. Click Insert New Object on the Edit menu, and insert an object that
 supports in-place activation. For example, use Microsoft Word or
 Microsoft Excel. The object should appear in the container application
 and be activated in-place.

4. Split the container's view window. You should see two objects, one
 of which is in-place active and the other of which is a copy of the
 in-place active object.

5. Drag the splitter bar so that the view containing the in-place active
 object is removed and destroyed. As a result, an unhandled exception
 Access Violation occurs in COleClientItem::AssertValid().

Additional reference words: 4.00 GP fault GPF
KBCategory: kbole kbbuglist
KBSubcategory: WizardIss

BUG: Masked Edit Tab Order Incorrect If Visible Property FALSE
PSS ID Number: Q152603

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:
 Microsoft Visual C++, 32-bit Edition, versions 4.0, 4.1, 4.2

SYMPTOMS
========

Multiple Masked Edit OLE Controls that are not visible will not retain
their original tab order after they are made visible.

If you insert more than one Microsoft Masked Edit Ole Control into a dialog
resource wrapped by a MFC Class (CDialog, CFormView, CRecordView, or
CDaoRecordView), set the Visible Properties of the Controls to FALSE in the
Resource Editor at design time, and then call the ShowWindow on the
controls, the focus is set to the wrong control.

RESOLUTION
==========

If possible, leave the Visible property of the Microsoft Masked Edit OLE
Control set to TRUE.

If you call SetFocus on the first masked edit control, the focus is set
properly to that control, but if there are any other non-static controls
on the form, they will be inserted before the second masked edit control in
the tab order at run time.

SetWindowPos() can be used to set the z-order of a control. The tab order
in a dialog is synonymous with the Z-order, meaning that a control that is
first in the tab order will have a higher Z-order than a control that
follows it in the-Z order. A control with the WS_CLIPSIBLINGS window style
set that is overlapped by another control will not be painted in the area
that is overlapped. OLE controls have the WS_CLIPSIBLINGS window style set
by default.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

MORE INFORMATION
================

Use the following steps to reproduce a dialog-based MFC application. These
steps also apply if you choose either an SDI or MDI application with a
CFormView, CRecordView, or CDaoRecordView:

1. Create an AppWizard dialog-based application with OLE Controls support.

2. Using the Component Gallery, insert a Microsoft Masked Edit OLE Control.

3. Place two masked edit controls on the dialog resource. Verify the tab
 order: the first control you placed on the dialog should be first in
 the tab order.

4. Set the Visible properties of both edit controls to FALSE.

5. Using the Class Wizard, create member variables of type "control" for
 both of the masked edit controls. For example:

 CMsmask m_Mask1;
 CMsmask m_Mask2;

 where CMsmask is the class that the Component Gallery created to wrap
 the Microsoft Masked Edit OLE Control.

6. For the dialog's OnInitDialog method, run the following code:

 m_Mask1.ShowWindow(SW_SHOW);
 m_Mask2.ShowWindow(SW_SHOW);

7. Build and run the program. The m_Mask2 object will be first in the tab
 order -- before m_Mask2.

Additional reference words: 4.00 4.10 4.20
KBCategory: kbusage kbole kbbuglist
KBSubcategory: MfcOLE AppStudioIss

BUG: Multiple ActiveX Control Containers Under Win32s Problems
PSS ID Number: Q152792

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:
 Microsoft Visual C++, 32-bit Edition, versions 4.0, 4.1

SYMPTOMS
========

It is possible to use MFC versions 4.0 and 4.1 to create ActiveX control
containers that will run under Win32s version 1.3. However if, after
the container has been started under Win32s, another MFC ActiveX control
container is started or a second instance of the same application is
started, the second ActiveX control container can't display ActiveX
controls if the first application has already displayed one of its ActiveX
controls.

If the first application doesn't create its ActiveX controls first, then
the second application can create ActiveX controls, but then the first
application can't create ActiveX controls at all. Also, if you are running
a debug build of the application, you will see an assertion in Appinit.cpp
at line 110 when the second application starts up.

CAUSE
=====

This is caused by improper initialization of the MFC and C-Run-Time DLLs
under Win32s.

RESOLUTION
==========

The assertion in Appinit.cpp at line 110 can be safely ignored. Note that
assertions are only included in debug builds of MFC applications. There
currently is no work around to the problem of a second MFC app being able
to use MFC control container support under Win32s.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 4.00 4.10
KBCategory: kbprg kbbuglist kbole
KBSubcategory: MfcOLE VCx86

BUG: OLE Controls Limited to 20 Property Pages in Visual C++
PSS ID Number: Q153354

The information in this article applies to:

 - The Resource Editor included with:
 Microsoft Visual C++, 32-bit Edition, versions 4.0, 4.1, 4.2

SYMPTOMS
========

When an ActiveX (OLE) Control that has more than 20 Property Pages is
placed on a dialog in the Visual C++ resource editor, you may encounter an
error in the development environment when you switch between its property
pages. In particular, if you select the tab for a property page numbered
greater than 20, you will see a message box indicating: "This program has
performed an illegal operation and will be shut down." Selecting a tab for
a page numbered less than 20 may also cause an error to occur.

CAUSE
=====

This behavior is caused by a bug in the Visual C++ development environment,
which allows a maximum of property pages for a given ActiveX Control.

RESOLUTION
==========

Currently, there are two workarounds for this problem:

 - Limit the number of property pages for an OLE Control to 20.

 -or-

 - Add a button to the property page that when clicked will bring up a
 Modal dialog box to handle additional properties.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this bug and will post
new information here in the Microsoft Knowledge Base as it becomes
available.

REFERENCES
==========

OLE Controls: Adding Another Custom Property Page
Programming with MFC: Encyclopedia

Additional reference words: 4.00 4.10 4.20 vcbuglist400
KBCategory: kbole kbtool kbbuglist

KBSubcategory: AppStudioIss CDKIss

BUG: Pop-Up Menu Items Disabled for an OLE Control
PSS ID Number: Q141199

The information in this article applies to:

 - Microsoft Visual C++, 32-bit Edition, version 4.0 and 4.1

SYMPTOMS
========

The menu items are disabled even though menu handlers were added with
Class Wizard when you create an OLE Control and then use the Pop-up Menu
component in the Component Gallery to add a context menu to the COleControl
derived class. The problem occurs after you modify the context menu, and
then add handlers for the menu items, build the Control, place it in
Tstcon32.exe, and bring up the context menu.

CAUSE
=====

Within the OnContextMenu function added by the Pop-up Menu Component, the
code makes the top-most parent window the parent of the context menu. The
menu sends the WM_COMMAND message to its parent first, which can then route
the command appropriately through the application. This method works for
windows in an MFC application that are part of the command-routing scheme.
However, because OLE Controls are not part of the routing mechanism, the
WM_COMMAND message never gets back to them and therefore the context menu
doesn't see the handlers, so the menu items are disabled.

RESOLUTION
==========

The Pop-up Menu Component creates the following code within the CWnd
derived class. If the pop-up menu is being added to a COleControl-derived
class, you need to delete the following lines of code:

 while (pWndPopupOwner->GetStyle() & WS_CHILD)
 pWndPopupOwner = pWndPopupOwner->GetParent();

Code Created by Pop-up Menu Component

void CSPLITCtrl::OnContextMenu(CWnd*, CPoint point)
{
 // CG: This function was added by the Pop-up Menu component

 CMenu menu;
 VERIFY(menu.LoadMenu(CG_IDR_POPUP_SPLITCTRL));

 CMenu* pPopup = menu.GetSubMenu(0);
 ASSERT(pPopup != NULL);

 CWnd* pWndPopupOwner = this;

 while (pWndPopupOwner->GetStyle() & WS_CHILD)
 pWndPopupOwner = pWndPopupOwner->GetParent();

 pPopup->TrackPopupMenu(TPM_LEFTALIGN | TPM_RIGHTBUTTON, point.x,
 point.y, pWndPopupOwner);
}

By removing the two lines of code, you are leaving the COleControl-derived
class as the parent of the menu. As a result, the control receives the
WM_COMMAND messages sent by the pop-up menu, so the normal ON_COMMAND
functionality added by Class Wizard workd as designed.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 4.00 4.10
KBCategory: kbprg kbole kbbuglist
KBSubcategory: CodeGen MfcOLE

BUG: SetWindowText(NULL) Doesn't Clear .OCX Edit Control
PSS ID Number: Q146617

The information in this article applies to:

 - The Microsoft Foundation Classes included with:
 Microsoft Visual C++, 32-bit Edition, version 4.0 and 4.1

SYMPTOMS
========

It is possible to use AppWizard to create an OLE Custom Control (.ocx file)
that subclasses a standard Windows control. If you choose to subclass an
edit control, the control will not exhibit the same behavior as a standard
edit control.

Specifically, in the case where the control is not initialized with data,
the user types some text into the control, and then SetWindowText(NULL) is
called to clear the text, the text in the control will not be cleared. If
this same sequence of events were to occur in a standard edit control, the
contents of the edit control would be cleared.

CAUSE
=====

COleControl handles the WM_SETTEXT message in its OnSetText handler. The
first few lines of this function are:

LRESULT COleControl::OnSetText(WPARAM wParam, LPARAM lParam)
{
 ASSERT(lParam == 0 || AfxIsValidString((LPCTSTR)lParam));

 // Is the property changing?
 if ((lParam == 0 && m_strText.IsEmpty()) ||
 (lParam != 0 && m_strText == (LPCTSTR)lParam))
 return 0;
 .
 .
 .
}

When a user types text into the control, the m_strText member is not
updated. Therefore, when SetWindowText(NULL) is called on the control, the
first expression is evaluated as TRUE, even though the edit control is not
truly empty. This expression is interpreted as property not changed, and
the function exits.

RESOLUTION
==========

To work around this problem, override OnSetText() in the COleControl
derived class, and copy the code from COleControl::OnSetText() into the
overridden funtion, with the following change:

LRESULT CMyOleControl::OnSetText(WPARAM wParam, LPARAM lParam)
{
 ASSERT(lParam == 0 || AfxIsValidString((LPCTSTR)lParam));

 // Is the property changing?
 if ((lParam == 0 && InternalGetText().IsEmpty()) ||
 (lParam != 0 && m_strText == (LPCTSTR)lParam))
 return 0;
 .
 .
 .
}

Calling InternalGetText() will give access to the text property, and then
calling IsEmpty() on the return from it will correctly check to see if the
edit control has been updated.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 4.00 4.10
KBCategory: kbprg kbole kbbuglist
KBSubcategory: MfcOLE

BUG: Win32 SDK Version 3.51 Bug List - OLE
PSS ID Number: Q136433

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT

SUMMARY
=======

This article lists the bugs in the OLE libraries released with
Windows NT version 3.51 that were known at the time the product was
released.

MORE INFORMATION
================

 - IMoniker::BindToObject always returns MK_E_INVALIDEEXTENSION if an
 error occurs during open. It should only associate the file extension
 if the file is not a .doc file.

 - CreateFileMoniker expands letters to UNC names. If in doing so, the path
 becomes greater than MAX_PATH, CreateFileMoniker returns E_OUTOFMEMORY.

 - Cannot call CoCreateInstance for first time from the DllEntry. If you
 need the DLL to create an object, you can either do this by having the
 .exe call a creation function in your DLL or post a message to a window
 owned by your DLL.

 - IOleCache::SetData returns OLE_E_BLANK for invalid lIndex, FormatEtc,
 aspect, and target device. It should return DV_E_LINDEX, DV_E_FORMATETC,
 DV_E_DVASPECT, and DV_E_TARGETDEVICE, respectively.

 - Calling freeze on a frozen icon aspect with an invalid lIndex returns
 VIEW_S_ALREADYFROZEN rather than DV_E_INDEXFreeze of Icon aspect
 returns.

 - IStream::Write of 0 bytes returns E_INVALIDARG from a 16-bit OLE
 application running in the WOW layer. Zero is a valid parameter to pass
 to Write.

 - "Alt -" accelerator does not work with MDI windows.

 - IOleObject::IsUpToDate always returns S_FALSE after link track move.

 - The proxy for IEnumVARIANT::Next allows a NULL pceltFetched when celt is
 greater than 1.

 - If you place a dataobject which only has a TYMED_FILE format using
 OleSetClipboardData, GetClipboardData returns NULL.

 - The file version of IStream::CopyTo uses Windows NT signed 64-bit math
 to compute values it needs. Some of the math could overflow 63 bits if

 the sizes and/or seek pointers of the streams are 63 bits or more.

 - OleCreateFromData does not update the OBJREL moniker of the newly
 created embedded object.

 - OleCreateLinkToFile succeeds for non-existent files. Your code should
 check for the existance of the file before calling this function.

 - OleUIAddVerbMenu is not setting up the single menu item correctly.

 - OleUIConvert and OleUIChangeIcon crash on invalid hMetaPict.

 - CoFreeUnusedLibraries fails to unload DLLs that are no longer in use.

 - The AddControl option, when calling OleUIInsertObject, does not work
 as expected.

Additional reference words:
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoMisc

Calling Hidden Default Method of an OLE Automation Collection
PSS ID Number: Q152071

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:
 Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2, 4.0, 4.1

SUMMARY
=======

A technical article found on the Microsoft Developer Network CD-ROM titled
"Implementing OLE Automation Collections," describes the functionality
necessary to create an OLE automation collection. This includes creating a
method called Item that returns the dispatch interface of the indicated
item in the collection.

All OLE automation collection objects must implement the Item method to
iterate through the objects of the collection. The implementation of the
method might have been created hidden in the .ODL file for some
applications. You cannot find these hidden methods by calling
IDispatch::GetIdsOfNames(). However, in many situations, this hidden method
is the default method of the collection, in which case you can invoke it
with an dispatch ID of DISPID_VALUE.

Visual Basic 3.0 depends on this Item method being the default method of
the collection object.

MORE INFORMATION
================

The following code sample illustrates using
COleDispatchDriver::InvokeHelper() to call the Item method from the
Resources collection class provided by Microsoft Project 4.1. The Item
method is hidden and cannot be found in the type library of the object:

Sample Code

 void IterateCollection(void)
 {
 Application App; // wrapper class for the 'Application' object
 Project Proj; // wrapper class for the 'Project' object
 Resources Res; // wrapper class for the 'Resources' object
 CString lpszFileName ("c:\\temp\\project2.mpp");

 App.CreateDispatch("MSProject.Application");

 VARIANT vFileName;
 VariantInit(&vFileName);
 V_VT(&vFileName) = VT_BSTR;
 V_BSTR(&vFileName) = lpszFileName.AllocSysString();
 App.FileOpen(vFileName);

 Proj.AttachDispatch(App.GetActiveProject());
 Res.AttachDispatch(Proj.GetResources());

 VARIANT vCount;
 VariantInit(&vCount);
 V_VT(&vCount) = VT_I4;
 vCount = Res.Count();

 // the index of the collection starts with 1, not 0
 for (int i = 1 ; i <= vCount.lVal ; i++)
 {
 Resource r; // wrapper class for the 'Resource' object

 VARIANT vResult, vIndex, vStr;
 VariantInit(&vResult);
 VariantInit(&vIndex);
 V_VT(&vIndex) = VT_I2;
 V_I2(&vIndex) = i;
 static BYTE parms[] = VTS_VARIANT;

 Res.InvokeHelper(DISPID_VALUE, DISPATCH_METHOD, VT_VARIANT,
 (void*)&vResult, parms, &vIndex);
 r.AttachDispatch(vResult.pdispVal);

 vStr = r.GetName();
 // ... 'vStr' now contains the Name property
 }
 }

Additional reference words: 2.00 2.10 2.20 4.00 4.10
KBCategory: kbprg kbole kbcode
KBSubcategory: CodeSam MfcOLE VCx86

CONNPTS.EXE: SAMPLE: Implements Connection Points in MFC Apps
PSS ID Number: Q152087

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:
 Microsoft Visual C++, 32-bit Edition, versions 4.0, 4.1

SUMMARY
=======

This sample demonstrates implementing connection points and connection
point sinks in MFC applications. The two applications that make up this
sample are the "source" application that implements a connection point, and
the "sink" application that implements an interface that will be hooked up
to the connection point.

You can find CONNPTS.EXE, a self-extracting file, on these services:

 - Microsoft's World Wide Web site on the Internet
 On the www.microsoft.com home page, click the Support icon
 Click Knowledge Base, and select the product
 Enter kbfile CONNPTS.EXE, and click GO!
 Open the article, and click the button to download the file

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the Softlib/Mslfiles folder
 Get CONNPTS.EXE

 - The Microsoft Network
 On the Edit menu, click Go To, and then click Other Location
 Type "mssupport" (without the quotation marks)
 Double-click the MS Software Library icon
 Find the appropriate product area
 Locate and download CONNPTS.EXE

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download CONNPTS.EXE

For additional information about downloading, please see the following
article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q119591
 TITLE : How to Obtain Microsoft Support Files from Online Services

NOTE: Use the -d option when running CONNPTS.EXE to decompress the
file and recreate the proper directory structure.

MORE INFORMATION
================

Registration of the Connection Point Interfaces

To run the sample, the connection point interfaces must be registered
because this sample demonstrates using the connection point interfaces
across process boundaries and, in this case, the interfaces must be
marshaled. You may or may not need to install marshaling DLLs on your
system. For more information on resolving this issue, please see the
following article in the Microsoft Knowledge Base:

 ARTICLE ID: Q149231
 TITLE : CXPRX: Marshaling Code for Connection Point Interfaces

Connection Points and Sinks

For a more detailed understanding of connection points, consult the
documentation in the References section below.

A COM object has interfaces that can be called by clients of the object.
These are called incoming interfaces. The connection point interfaces are a
means for this object to call back into the clients via outgoing
interfaces. Typically, the object will want to notify any of its clients of
some event or change in the object's state. The object in this case is
known as the source, and the client is known as the sink.

To enable communication using the connection point mechanisms, the source
object will implement one or more connection points, such as an object that
supports IConnectionPoint, and the sink object will implement an interface
that the source object knows how to call. It is the job of the connection
point to hold on to the address of the interface in the sink object so that
the source can call it. The connection point may actually hold on to more
than one address if multiple sinks are clients of the object. This is
called multicasting. There will be one connection point in an object for
each sink interface the object knows how to call.

The remaining interface is IConnectionPointContainer.
IConnectionPointContainer is implemented in the source object and serves to
contain and manipulate the object's connection points.

This sample closely models the functionality of event notifications in OLE
Controls. The sink in this sample implements an IDispatch interface, as
would a control container, that the source knows how to use. You will need
to identify this interface with a unique IID so a connection point for the
interface can be uniquely identified. You will be able to take advantage of
the IDispatch marshaling code to marshal the dispatch interface across
process boundaries.

Note that the sink does not have to implement a dispatch interface. If you
choose to implement your own interface, however, and you are going to cross
process boundaries, you will be responsible for marshaling the interface.

Running the Sample

Once the connection point interfaces are registered, the sample can be run.
Run the "source" application first. Each of source's open documents is an
event source. Run the "sink" application next. In sink, select Sink /
Attach Source from the document menu. Note that each open document in sink
is an event sink. You should see a list of available sources. If you do
not, the connection point interfaces are not correctly registered. Select
any sources that you would like to connect to. A sink may attach itself to
any number of sources and a source may have any number of sinks attached.
From the source document menu, select Events / Fire Event *. Any sinks that
are hooked up to the source should display a message indicating that the
event was received.

Miscellaneous Notes

This sample implements connection points across process boundaries.
Implementing this functionality in in-process objects is done in the same
manner. In-process implementation will not require that you register the
connection point interfaces or the interface that is implemented by the
sink.

In this sample, the sink interface and the connection point interfaces need
to be registered. This registration is taken care of in the InitInstance
function of the sink application.

An IID for the sink interface is made available to both the sink and source
applications. Please note that the .cpp file in which this interface is
defined does not use pre-compiled headers.

All code in this sample relevant to the connection point implementation is
blocked by "//SAMPLECP" and "//END SAMPLECP" blocks. This coding convention
should make it easy to identify what you will need to implement in your
code.

REFERENCES
==========

"Inside OLE" by Kraig Brockschmidt, Second Edition, Chapter Four -
Connectable Objects, published by Microsoft Press.

Programming with MFC: Encyclopedia - Connectable Objects

Additional reference words: 4.00 4.10 Connection Point
KBCategory: kbole kbfile
KBSubcategory: MfcOLE
words: s_mfc

ControlWizard Generates Both 16-bit and 32-bit Projects
PSS ID Number: Q125242

The information in this article applies to:

 - Microsoft OLE Control Development Kit (CDK), version 1.0

SUMMARY
=======

The ControlWizard included with the Microsoft OLE Control Development
Kit (CDK) generates both 16-bit and 32-bit projects. In most cases,
you can develop your control on either a 16-bit or 32-bit platform,
and then rebuild the control on the other platform.

MORE INFORMATION
================

When ControlWizard is used to create an OLE control, two projects are
generated. The full project name you specify is used as the base name
for the 16-bit MAK file and other files used by the 16-bit IDE. The
first six letters of the project name followed by "32" are used to
create a base name for the 32-bit MAK and DEF files and other files
used by the 32-bit IDE.

For example, if the full project name is TESTCTRL, these two MAK files
are generated:

 TESTCTRL.MAK -- 16-bit Project File
 TESTCT32.MAK -- 32-bit Project File

ControlWizard also generates a 'makefile' file that NMAKE can use to
generate either a 16- or 32-bit project by specifying the WIN32 flag
on the command line. For example:

nmake WIN32=1 // 32 bit version
nmake WIN32=0 // 16 bit version

Within the generated source files, place platform-dependent code in
conditional compilation blocks, as shown in this example:

 LRESULT CTestCtrl::OnOcmCommand(WPARAM wParam, LPARAM lParam)
 {
 #ifdef _WIN32
 WORD wNotifyCode = HIWORD(wParam);
 #else
 WORD wNotifyCode = HIWORD(lParam);
 #endif

 // TODO: Switch on wNotifyCode here.

 return 0;
 }

To maintain platform independence, use conditional compilation blocks
to isolate platform dependencies in the code you add to your control.
Use the #error statement to flag features that are not implemented
for one platform or the other. For example, you might code the previous
example like the following if the 32-bit implementation was not complete:

 LRESULT CTestCtrl::OnOcmCommand(WPARAM wParam, LPARAM lParam)
 {
 #ifdef _WIN32
 #error OnOcmCommand parameter decoding not completed for Win32!
 #else
 WORD wNotifyCode = HIWORD(lParam);
 #endif

 // TODO: Switch on wNotifyCode here.

 return 0;
 }

Note that because separate project files are used for 16- and 32-bit
targets, all project maintenance will need to be performed for both
projects. Project maintenance activities include:

 - Adding or removing project files.

 - Changing compiler settings.

 - Changing linker settings, including input libraries.

Additional reference words: kbinf 1.00 2.00
KBCategory: kbole kbprg kbtool
KBSubcategory: CDKIss

Debugging OLE 2.0 Applications Under Win32s
PSS ID Number: Q123812

The information in this article applies to:

 - Microsoft Win32s version 1.2

SUMMARY
=======

The following are available to help you debug your OLE 2.0 applications
under Win32s:

 - Debug versions of the OLE DLLs, included with Win32s. (See the Win32s
 Programmer's Reference for more information on the debug DLLs.)

 - Failure/trace messages.

 - The OLE SDK for Win32s, version 1.2, included on the Microsoft Developer
 Network (MSDN) CD.

For information on a utility that will convert OLE error codes into
error message, please see the following article in the Microsoft Knowledge
Base:

 ARTICLE-ID: Q122957
 TITLE : SAMPLE: DECODE32: OLE Error Code Decoder Tool

MORE INFORMATION
================

The debug version of OLE can send diagnostic information to the debug
terminal. To enable this feature, include the following lines in the
SYSTEM.INI:

 [Win32sDbg]
 ole20str=xxxxx
 ole20str16=yyy

Use ole20str for 32-bit OLE and ole20str16 for 16-bit OLE. Set them to a
combination of the following letters (case sensitive):

 f - Failure message, kind of asserts.
 v - Verbose. General purpose messages.
 1 - Trace special translation activity for 32/16 interoperability.
 i - Trace initialization of OLE.
 t - Trace termination and cleanup of OLE.

The following tools are contained in the OLE SDK for Win32s, version 1.2:

 - DFVIEW - Show the content of storage files.

 - LRPCSPY - Monitor LRPC messages sent by 16-bit OLE applications (does

 not require Win32s).

 - RPCSPY32 - Monitor LRPC messages from both 16-bit and 32-bit OLE
 applications.

 - DOBJVIEW and DOBJVW32 - View objects placed on the clipboard as well as
 objects transferred by drag and drop.

 - IROTVIEW and IROTVW32 - Display the contents of the OLE running object
 table (ROT).

 - OLE2VIEW and OLE2VW32 - Identify objects, interfaces, inproc and local
 servers, registration database entries, and so on.

Additional reference words: 1.20
KBCategory: kbole kbprg
KBSubcategory: W32s

DOCERR: DoDragDrop() Parameter Documented Incorrectly
PSS ID Number: Q131100

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:

 - Microsoft Visual C++ for Windows, versions 1.5, 1.51, and 1.52
 - Microsoft Visual C++, 32-bit Edition, versions 2.0 and 2.1

The documentation for COleClientItem::DoDragDrop(),
COleServerItem::DoDragDrop(), and COleDataSource::DoDragDrop()
give the following incorrect information for the lpRectStartDrag parameter:

lpRectStartDrag:

 Pointer to the rectangle that defines where the drag
 actually starts. It does not start until the mouse cursor leaves the
 rectangle. If NULL, a default rectangle is used so that the drag
 starts when the mouse cursor moves one pixel.

The documentation for the lpRectStartDrag parameter for DoDragDrop() should
be:

lpRectStartDrag:

 Pointer to the rectangle that defines where the drag
 actually starts. It does not start until the mouse cursor leaves the
 rectangle or until a specific number of milliseconds has passed. If
 NULL, a default rectangle is used so that the drag starts when the
 mouse cursor moves one pixel. The number of milliseconds is specified
 by a registry key setting. The value can be found in the Windows NT
 system registry under the key HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\
 Windows\NT\CurrentVersion\IniFileMapping\win.ini\Windows\DragDelay,
 or in the WIN.INI file under the [Windows] section if running under
 Windows version 3.x. If the key is not present, a default value of 200
 milliseconds is used.

Additional reference words: 1.50 1.51 1.52 2.00 2.10
KBCategory: kbole kbdocerr
KBSubcategory: MfcOLE

DOCERR: GetClientRect() May Assert in OLE Controls
PSS ID Number: Q138664
--
The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:

 - Microsoft OLE Control Developer's Kit (CDK) versions 1.0, 1.1, 1.2
 - Microsoft Visual C++, 32-bit Edition, version 4.0 and 4.1
--

SUMMARY
=======

In the Ole Control Tutorial, Chapter 4. the section labeled Setting the
CircleOffset Property Step 2, which describes how to implement the
InBounds() function, incorrectly calls GetClientRect() and should instead
read as follows:

2. Add the function implementation at the end of your CIRCCTL.CPP file:

 BOOL CCirc2Ctrl::InBounds(short nOffset)
 {
 int diameter;
 int length;
 int cx;
 int cy;

 // Note that GetControlSize() is called here instead of
 // GetClientRect()

 GetControlSize(&cx, &cy);

 if (cx > cy)
 {
 length = cx;
 diameter = cy;
 }
 else
 {
 length = cy;
 diameter = cx;
 }
 if (nOffset < 0)
 nOffset = (short) -nOffset;
 return (diameter / 2 + nOffset) <= (length / 2);
 }

MORE INFORMATION
================

In some control containers (such as Visual Basic and Microsoft Access) in
design mode, the control has no window, and therefore no hwnd, so calling
GetClientRect(rc) will assert.

There are actually two solutions to this problem. The first solution is
documented in the "Summary" section of this article. The second solution is
to replace the call to GetClientRect() with a call to GetRectInContainer(),
which will obtain the coordinates of the control's rectangle relative to
the container. The size of the control can then be calculated from this
rectangle.

Additional reference words: kbinf 1.00 1.10 1.20 4.00 4.10
KBCategory: kbole kbcode kbdocerr
KBSubcategory: CDKIss

DOCERR: How to Use the PX_Blob Function
PSS ID Number: Q137333

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:

 - Microsoft OLE Control Developer's Kit (CDK), versions 1.0, 1.1, 1.2
 - Microsoft Visual C++, 32-bit Edition, version 4.0, 4.1

SUMMARY
=======

The PX_Blob function can be used to load or save an OLE control's property
that stores Binary Large Object (BLOB) data. The CDK documentation
incorrectly lists the prototype for the PX_Blob function as:

 BOOL PX_Blob(CPropExchange* pPX, LPCTSTR pszPropName,
 HGLOBAL*& hBlob, HGLOBAL hBlobDefault = NULL);

The third parameter is incorrectly shown as being of type HGLOBAL*&.
The correct function prototype is:

 BOOL PX_Blob(CPropExchange* pPX, LPCTSTR pszPropName,
 HGLOBAL& hBlob, HGLOBAL hBlobDefault = NULL);

The documentation states that PX_Blob will cause the property's value to be
read from or written to the variable referenced by hBlob, as appropriate.
However, the documentation is unclear about what hBlob should be
referencing. In order to use PX_Blob, it is necessary that the first four
bytes of information that hBlob references be a ULONG containing the number
of bytes of data that make up the properties value following the ULONG.

MORE INFORMATION
================

The following steps show how to use PX_Blob to serialize BLOB data:

1. Declare a structure that contains a ULONG and the property data in the
 header file for the control. Because the first four bytes of a BLOB need
 to be a ULONG, creating a structure that contains a ULONG and the
 property data can simplify using PX_Blob.

2. Declare an HGLOBAL member in the control's class declaration. The
 HGLOBAL will be used to reference the BLOB containing the property
 data.

3. Initialize the HGLOBAL member to NULL in the control's constructor.

4. In the control's DoPropExchange method, check to see if the control's
 properties are being saved or loaded. If properties are being saved, do
 the following:

 a. GlobalAlloc the required number of bytes for the data that represents
 the property value and add four additional bytes for the ULONG that
 contains the size of the data. The structure declared in Step 1 can
 be used when doing this.

 b. GlobalLock the handle returned from the GlobalAlloc call to get a
 pointer of your structure type to that memory.

 c. Fill in the first part of your structure with the sizeof (your
 property data).

 d. Fill in the second part of your structure with the actual data that
 represents the control's property value.

 e. Call PX_Blob, unlock and free the global memory.

5. If the control's properties are being loaded, do the following:

 a. Call PX_Blob to get the handle to memory containing the property
 data.

 b. Lock the handle to get a pointer to the actual property data.

 c. Set the value of the property, and then unlock and free the global
 memory.

 d. If the preceding call to PX_Blob in didn't return a handle to memory
 containing a BLOB containing the property value, initialize the
 property to a default value.

The essential point in the steps is to make sure the first four bytes of
information referenced by the hBlob passed to PX_Blob is a ULONG
representing the number of bytes of data to follow.

Sample Code

The following sample code illustrates using the steps listed previouse in
the context of the MFC CIRC3 OLE control sample. The sample code uses
PX_Blob to serialize the Offset property of the CIRC3 OLE control.

///
// CIRC3CTL.H

// STEP 1:
// Declare a structure to make working with a BLOB easier.
typedef struct tagOFFSET
{
 ULONG size;
 short offset;
} OFFSET;

class CCirc3Ctrl : public COleControl
{

public:
 // STEP 2:
 // Declare an HGLOBAL member in the control's class declaration.
 HGLOBAL hOffset;
 ...
};

///
// CIRC3CTL.CPP

CCirc3Ctrl::CCirc3Ctrl()
{
 InitializeIIDs(&IID_DCirc3, &IID_DCirc3Events);

 // STEP 3:
 // Initialize the HGLOBAL member to NULL.
 hOffset = NULL;

 // TODO: Initialize your control's instance data here.
}

void CCirc3Ctrl::DoPropExchange(CPropExchange* pPX)
{
 ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));
 COleControl::DoPropExchange(pPX);

 if (pPX->GetVersion() == (DWORD)MAKELONG(_wVerMinor, _wVerMajor))
 {
 PX_Bool(pPX, _T("CircleShape"), m_circleShape, TRUE);

 //****** NEW PX_Blob RELATED CODE STARTS HERE ******

 if(!pPX->IsLoading())
 {
 // The control's properties are being saved.

 // STEP 4.a:
 // GlobalAlloc the size of your structure. This step could take
 // place somewhere else and GMEM_FIXED isn't required.
 hOffset = GlobalAlloc(GMEM_FIXED, sizeof(OFFSET));

 if(hOffset != NULL)
 {
 // STEP 4.b:
 // GlobalLock the handle returned from the GlobalAlloc call.
 OFFSET * p_mem = (OFFSET*)GlobalLock(hOffset);

 if(p_mem != NULL)
 {
 // STEP 4.c:
 // Fill in the first part of your structure with the
 // sizeof(your property data).
 p_mem->size = (long)sizeof(short); // The offset property is
 // a short.
 // STEP 4.d:

 // Fill in the second part of your structure with the actual
 // data that represents the control's property value.
 p_mem->offset = m_circleOffset;

 // STEP 4.e:
 // Call PX_Blob, unlock and free your global memory.
 PX_Blob(pPX, _T("CircleOffset"), hOffset);

 GlobalUnlock(hOffset);
 }
 else
 {
 // The GlobalLock call failed. Pass in a NULL HGLOBAL for the
 // third parameter to PX_Blob. This will cause it to write a
 // value of zero for the BLOB data.
 HGLOBAL hTmp = NULL;

 PX_Blob(pPX, _T("CircleOffset"), hTmp);
 }

 GlobalFree(hOffset);
 hOffset = NULL;
 }
 else
 // The GlobalAlloc call failed. Pass in a NULL HGLOBAL for the
 // third parameter to PX_Blob. This will cause it to write a
 // value of zero for the BLOB data.
 PX_Blob(pPX, _T("CircleOffset"), hOffset);
 }
 else
 {
 // Properties are being loaded into the control.

 // STEP 5.a:
 // Call PX_Blob to get the handle to the memory containing
 // the property data.
 PX_Blob(pPX, _T("CircleOffset"), hOffset);

 // Definitely error check hOffset
 if(hOffset != NULL)
 {
 // STEP 5.b:
 // Lock the memory to get a pointer to the actual property
 // data.
 OFFSET * p_mem = (OFFSET *)GlobalLock(hOffset);

 if(p_mem != NULL)
 {
 // Step 5.c:
 // Set the value of the property, unlock and free the global
 // memory.
 m_circleOffset = p_mem->offset;
 GlobalUnlock(hOffset);
 }
 else

 m_circleOffset = 0;

 GlobalFree(hOffset);
 hOffset = NULL;
 }
 else
 // STEP 5.d:
 // If the preceeding call to PX_Blob didn't give a handle
 // to memory containing a BLOB containing the property value,
 // initialize the property value to a default value.
 m_circleOffset = 0;
 }

 // Comment out the original PX_Short call for the original
 // non-BLOB version of the Offset property used by the CIRC3
 // sample.
 // PX_Short(pPX, _T("CircleOffset"), m_circleOffset, 0);

 //****** NEW PX_Blob RELATED CODE ENDS HERE ******

 PX_Long(pPX, _T("FlashColor"), (long &)m_flashColor,
 RGB(0xFF, 0x00, 0x00));
 PX_String(pPX, _T("Note"), m_note, _T(""));
 }
 else if (pPX->IsLoading())
 {
 m_circleShape = TRUE;
 m_circleOffset = 0;
 m_flashColor = RGB(0xFF, 0x00, 0x00);
 m_note = _T("");
 }
}

Additional reference words: kbinf 1.50 2.50 1.51 2.51 1.52 2.52 2.00
3.00 2.10 3.10 2.20 3.20 1.00 4.00 4.10
KBCategory: kbole kbcode kbdocerr
KBSubcategory: CDKIss

DOCERR: Implementing Custom Font Properties Documentation
PSS ID Number: Q127956

The information in this article applies to:

 - Microsoft OLE Control Developer's Kit (CDK), versions 1.0 and 1.1

In Chapter 9 of the "CDK Programmer's Guide" from the OLE Control
Development Kit Books Online, the following two lines of code are in error
in the "Implementing a Custom Font Property" article:

 CFontHolder * m_fontHeading;

 -and-

 void CSampleControl::SetHeadingFont(LPFONTDISP HeadingFont)

The corrected lines should read:

 CFontHolder m_fontHeading;

 -and-

 void CSampleControl::SetHeadingFont(LPFONTDISP newValue)

In the first line, the member is an object, not a pointer. In the second
line, "newValue" is the identifier name that ClassWizard generates, so you
should use it unless the programmer changes the name in the argument list
and in the generated function body.

Additional reference words: setfontheading set newvalue cfontholder 1.51
1.52 2.00 2.10 1.10 1.00
KBCategory: kbole kbdocerr
KBSubcategory: CDKIss

DOCERR: ThreadingModel Is Not a Subkey
PSS ID Number: Q150199

The information in this article applies to:

 - The Development Environment (was Visual Workbench) included with:
 Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2, 4.0, 4.1

SUMMARY
=======

In the article "Processes and Threads" from the OLE Programmer's Reference,
paragraph 12 gives the following incorrect information:

 For thread-aware DLL-based or in-process objects, you need to set the
 threading model in the registry. The default model when you do not
 specify a threading model is single-thread-per-process. To specify a
 model, you add the ThreadingModel subkey to the InprocServer32 key in
 the registration database.

ThreadingModel is not a subkey; it is a named value.

MORE INFORMATION
================

To set the threading model, perform these steps:

1. Run Regedit in Windows 95, or run Regedt32 in Windows NT.

2. Choose the HKEY_CLASSES_ROOT folder, and then choose the CLSID folder.

3. Find the GUID for the object you want to enable with apartment-model
 threading. Then expand the object's folder.

4. Expand the InprocServer32 key.

5. From the Windows 95 Edit menu, select New. Then select String Value,
 and type ThreadingModel. Select the name just typed from the Edit
 menu, select Modify, and type Apartment for Value data.

 -or-

 From the Windows NT Edit menu, select Add Value. Type ThreadingModel for
 the Value Name. Click OK, and type Apartment for the String value.

Additional reference words: 2.00 2.10 2.20 4.00 4.10 thread apartment
KBCategory: kbprg kbole kbdocerr
KBSubcategory: MfcThreadIss

DOCFIX: Incorrect Prototype & Memory Allocation for PX_Blob
PSS ID Number: Q135630

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:
 Microsoft OLE Control Developer's Kit (CDK) versions 1.0, 1.1, 1.2

SUMMARY
=======

The documentation for the prototype of PX_Blob in the CDK Books Online
is shown incorrectly as:

 BOOL PX_Blob(CPropExchange* pPX, LPCTSTR pszPropName,
 HGLOBAL*& hBlob, HGLOBAL hBlobDefault = NULL);

The actual prototype as shown in the CDK source code in Afxctl.h is:

 BOOL PX_Blob(CPropExchange* pPX, LPCTSTR pszPropName, HGLOBAL& hBlob,
 HGLOBAL hBlobDefault = NULL);

MORE INFORMATION
================

Note that the third parameter is incorrectly listed as HGLOBAL*& hBlob
in the documentation and should instead be HGLOBAL& hBlob as shown
in the actual prototype.

There is also another error in the PX_Blob remarks section of
the documentation. It states the following incorrect information:

 Note that PX_Blob will allocate memory, using the new operator, when
 loading BLOB-type properties. Therefore, the destructor of your
 control should call delete on any BLOB-type property pointers
 to free up any memory allocated to your control.

This correct documentation should be as follows:

 Note that PX_Blob will allocate memory, using the Windows GlobalAlloc
 API, when loading BLOB-type properties. You are responsible for
 freeing this memory. Therefore, the destructor of your control should
 call GlobalFree on any BLOB-type property handles to free up any
 memory allocated to your control.

The problems described in this article were fixed in Visual C++, 32-bit
edition, version 4.0 and later.

Additional reference words: 1.50 1.51 1.52 2.00 2.10 2.20 4.00
KBCategory: kbole kbdocerr kbdocfix
KBSubcategory: CDKIss

DRAGD95.EXE:SAMPLE:OLE Drag/Drop in Windows 95 Common Controls
PSS ID Number: Q152092

The information in this article applies to:

 - The Microsoft Foundation Classes, included with:
 Microsoft Visual C++, 32-bit Edition, versions 4.0, and 4.1

SUMMARY
=======

This sample demonstrates implementing OLE drag and drop in Windows 95
Common controls. It also demonstrates how the drag image functionality can
be preserved while dragging within the application that is the source of
the data.

You can find DRAGD95.EXE, a self-extracting file, on these services:

 - Microsoft's World Wide Web site on the Internet
 On the www.microsoft.com home page, click the Support icon
 Click Knowledge Base, and select the product
 Enter kbfile DRAGD95.EXE, and click GO!
 Open the article, and click the button to download the file

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the Softlib/Mslfiles folder
 Get DRAGD95.EXE

 - The Microsoft Network
 On the Edit menu, click Go To, and then click Other Location
 Type "mssupport" (without the quotation marks)
 Double-click the MS Software Library icon
 Find the appropriate product area
 Locate and download DRAGD95.EXE

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download DRAGD95.EXE

For additional information about downloading, please see the following
article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q119591
 TITLE : How to Obtain Microsoft Support Files from Online Services

NOTE: Use the -d option when running DRAGD95.EXE to decompress the file and
recreate the proper directory structure.

MORE INFORMATION
================

Windows 95 Common controls implement their own style of drag and drop.
However, this style of drag and drop does not support dragging to other
applications. To enable this functionality, it is possible to implement OLE
drag and drop using the Common controls. Unfortunately, when OLE drag and
drop is implemented, the Common control drag image is lost.

It is possible, when implementing OLE drag and drop, to preserve the Common
control drag image. However, this image will only be displayed when the
pointer is over the application that is the source of the data. This is
because the image is not a system-wide resource and belongs to the
application that is the source of the data. This behavior is consistent
with that of the shell in Windows 95. In Windows 95, you will notice that
the drag image is lost over applications other than the Explorer or the
Windows shell. The shell and any instances of the Explorer that are running
are a single instance of the same application.

OLE drag and drop as implemented by this sample is straight forward. When a
drag is started, a COleDataSource object is loaded with data and
COleDataSource::DoDragDrop() is called. The data source is loaded with a
CF_TEXT format and a private clipboard format that has been registered.
Applications that understand CF_TEXT, such as Microsoft Word, can be a drop
target for the data. You can also implement a COleDropTarget object so that
you can be a drop target for your own custom clipboard format.

Common controls normally begin a drag operation in response to the
LVN_BEGINDRAG message. You can also take advantage of this message to begin
the drag operation. This is where the similarity with Common control drag
and drop ends. Common control drag and drop uses mouse messages to control
tracking the drag image and processing the drop. You will not be able to
use mouse messages because, after you begin the drag operation, control is
passed to OLE's DoDragDrop() function.

To control the tracking and display of the common control drag image, you
will implement a COleDropSource object and pass it to the DoDragDrop()
function. COleDropSource implements a GiveFeedback() function that is
called to give feedback about the effect of a drop at the current mouse
position as the mouse is moved over a drop target. Overriding the
GiveFeedback() function and obtaining the position of the mouse gives you a
chance to control tracking and display of the drag image.

REFERENCES
==========

Programming with MFC: Encyclopedia - Drag and Drop (OLE)

Additional reference words: 4.00 4.10
KBCategory: kbole kbfile
KBSubcategory: MfcOLE

FIX: Access Violation Firing an Error Event in OLE Control
PSS ID Number: Q141661

The information in this article applies to:

 - Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2

SYMPTOMS
========

An access violation occurs when the error event is fired in an OLE Control.
This occurs on the first firing of an error event in Release builds and
only after several firings in Debug builds.

CAUSE
=====

An invalid "this" pointer is being loaded off the stack on a call to
ExternalRelease() at the end of COleControl::FireEvent().

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. This bug was corrected in Microsoft
Visual C++, 32-bit Edition, version 4.0.

MORE INFORMATION
================

To reproduce this problem, add the stock Error event to an OLE Control
using ClassWizard's OLE Events tab. The name given the member function to
fire the event will be FireError. In the OnLButtonDown handler of the OLE
Control, call FireError() and pass the following parameters:

 FireError(CTL_E_OUTOFMEMORY, " ");

This causes the SCODE of the error to be 0x800A0007 (CTL_E_OUTOFMEMORY),
and the description string to be " ", a single space followed by a NULL
byte. The rest of the parameters will be defaults.

Now, run the test container, insert your control, and click the control's
client area. In Release builds, this causes an access violation on the
first occurrence of the event. In Debug, it takes several occurrences
before the access violation is seen.

Sample Code

Below is the OnLButtonDown handler for the Circ3 tutorial sample, modified
to call the error event.

/* Compile options needed:

*/

void CCirc3Ctrl::OnLButtonDown(UINT nFlags, CPoint point)
{
 /* Comment the tutorial.
 CDC* pdc;

 // Flash the color of the control if within the
 ellipse.
 if (InCircle(point))
 {
 pdc = GetDC();
 FlashColor(pdc);
 ReleaseDC(pdc);

 // Fire the ClickIn event
 FireClickIn(point.x, point.y);
 }
 else
 // Fire the ClickOut event
 FireClickOut();
 */

 // Here's the call.

 FireError(CTL_E_OUTOFMEMORY, " ");
 COleControl::OnLButtonDown(nFlags, point);
}

Additional reference words: 2.00 2.10 2.20 3.00 3.10 3.20
KBCategory: kbprg kbole kbtshoot kbbuglist kbfixlist
KBSubcategory: CDKIss

FIX: Assertion Failed Line 388 of Occmgr.cpp
PSS ID Number: Q143108

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:
 Microsoft Visual C++, 32-bit Edition, version 4.0

SYMPTOMS
========

When an MFC 4.0 control container has one or more invisible-at-run-time OLE
controls along with other OLE and non-OLE controls placed on a dialog
template, the following assertion might occur based on the tab-order of the
controls in the dialog:

 Debug Assertion Failed!
 Program: <app name>
 File: occmgr.cpp
 Line: 388

CAUSE
=====

When the MFC framework creates an invisible-at-run-time OLE control, it is
reparented to the desktop window. This makes the control's window not a
sibling of the other windows present in the dialog. Now if this invisible-
at-run-time control has another OLE control (visible at run time) next in
tab order, then the framework places the latter OLE control at the end of
the dialog's child window list. Later when the framework attempts to find
the "next" sibling window of the OLE control (now at the end of the
dialog's child window list), it returns NULL because there is no "next"
sibling window to this OLE control.

RESOLUTION
==========

The assertion can be safely ignored, but the tab order will probably be
incorrect. To work around this assertion, place the invisible-at-run-time
controls at the end of the tab order in the dialog template.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products
listed at the beginning of this article. This bug was corrected in
Visual C++ 4.1.

MORE INFORMATION
================

The MFC framework creates OLE controls placed on a dialog template
resource, if any, by calling COccManager::CreateDlgControls. This function

in turn makes a call to COccManager::CreateDlgControl to create a specific
OLE control. The code present in CreateDlgControl attempts to setup the tab
order of each OLE control after it is created, for which it calls
CWnd::SetWindowPos, passing in the handle of the window that the control
will be inserted after (in the code, this window is referred to as
pWndAfter).

For a clear understanding of what would generate the above described
ASSERT, consider the following reproducible scenario.

Steps to Reproduce the Assertion Failure
--

Create a dialog-based control container application, and place the
following controls with the specified tab order in its main dialog template
resource:

 - MS-COMM OLE Control (or any invisible-at-run-time control) : 1
 - GRID OLE control (or any control that is visible at run time) : 2
 - Static control (or any standard Windows control) : 3
 - GRID OLE control (or any control that is visible at run time) : 4

Because the MS-COMM OLE control is reparented to the desktop, the GRID
control next to it in the tab order will be created and placed at the end
of this dialog's child window list. Later when the framework creates the
final GRID control, it tries to find the static control that should precede
this GRID control in the Z order, by finding the next sibling window of the
second GRID control. But because there is no next sibling window to the
second GRID control, it returns NULL, which triggers the ASSERT.

Additional reference words: ocx ole control cdk 4.00 4.10
KBCategory: kbprg kbole kbbuglist kbfixlist
KBSubcategory: MfcOLE CDKIss

FIX: CIRC2 and CIRC3 Samples Don't Handle WM_SIZE Message
PSS ID Number: Q138032

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:
 Microsoft OLE Control Developer's Kit (CDK) versions 1.0, 1.1, 1.2

SYMPTOMS
========

Trying to decrease the size of the Circle control after changing the
CircleOffset property may cause the circle to get drawn outside the
control's rectangle.

CAUSE
=====

The circle control does not respond to the WM_SIZE message and therefore
does not adjust its CircleOffset property to compensate for the change in
control size.

WORKAROUND
==========

Handle the WM_SIZE message and reset the offset. This should only take
place if the CircleShape property is set to TRUE and if the circle's
position is outside the control's new size.

Sample Code to Implement Workaround

void CCirc2Ctrl::OnSize(UINT nType, int cx, int cy)
{
 COleControl::OnSize(nType, cx, cy);

 // If circle shape is true and circle does not fit in new size, reset
 // the offset

 if(m_circleShape && !InBounds(GetCircleOffset()))
 SetCircleOffset(0);
}

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. This problem was corrected in the version
of the Microsoft Foundation Classes (MFC) that ships with Visual C++, 32-
bit Edition, version 4.0.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Build either the Circ2 or Circ3 sample.

2. On the Tools menu, click Register Control, and verify that the
 control registers successfully.

3. On the Tools menu, click Test Container.

4. On the Edit menu, click Insert OLE Control, and then click the control
 that was built in step 1.

5. Resize the control to a rather long rectangle.

6. On the View menu, click Properties, and change the CircleOffset property
 to 100 pixels to decentralize the circle.

7. Resize the control to force the circle outside the rectangle.

8. Notice that the circle is drawn outside the rectangle.

Additional reference words: 1.10 1.20 1.00 1.50 1.51 1.52 2.00 2.10 2.20
2.50 2.51 2.52 3.00 3.10 3.20 size tutorial
KBCategory: kbole kbprg kbcode kbbuglist kbfixlist
KBSubcategory: MfcOLE CDKIss

FIX: COleControl::GetNotSupported() Gives Bad Description
PSS ID Number: Q127923

The information in this article applies to:

 - The OLE Control Developer's Kit (CDK), version 1.0

SYMPTOMS
========

If you define a property using the Get or Set method and call COleControl's
GetNotSupported() member function from your Get<propname> method
implementation, the error that is thrown uses the AFX_IDP_E_SETNOTSUPPORTED
define instead of the correct AFX_IDP_E_GETNOTSUPPORTED as the description
identification.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. This bug was corrected in the OLE Control
Developer's Kit version 1.1.

Additional reference words: 1.00 1.51 2.00
KBCategory: kbole kbbuglist kbfixlist
KBSubcategory: CDKIss

FIX: CWnd::SubclassDlgItem Returns FALSE for OLE Controls
PSS ID Number: Q148703

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:
 Microsoft Visual C++, 32-bit Edition, version 4.0

SYMPTOMS
========

Using CWnd::SubclassDlgItem to subclass an OLE Control returns FALSE,
after failing on the check for m_pCtrlCont != NULL in line 301 of
Winctrl1.cpp.

CAUSE
=====

The MFC framework's implementation of CWnd::SubclassDlgItem checks and
uses the CWnd::m_pCtrlCont member of the OLE control, instead of the
control container, which is the parent of the control. The source code
should use pParent->m_pCtrlCont in order to access the container.

RESOLUTION
==========

As a workaround, use CWnd::SubclassWindow instead of CWnd::SubclassDlgItem,
which is illustrated in the sample code section in this article.

STATUS
======

Microsoft has confirmed this to be bug in the Microsoft products listed at
the beginning of this article. This problem was corrected in Microsoft
Visual C++, 32-bit Edition, version 4.1.

MORE INFORMATION
================

Steps to Help Reproduce Problem

1. Generate a default SDI control container application using AppWizard.

2. Insert the Grid OLE Control through the Component Gallery, which in
 turn generates the CGridCtrl wrapper class.

3. Place the Grid control in the Application's About dialog box.

4. Declare an embedded member variable called "m_gridctrl" in CAboutDlg of
 type CGridCtrl.

5. Generate an OnInitDialog() handler for the CAboutDlg class and

 subclass the Grid control inside it as illustrated by this code:

 BOOL CAboutDlg::OnInitDialog()
 {
 // Call base class implementation
 CDialog::OnInitDialog();

 // Try to subclass the Grid control by calling SubclassDlgItem
 m_gridctrl.SubclassDlgItem(IDC_GRID1, this);

 return TRUE; // set focus to first control of the dialog
 }

 NOTE: In this code, IDC_GRID1 is the ID of the Grid control.

6. When running the container application through the debugger, notice
 that CWnd::SubclassDlgItem returns FALSE after failing on the check for
 m_pCtrlCont != NULL in line 301 of Winctrl1.cpp.

Sample Code to Work Around Problem

BOOL CAboutDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // Try to Subclass the Grid control by calling SubclassWindow
 CWnd* pWnd = GetDlgItem(IDC_GRID1);
 m_gridctrl.SubclassWindow(pWnd->m_hWnd);

 return TRUE; // set focus to first control of the dialog
 // Exception: OCX Property Pages should return FALSE
}

Additional reference words: 4.00 ocx ole control
KBCategory: kbprg kbole kbcode kbbuglist kbfixlist
KBSubcategory: MfcOLE CDKIss

FIX: DisplayAsDefault Ambient Property Not Updated for Control
PSS ID Number: Q148616

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:
 Microsoft Visual C++, 32-bit Edition, version 4.0

SYMPTOMS
========

When you use the arrow keys to change between controls in a Visual C++ 4.0
generated container, the DISPID_AMBIENT_DISPLAYASDEFAULT ambient property
of the control site is not updated, and any control that relies on this
property doesn't function correctly.

For example, a subclassed button control that is programmed to update its
border according to the DISPID_AMBIENT_DISPLAYASDEFAULT ambient property
will exhibit this behavior. In a Visual C++ generated container, the
control won't update its border.

CAUSE
=====

In Occdlg.cpp, the following line 542 shouldn't be called:

 bCheckDef = FALSE;

This line keeps CheckDefPushButton from being called and the ambient
property from being updated.

RESOLUTION
==========

The best solution is to upgrade to Visual C++ 4.1. If this is not a
possibility, the MFC DLL can be rebuilt without bCheckDef = FALSE; however,
Microsoft recommends against this because you need to rebuild the DLL with
a different name (see tech note 33).

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. This problem was corrected in Microsoft
Visual C++ version 4.1.

MORE INFORMATION
================

Sample Code

The following code can be added to the Button Control sample shipped

with Visual C++ to demonstrate this problem.

///
/
// Display the button with a thick border if appropriate

void CButtonCtrl::OnAmbientPropertyChange(DISPID dispid)
{
 TRACE("OnAmbientPropertyChange called\n");
 BOOL bDisplayAsDefault = FALSE;
 if(DISPID_AMBIENT_DISPLAYASDEFAULT != dispid)
 return;
 // Check the control site to see if you should add or remove the border
 if (!GetAmbientProperty(DISPID_AMBIENT_DISPLAYASDEFAULT, VT_BOOL,
 &bDisplayAsDefault))
 ASSERT(FALSE);
 if(bDisplayAsDefault)
 SendMessage(BM_SETSTYLE, BS_DEFPUSHBUTTON, 0);
 else
 SendMessage(BM_SETSTYLE, BS_PUSHBUTTON, 0);
 InvalidateControl();
}

Additional reference words: 4.00 focus
KBCategory: kbole kbprg kbbuglist kbfixlist
KBSubcategory: MfcOLE

FIX: Error in COleDispatchException Constructor
PSS ID Number: Q140590

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic
 programming system for Windows, version 4.0

 - The Microsoft Foundation Classes (MFC) included with:

 - Microsoft Visual C++ for Windows, versions 1.5, 1.51, 1.52
 - Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2, 4.0

SYMPTOMS
========

In an MFC application, AfxThrowOleDispatchException is used to throw an
exception from within an OLE Automation function. When Microsoft Visual
Basic is used as the automation client application, it will not be able to
correctly interpret the error code passed to AfxThrowOleDispatchException.

CAUSE
=====

AfxThrowOleDispatchException constructs and throws a COleDispatchException
object, which is used to handle exceptions specific to the OLE IDispatch
interface. The constructor of COleDispatchException incorrectly initializes
the COleDispatchException object, resulting in the Visual Basic client
being unable to interpret the error code of the exception.

RESOLUTION
==========

To implement the proper behavior for throwing an OLE dispatch exception
from an MFC server, do not use AfxThrowOleDispatchException. Instead,
construct your own COleDispatchException, set m_scError = 0, and throw the
exception yourself as illustrated in the sample code in this article.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products
listed at the beginning of this article. This bug was corrected in
Visual C++ 4.1.

MORE INFORMATION
================

COleDispatchException has two public members (m_wCode and m_scError) which
are mapped by COleDispatchException::Process() to the wCode and scode
members of an EXCEPINFO structure. An EXCEPTINFO structure is used by an
automation object to describe an exception that occurred during
IDispatch::Invoke. When an automation object raises an exception, it should

store an error code inside either wCode or scode but not both. If an error
code is passed to the constructor of the COleDispatchException object, the
values of both wCode and scode in the EXCEPINFO structure will be set.

Sample Code

// Insert the following code instead of AfxThrowOleDispatchException
COleDispatchException* pException;
pException = new COleDispatchException(
 _T("Some Exception"), 200, 425);
pException->m_scError = 0;

THROW(pException);

REFERENCES
==========

"Inside OLE" second edition by Kraig Brockschmidt, published by Microsoft
Press, Chapter 14, pages 658 - 660.

Additional reference words: 1.50 1.51 1.52 2.00 2.10 2.20 2.50 2.51 2.52
3.00 3.10 3.20 4.00 2.0 2.1 2.2 1.50 1.51 1.52 4.10
KBCategory: kbole kbprg kbbuglist kbfixlist
KBSubcategory: MfcOLE

FIX: Link Paste Update Causes ASSERT in AFXWIN1.INL
PSS ID Number: Q130867

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC), included with:
 Microsoft Visual C++, 32-bit Edition, version 2.0
 on the following platform(s): x86

SYMPTOMS
========

Some containers respond to change notifications in Paste Link objects by
calling GetData() on the linked object with a pointer to a valid
DVTARGETDEVICE. This is usually a printer device or something other than
the display context, which can be created by the server. In the case where
the container is a 16-bit Windows-based application, this may cause an
assertion in AFXWIN1.INL line 457.

CAUSE
=====

In the case of a 16-bit Windows-based container application, MFCANS32.DLL
attempts to translate the fields of the 16-bit DVTARGETDEVICE structure to
32-bit equivalents and pass the new structure on to the 32-bit MFC-based
server application. In doing this, it uses a copy of the DVTARGETDEVICE
structure containing mis-ordered fields. Specifically, the
tdDeviceNameOffset and the tdDriverNameOffset fields are reversed in order.
This causes any server that attempts to use the DVTARGETDEVICE to create a
valid device context to fail when it uses these fields to call
::CreateDC().

In the MSVC20\MFC\SRC\OLEMISC.CPP module, the utility function
_AfxOleCreateDC() does not check the return code from ::CreateDC() and
returns an invalid HDC as a result. Later, that handle is attached to a CDC
object. When AFXWIN1.INL's CDC::GetDeviceCaps() function is called, it
validates the HDC member that was attached, and that is where the assertion
occurs. Depending on the circumstances and container application being
used, the symptom may be different.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. This bug was corrected in Microsoft
Visual C++, 32-bit Edition, version 2.1 for x86 platforms.

Additional reference words: 2.00 createdc dvtargetdevice mfcans32
KBCategory: kbole kbfixlist kbbuglist
KBSubcategory: MfcOLE

FIX: LNK1152 & LNK1141 When Linking OLE Control to Mapi32.lib
PSS ID Number: Q141485

The information in this article applies to:

 - The MAPI32.LIB included with:
 Microsoft Visual C++, 32-bit Edition, version 4.0

SYMPTOMS
========

Attempting to link an OLE Control project with Mapi32.lib results in the
following warnings and errors:

warning LNK4022: cannot find unique match for symbol "DllCanUnloadNow"
warning LNK4002: _DllCanUnloadNow defined in C:\MSDEV\LIB\MAPI32.LIB
warning LNK4002: _DllCanUnloadNow@0 defined in
 C:\MSDEV\MFC\lib\mfcs40d.lib
warning LNK4002: _DllCanUnloadNow@0 defined in
 C:\MSDEV\LIB\oleaut32.lib
warning LNK4022: cannot find unique match for symbol
 "DllGetClassObject"
warning LNK4002: _DllGetClassObject defined in C:\MSDEV\LIB\MAPI32.LIB
warning LNK4002: _DllGetClassObject@12 defined in
 C:\MSDEV\MFC\lib\mfcs40d.lib
warning LNK4002: _DllGetClassObject@12 defined in
 C:\MSDEV\LIB\oleaut32.lib

fatal error LNK1152: cannot resolve one or more undecorated symbols
fatal error LNK1141: failure during build of exports file

CAUSE
=====

The import library for the Mapi32.dll (Mapi32.lib) incorrectly exports the
DllCanUnloadNow and DllGetClassObject functions. These functions should be
exported privately and not included in the import library.

RESOLUTION
==========

To work around this problem, build the Mapi32.lib import library from
scratch by using the Lib.exe utility included with Visual C++ 4.0.

Copy the sample code listed below into a text file, and save it as
Mapi32.def. From the command prompt, enter the following command line to
execute the Lib.exe utility and build a new Mapi32.lib import library:

 LIB /DEF:MAPI32.DEF

Replace the incorrect Mapi32.lib file located in the ~\Msdev\Lib directory
with this newly created Mapi32.lib file, and rebuild the OLE Control
project.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products
listed at the beginning of this article. This bug was corrected in
Visual C++ 4.1.

MORE INFORMATION
================

For additional information on how to build import libraries without access
to source files, please refer to the following article in the Microsoft
Knowledge Base:

 ARTICLE-ID: Q131313
 TITLE : How to Create 32-bit Import Libraries Without .OBJs
 or Source

Sample Code

; Mapi32.def : Used DUMPBIN /EXPORTS to determine the functions and
; ordinal values listed in the EXPORTS section below. Note
; DllCanUnloadNow, DllGetClassObject, and WEP are NOT listed below.

LIBRARY "MAPI32.DLL"

EXPORTS
 BMAPIAddress @35
 BMAPIDetails @37
 BMAPIFindNext @34
 BMAPIGetAddress @36
 BMAPIGetReadMail @33
 BMAPIReadMail @32
 BMAPIResolveName @38
 BMAPISaveMail @31
 BMAPISendMail @30
 MAPIAddress @19
 MAPIDeleteMail @17
 MAPIDetails @20
 MAPIFindNext @16
 MAPIFreeBuffer @18
 MAPILogoff @12
 MAPILogon @11
 MAPIReadMail @15
 MAPIResolveName @21
 MAPISaveMail @14
 MAPISendDocuments @10
 MAPISendMail @13

Additional reference words: LNK1152 LNK1141 LNK4022 LNK4002 4.00 Win32 sdk
ocx ole control cdk 4.10
KBCategory: kbole kbbuglist kbfixlist kbcode
KBSubcategory: MfcOLE CDKIss

FIX: Rebuilding .CLW File Does Not Restore Link to ODL File
PSS ID Number: Q135049

The information in this article applies to:

 - Microsoft Visual C++, 32-bit Edition, versions 2.0 and 2.1

SYMPTOMS
========

A project's Object Description Language (ODL) file is not updated when new
automation properties and methods are added using ClassWizard. The
project's ClassWizard (.clw) file has been deleted and rebuilt prior to the
occurrence of this behavior. All properties and methods added before the
rebuilding of the ClassWizard file are still correctly listed in the ODL
file.

CAUSE
=====

When the .clw file is rebuilt by the development environment, the ODLFile=
keyword line is not added to the new file.

RESOLUTION
==========

The ODLFile= entry must be manually added to the .clw file so that
ClassWizard can add properties and methods to the ODL file. The ODLFile=
entry can be added by using the development environment editor or Notepad.

Manually adding the ODLFile= entry will not automatically update the ODL
file to bring it back in synch with ClassWizard. Any properties and methods
that were added via ClassWizard while the ODLFile= entry was missing from
the .clw file must be either manually added to the ODL file or removed and
then added again by using the ClassWizard.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. This bug was corrected in Visual C++
version 2.2 for Windows NT.

MORE INFORMATION
================

An example of the ODLFile= line can be found in the .clw file provided with
the AutoClik sample. In this sample, the [General Info] section of the
Autoclik.clw file includes the following line:

 ODLFile=autoclik.odl

ClassWizard uses this reference to a specific ODL to determine the file to

update when new properties and methods are added. When the .clw file is
rebuilt using the ClassWizard option from the development environment
Resource Editor, the ODLFile= reference line is not included in the newly
built .clw file. After the rebuild, ClassWizard does not issue a warning
when adding new properties and methods to the new .clw file even though the
changes are not reflected in the ODL file.

Additional reference words: 2.00 2.10
KBCategory: kbtool kbole kbfixlist kbbuglist
KBSubcategory: WizardIss

FIX: Scribble File Extension Conflicts with Screen Savers
PSS ID Number: Q126751

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC), included with:

 - Microsoft Visual C++ for Windows, versions 1.50, 1.51, and 1.52
 - Microsoft Visual C++, 32-bit Edition, versions 2.0 and 2.1

SYMPTOMS
========

Creating or activating embedded or linked OLE objects-based files saved
with the MFC server sample "Scribble" fails in unexpected ways. Two common
scenarios are:

 - When you attempt to insert an object into an OLE container using the
 Create from File option, instead of creating a new Scribble Document
 object and inplace activating it, the Packager is invoked and a package
 is created. Nothing appears to happen when you try to activate the
 package.

 - While a Scribble Document is open in the Scribble application, you copy
 the contents to the clipboard, and attempt to paste link from an OLE
 container. The link is created and the container document's image of the
 link displays correctly. But after the container document is saved and
 both the container and Scribble applications are shut down, when you
 reopen the saved document, the container is unable to update or activate
 the link to the Scribble Document.

CAUSE
=====

The .SCR file extension used by Scribble is associated with another file
type, typically screen saver applications.

RESOLUTION
==========

Change the file extension used by Scribble Documents to something that is
not already associated with a file type, for example .SCB. After changing
the file extension, you will need to run Scribble once in standalone mode
so it can update the system registry.

The file extension can be changed by editing the string resource
IDR_SCRIBTYPE in the Scribble application. Initially the string
value is:

 \nScrib\nScrib\nScrib Files (*.scr)\n.SCR\nScribble.Document.1\n
 Scrib Document\nSCRI\nscri Files

To change the file extension to .SCB, edit the string value to

look like this:

 \nScrib\nScrib\nScrib Files (*.scb)\n.SCB\nScribble.Document.1\n
 Scrib Document\nSCRI\nscri Files

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. This bug was corrected in Microsoft
Visual C++, 32-bit edition, version 4.0.

MORE INFORMATION
================

MFC Applications can update the file associations maintained in the system
registry by calling CWinApp::RegisterShellFileTypes(). However,
RegisterShellFileTypes() does not replace an existing association. Thus
when an association already exists for the .SCR file extension, nothing is
added to the registry to indicate that Scribble should be used to create or
edit these files.

This situation is most likely to occur on Windows 95, as .SCR files are
associated with Screen Saver applications when Windows 95 is installed.

Additional reference words: 1.50 2.50 1.51 2.51 1.52 2.52 2.00 3.00 2.10
3.10
KBCategory: kbinterop kbole kbbuglist kbfixlist
KBSubcategory: MfcOLE

FIX: TypeLibs with Large Argument Lists May Crash ClassWizard
PSS ID Number: Q148230

The information in this article applies to:

 - The ClassWizard included with:
 Microsoft Visual C++, 32-bit Edition, version 4.0

SYMPTOMS
========

The Developer Studio crashes or abruptly terminates when attempting to
add a new class from an OLE TypeLib with the ClassWizard.

CAUSE
=====

ClassWizard allocates a 1024 byte buffer to store member function
prototypes based on the information it finds in the specified OLE TypeLib.
If the ClassWizard-generated prototype for a member function exceeds this
limit, Developer Studio will crash or abruptly terminate.

This problem only occurs when attempting to create a new class from an OLE
TypeLib, where one or more of the automation methods contains a large
argument list. For example, both Microsoft Schedule+ 7.0 and Microsoft
Project 4.0 expose automation methods with large argument lists. Attempting
to create a new class from either the Schedule+ type library (SP7EN32.OLB)
or the Microsoft Project type library (PJ4EN32.OLB) may cause Developer
Studio to crash.

When the crash occurs, you will notice that a header (.H) file and an
implementation (.CPP) file were added to your project's directory. These
files will most likely be corrupted and should be deleted from your project
directory.

RESOLUTION
==========

Avoid using the ClassWizard to generate new classes with the previously
listed type libraries. Microsoft has provided a self-extracting file,
called TLBWRAP.EXE, that contains the COleDispatchDriver-derived classes
that wrap the automation objects exposed by the SP7EN32.OLB and PJ4EN32.OLB
type libraries.

You can find TLBWRAP.EXE, a self-extracting file, on these services:

 - Microsoft's World Wide Web site on the Internet
 On the www.microsoft.com home page, click the Support icon
 Click Knowledge Base, and select the product
 Enter kbfile TLBWRAP.EXE, and click GO!
 Open the article, and click the button to download the file

 - Internet (anonymous FTP)

 ftp ftp.microsoft.com
 Change to the Softlib/Mslfiles folder
 Get TLBWRAP.EXE

 - The Microsoft Network
 On the Edit menu, click Go To, and then click Other Location
 Type "mssupport" (without the quotation marks)
 Double-click the MS Software Library icon
 Find the appropriate product area
 Locate and Download TLBWRAP.EXE

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download TLBWRAP.EXE

For additional information about downloading, please see the following
article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q119591
 TITLE : How to Obtain Microsoft Support Files from Online Services

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. This bug was corrected in Visual C++ 4.1.

Additional reference words: 4.00 4.10 softlib software library
KBCategory: kbtool kbfixlist kbbuglist kbole kbfile
KBSubcategory: WizardIss MfcOLE

How To Access Binary Data Using dbDao
PSS ID Number: Q152294

The information in this article applies to:

 - Microsoft Visual C++, 32-bit Edition, versions 4.0, 4.1

SUMMARY
=======

When using the DAO SDK C++ classes to access binary data (such as a bitmap)
you will find that the data is returned in a COleVariant. COleVariant is an
MFC class that wraps the OLE VARIANT data type. Within the VARIANT, the
data is stored as an OLE SAFEARRAY.

Extracting the binary data from the COleVariant requires some knowledge of
VARIANTs and SAFEARRAYs. The sample code below illustrates how to work with
these data types by providing a function for extracting binary data from a
COleVariant and a function for storing binary data in a COleVariant.

MORE INFORMATION
================

Sample Code

 //Extensive error checking is left out to make the code more readable

 BOOL GetBinaryFromVariant(COleVariant & ovData, BYTE ** ppBuf,
 unsigned long * pcBufLen)
 {
 BOOL fRetVal = FALSE;

 //Binary data is stored in the variant as an array of unsigned char
 if(ovData.vt == (VT_ARRAY|VT_UI1)) // (OLE SAFEARRAY)
 {
 //Retrieve size of array
 *pcBufLen = ovData.parray->rgsabound[0].cElements;

 *ppBuf = new BYTE[*pcBufLen]; //Allocate a buffer to store the data
 if(*ppBuf != NULL)
 {
 void * pArrayData;

 //Obtain safe pointer to the array
 SafeArrayAccessData(ovData.parray,&pArrayData);

 //Copy the bitmap into our buffer
 memcpy(*ppBuf, pArrayData, *pcBufLen);

 //Unlock the variant data
 SafeArrayUnaccessData(ovData.parray);

 fRetVal = TRUE;
 }
 }
 return fRetVal;
 }

 BOOL PutBinaryIntoVariant(COleVariant * ovData, BYTE * pBuf,
 unsigned long cBufLen)
 {
 BOOL fRetVal = FALSE;

 VARIANT var;
 VariantInit(&var); //Initialize our variant

 //Set the type to an array of unsigned chars (OLE SAFEARRAY)
 var.vt = VT_ARRAY | VT_UI1;

 //Set up the bounds structure
 SAFEARRAYBOUND rgsabound[1];

 rgsabound[0].cElements = cBufLen;
 rgsabound[0].lLbound = 0;

 //Create an OLE SAFEARRAY
 var.parray = SafeArrayCreate(VT_UI1,1,rgsabound);

 if(var.parray != NULL)
 {
 void * pArrayData = NULL;

 //Get a safe pointer to the array
 SafeArrayAccessData(var.parray,&pArrayData);

 //Copy bitmap to it
 memcpy(pArrayData, pBuf, cBufLen);

 //Unlock the variant data
 SafeArrayUnaccessData(var.parray);

 *ovData = var; // Create a COleVariant based on our variant
 fRetVal = TRUE;
 }

 return fRetVal;
 }

 //How you might call these functions

 CdbRecordset rs;

 //Code for initializing DAO and opening the recordset left out...

 COleVariant ovData = rs.GetField(_T("MyBinaryField"));

 BYTE * pBuf = NULL;
 unsigned long cBufLen;

 if(GetBinaryFromVariant(ovData,&pBuf,&cBufLen))
 {
 //Do something with binary data in pBuf...

 //Write back a new record containing the binary data

 COleVariant ovData2;
 if(PutBinaryIntoVariant(&ovData2,pBuf,cBufLen))
 {
 rs.AddNew();
 rs.SetField(_T("MyBinaryField"), ovData2); //Write our COleVariant
 to the table
 rs.Update();
 }
 //Clean up memory allocated by GetBinaryFromVariant
 if(pBuf)
 delete pBuf;
 }

Additional reference words: 4.00 4.10
KBCategory: kbole kbprg kbhowto
KBSubcategory: dbDao

How To Debug OLE Server Applications Using MSVC
PSS ID Number: Q151074

The information in this article applies to:

 - Microsoft OLE libraries included with:

 - Microsoft Windows NT, version 3.51
 - Microsoft Windows 95, version 4.0

SUMMARY
========

An OLE client application involves interaction with other OLE server
applications. This interaction could be with in-process or out-of-process
servers. The client application may or may not have debugging information.
These combinations make the debugging process of an OLE application
complicated. This article presents some techniques that can be used for
debugging OLE-enabled applications.

MORE INFORMATION
=================

Debugging an In-Process OLE Server Application
--

An OLE client application interacting with an in-process OLE server
application is simply loading an OLE server DLL in the client application
address space. To debug such an in-process server, standard DLL debugging
techniques can be used. For more information, please see the following
article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q85221
 TITLE : Debugging a Dynamic-Link Library (DLL) in Windows

Debugging an Out-of-Process OLE Server Application
--

In an OLE client application interacting with an out-of-process OLE server
application, the debugging involves crossing process spaces, which makes it
much more difficult. Following are few techniques that can be used to debug
out-of-process OLE server applications:

 - Setup a hardcoded breakpoint in the server, and when the breakpoint hits
 in the server code, the Microsoft Visual C++ (MSVC) debugger is
 launched. Then step through server code and add breakpoints at locations
 of interest in server code.

 Add the following line of code in the source code, where a hardcoded
 breakpoint is needed.

 DebugBreak();

 - Setup a breakpoint in the container/client application, then step into
 the code where the server code is called. The action of stepping into
 the code causes a new version of the MVSC debugger to be launched with
 the Server debug information. Then you can step through the server code
 and add breakpoints at locations of interest in the server code. To
 configure this, check in the MSVC option, the Tool Option, the debug
 tab, the Just-in-time debugging, and the OLE RPC debugging checkboxes
 that need to be checked. This technique requires source code and a debug
 version of the client application as well. For more information, please
 see the following article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q122680
 TITLE : Tutorial: Debugging OLE Applications

 - Launch the server application from the client and then find the process
 id of the server application using PView. Launch the MSVC -p <process
 ID>. This launches the MSVC option that attaches itself to the running
 server application. However, this technique is not useful in debugging
 the startup code of the server application. For more information, please
 see the following article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q120707
 TITLE : How to Debug an Active Process in Visual C++ 2.0

 - If the server application has registered the ClassFactory object with
 the system as single use (CoRegisterClassObject with CLS_SINGLEUSE
 flag), you can run the server application from the MSVC option as stand
 alone. To simulate the server being launched from the container/client
 application, you need to specify the /Embedding /Automation program
 arguments as applicable in the MSVC debug options and run the server
 application as stand alone. The /Embedding and /Automation switches do
 the appropriate server initialization, and register the class factory as
 if launched from the container/client application. Because the server's
 class factory is single use and not already connected, when the
 container/client application tries to hook up to the server, the
 container connects to the running server application in the debugger,
 and debugging is easier. For more information, please see the following
 article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q117558
 TITLE : Tutorial: Debugging OLE Client-Server Combinations

 - If the server application registers the ClassFactory object with the
 system as multiple use (CoRegisterClassObject with CLS_MULTIPLEUSE
 flag), run the server application from the MSVC option as stand alone.
 Since such servers register the ClassFactory on startup, you do not need
 to specify /Embedding /Automation program arguments in the MSVC debug
 options. When the container/client application tries to connect to the
 server, it connects to the instance of the server application in the
 debugger because the server's class factory is registered multiple use,
 and debugging is easier.

Additional reference words: 3.50 3.51 4.00
KBCategory: kbole kbtshoot kbhowto
KBSubcategory: LeTwoOth

How to Disable the Resizing of an OLE Control
PSS ID Number: Q137538

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:
 Microsoft OLE Control Developer's Kit (CDK) versions 1.0, 1.1, 1.2

SUMMARY
=======

To disable the resizing of an OLE Control, you need to override the
COleControl::OnNcLButtonDown() and COleControl::OnSetExtent() functions.

MORE INFORMATION
================

The default implementation of COleControl::OnNcLButtonDown() initiates
the tracker rectangle and changes the extent of the control based on
the results.

The default implementation of COleControl::OnSetExtent() is called by
the framework to change the size of the control based, at least in part,
on the sizing handled by the client container.

To disable resizing, you need to disable the tracker rectangle supported by
COleControl::OnNcLButtonDown() and ignore any size changes sent to
COleControl::OnSetExtent().

To disable resizing in the Circle3 tutorial, override
CCirc3Ctrl::OnSetExtent() and CCirc3Ctrl::OnNcLButtonDown() and
implement as follows:

BOOL CCirc3Ctrl::OnSetExtent(LPSIZEL lpSizeL)
{
 return FALSE;
}

void CCirc3Ctrl::OnNcLButtonDown(UINT nHitTest, CPoint point)
{
 return;
}

Additional reference words: kbinf resize static fixed 1.50 1.51 1.10 1.20
1.00 1.52 2.00 2.10 2.20
KBCategory: kbprg kbole kbcode
KBSubcategory: CDKIss MfcOLE

How to Display an MFC Automation Document Automatically
PSS ID Number: Q140591

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:

 - Microsoft Visual C++ for Windows, versions 1.5, 1.51, 1.52
 - Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2, 4.0

SUMMARY
=======

Some OLE Automation servers, like Microsoft Excel, automatically display a
worksheet when it is created through OLE Automation. OLE Automation servers
implemented in MFC do not display the document window by default when the
document object is created through OLE Automation. This article explains
how to add this behavior to a generic MFC OLE Automation server created
using AppWizard.

MORE INFORMATION
================

The creation process for a document object created through OLE Automation
slightly differs from the process involved when the server's File.New menu
item is used. The document object is created using a class factory, which
is represented by the application object's COleTemplateServer data member
(m_server).

When a new document object is created through OLE Automation,
COleTemplateServer::OnCreateObject() is called, which calls
CDocTemplate::OpenDocumentFile with the last parameter set to FALSE to
create an invisible document window. By replacing this call to
CDocTemplate::OpenDocumentFile() with the last parameter set to TRUE, a
visible document window will be created.

Additionally, the code in the application's InitInstance(), which checks if
the server is running embedded or automated, should be removed. The main
window of the application will not be displayed if this code isn't removed
and the server isn't already running.

Step-by-Step Procedure

The following steps illustrate how to add this behavior to a generic MFC
OLE Automation server created using AppWizard:

1. Using AppWizard, create an SDI or MDI application called MyApp with OLE
 Automation support.

2. Add the following class definition before the project's CWinApp-derived
 class's definition in the application object's header file (MyApp.h).

 // CMyTemplateServer used to override OnCreateObject.
 class CMyTemplateServer : public COleTemplateServer
 {
 // Constructors / Destructors
 public:
 CMyTemplateServer(){}
 virtual ~CMyTemplateServer(){}

 // Overrides
 virtual CCmdTarget* OnCreateObject();
 };

3. Add the following implementation of OnCreateObject() to the CWinApp-
 derived class's implementation file (MyApp.cpp).

 // Identical to COleTemplateServer::OnCreateObject() except for
 // the call to OpenDocumentFile() with the last parameter set to
 // TRUE instead of FALSE.
 CCmdTarget* CMyTemplateServer::OnCreateObject()
 {
 ASSERT_VALID(this);
 ASSERT_VALID(m_pDocTemplate);

 // Save application user control status
 BOOL bUserCtrl = AfxOleGetUserCtrl();

 // Create visible doc/view/frame set
 CDocument* pDoc;
 pDoc = m_pDocTemplate->OpenDocumentFile(NULL, TRUE);

 // Restore application's user control status
 AfxOleSetUserCtrl(bUserCtrl);

 if (pDoc != NULL)
 {
 ASSERT_VALID(pDoc);
 ASSERT_KINDOF(CDocument, pDoc);

 // All new documents created by OLE start out modified
 pDoc->SetModifiedFlag();
 }
 return pDoc;
 }

3. Change the CWinApp-derived object's m_server member from type
 COleTemplateServer to CMyTemplateServer. For example:

 class CMyApp : public CWinApp
 {
 public:
 CMyApp();

 // Overrides
 // ClassWizard generated virtual function overrides
 // {{AFX_VIRTUAL(CMyApp)

 public:
 virtual BOOL InitInstance();
 // }}AFX_VIRTUAL

 // Implementation
 CMyTemplateServer m_server; // <== change to derived class
 ...
 ...
 };

4. Remove the check for running embedded or automated from the
 application's InitInstance() member function. For example, remove
 the following lines of code from your application's InitInstance()
 function:

 // Check to see if launched as an OLE server
 if (cmdInfo.m_bRunEmbedded || cmdInfo.m_bRunAutomated)
 {
 // Application was run with /Embedding or /Automation.
 // Don't show the main window in this case.
 return TRUE;
 }

 NOTE: This code is specific to Visual C++ version 4.0; it varies with
 the earlier versions.

5. Compile the application, and run it stand alone.

6. Create an OLE Automation client that creates an instance of your
 document type. Upon creation of the document object, the view
 should automatically be displayed.

Additional reference words: kbinf 1.50 1.51 1.52 2.00 2.10 2.20 2.50 2.51
2.52 3.00 3.10 3.20 4.0 2.0 2.1 2.2 1.50 1.51 1.52
KBCategory: kbole kbprg kbhowto kbcode
KBSubcategory: MfcOLE

How to Draw Controls in an OLE Metafile
PSS ID Number: Q127192

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:

 - Microsoft Visual C++ for Windows, versions 1.5, 1.51, and 1.52
 - Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1,
 4.0, and 4.1 on the following platform(s): x86

SUMMARY
=======

You can use controls, either directly on a CView or from a dialog template
on a CFormView, in an OLE enabled MFC application. However, when the item
is embedded but not active, the controls on these views will not be drawn
to the Windows metafile supplied to the COleServerItem::OnDraw() function.
In this case, you must "draw" the controls manually into the metafile. This
article shows you how.

MORE INFORMATION
================

The simplest way to get controls to "draw" in a metafile is to use the same
method the VIEWEX sample uses to draw its CInputView to a printer device
context. VIEWEX's OnPrint routine draws each control as a rectangle,
circle, text, and so on. Override the COleServerItem::OnDraw() function and
insert your code into it. As an example, use the COleServerItem::OnDraw()
function listed in this article; it shows both the VIEWEX code to insert in
the OnDraw member function and the helper function PaintChildWindows() that
actually does the painting of each control.

Sample Code

/* Compile options needed: Standard
*/

void CMyServerItem::OnDraw(CDC* pDC) // pDC is actually a metafile
{
 //BLOCK: Set up scale mode
 {
 CClientDC dcScreen(NULL);
 pDC->SetMapMode(MM_ANISOTROPIC);
 // map 1 screen logical inch to 1 printer (/output) logical inch
 pDC->SetWindowExt(dcScreen.GetDeviceCaps(LOGPIXELSX),
 dcScreen.GetDeviceCaps(LOGPIXELSX));
 pDC->SetViewportExt(pDC->GetDeviceCaps(LOGPIXELSX),
 pDC->GetDeviceCaps(LOGPIXELSX));
 }
 // we must also offset the window positions relative to the scroll
 // offset

 // We cheat here since some controls do not paint if they are
 // invisible, so we temporary make set the appropriate visible bits
 // during preview mode so the controls think they are visible even
 // though they aren't.

 HWND hWndCheatVisible = NULL;
 if (!IsWindowVisible())
 {
 // walk up to the top until we find the invisible window
 for (HWND hWnd = m_hWnd;
 hWnd != NULL; hWnd = ::GetParent(hWnd))
 {
 ASSERT(hWnd != NULL);
 DWORD dwStyle = ::GetWindowLong(hWnd, GWL_STYLE);
 if ((dwStyle & WS_VISIBLE) == 0)
 {
 ::SetWindowLong(hWnd, GWL_STYLE, dwStyle | WS_VISIBLE);
 hWndCheatVisible = hWnd;
 break;
 }
 }
 ASSERT(hWndCheatVisible != NULL);
 }

 CPen pen(PS_SOLID, 1, RGB(0,0,0)); // solid black pen
 CPen* pOldPen = pDC->SelectObject(&pen);

 ASSERT(pDC->GetWindowOrg() == CPoint(0,0));
 CRect pRect = new CRect(-50,-50,600,600);

 PaintChildWindows(m_hWnd, pDC, GetDeviceScrollPosition());
 ASSERT(pDC->GetWindowOrg() == CPoint(0,0));
 pDC->SelectObject(pOldPen);

 if (hWndCheatVisible != NULL)
 ::SetWindowLong(hWndCheatVisible, GWL_STYLE,
 ::GetWindowLong(hWndCheatVisible, GWL_STYLE) &~ WS_VISIBLE);
}

void CMyServerItem::PaintChildWindows(HWND hWndParent,
 CDC* pDC, CPoint ptOffset)
{
 for (HWND hWndChild = ::GetTopWindow(hWndParent);
 hWndChild != NULL;
 hWndChild = ::GetNextWindow(hWndChild, GW_HWNDNEXT))
 {
 CRect rect;
 ::GetWindowRect(hWndChild, rect); // wnd rect in screen coords
 ScreenToClient(&rect); // relative to this view

 HDC hdcOut = pDC->m_hDC;
#ifdef _DEBUG
 CPoint pt = pDC->GetWindowOrg();
 ASSERT(pt.x == 0 && pt.y == 0);

#endif

 DWORD dwStyle = ::GetWindowLong(hWndChild, GWL_STYLE);
 if (dwStyle & (WS_HSCROLL|WS_VSCROLL))
 {
 TRACE("Warning: printing control with scrollbars not
 supported\n");
 }
 if (dwStyle & WS_BORDER)
 {
 // the only case we special case - manually drawn border
 ::Rectangle(hdcOut, rect.left, rect.top, rect.right,
 rect.bottom);
 rect.InflateRect(-1,-1); // 1 logical pixel
 }

 pDC->SaveDC();
 {
 CPoint pt(ptOffset.x + rect.left, ptOffset.y + rect.top);
 pDC->LPtoDP(&pt);
 pDC->OffsetViewportOrg(pt.x, pt.y);
 // set the viewport origin so that the window origin
 // can be changed by the control

 // draw it using a non-virtual HDC
 ::SendMessage(hWndChild, WM_PAINT, (WPARAM)hdcOut, 0L);
 }
 pDC->RestoreDC(-1);

 if (::GetTopWindow(hWndChild) != NULL)
 PaintChildWindows(hWndChild, pDC, ptOffset);
 }
}

Additional reference words: mfc ole inplace embed 1.50 2.00 2.10 2.50 2.51
2.52 3.00 3.10 4.00 4.10
KBCategory: kbole kbcode
KBSubcategory: MfcOLE

How to Enumerate OLE and VB Controls from an OLE Control
PSS ID Number: Q141414

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic
 programming system for Windows, version 4.0

 - Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2, 4.0

SUMMARY
=======

In order for an OLE control to communicate with another control placed on
the same Visual Basic form, the OLE control needs access to at least one
interface pointer of the other control. This article illustrates a
technique you can use to enumerate both OLE and Visual Basic controls
present on a particular form and retrieve an interface pointer to these
controls. Note that the same technique could be applied to enumerate
controls placed on other control containers, provided that container
exposes the functionality required to implement the technique.

MORE INFORMATION
================

Given a pointer to IOleClientSite, it is possible to enumerate through all
of the other controls on a form by making use of the following interfaces:

IOleClientSite
IOleContainer
IEnumUnknown
IUnknown
IOleObject
IOleClientSite
IOleControlSite

Note that most of these interfaces are container-side interfaces, so the
technique mentioned here is container dependent. For this method to work,
the container must provide support for IOleContainer, which is currently
defined as a mandatory interface in the OLE control container guidelines.
Both MFC version 4.0 and Visual Basic version 4.0 OLE control containers
provide support for this interface. Before using this method with another
control container, ensure that it provides support for IOleContainer.

The method itself is illustrated by the sample code listed in this article.
You can incorporate the code into an OLE control generated using
ControlWizard. Use the code to enumerate all the controls, internal Visual
Basic controls as well OLE controls, by calling IOleContainer::EnumObjects,
and passing the following flags as its first parameter:

 OLECONTF_EMBEDDINGS: is used to retrieve OLE Controls.
 OLECONTF_OTHERS : is used to retrieve other objects such as Visual
 Basic internal controls.

 hr = lpContainer->EnumObjects(OLECONTF_EMBEDDINGS | OLECONTF_OTHERS,
 &lpEnumUnk);

The differentiating aspect between OLE controls and other objects such as
internal Visual Basic controls is that only OLE controls support the
IOleObject interface. Hence, if a QueryInterface for IID_IOleObject fails
for an object, then it is a different type of object. Also, if the control
container provides support for Extended controls as does Visual Basic 4.0,
the Extended control for a particular OLE control can also be retrieved
using the method illustrated by the sample code.

Note that most of the functionality provided by the following sample code
depends solely on the extent of the functionality exposed by the control
container itself.

Sample Code

void EnumAllControlNames(LPOLECLIENTSITE lpSite)
{
 LPOLECONTAINER lpContainer;
 LPENUMUNKNOWN lpEnumUnk;

 // Note that the IOleContainer interface is currently defined as
 // mandatory. It must be implemented by control containers,
 // in the OLE Control Containers Guidelines.
 HRESULT hr = lpSite->GetContainer(&lpContainer);
 if(FAILED(hr)) {
 OutputDebugString(_T("Unable to get to the container.\n"));
 return;
 }

 // OLECONTF_EMBEDDINGS is used to retrieve OLE Controls.
 // OLECONTF_OTHERS is used to retrieve other objects such as
 // Visual Basic internal controls
 hr = lpContainer->EnumObjects(
 OLECONTF_EMBEDDINGS | OLECONTF_OTHERS,
 &lpEnumUnk);
 if(FAILED(hr)) {
 lpContainer->Release();
 return;
 }

 LPUNKNOWN lpUnk;
 while (lpEnumUnk->Next(1, &lpUnk, NULL) == S_OK) {
 LPOLEOBJECT lpObject = NULL;
 LPOLECONTROLSITE lpTargetSite = NULL;
 LPOLECLIENTSITE lpClientSite = NULL;
 LPDISPATCH lpDisp;

 hr = lpUnk->QueryInterface(
 IID_IOleObject, (LPVOID*)&lpObject);
 if(SUCCEEDED(hr)) {
 // This is an OLE control.

 // Navigate to the Extended Control because Visual Basic 4.0 uses
 // Extended controls.
 hr = lpObject->GetClientSite(&lpClientSite);
 if(SUCCEEDED(hr)) {
 // You have the IOleClientSite interface
 hr = lpClientSite->QueryInterface(
 IID_IOleControlSite, (LPVOID*)&lpTargetSite);
 if(SUCCEEDED(hr)) {
 // You have the IOleControlSite interface
 // Get the IDispatch for the extended control.
 // Note that Extended controls are optional in the OLE
 // specifications for OLE Control Containers.
 hr = lpTargetSite->GetExtendedControl(&lpDisp);
 }
 }
 }
 else {
 // This is either an internal VB control or the
 // VB form itself.
 hr = lpUnk->QueryInterface(
 IID_IDispatch, (LPVOID*)&lpDisp);
 }

 if(SUCCEEDED(hr)) {
 VARIANT va;
 VariantInit(&va);
 DISPID dispid;
 DISPPARAMS dispParams = { NULL, NULL, 0, 0 };

 // Get the names of all the controls present in a VB form.
 LPWSTR lpName[1] = { (WCHAR *)L"Name" };
 hr = lpDisp->GetIDsOfNames(IID_NULL, lpName, 1,
 LOCALE_SYSTEM_DEFAULT, &dispid);

 if(SUCCEEDED(hr)) {
 hr = lpDisp->Invoke(dispid/*0x80010000*/, IID_NULL,
 LOCALE_SYSTEM_DEFAULT,
 DISPATCH_PROPERTYGET |
 DISPATCH_METHOD,
 &dispParams, &va, NULL, NULL);
 if(SUCCEEDED(hr)) {
 CString szTmp((LPCWSTR)va.bstrVal);
 // szTmp now has the name.
 OutputDebugString(_T("And the name is ... ") + szTmp +
 _T("\n"));
 }
 }
 lpDisp->Release();
 }

 // Release interface pointers.
 if(lpObject) lpObject->Release();
 if(lpTargetSite) lpTargetSite->Release();
 if(lpClientSite) lpClientSite->Release();

 lpUnk->Release();
 } // End of While statement

 // Final clean up
 lpEnumUnk->Release();
 lpContainer->Release();
}

Additional reference words: kbinf 2.00 2.10 2.20 4.00 VB VC visualc cdk ocx
KBCategory: kbole kbprg kbhowto kbcode
KBSubcategory: MfcOLE CDKIss

How to Gain Access to an OLE Control from Its Property Page
PSS ID Number: Q143432

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:

 - Microsoft Visual C++ for Windows, versions 1.0, 1.5, 1.51, 1.52
 - Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2, 4.0

SUMMARY
=======

When using an OLE control, you find situations where there is a need to
call member functions or gain access to member variables of the control
derived class from its associated property page. This can be achieved by
making use of the array of IDispatch pointers (held by each property page)
that represent the objects being affected due to the manipulations done
through the property page. This article explains in detail how this can
implemented and gives a code sample to illustrate it.

MORE INFORMATION
================

Property sheets, in an OLE control, allow an end user to directly
manipulate the control's properties by displaying one or more property
pages that display a collection of properties. These properties could
belong either to one particular control or to a collection of OLE controls.

Each OLE control property page is an in-proc object with its own CLSID that
implements the interface IPropertyPage. The IPropertyPage::SetObjects
member function is used to provide a property page with pointers to the
objects (IUnknowns) manipulated by this particular page. Please refer to
the OLE Programmer's Reference, Vol. 1, for more information about the
SetObjects function.

The MFC implementation for the IPropertyPage interface stores the object
pointers as an array of IDispatchs representing the controls that are
affected by a particular property page. This array can be accessed by using
COlePropertyPage::GetObjectArray(). The property pages in MFC make use of
this IDispatch array to apply the changes directly to those objects (that
is, the controls) by creating a COleDispatchDriver-derived class, attaching
the IDispatch to this class, and invoking the SetProperty/GetProperty of
COleDispatchDriver to convey the change to the control-derived class.

An OLE Control generated using the ControlWizard creates a property page
that can be used to manipulate the properties of one particular OLE control
rather than manipulating a collection of controls. Hence, the control
associated to a property page can be accessed by obtaining the previously
mentioned IDispatch array in the COlePropertyPage and calling the static
function CCmdTarget::FromIDispatch to return a pointer to the CCmdTarget
object associated with any one of the IDispatchs. The sample code section
of this article illustraties this method.

Note that calling CCmdTarget::FromIDispatch(), for an IDispatch pointer
belonging to an OLE Control, will always return NULL in versions before MFC
4.x. For more information about this problem, please see the following
article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q138414
 TITLE : PRB: FromIDispatch Returns NULL for OLE Control

This is no longer a problem in versions MFC 4.x.

Sample Code

// The header file of the control-derived class must be included in
// the same source file.
#include "myctrl.h"

CMyCtrl* CMyPropPage::GetControlClass()
{
 CMyCtrl *pMyCtrl;
 ULONG Ulong;

 // Get the array of IDispatchs stored in the property page
 LPDISPATCH FAR *m_lpDispatch = GetObjectArray(&Ulong);

 // Get the CCmdTarget object associated to any one of the above
 // array elements
 pMyCtrl = (CMyCtrl*) CCmdTarget::FromIDispatch(m_lpDispatch[0]);

 // Cleanup
 return pMyCtrl;
}

// If your control has a public member variable, in this case
// I am using m_direct_control, then that variable can be
// manipulated as follows.

void CMyPropPage::OnLButtonDown(UINT nFlags, CPoint point)
{
 // Modify a member variable of Control directly.
 CMyCtrl *pMyCtrl = GetControlClass();
 pMyCtrl->m_direct_control++;

 // Display the new value of the variable in a message box.
 char buf[100];
 AfxMessageBox (_itoa (pMyCtrl->m_direct_control, buf, 10));

 COlePropertyPage::OnLButtonDown(nFlags, point);
}

In this code, it is assumed that the array of IDispatchs returned from
GetObjectArray holds the same IDispatch pointer because in a default
ControlWizard-generated application, each property page manipulates a
particular OLE control.

Additional reference words: kbinf 1.00 1.50 2.00 2.10 2.51 2.52 3.00
3.10 3.20 4.00 ocx visualc
KBCategory: kbole kbprg kbhowto kbcode
KBSubcategory: CDKIss MfcOLE

How to Handle Events for OLE Controls in a CWnd
PSS ID Number: Q147740

The information in this article applies to:

 - Microsoft Visual C++, 32-bit Edition, version 4.0

SUMMARY
=======

OLE Controls are most often used in CDialog- or CFormView-derived classes.
There are occasions that call for an OLE Control to be a child of a window
that is not associated with a dialog template, such as a CWnd. Adding
event handlers for a control created as a child of a CWnd requires a
slightly different approach than adding the same handlers for the control
when placed on a dialog. This article provides step-by-step instructions
for adding event handlers to the CWnd-derived class that parents the
control.

MORE INFORMATION
================

Step-by-Step Example

Use the following steps to create an OLE control dynamically in a CWnd-
derived window. The control used here is the Circ3 control from the Circle
Tutorial, but the approach is valid for any OLE control. After creating the
control, handlers are created for Circ3's ClickIn and ClickOut events.

1. Create the application that is to contain the OLE Control. This
 application must include support for OLE controls. Select the window
 that is to be the parent of the OLE control. This window could be an
 SDI or MDI view or any window of a CWnd-derived class.

2. Add the Circ3 control from the OLE controls Tab in the Component
 Gallery. At this point, ClassWizard will add a wrapper class for the
 Circ3 control and will add Circ3 to the toolbar in the dialog editor.

3. On the Insert menu, click Resource, and then click Dialog to insert a
 new dialog resource into the project. Select Circ3 from the toolbar, and
 add it to your dialog. Note the control ID will be something like
 IDC_CIRC3CTRL1.

4. With the dialog still open in the editor, press CTRL+W to bring up
 ClassWizard. At this point, you will see the "Select a Class" dialog.
 Choose "Select an existing class," and specify the CWnd-derived class.
 Click Yes to confirm that this is not a dialog class.

5. When you will see the control's events listed in the messages window,
 select ClickIn, and click ADD FUNCTION. Then select ClickOut, and click
 ADD FUNCTION. ClassWizard adds the appropriate EVENTSINK_MAP, ON_EVENT
 macros, and event handlers to the class specified in Step 4.

 NOTE: Add all necessary handlers at this time. In order to add more
 handlers later, you must delete the dialog resource and repeat this
 process.

6. Add a CCirc3 member variable named m_circ to the CWnd-derived class
 declaration as shown below. You must include the header file of the
 CCirc3 wrapper class for this declaration:

 CCirc3 m_circ;

7. Use ClassWizard to override the Create() virtual function for the CWnd-
 derived class. In the handler, call Create() to create the Circ3 child
 control as shown below.

 NOTE: If you are creating the OLE Control in a view, you may override
 OnInitialUpdate() instead of Create().

 BOOL MyCWnd::Create(LPCTSTR lpszClassName, LPCTSTR lpszWindowName,
 DWORD dwStyle, const RECT& rect, CWnd* pParentWnd, UINT nID,
 CCreateContext* pContext)
 {
 BOOL result = CWnd::Create(lpszClassName, lpszWindowName, dwStyle,
 rect, pParentWnd, nID, pContext);

 if(result != 0) //Create the Circ3 OLE Control
 result = m_circ.Create("Test", WS_VISIBLE, CRect(1,1,130, 120),
 this, IDC_CIRC3CTRL1);

 return result;
 }

 IMPORTANT: Parameter 5 is the ID for the control. This ID must match the
 ID used in the ON_EVENT macro created by ClassWizard. This is the ID of
 the Circ3 control created in Step 3.

8. After adding the necessary event handlers, you may delete the temporary
 dialog resource from the project.

Optional: Another approach often used to add event handlers to CWnd-derived
classes is to add controls and event handlers to a dialog class, and then
cut and paste the appropriate code into the View.h and View.cpp files
making modifications as necessary. Note, however, that the previous method
is less prone to errors.

REFERENCES
==========

"MFC 4.0 Helps You Contain Your OLE Controls," MSDN Nov/Dec 1995.

"Handling Events from Dynamically Instantiated OLE Controls," Microsoft
Visual C++ Version 4.0 Technical Information and White Papers.

OLE Control Containers: Programming OLE Controls in an OLE Control
Container - Visual C++ Books Online, MFC Encyclopedia

Additional reference words: kbinf 4.00
KBCategory: kbole kbhowto kbcode
KBSubcategory: CDKIss MfcOLE

How to Handle OCM_CTLCOLOREDIT Reflected Message
PSS ID Number: Q148242

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:
 Microsoft Visual C++, 32-bit Edition, version 4.0

SUMMARY
=======

This article shows you how to change the background color of an OLE control
that subclasses an Edit control.

MORE INFORMATION
================

To change the background color of an OLE Control that subclasses an Edit
Control, you must handle the OCM_CTLCOLOREDIT(32-bit) messages. These
messages are intercepted by the "reflector window" (created for an OLE
control that subclasses a Windows control) which reflects them back to the
OLE control itself. In response to these reflected messages, you must set
the background color (and optionally the foreground color) and return a
handle to a brush initialized with the background color.

Step-by-Step Example

The sample code in this example illustrates how to handle OCM_CTLCOLOREDIT
in order to change the background color of an OLE control that subclasses
an Edit control

1. Generate a Control Wizard Application, and select the option that allows
 you to subclass an Edit control.

2. To handle an OCM_CTLCOLOREDIT reflected window message, declare the
 following handler function in the .h file of your control's class:

 LRESULT OnOcmCtlColor(WPARAM wParam, LPARAM lParam);

3. In the .cpp file of your control's class, add an ON_MESSAGE entry to the
 message map:

 ON_MESSAGE(OCM_CTLCOLOREDIT, OnOcmCtlColor)

4. Also in the .cpp file, implement the OnOcmCtlColor member function to
 process the reflected message:

 LRESULT CEdtclrCtrl::OnOcmCtlColor(WPARAM wParam, LPARAM lParam)
 {
 //Declare CBrush* m_pBackBrush in your control's .h file
 if (m_pBackBrush == NULL)
 m_pBackBrush = new CBrush(RGB(0,0,0));

 CDC* pdc = CDC::FromHandle((HDC)wParam);
 pdc->SetBkMode(TRANSPARENT);
 pdc->SetBkColor(RGB(0,0,0));
 pdc->SetTextColor(RGB(0,255,0));
 HBRUSH far* hbr = (HBRUSH far*)m_pBackBrush->GetSafeHandle();
 return ((DWORD)hbr);
 }

 NOTE: In your control's constructor, set m_pBackBrush = NULL, and in
 your control's destructor, delete m_pBackbrush.

5. Build and register your control.

6. Insert this control into the Test Container. Notice that the background
 color of your OLE control is changed.

REFERENCES
==========

Refer to Handling Reflected Windows Messages in OLE Controls::Subclassing a
Windows Control in MFC4.0-> Programming with MFC:Encyclopedia.

Additional reference words: 4.00
KBCategory: kbprg kbole kbhowto kbcode
KBSubcategory: MfcOLE

How to Implement Per-Property Browsing for a Custom Property
PSS ID Number: Q140592

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC), included with:

 - Microsoft Visual C++ for Windows, versions 1.5, 1.51, 1.52
 - Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2, 4.0

SUMMARY
=======

This article illustrates how to implement per-property browsing for a
custom property present in an OLE control. The custom property can be
manipulated either in a property page that implements editing of this
property or directly in the property browser provided by the container
application.

When the property browser of Microsoft Visual Basic is used, for example,
selecting the custom property for editing displays a three-dot button next
to the property's value. Clicking the three-dot button displays the
property page associated with the property -- if one is available.

MORE INFORMATION
================

An OLE control container typically provides some kind of user interface
where the user can manipulate the properties of the control. Some
containers may need to browse individual property values rather than groups
of property values, which is a technique commonly referred to as
per-property browsing. An OLE control can support non-default, per-property
browsing by implementing IPerPropertyBrowsing. Otherwise, the container
application uses the type information.

When an OLE control's property is manipulated using the property browser
provided by a container application, the container queries to find out if
the control supports IPerPropertyBrowsing. If an interface pointer can be
successfully obtained, the container then makes a call to
IPerPropertyBrowsing::MapPropertyToPage to obtain the CLSID of the property
page that implements editing of this particular property. If this method
returns S_OK or S_FALSE, the container creates a property frame with the
property page corresponding to the returned CLSID in it.

The success return codes (S_OK and S_FALSE) from
IPerPropertyBrowsing::MapPropertyToPage specify whether or not a property
can be edited outside the property page identified by the CLSID. A return
code of S_FALSE implies that this particular property can only be edited
through a specific property page -- not outside this property page. For
example, the property cannot be directly edited in the property browser of
Visual Basic. If the method returns S_OK, then the property can be
manipulated outside the property page. Please refer to the CDK Books Online
for more information on MapPropertyToPage and its return values.

The sample code in this article can be added to an OLE control to implement
a custom property that can only be edited using a specific property page --
not outside the property page. The code overrides two member functions of
COleControl, namely OnMapPropertyToPage and OnGetDisplayString. The MFC
framework calls OnMapPropertyToPage to obtain the CLSID of a property page
that implements editing of the property identified by a dispID. The
framework calls OnGetDisplayString to obtain a string representing the
property's value to be displayed in a container-supplied property browser.

Steps to Add Custom Property Named MyProp to an OLE Control

For the code to work, the ClassWizard must have been used to add a custom
property named MyProp to an OLE control. The following steps illustrate how
to add a custom property named MyProp using ClassWizard. This will use the
Get/Set Methods implementation:

1. Load the OLE control project.

2. Open ClassWizard.

3. Click the OLE Automation tab.

4. Click the Add Property button.

5. In the External name box, type MyProp.

6. Under Implementation, select Get/Set Methods.

7. From the type box, select short as the property's type.

8. Type unique names for the Get and Set methods, or accept the default
 names, and then click OK.

9. Click the OK button to confirm the choices, and close ClassWizard.

Sample Code

Once the MyProp property is added, the following code can be used to
display that property in the property browser provided by Visual Basic:

BOOL CTestCtrl::OnMapPropertyToPage(DISPID dispid, LPCLSID
 lpclsid, BOOL* pbPageOptional)
{
 switch (dispid)
 {
 case dispidMyProp:
 // Return the CLSID of the property page that implements
 // editing of the MyProp property
 *lpclsid = CTestPropPage::guid;
 pbPageOptional = FALSE; // Can't be edited outside this page
 return TRUE;
 }

 return COleControl::OnMapPropertyToPage(
 dispid, lpclsid, pbPageOptional);
}

BOOL CTestCtrl::OnGetDisplayString(DISPID dispid, CString& strValue)
{
 switch (dispid)
 {
 case dispidMyProp:
 // Return any string that should be displayed in the property
 // browser provided by VB
 strValue = _T("(My Property)");
 return TRUE;
 }

 return COleControl::OnGetDisplayString(dispid, strValue);
}

Additional reference words: kbinf 1.51 1.52 2.00 2.10 2.20 2.50 2.51 2.52
3.00 3.10 3.20 4.0
KBCategory: kbprg kbole kbhowto kbcode
KBSubcategory: MfcOle CDKIss

How to Implement Scaled Printing in an MFC/OLE Container
PSS ID Number: Q138266

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:

 - Microsoft Visual C++ for Windows, versions 1.5, 1.51, 1.52
 - Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2,
 4.0, and 4.1

SUMMARY
=======

This article shows by example how to implement scaling properly.

Printing an embedded object from an AppWizard-generated OLE container
application may cause the printout of the embedded object to appear
too small.

The developer of an OLE container must implement the code to scale an
embedded object properly from the screen device to the printer device. If
only the screen device is considered, the embedded object will appear too
small on a printout.

MORE INFORMATION
================

Sample Code

/* Compile options needed: none
*/

The MFC sample Contain, Step 2 implements a container that does not
consider the difference in resolution between the screen device and
the printer device. If, for instance, Scribble, Step 7 is embedded in
Contain and PRINT or PRINT PREVIEW is selected, the embedded object
will appear too small.

Using Contain as an example of MFC container that doesn't support
scaling, the following code can be added to CContainView::OnDraw() to
implement proper scaling.

void CContainView::OnDraw(CDC* pDC)
{
 CContainDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);

 // draw the OLE items from the list
 POSITION pos = pDoc->GetStartPosition();
 while (pos != NULL)
 {

 // draw the item
 CCntrItem* pItem = (CCntrItem*)pDoc->GetNextItem(pos);

 // copy the client items rect, which will be scaled
 CRect rect2(pItem->m_rect);
 if(pDC->IsPrinting())
 {
 // get the printer's pixel resolution
 int ixp=pDC->GetDeviceCaps(LOGPIXELSX);
 int iyp=pDC->GetDeviceCaps(LOGPIXELSY);

 // get the current window's resolution
 CDC* pddc = GetDC();
 int ixd=pddc->GetDeviceCaps(LOGPIXELSX);
 int iyd=pddc->GetDeviceCaps(LOGPIXELSY);

 // scale rect2 up by the ratio of the resolutions
 int width=rect2.Width()*(ixp/ixd);
 int height=rect2.Height()*(ixp/ixd);
 rect2.right = rect2.left +
 MulDiv(rect2.Width(),ixp, ixd);
 rect2.bottom = rect2.top +
 MulDiv(rect2.Height(), iyp, iyd);
 }

 pItem->Draw(pDC, rect2);
 if(!pDC->IsPrinting())
 {
 // draw the tracker over the item
 CRectTracker tracker;
 SetupTracker(pItem, &tracker);
 tracker.Draw(pDC);
 }
 }
}

Additional reference words: kbinf 1.5 1.51 1.52 2.00 2.10 2.20 2.50 2.51
2.52 3.00 3.10 3.20 4.00 4.10
KBCategory: kbprg kbole kbcode kbhowto
KBSubcategory: MfcOLE

How to Insert Objects Without Using Insert Object Dialog Box
PSS ID Number: Q137357

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:

 - Microsoft Visual C++ for Windows, versions 1.5, 1.51, 1.52
 - Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2,
 4.0, and 4.1

SUMMARY
=======

When building an OLE container or OLE server application using MFC OLE
classes, you should insert an OLE embedded object programmatically, without
using the InsertObject dialog box. This article show you how.

In a default MFC AppWizard-generated OLE container or OLE server
application, a command handler is implemented to enable the user to insert
an object by clicking Insert New Object on the Edit menu. The AppWizard-
generated code makes use of the COleInsertDialog class, which is an MFC
wrapper for the OLEUIINSERTOBJECT common dialog box. The COleInsertDialog
data and member functions are used to embed the object.

MORE INFORMATION
================

The member function most responsible for the embedding of an OLE object is
COleInsertDialog::CreateItem, which takes a pointer to a COleClientItem as
a formal parameter.

When the user clicks Insert New Object on the Edit menu, a COleInsertDialog
is created, and it is shown by calling its DoModal function. When the
dialog box is dismissed, some of its data members are set by selections
made by the user, such as Create From File or Create New.

The implementation of COleInsertDialog::CreateItem calls the COleClientItem
member functions to embed the object, which leads to the solution of by-
passing the COleInsertDialog class and calling COleClientItem to do the
work.

Here is an excerpt from COleInsertDialog::CreateItem:

====== Begin Excerpt======
switch (selType)
{
 case linkToFile:
 // link to file selected
 ASSERT(m_szFileName[0] != 0);
 bResult=pNewItem->CreateLinkFromFile(m_szFileName);
 break;

 case insertFromFile:
 // insert file selected
 ASSERT(m_szFileName[0] != 0);
 bResult=pNewItem->CreateFromFile(m_szFileName);
 break;

 default:
 // otherwise must be create new
 ASSERT(selType == createNewItem);
 bResult=pNewItem->CreateNewItem(m_io.clsid);
 break;
}

====== End Excerpt======

This code features a switch structure whose logic flow is controlled by the
selType set by the user interaction with the COleInsertDialog dialog box.

The following code demonstrates how to insert an OLE embedded object
programmatically. The code shows the creation of an instance of a
COleClientItem object, which then calls its CreateNewItem member
function to create and embed a Microsoft Excel worksheet.

Sample Code

/* Compile options needed : None
*/

void CMyView::OnInsertObject()
{

 BeginWaitCursor();

 CMyOleClientItem* pItem = NULL;
 TRY
 {
 // Create new item connected to this document.
 CMyDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);
 pItem = new CMyOleClientItem(pDoc);
 ASSERT_VALID(pItem);

 // Get Class ID for Excel sheet
 // This is used in creation
 CLSID clsid;
 if(FAILED(::CLSIDFromProgID("Excel.Sheet",&clsid)))
 AfxThrowMemoryException();

 // Create the Excel embedded item
 if(!pItem->CreateNewItem(clsid))
 AfxThrowMemoryException(); // any exception will do
 ASSERT_VALID(pItem);

 // Launch the server to edit the item.
 pItem->DoVerb(OLEIVERB_SHOW, this);

 ASSERT_VALID(pItem);

 // As an arbitrary user interface design, this sets the
 // selection to the last item inserted.

 // TODO: reimplement selection as appropriate for your
 // application

 m_pSelection = pItem; // set selection to last inserted item
 pDoc->UpdateAllViews(NULL);
 }
 CATCH(CException, e)
 {
 if (pItem != NULL)
 {
 ASSERT_VALID(pItem);
 pItem->Delete();
 }
 AfxMessageBox(IDP_FAILED_TO_CREATE);
 }
 END_CATCH

 EndWaitCursor();
}

Note: When using Visual C++ versions 4.0 and 4.1, you need to typecast the
'Excel.Sheet' argument in the previous code sample with the T2COLE macro.
In order to use this macro, you need to #include "afxpriv.h" in the view
class's implementation file. Also, add the macro 'USES_CONVERSION' in the
try block before the following line (which shows the T2COLE macro added):

 if (FAILED(::CLSIDFromProgID(T2COLE("Excel.Sheet"),&clsid)))
 AfxThrowMemoryException();

Additional reference words: kbinf 1.50 1.51 1.52 2.00 2.10 2.20 2.50
2.51 2.52 3.00 3.10 3.20 4.00 4.10
KBCategory: kbole kbprg kbcode
KBSubcategory: MfcOLE

How to Obtain Filename and Path from a Shell Link or Shortcut
PSS ID Number: Q130698
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.51 and 4.0
--

SUMMARY
=======

The shortcuts used in Microsoft Windows 95 provide applications and users
a way to create shortcuts or links to objects in the shell's namespace.
The IShellLink OLE Interface can be used to obtain the path and filename
from the shortcut, among other things.

MORE INFORMATION
================

A shortcut allows the user or an application to access an object from
anywhere in the namespace. Shortcuts to objects are stored as binary
files. These files contain information such as the path to the object,
working directory, the path of the icon used to display the object,
the description string, and so on.

Given a shortcut, applications can use the IShellLink interface and
its functions to obtain all the pertinent information about that
object. The IShellLink interface supports functions such as GetPath(),
GetDescription(), Resolve(), GetWorkingDirectory(), and so on.

Sample Code

The following code shows how to obtain the filename or path and
description of a given link file:

 #include <windows.h>
 #include <shlobj.h>

 // GetLinkInfo() fills the filename and path buffer
 // with relevant information.
 // hWnd - calling application's window handle.
 //
 // lpszLinkName - name of the link file passed into the function.
 //
 // lpszPath - the buffer that receives the file's path name.
 //
 // lpszDescription - the buffer that receives the file's
 // description.
 HRESULT
 GetLinkInfo(HWND hWnd,
 LPCTSTR lpszLinkName,
 LPSTR lpszPath,
 LPSTR lpszDescription)

 {

 HRESULT hres;
 IShellLink *pShLink;
 WIN32_FIND_DATA wfd;

 // Initialize the return parameters to null strings.
 *lpszPath = '\0';
 *lpszDescription = '\0';

 // Call CoCreateInstance to obtain the IShellLink
 // Interface pointer. This call fails if
 // CoInitialize is not called, so it is assumed that
 // CoInitialize has been called.
 hres = CoCreateInstance(&CLSID_ShellLink,
 NULL,
 CLSCTX_INPROC_SERVER,
 &IID_IShellLink,
 (LPVOID *)&pShLink);

 if (SUCCEEDED(hres))
 {
 IPersistFile *ppf;

 // The IShellLink Interface supports the IPersistFile
 // interface. Get an interface pointer to it.
 hres = pShLink->lpVtbl->QueryInterface(pShLink,
 &IID_IPersistFile,
 (LPVOID *)&ppf);
 if (SUCCEEDED(hres))
 {
 WORD wsz[MAX_PATH];

 // Convert the given link name string to a wide character string.
 MultiByteToWideChar(CP_ACP, 0,
 lpszLinkName,
 -1, wsz, MAX_PATH);
 // Load the file.
 hres = ppf->lpVtbl->Load(ppf, wsz, STGM_READ);
 if (SUCCEEDED(hres))
 {
 // Resolve the link by calling the Resolve() interface function.
 // This enables us to find the file the link points to even if
 // it has been moved or renamed.
 hres = pShLink->lpVtbl->Resolve(pShLink, hWnd,
 SLR_ANY_MATCH | SLR_NO_UI);
 if (SUCCEEDED(hres))
 {
 // Get the path of the file the link points to.
 hres = pShLink->lpVtbl->GetPath(pShLink, lpszPath,
 MAX_PATH,
 &wfd,
 SLGP_SHORTPATH);

 // Only get the description if we successfully got the path

 // (We can't return immediately because we need to release ppf &
 // pShLink.)
 if(SUCCEEDED(hres))
 {
 // Get the description of the link.
 hres = pShLink->lpVtbl->GetDescription(pShLink,
 lpszDescription,
 MAX_PATH);
 }
 }
 }
 ppf->lpVtbl->Release(ppf);
 }
 pShLink->lpVtbl->Release(pShLink);
 }
 return hres;
 }

Additional reference words: 4.00
KBCategory: kbprg kbcode kbole
KBSubcategory: IShellLink

How to Optimize the Reactivation of In-Place Active Servers
PSS ID Number: Q137139

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:

 - Microsoft Visual C++ for Windows, versions 1.5, 1.51, 1.52, 1.52b
 - Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2, 4.0

SUMMARY
=======

When an OLE container embeds an in-place active capable server, the
deactivation/reactivation process may be considered too long. One way to
optimize the process is to hide the server rather than deactivate it.
Simply hiding the server will enable a faster reactivation should the
embedded object be reactivated.

MORE INFORMATION
================

Optimizing the deactivation/reactivation process for an object embedded in
an MFC container application involves overriding the virtual
COleClientItem::OnDeactivateUI and COleClientItem::OnActivate methods.

By default, MFC OLE container applications created with versions of
AppWizard prior to version 4.0 contain the following implementation of the
COleClientItem::OnDeactivateUI method:

 void CCntrItem::OnDeactivateUI(BOOL bUndoable)
 {
 COleClientItem::OnDeactivateUI(bUndoable);

 // Close an in-place active item whenever it removes the user
 // interface. The action here should match as closely as possible
 // the handling of the ESC key in the view.

 Deactivate(); // nothing fancy here -- just deactivate the object
 }

To optimize the deactivation/reactivation process, modify the AppWizard
generated version of this function to have it invoke the embedded item's
OLEIVERB_HIDE verb to have the item hide itself:

 void CCntrItem::OnDeactivateUI(BOOL bUndoable)
 {
 COleClientItem::OnDeactivateUI(bUndoable);

 // Hide the object if it is not an outside-in object
 DWORD dwMisc = 0;
 m_lpObject->GetMiscStatus(GetDrawAspect(), &dwMisc);
 if (dwMisc & OLEMISC_INSIDEOUT)

 DoVerb(OLEIVERB_HIDE, NULL);
 }

The second step in optimizing the deactivation/reactivation process
involves modifying the virtual COleClientItem::OnActivate method to
correctly handle activation of another embedded object. To override
COleClientItem::OnActivate, first add the following public method
declaration to the declaration of the MFC container application's
COleClientItem derived class:

 virtual void OnActivate();

Add the following definition of the OnActivate method to the
implementation file for the container's COleClientItem derived class:

 void CCntrItem::OnActivate()
 {
 // allow only one in-place active item per frame
 CView* pView = (CView*)GetActiveView();
 ASSERT_VALID(pView);
 COleClientItem* pItem = GetDocument()->GetInPlaceActiveItem(pView);
 if (pItem != NULL && pItem != this)
 pItem->Close();

 COleClientItem::OnActivate();
 }

If the container has previously hidden an embedded object, this function
will close it prior to activating the new item. Note that this optimization
is similar to the technique that Microsoft Excel and the rich edit control
use in similar circumstances.

Beginning with Visual C++ version 4.0, AppWizard-generated OLE containers
contain the optimized versions of COleClientItem::OnDeactivateUI and
COleClientItem::OnActivate automatically. There is no need to manually add
the changes shown above.

Additional reference words: kbinf 1.50 1.51 1.52 1.52b 2.00 2.10 2.20 2.50
2.51 2.52 3.00 3.10 3.20 4.00 Word 6.0 6.0c 95 embedded UIActive
KBCategory: kbole kbcode
KBSubcategory: MfcOLE

How to Override an Interface in an MFC Application
PSS ID Number: Q141277

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:
 Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2, 4.0

SUMMARY
=======

In an MFC application, you can override existing interfaces in a class as
well as provide additional interfaces. Overriding an interface in this case
is synonymous with replacing an interface. The example in this article
illustrates how to override an interface in a class while preserving the
original interface implementation so that it can be delegated to by the new
interface implementation.

This article doesn't deal with overriding the IDispatch implementation as
this is a special case. The following article demonstrates how to override
IDispatch in MFC:

 ARTICLE-ID: Q140616
 TITLE : MFCDISP: Replacing MFC's IDispatch implementation

MORE INFORMATION
================

The following steps will override the IOleObject implementation for a
default Ole Control generated by the Control Wizard.

1. To add the declaration of the IOleObject implementation to the control,
 add the following code to the header file for the COleControl-derived
 class:

 // Interface Maps
 protected:
 // IOleObject
 BEGIN_INTERFACE_PART(MyOleObject, IOleObject)
 INIT_INTERFACE_PART(CIOleOverCtrl, MyOleObject)
 STDMETHOD(SetClientSite)(LPOLECLIENTSITE);
 STDMETHOD(GetClientSite)(LPOLECLIENTSITE*);
 STDMETHOD(SetHostNames)(LPCOLESTR, LPCOLESTR);
 STDMETHOD(Close)(DWORD);
 STDMETHOD(SetMoniker)(DWORD, LPMONIKER);
 STDMETHOD(GetMoniker)(DWORD, DWORD, LPMONIKER*);
 STDMETHOD(InitFromData)(LPDATAOBJECT, BOOL, DWORD);
 STDMETHOD(GetClipboardData)(DWORD, LPDATAOBJECT*);
 STDMETHOD(DoVerb)(LONG, LPMSG, LPOLECLIENTSITE, LONG, HWND,
 LPCRECT);
 STDMETHOD(EnumVerbs)(IEnumOLEVERB**);
 STDMETHOD(Update)();
 STDMETHOD(IsUpToDate)();

 STDMETHOD(GetUserClassID)(CLSID*);
 STDMETHOD(GetUserType)(DWORD, LPOLESTR*);
 STDMETHOD(SetExtent)(DWORD, LPSIZEL);
 STDMETHOD(GetExtent)(DWORD, LPSIZEL);
 STDMETHOD(Advise)(LPADVISESINK, LPDWORD);
 STDMETHOD(Unadvise)(DWORD);
 STDMETHOD(EnumAdvise)(LPENUMSTATDATA*);
 STDMETHOD(GetMiscStatus)(DWORD, LPDWORD);
 STDMETHOD(SetColorScheme)(LPLOGPALETTE);
 END_INTERFACE_PART(MyOleObject)

 DECLARE_INTERFACE_MAP();

 This adds a nested class XMyOleObject to your control class. Note these
 macros declare interface methods including the IUnknown interface
 methods, so you must implement the IUnknown methods as well.

2. Add the IOleObject interface to the interface map for the control by
 adding an INTERFACE_PART macro to the implementation file for the
 control:

 BEGIN_INTERFACE_MAP(CIOleOverCtrl, COleControl)
 INTERFACE_PART(CIOleOverCtrl, IID_IOleObject, MyOleObject)
 END_INTERFACE_MAP()

 Replace CIOleOverCtrl with the name of your control and MyOleObject with
 the name you chose for the nested class that supports IOleObject.

3. Implement the interface methods you declared. Add the following code to
 the implementation file for the control:

 STDMETHODIMP_(ULONG) CIOleOverCtrl::XMyOleObject::AddRef()
 {
 METHOD_MANAGE_STATE(CIOleOverCtrl, MyOleObject)
 ASSERT_VALID(pThis);

 return pThis->m_xOleObject.AddRef();
 }

 STDMETHODIMP_(ULONG) CIOleOverCtrl::XMyOleObject::Release()
 {
 METHOD_MANAGE_STATE(CIOleOverCtrl, MyOleObject)
 ASSERT_VALID(pThis);

 return pThis->m_xOleObject.Release ();
 }

 STDMETHODIMP CIOleOverCtrl::XMyOleObject::QueryInterface(
 REFIID iid, LPVOID far* ppvObj)
 {
 METHOD_MANAGE_STATE(CIOleOverCtrl, MyOleObject)
 ASSERT_VALID(pThis);

 return pThis->m_xOleObject.QueryInterface (iid, ppvObj);
 }

 STDMETHODIMP
 CIOleOverCtrl::XMyOleObject::SetClientSite(LPOLECLIENTSITE
 pClientSite)
 {
 METHOD_MANAGE_STATE(CIOleOverCtrl, MyOleObject)
 ASSERT_VALID(pThis);

 return pThis->m_xOleObject.SetClientSite (pClientSite);
 }
 ...

The rest of the methods follow the same pattern where CIOleOverCtrl is the
name of the control, XMyOleObject is the name of the nested class that
supports IOleObject, and m_xOleObject is calculated by removing the I from
the interface being supported and adding m_x.

Note that these methods simply pass the call on to the original IOleObject
implementation. However, this is not a requirement; you could add
functionality and delegate to the original implementation or not delegate
at all.

REFERENCES
==========

Technical Notes #38 and #39.

Additional reference words: 3.00 3.10 3.20 4.00
KBCategory: kbole kbprg kbhowto kbocde
KBSubcategory: MfcOle

How to Pass IDispatch Pointer & Avoid an Application Error
PSS ID Number: Q133042

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC), included with:
 Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2,
 4.0, and 4.1

SUMMARY
=======

In some cases, you may want an OLE Automation Local-Server to pass its
IDispatch pointer to another Local-Server through an automation method.
However, the pointer will become invalid after the method in the second
server returns, so an Access Violation will occur if the second server
tries to use the pointer later.

To maintain the integrety of the pointer, you need to call AddRef on the
IDispatch pointer within the second server, as described in the following
rule from the OLE SDK documentation:

 If a local copy of an interface pointer is made from an existing global
 interface pointer, the local copy must be independently reference-
 counted. This separate reference count is necessary because the global
 copy can be destroyed while the local copy is in use.

MORE INFORMATION
================

Here is an example demonstrating the reasoning behind the general rule.

When the IDispatch pointer from the first Local-Server (server1) is passed
to the second Local-Server (server2), the RPC manager creates a proxy in
the address space of server2. The pointer that server2 actually receives
points to the proxy. This should make sense because the original object
resides in the address space of server1, so server2 cannot actually have a
pointer to it.

The default life-time of the proxy is the duration of the function or
automation method. In many cases, however, it would be convenient to use
the pointer later. In MFC, you can do this by creating an instance of
COleDispatchDriver (or an instance of an object derived from
COleDispatchDriver) and calling AttachDispatch().

To affect the life-time of the proxy, server2 must call AddRef for the
automation object it receives. The RPC Manager will intercept this call and
increment the reference count on both the proxy and the object. It is
important to note that AddRef must be called from server2 because the proxy
lives in server2's address space.

The following sample code demonstrates how to do it. It is assumed that
CServer2Doc is an automation object. The CServerDoc2::SetReturnDispatch

method receives a LPDISPATCH object from server1 and will attach it to
CServer2Doc::m_DDServer1, which is a instance of an object derived from
COleDispatchDriver. Note that m_DDServer1 will be deleted when CServer2Doc
is deleted; Because AttachDispatch is called with the default second
parameter, this will cause the LPDISPATCH object Release to be called.

Refer to COleDispatchDriver::~COleDispatchDriver and
COleDispatchDriver::AttachDispatch for more information.

Sample Code

void CServer2Doc::SetReturnDispatch(LPDISPATCH lpDispServer1)
{
 lpDispServer1->AddRef(); // AddRef so it can be used later
 m_DDServer1.AttachDispatch(lpDispServer1);
}

REFERENCES
==========

 - Visual C++ Books Online Contents\OLE 2.0 SDK\Chapter 6 Component
 Object Interfaces and Functions \Iunknown Interface\Reference Counting
 Rules.

 - OLE 2 Programmers Reference Volume One, pages 191-195.

 - Inside OLE 2, pages 83-90.

Additional reference words: kbinf 2.00 3.0 3.00 2.10 3.1 3.10 2.20 3.2 3.20
4.00 4.10
KBCategory: kbole kbcode
KBSubcategory: MfcOLE

How to Profile an OLE Server or an OLE Control
PSS ID Number: Q147393

The information in this article applies to:

 - The Microsoft Source Profiler included with:
 Microsoft Visual C++, 32-bit Edition, version 4.0

SUMMARY
=======

The Visual C++ Books Online section "Profiling Dynamic-Link Libraries"
explains the steps involved in profiling dynamic-link libraries and
profiling multiple .dll and .exe files.

Because an OLE server is basically an .exe or .dll file and an OLE control
is a DLL even though it has an extension of .ocx, profiling them is similar
to profiling an .exe or .dll file. When you profile an OLE server or OLE
control, you follow the same steps and use the same commands that you would
for an .exe or .dll file. The same profiling rules that apply to .exe and
.dll files (such as the need to include debugging information and to supply
a .map file) also apply to OLE servers and OLE controls.

MORE INFORMATION
================

The following four examples illustrate the steps required to profile an OLE
full server, an OLE mini-server, an In-Process OLE Automation server, and
an OLE control.

You may need to register the OLE mini-server, the in-process OLE automation
server, or the OLE control explicitly. You can do one of the following to
register them:

 - For a .dll file (and for an OLE control), run Regsvr32 from the command
 prompt. Alternatively, you can open the corresponding project in the
 Developer Studio, and then on the Tools menu, click Register Control.

 - For an .exe file, just run it once. You may not be able to run it or you
 may get a message saying "This server can only be run from a container
 application," but when you click OK, it will have been registered.

To run the profiler, you may need to copy the \Msdev\Bin\Profile.dll file
to either the directory that contains the file you are profiling or to one
of the system directories.

Each step in the following examples is a command at the command prompt.
Alternatively, you could create a batch file that contains these commands.

In the command line arguments for most profile commands, you should specify
the file names without the extension. Look at the following examples to see
when extensions should be included.

To profile an OLE full server or an OLE automation server:

 PREP /OM /FT FullSrvr
 PROFILE FullSrvr
 PREP /M FullSrvr
 PLIST FullSrvr > FullSrvr.txt

 where FullSrvr.exe is the file corresponding to an OLE full server or
 OLE automation server.

To profile an OLE mini server:

 COPY MiniSrvr.exe MiniSrvr.sav
 PREP /OM /FT MiniSrvr
 COPY MiniSrvr._xe MiniSrvr.exe
 PROFILE /I MiniSrvr /O MiniSrvr Container
 PREP /M MiniSrvr
 PLIST MiniSrvr > MiniSrvr.txt
 COPY MiniSrvr.sav MiniSrvr.exe

 where MiniSrvr.exe is the file corresponding to an OLE mini server and
 Container.exe is a container application that runs the MiniSrvr.

To profile an In-Process OLE Automation Server (these steps are similar to
those of OLE mini server except that you have a .dll extension instead of
an .exe extension):

 COPY InProc.dll InProc.sav
 PREP /OM /FT InProc.dll
 COPY InProc._ll InProc.dll
 PROFILE /I InProc /O InProc Client
 PREP /M InProc
 PLIST InProc > InProc.txt
 COPY InProc.sav InProc.dll

 where InProc.dll is the file corresponding to an In-Process OLE
 Automation server and Client is an OLE Automation client application
 that drives the InProc.dll.

To profile an OLE control that has an .ocx extension (these steps are also
similar except that you now have an .ocx extension):

 COPY Control.ocx Control.sav
 PREP /OM /FT Control.ocx
 COPY Control._cx Control.ocx
 PROFILE /I Control /O Control ControlContainer
 PREP /M Control
 PLIST Control > Control.txt
 COPY Control.sav Control.ocx

 where Control.ocx is the OLE control and ControlContainer is an OLE
 control container application.

REFERENCES
==========

Profiler Reference, Visual C++ User's Guide.

Advanced Profiling, Programming Techniques.

Both of these references are available in the online documentation that
comes with Visual C++ version 4.0.

Additional reference words: kbinf 4.00 mini-server
KBCategory: kbtool kbusage kbole kbhowto kbcode
KBSubcategory: VWBIss

How to Register an MFC OLE Automation Server to Avoid Failure
PSS ID Number: Q137516

The information in this article applies to:

 The AppWizard, included with:

 - Microsoft Visual C++, 32-bit Edition, version(s) 2.00 2.10 2.20

SUMMARY
=======

Creation of an OLE Object may fail if the registry file (.reg) generated by
AppWizard is used to register the server for the object. This article
explains how to avoid this failure.

MORE INFORMATION
================

Registration of an MFC OLE Automation server typically occurs when running
the server stand-alone for the first time. An alternate way of registering
the server is to run the registration editor and merge the .reg file
generated by AppWizard for the server's project. This method is necessary
if the server is installed but not run before a client tries to create it.

It is necessary that the setup program that installs the server also
replace any occurrence of the executable in the .reg file with the fully-
qualified path and file name of the executable. When AppWizard creates the
.reg file for the project, AppWizard does not know what the final path to
the executable will be. Therefore, AppWizard cannot fill in the fully
qualified path name for the server.

If the .reg file provided by the AppWizard is used as is to register the
server for an object, OLE won't be able to find the server, creation of the
object will fail, and OLE will return the error CO_E_SERVER_EXEC_FAILURE.

Sample Code

The following is an example of the \LocalServer key for the AutoClik,
Step 1 sample as generated by AppWizard:

HKEY_CLASSES_ROOT\CLSID\{2106E720-AEF8-101A-
 9005-00DD0108D651}\LocalServer = AUTOCLIK.EXE

After being setup correctly, the \LocalServer key in the .reg file
may appear as follows:

HKEY_CLASSES_ROOT\CLSID\{2106E720-AEF8-101A-
 9005-00DD0108D651}\LocalServer = C:\MSVC20\SAMPLES\MFC
 \autoclik\step3\WinDebug\AUTOCLIK.EXE

Additional reference words: kbinf 2.00 2.10 2.20 3.00 3.10 3.20
KBCategory: kbole kbenv kbtshoot
KBSubcategory:

How To Retrieve Dialog Info from Word Using an MFC App
PSS ID Number: Q152070

The information in this article applies to:

 - Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2, 4.0, 4.1

SUMMARY
=======

This article describes how to retrieve values from Word's dialog boxes
using OLE Automation in an MFC-based application. To retrieve values, the
client application must create a CurValues object and an object that will
represent the data in one of Word's dialogs.

MORE INFORMATION
================

Using Visual C++, it is possible to create a wrapper class for a Word type
library. This wrapper class represents a WordBasic object. Using the
WordBasic class, it is possible to call many methods of the WordBasic
object from within an MFC application. However, it is not possible to get
the settings of any of the Word dialogs using the WordBasic object's
methods directly. You can get information such as Summary Info and Word
Count from Word's dialogs by using a CurValues object. To accomplish this
in an MFC application, you must take the following steps:

1. Use ClassWizard to create an MFC-based application to serve as the
 Automation client. Ensure that OLE has been properly initialized for
 your MFC application. This is usually done by calling AfxOleInit() in
 the CWinApp-derived class's InitInstance. This example also assumes that
 you have correctly installed Word 6.0 or 7.0 on your system and that it
 is registered correctly with the system registry.

2. Create a WordBasic class by using Class Wizard to create a new class
 from a type library. Class libraries available for Word automation are:

 - wb60en.tlb for Word 6.0

 - wb70en32.tlb for Word 7.0.

3. In your code somewhere, instantiate a WordBasic object and attach it to
 a COleDispatchDriver. The following code shows how to do this for the
 WordBasic class created by Class Wizard from one of the Word type
 libraries:

 WordBasic wb;
 wb.CreateDispatch("Word.Basic");

4. Use the WordBasic object to get the DISPID for its CurValues object. For
 example, the following code gets the DISPID for the CurValues object
 using the WordBasic object from step 2:

 OLECHAR* lpszCurValues = L"CurValues";
 DISPID dispidCurValues;
 wb.m_lpDispatch->GetIDsOfNames(IID_NULL, &lpszCurValues, 1,
 LOCALE_SYSTEM_DEFAULT, &dispidCurValues)

5. Use the CurValues DISPID to get the CurValues property of the WordBasic
 object. This property is of type VT_DISPATCH and can be attached to a
 COleDispatchDriver as shown below:

 COleDispatchDriver dispdrvrCurValues;
 LPDISPATCH resultDispatch;
 wb.GetProperty(dispidCurValues, VT_DISPATCH,
 (void*)&resultDispatch);
 dispdrvrCurValues.AttachDispatch(resultDispatch);

6. Use the COleDispatchDriver from step 4 to get the DISPID for the dialog
 whose information you wish to retrieve. For example, to get the
 document's Summary Info, use code similar to the following:

 OLECHAR* lpszFileSummaryInfo = L"FileSummaryInfo";
 DISPID dispidFileSummaryInfo;

 dispdrvrCurValues.m_lpDispatch->GetIDsOfNames(IID_NULL,
 &lpszFileSummaryInfo, 1, LOCALE_SYSTEM_DEFAULT,&dispidFileSummaryInfo)

7. Use the CurValues object to get a property of type VT_DISPATCH that
 represents the dialog containing the information you wish to retrieve.
 The LPDISPATCH you retrieve can be attached to a COleDispatchDriver as
 shown below:

 COleDispatchDriver dispdrvrFileSummaryInfo;
 LPDISPATCH resultDispatch;

 dispdrvrCurValues.GetProperty(dispidFileSummaryInfo, VT_DISPATCH,
 (void*)&resultDispatch);
 dispdrvrFileSummaryInfo.AttachDispatch(resultDispatch);

8. You can now use the COleDispatchDriver from step 6 to get values from
 the dialog. To get the document title from the Summary Info dialog from
 step 6, you would use code similar to the following:

 OLECHAR* lpszTitle = L"Title";
 DISPID dispidDocProperty;
 BSTR *pResult;

 dispdrvrFileSummaryInfo.m_lpDispatch->GetIDsOfNames(IID_NULL,
 &lpszTitle, 1, LOCALE_SYSTEM_DEFAULT, &dispidDocProperty);

 dispdrvrFileSummaryInfo.GetProperty(dispidDocProperty,VT_BSTR,pResult);

REFERENCES
==========

WordBasic Help, shipped with Microsoft Word version 6.0 and 7.0.

Additional reference words: 2.00 2.10 2.20 4.00 4.10
KBCategory: kbprg kbole kbappnote kbhowto
KBSubcategory: MfcOLE VCx86

How to Retrieve the Actual Parent Window of an OLE Control
PSS ID Number: Q150204
--
The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:

 - Microsoft Visual C++ for Windows, versions 1.5, 1.51, 1.52
 - Microsoft Visual C++, 32-bit Edition,
 versions 2.0, 2.1, 2.2, 4.0, 4.1
--

SUMMARY
=======

An OLE control is created as a child of the window of the container most
closely associated with the site object. This article describes how to
obtain the Parent window of an OLE control, and why calling GetParent or
CWnd::GetParent for an OLE control may not return its actual Parent window.

MORE INFORMATION
================

An OLE control typically gains access to the following container windows:

 - Frame window: the outer-most container window where the container's main
 menu resides. An OLE control retrieves this window handle by calling
 either IOleInPlaceFrame::GetWindow or IOleInPlaceSite::GetWindowContext.

 - Site window: the container window that contains the OLE control's view.
 An OLE control retrieves this container window by calling
 IOleInPlaceSite::GetWindow.

However, OLE control containers generated using MFC and Microsoft Visual
Basic 4.0 use the same window for the frame and the site object.

When the MFC framework creates an OLE control's window, it retrieves the
window associated with the container's site object by calling
IOleInPlaceSite::GetWindow. The returned window is made the parent of the
OLE control, except in the following two cases, where the framework creates
a reflector window that reflects the notification messages:

 - The OLE control subclasses a Windows control, and the container does not
 support message reflection.

 -or-

 - The control container does not support automatic clipping of its
 controls.

In these two scenarios, the OLE control is made a child of the reflector
window whose parent is the window returned from IOleInPlaceSite::GetWindow.

NOTE: If IOleObject::DoVerb with OLEIVERB_OPEN is invoked on an OLE

control, and if in-place activation is not possible, an outer frame window
is created and becomes the parent of the OLE control.

Sample Code

// The following code should return the
// actual parent window of the OLE control
HWND CMyOleControl::GetActualParent()
{
 HWND hwndParent = 0;

 // Get the window associated with the in-place site object,
 // which is connected to this OLE control
 if (m_pInPlaceSite != NULL)
 m_pInPlaceSite->GetWindow(&hwndParent);

 return hwndParent; // return the in-place site window handle
}

REFERENCES
==========

 - Online Documentation for IOleWindow::GetWindow

 - MFC source code for COleControl::OnActivateInPlace and
 COleControl::CreateControlWindow.

Additional reference words: 1.50 2.00 2.10 2.20 4.00 4.10 kbinf ocx control
KBCategory: kbprg kbole kbhowto
KBSubcategory: MfcOLE CDKIss

How to Set Default Values for Stock Properties in OLE Controls
PSS ID Number: Q138866

The information in this article applies to:

 - Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2,
 4.0, and 4.1

SUMMARY
=======

When developing an OLE Control, you may decide that some of the properties
should be serialized. This can be accomplished in the DoPropExchange()
method of your COleControl-derived class by using the PX_ functions. The
PX_ functions also allow you to specify a default value for the property,
which is good programming practice. You may also want to give default
values to any stock properties that are used by your control. The
serialization and initialization of stock properties is handled by MFC in
COleControl::DoPropExchange(pPX). To set a default value for a stock
property, you need to work around some of MFC's functionality. This article
explains how to do it.

MORE INFORMATION
================

When you use the Microsoft Control Developer's Kit (CDK) to create the MFC
framework for an OLE Control, it creates a COleControl-derived class with
an overridden DoPropExchange() member function. By default, the overridden
DoPropExchange() calls COleControl::DoPropExchange(). This in turn calls
COleControl::ExchangeStockProps(), which contains the MFC code for
serializing stock properties.

Within this function, MFC uses the COleControl m_dwStockPropMask protected
member variable to determine which stock properties you have added with
Class Wizard. This mask can be modified in your DoPropExchange() to force
MFC to ignore existing stock properties and therefore allow you to add your
own code. Ideally you should copy the relevant code already present in
COleControl::ExchangeStockProps(), and then modify it as necessary.

The following sample code shows how to accomplish this for the Caption
stock property by modifying step three of the Circ OLE Control tutorial.

Sample Code

// MANUAL CONTROL OF MAKING Caption PERSISTANT.
// To test the initialization of the caption stock property
// replace the circle3 samples DoPropExchange function with the
// following version.

// These #defines can be found in the ..\Msvc20\Cdk32\Src\Ctlprop.cpp
// file and are given here to remove the need to continually track them
// down. In the code, only STOCKPROP_CAPTION is used.

#define STOCKPROP_BACKCOLOR 0x00000001
#define STOCKPROP_CAPTION 0x00000002
#define STOCKPROP_FONT 0x00000004
#define STOCKPROP_FORECOLOR 0x00000008
#define STOCKPROP_TEXT 0x00000010
#define STOCKPROP_BORDERSTYLE 0x00000020
#define STOCKPROP_ENABLED 0x00000040

void CCirc3Ctrl::DoPropExchange(CPropExchange* pPX)
{
 ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));
 BOOL bLoading = pPX->IsLoading();

 CString strText;
 if (!bLoading)
 strText = InternalGetText();

 PX_String(pPX,_T("Caption"),strText,_T("Caption"));
 if (bLoading) {
 TRY
 SetText(strText);
 END_TRY
 }

 // Mask out the Caption stock property before
 // calling the base class functionality.
 m_dwStockPropMask &= ~STOCKPROP_CAPTION;

 // Call the base class.
 COleControl::DoPropExchange(pPX);

 // Mask the Caption property bit back in to minimize
 // possible side effects.
 m_dwStockPropMask |= STOCKPROP_CAPTION;

 if (pPX->GetVersion() == (DWORD)MAKELONG(_wVerMinor, _wVerMajor))
 {
 PX_Bool(pPX, _T("CircleShape"), m_circleShape, TRUE);
 PX_Short(pPX, _T("CircleOffset"), m_circleOffset, 0);
 PX_Long(pPX, _T("FlashColor"), (long &)m_flashColor,
 RGB(0xFF, 0x00, 0x00));
 PX_String(pPX, _T("Note"), m_note, _T("Note"));
 }else if (pPX->IsLoading()) {
 m_circleShape = TRUE;
 m_circleOffset = 0;
 m_flashColor = RGB(0xFF, 0x00, 0x00);
 m_note = _T("");
 }
}

REFERENCES
==========

The functions discussed in this article can be found using the Find in
Files feature of Visual C++; in version 2.x within the Cdk32\Src directory

and in version 4.x within the mfc\src subdirectory.

Additional reference words: 2.00 2.10 2.20 3.0 3.1 3.2 3.00 3.10 3.20
4.00 4.10 cdk ocx
KBCategory: kbprg kbole kbhowto kbcode
KBSubcategory: MfcOLE

How to Set the Picture Property of an OLE Control
PSS ID Number: Q146010

The information in this article applies to:

 - Microsoft Visual C++ 32-bit Edition, version 4.0

SUMMARY
=======

To set the Picture property of an OLE control, you can use the Component
Gallery to insert an OLE control into an AppWizard-generated application
with control container support. If the control has a picture property, the
wrapper classes generated by the Component Gallery will contain the
SetPicture() and GetPicture() methods. The More Information section below
contains details that explain how to use the picture property of an OLE
Control.

MORE INFORMATION
================

Using the Microsoft Grid Control as an example, you can implement the
SetPicture() and GetPicture() methods in the control classes provided by
the Component Gallery by using this code:

void CGridCtrl::SetPicture(LPDISPATCH propVal)
{
 SetProperty(0x15, VT_DISPATCH, propVal);
}

CPicture CGridCtrl::GetPicture()
{
 LPDISPATCH pDispatch;
 GetProperty(0x15, VT_DISPATCH, (void*)&pDispatch);
 return CPicture(pDispatch);
}

It is not intuitively clear how to use these methods to get or set the
picture property. The following steps show how to set the picture property
of an OLE control successfully in an AppWizard-generated application. The
particular control used in this example is the Microsoft Grid Control, and
its picture property is being set to the toolbar bitmap provided by
AppWizard.

1. Generate a new AppWizard application. Be sure to select both Container
 and Control support in AppWizard Step 3.

2. Add the Grid Control from the OLE Controls tab in the Component Gallery.

3. Add Afxctl.h to the list of pre-compiled header files in Stdafx.h.

4. Add a Grid Control object to the About Dialog box in the dialog editor.

5. Using Class Wizard, add a control member variable called m_grid to the
 Grid Control in the About Dialog box.

6. Override the container's initialization routine to create and initialize
 a CPictureHolder object. Call the SetPicture() method for the control,
 passing in the CPictureHolder's dispatch pointer. SetPicture calls
 SetProperty() for the control. Here's an example:

 BOOL CAboutDlg::OnInitDialog()
 {
 CDialog::OnInitDialog();

 // Create and Initialize the CPictureHolder variable with the
 // toolbar resource
 CPictureHolder pictholder;
 pictholder.CreateFromBitmap(IDR_MAINFRAME);

 //Pass dispatch pointer to CPictureHolder
 m_grid.SetPicture(pictholder.GetPictureDispatch());

 // NOTE: GetPictureDispatch() QI()'s for the IPictureDisp
 // interface, so the picture object will remain alive until
 // the property is reset or the control is destroyed. When
 // pictholder goes out of scope, it calls Release() on the
 // picture object, but the previously mentioned QI() will have
 // bumped the ref count, allowing it to remain alive until the
 // control itself releases the picture object.

 return TRUE;
 }

REFERENCES
==========

OLE Control Containers: Programming OLE Controls in an OLE Control
Container - Visual C++ Books Online, MFC Encyclopedia.

OLE Controls: Using Pictures in an OLE Control - Visual C++ Books
Online, MFC Encyclopedia.

Additional reference words: kbinf 4.00
KBCategory: kbole kbcode kbhowto
KBSubcategory: CDKIss MfcOLE

How to Show Container's Toolbar During Inplace Activation
PSS ID Number: Q148860

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:
 Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2, 4.0, 4.1

SUMMARY
=======

This article illustrates how to make an OLE Container's toolbar visible
when the user is editing an inplace active object. The technique makes both
the container and the server toolbars visible during inplace editing.

MORE INFORMATION
================

During inplace activation, MFC shows and hides control bars that have the
CBRS_HIDE_INPLACE style used in the COleClientItem::OnShowControlBars()
function, which can be found in the MFC source code (Olecli2.cpp).

MFC automatically adds the CBRS_HIDE_INPLACE style to toolbars that are
created with the ID AFX_IDW_TOOLBAR, which is the default value for the
toolbar created by AppWizard in the MainFrame window (m_wndToolBar). You
can see this in the CToolBar::Create() function in the MFC source code
(Bartool.cpp). To remove the CBRS_HIDE_INPLACE style from m_wndToolBar, add
the following line of code to the CMainFrame::OnCreate function after
m_wndToolBar is created:

 m_wndToolBar.SetBarStyle(m_wndToolBar.GetBarStyle()
 ^ CBRS_HIDE_INPLACE);

The SetBarStyle() call removes the CBRS_HIDE_INPLACE style by performing a
bitwise XOR operation with the existing style for the toolbar.

NOTE: The resulting behavior depends on the server's implementation. For
example, Word 6.0 always puts its toolbar at position (0,0). In this case,
Word's toolbar will be placed in front of the container's toolbar. Most
servers place their toolbar beneath the container's toolbar as expected.

Additional reference words: kbinf 2.00 2.10 2.20 4.00 4.10
KBCategory: kbole kbhowto kbcode
KBSubcategory: MfcOLE

How to Update Property Values in a Property Page
PSS ID Number: Q148222
--
The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:

 - Microsoft Visual C++, 32-bit Edition, version 4.0
 - Microsoft OLE Control Developer's Kit (CDK) versions 2.0, 2.1, 2.2

SUMMARY
=======

To modify a property of an OLE control, you would normally change the
properties value in the control's property page. However, it is possible
for a property to be modifiable from more than one property page especially
in development environments such as Visual Basic. In this case, when you
change the property in the control's property page, you should synchronize
the value in Visual Basic's Property Form. This article shows by example
how to do it.

MORE INFORMATION
=================

For example, in Visual Basic, place the Circ3 sample control on the Form
page. Then click the right mouse button to select properties for the
control. You will notice that the same properties can be seen in Visual
Basic's Properties window. For example, one of the properties of Circ3 is
the CircleOffset property. If you change this value in the Control's
property page and click Apply, you will notice that the value has not been
updated in Visual Basic's Properties window. To synchronize the value in
both, you need to call BoundPropertyChanged(dispid) for each property you
want to update.

Note that the dispid is the id of the property to update. It is usually
found in the header file of the COleControl-derived class. The dispids for
the Circ3 control follow:

// Dispatch and event IDs
public:
 enum {
 //{{AFX_DISP_ID(CCirc3Ctrl)
 dispidCircleShape = 2L,
 dispidCircleOffset = 3L,
 dispidFlashColor = 1L,
 dispidNote = 4L,
 eventidClickIn = 1L,
 eventidClickOut = 2L,
 //}}AFX_DISP_ID
 };

The following sample code shows how to modify the Circ3 sample to
synchronize the CircleShape and CircleOffset properties given the dispids

above.

Sample Code

/* Compile options needed: none
*/

void CCirc3Ctrl::OnCircleShapeChanged()
{
 SetModifiedFlag();

 // force the control to redraw itself
 InvalidateControl();

 // reset the circle offset, if necessary
 if (m_circleShape)
 SetCircleOffset(0);

 BoundPropertyChanged(dispidCircleShape); // *ADD THIS LINE*
}

void CCirc3Ctrl::SetCircleOffset(short nNewValue)
{
 // Validate the specified offset value
 if ((m_circleOffset != nNewValue) && m_circleShape&&
 InBounds(nNewValue))
 {
 m_circleOffset = nNewValue;
 SetModifiedFlag();
 BoundPropertyChanged(dispidCircleOffset); // *ADD THIS LINE*
 InvalidateControl();
 }
}

Additional reference words: kbinf 2.00 2.10 2.20 4.00 3.00 3.10 3.20
Property Page Form Browser
KBCategory: kbole kbhowto kbocde
KBSubcategory: CDKIss MfcOLE

How to Use AFX_MANAGE_STATE in an OLE Control
PSS ID Number: Q127074

The information in this article applies to:

 - The OLE Control Developer's Kit (CDK), versions 1.0 and 1.1

SUMMARY
=======

The AFX_MANAGE_STATE macro is used to establish the correct module context
for OLE controls and should be used for all external entry points to the
control.

The existing implementation of COleControl and COlePropertyPage use
AFX_MANAGE_STATE in several locations, but there are still some situations
where the control writer will need to directly invoke AFX_MANAGE_STATE.
This article shows you how.

MORE INFORMATION
================

OLE controls written with the OLE CDK use a shared MFC DLL to eliminate the
need to have a separate copy of MFC in each control. In a way, an OLE
control is similar to a standard MFC extension DLL. Previous versions of
MFC use the _AFXDLL model to implement extension DLLs, one limitation of
this model is that the host executable had to be written to also use the
shared MFC DLL, that is it must be used by an MFC application. A different
mechanism is needed for OLE controls because they can be used by non-MFC
applications.

MFC maintains a small amount of global state information that includes
(among other things) the instance handle used when loading resources. Many
MFC functions rely on this state information, so it is important that it
always reflect the state of the module currently executing.

The AFX_MANAGE_STATE macro creates a small local object on the stack that
swaps in the control's state information in its constructor, and then
restores the previous state in its destructor. A typical use of the macro
looks like this:

 AFX_MANAGE_STATE(_afxModuleAddrThis);

Every exported function should invoke AFX_MANAGE_STATE as shown in the this
sample code:

STDAPI DllRegisterServer(void)
{
 AFX_MANAGE_STATE(_afxModuleAddrThis);

 if (!AfxOleRegisterTypeLib(AfxGetInstanceHandle(), _tlid))
 return ResultFromScode(SELFREG_E_TYPELIB);

 if (!COleObjectFactoryEx::UpdateRegistryAll(TRUE))
 return ResultFromScode(SELFREG_E_CLASS);

 return NOERROR;
}

All OLE controls implement a self-registration feature by exporting two
functions, DllRegisterServer and DllUnregisterServer. These functions are
called directly from outside of the control, so AFX_MANAGE_STATE must be
invoked at the beginning of each function.

AFX_MANAGE_STATE should also be used when handling messages sent to a child
window created by an OLE control. Such messages are sent directly to the
child window, bypassing the call to AFX_MANAGE_STATE in
COleControl::WindowProc().

Additional reference words: 1.51 1.00 1.52 1.10 2.00 2.10
KBCategory: kbole kbcode
KBSubcategory: CDKIss

How to Use an OLE Control as an Automation Server
PSS ID Number: Q146120
--
The information in this article applies to:

 - The Microsoft Foundation Classes (MFC), included with:
 Microsoft Visual C++, 32-bit Edition, version 4.0
--

SUMMARY
=======

In situations where an OLE container doesn't support control containment,
you may want to use an OLE control as an automation server to gain access
to its properties and methods. This article explains the necessary
modifications you need to make in order for an OLE control to function as a
normal automation server.

MORE INFORMATION
================

Prior to Visual C++ 4.0, an OLE Control could be used as an automation
server without any modification. However, in MFC 4.0, the framework's
implementation of IDispatch::Invoke calls the virtual function
IsInvokeAllowed to determine if an automation server is in the appropriate
state to handle automation calls. The default implementation in
CCmdTarget::IsInvokeAllowed returns TRUE, implying that a server can handle
automation calls.

In the case of an OLE control, COleControl::IsInvokeAllowed checks to see
if the control has been either initialized or loaded properly through the
persistent storage interfaces. If the control has the appropriate state
information, then this function returns TRUE. When an OLE control is
created as a normal automation server, it is not created as an embedding in
the client. Hence, none of the persistent state initialization will take
place, which thereby causes IsInvokeAllowed to return FALSE.

In order to use an OLE control only as an automation server, you need to
override COleControl::IsInvokeAllowed() and return TRUE. If any of the
control's properties and methods should not be accessed when invoked as a
normal automation server, then that automation function could be bypassed
and/or an error code can be returned when COleControl::m_bInitialized is
FALSE.

For example, the default OLE control behavior may pose a problem when an
automation client calls CreateDispatch to create the OLE control as an
automation server. Prior to making the above modification, CreateDispatch
may succeed; however, any automation calls on the OLE control would fail.

Sample Code

BOOL CMyOleControl::IsInvokeAllowed (DISPID)
{

 // You can check to see if COleControl::m_bInitialized is FALSE
 // in your automation functions to limit access.
 return TRUE;
}

Additional reference words: kbinf 4.00 ocx OLE Automation error
KBCategory: kbprg kbole kbhowto kbcode
KBSubcategory: MfcOLE CDKIss

How to Use OLE2UI Functionality in 32-bit Applications
PSS ID Number: Q135862

The information in this article applies to:

 - Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2

SUMMARY
=======

The OLE2UI library is a 16-bit DLL provided with the 16-bit OLE SDK. It
contains a number of APIs that are useful for user interface (UI) related
functionality. However, beginning with Windows NT version 3.51, this DLL is
no longer provided. OLEDLG.DLL provides the dialog boxes that were included
in OLE2UI. Two DLLs (MFCUIW32 and MFCUIA32) essentially wrap the APIs from
OLEDLG.DLL, providing the ANSI and Unicode versions of the dialog boxes. If
your application uses one of the approximately 122 other APIs that are no
longer provided, copy the source code from the 32-bit version provided as a
sample in the Visual C++ version 2.x directory ...\SAMPLES\MFC\MFCUIX32.

MORE INFORMATION
================

The two DLLs (MFCUIW32 and MFCUIA32) support the following APIs:

OleUIAddVerbMenu
OleUIBusy
OleUICanConvertOrActivateAs
OleUIChangeIcon
OleUIChangeSource
OleUIConvert
OleUIEditLinks
OleUIInsertObject
OleUIObjectProperties
OleUIPasteSpecial
OleUIPromptUser
OleUIUpdateLinks

OLEDLG.DLL provides the A and W versions of these functions.

To use one of the other functions, you have two options:

 - Create a DLL using the sample code, and statically link to the library.
 This option is best if you were using a lot of the functions.

 -or-

 - Include the prototype for the function in one of your header files, and
 copy the source code from the .cpp file in the MFCUIX32 directory to
 your .cpp file. This option is probably best if you are using only one
 or two of the functions. For example, if you would like to use
 XformRectInPixelsToHimetric(), copy the prototype from \msvc20\...
 \mfcuix32\olestd.h, line 433, and the source code from \msvc20\ ...

 \mfcuix32\oleutl.cpp starting at line 401.

REFERENCES
==========

For a list of the API entry points that have been removed, please see the
project definition file (OLE2UI.DEF) in the \MSVC20\SAMPLES\MFC\MFCUIX32
directory.

Additional reference words: kbinf 2.00 2.10 2.20
KBCategory: kbole
KBSubcategory: MFCOle

MFC OLE Classes Do Not Support "Embed in self"
PSS ID Number: Q121949

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC), included with:

 - Microsoft Visual C++ for Windows, versions 1.5 and 1.51
 - Microsoft Visual C++, 32-bit Edition, version 2.0, 4.0, 4.1
 on the following platform: x86

SUMMARY
=======

The MFC OLE classes in the versions listed above do not include the ability
for a container/server to embed items of its own type within an instance of
itself.

Users attempting to embed an OLE item from the container/server into itself
will receive the "Failed to create object. Check system registry" dialog
box. Further debugging will show that QueryInterface failed to return the
IViewObject interface for the embedded item.

MORE INFORMATION
================

While OLE makes "embed in self" possible, it requires the use of the API
call OleCreateEmbeddingHelper to connect the OLE2 or OLE32 DLL as the
default in-process handler. The MFC OLE classes do not make use of this,
and the architecture of an MFC application would make it extremely
difficult to integrate this support.

MFC applications rely on handle maps and global tracking of such things as
the toolbar and status bar of the application. An OLE item from this same
application, if activated for visual editing, would attempt to negotiate
space for a second toolbar and status bar within the same frame window. The
MFC framework would also attempt to add these objects to its handle map,
even though they are already there. Altering this would require substantial
unsupported changes to the MFC source code. See article Q120682 for
information on how to exclude the current server object from its
COleInsertDialog

Additional reference words: kbinf OLE embed 1.00 1.50 1.51 2.00 2.50 2.51
3.00 4.00 4.10
KBCategory: kbole kbprg kbtshoot
KBSubCategory: MfcOLE

OLE Control Container Support in Visual C++ and MFC
PSS ID Number: Q135085

The information in this article applies to:

 - Microsoft Visual C++ for Windows, versions 1.5, 1.51, 1.52
 - Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2

SUMMARY
=======

The Microsoft Foundation Classes included with the versions of Visual C++
listed at the beginning of this article do not provide any support for
creating OLE control containers.

MORE INFORMATION
================

The OLE Control Development Kit (CDK) provides the ability to create
OLE controls which can be used in OLE control containers such as
Microsoft Visual FoxPro version 3.0 and Microsoft Access version 2.0.
However, current versions of MFC and Visual C++ do not provide any support
for creating OLE control containers.

The next major version of Visual C++, currently planned for release in the
fall of 1995, will provide support for creating OLE control containers.

REFERENCES
==========

Here are sources of information regarding creating an OLE control
container:

 - "Notes on Implementing an OLE Control Container"

 This article by Kraig Brockschmidt can be found on the Microsoft
 Developer Network CD (MSDN). It discusses the OLE control container
 architecture and provides sample code that illustrates how to
 implement an OLE control container.

 - "Implementing OLE Control Containers with MFC and the OLE Control
 Developer's Kit"

 This article by Mike Blaszczak can be found on the MSDN CD and in the
 April 1995 issue of the "Microsoft Systems Journal." It discusses
 different types of OLE control container support and provides sample
 code for an OLE control container.

 - "CONTROLS: Demonstrates How to Test OLE Controls"

 This article can be found on the MSDN CD and in the February 1995 issue
 of the Microsoft Systems Journal. It includes a sample application
 that implements a version of the MFC DRAWCLI sample that has been

 modified to provide OLE control containment.

These articles and samples provide very useful information regarding
creating OLE control containers. However, because the current versions of
Visual C++ and MFC do not provide any support for creating OLE control
containers, these samples are provided as is, with no additional support.

Microsoft Developer Support does not currently provide any support for the
creation or implementation of OLE control containers. Because the next
major version of Visual C++ will provide a fully supported OLE control
container implementation, Microsoft recommends that developers wait for
this release unless they have an immediate need for OLE control
containment.

Additional reference words: kbinf 1.50 1.51 1.52 1.52b 2.00 2.10 2.20
2.50 2.51 2.52 3.00 3.10 3.20
KBCategory: kbole
KBSubcategory: CDKIss

OLE Control Containers Must Call AfxEnableControlContainer
PSS ID Number: Q150029

The information in this article applies to:

 - Microsoft Visual C++, 32-bit Edition, Versions 4.0, 4.1

SUMMARY
=======

Using Visual C++ version 4.0, it is possible to construct OLE Control
Containers. These containers must call AfxEnableControlContainer() in their
CWinApp::InitInstance(). This call is added automatically if OLE Controls
support is checked in AppWizard Step 3, but in some cases, this call must
be added manually. This article explains why you need to call
AfxEnableControlContainer() and the possible problems that might occur if
this call is not made.

MORE INFORMATION
================

AfxEnableControlContainer() is responsible for wiring up the support
structure necessary for a CWnd object to contain an OLE Control. This call
is added to a project by AppWizard if OLE Controls support is selected. You
need to add this call manually in the following cases:

 - You are adding control container support to an existing project.

 -or-

 - The object that will contain the OLE controls is not created directly by
 AppWizard, such as an OLE Control.

For example, if you are dynamically creating an OLE Control as a child of
another OLE Control, the parent control must call
AfxEnableControlContainer() in its constructor.

The following list outlines some of the most common problems (others are
possible) that can occur if AfxEnableControlContainer() is not called:

 - In many cases, you might receive the following TRACE messages in the
 Output Window of the debugger:

 >>> If this dialog has OLE controls:
 >>> AfxEnableControlContainer has not been called yet.
 >>> You should call it in your app's InitInstance function.

 - In other cases, you might encounter the following ASSERT in file
 Cmdtarg.cpp, line 218:

 ASSERT(afxOccManager != NULL);

 - If you place a Masked Edit or some other OLE control on a CFormView and
 then run the application, you might see a message box indicating:

 Failed to create empty document.

Additional reference words: kbinf 4.00 4.10
KBCategory: kbole kbprg kbtshoot
KBSubcategory: CDKIss MfcOLE VCx86

Possible Reasons for OLE Control Registration Failure
PSS ID Number: Q140346

The information in this article applies to:

 - Microsoft Visual C++ for Windows, versions 1.5, 1.51, 1.52
 - Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2, 4.0

SUMMARY
=======

OLE controls can be registered by using Visual C++ from the Tools menu,
from the Test Container provided with the Control Development Kit (CDK), or
by using the regsvr or regsvr32 applications provided with Visual C++. In
some cases, the registration of a control may fail; use this article to
help troubleshoot the problem.

MORE INFORMATION
================

All of the previously mentioned methods for registering an OLE Control use
essentially the same technique. LoadLibrary() is called to load the control
into memory, GetProcAddress() is called to get the address of the
DllRegisterServer() function, and then DllRegisterServer() is called to
register the control.

Reasons Why the Registration of a Control May Fail
--

 - One or more of the necessary OLE DLLs is not in the path.
 Instructions for distributing OLE Controls as well as an explanation
 of what DLLs are necessary to ship can be found in the Shipctrl.wri
 file located in the same directory as the CDK.

 - The control is loading a DLL other than the OLE DLL, and that DLL is
 not in the path. When the control is loaded into memory, any DLLs
 that are implicitly loaded through an import library are also loaded.
 If any of these DLLs are not in the path, the control is not loaded
 successfully, so registration fails.

 - One or more DLLs may be the wrong version. If the control was built
 with a newer version of a DLL than the one installed on the computer,
 the control may not load properly, so registration fails.

 - An old version of Ocd25.lib is being linked to. If the control is
 using the MFC database classes, there may be a problem with the
 version of the Ocd25.lib file that is being linked to.

 - The OLE control is located on a Novell server's remote drive. In this
 case, the access rights to the .ocx file may be preventing the
 control from loading. Make sure that the access rights for the .ocx
 file are set to read-only, shareable access, which is the typical
 setting for executable files.

Troubleshooting Techniques

If none of the possible causes are true in your case, try the following
techniques.

1. With the control project loaded in Visual C++, set the executable for
 the debug session to the OLE Control Test Container (Tstcon16.exe or
 Tstcon32.exe). When you start the Test Container (under the
 debugger), you will get a warning that the Test Container does not
 contain debug information. Ignore this and proceed.

2. From the Test Container, attempt to register the control. Watch for
 debug output from the OLE Control DLL or any of its dependent DLLs.
 If you are running the 16-bit product, remember to run the DBWIN
 program to receive debug output.

 For information on how to set the executable for a DLL debug session,
 please see the help topic "Debugging DLLs" in Books Online.

As an alternative, you can attempt to register the control
programmatically. First create an MFC AppWizard application selecting
Dialog-based application and OLE Automation. Enabling OLE Automation will
initialize OLE so that the code to register the control will work properly.
In the CWinApp-derived class, you will find the function InitInstance()
with the initial code as follows:

BOOL CTestregApp::InitInstance()
{
 // Initialize OLE libraries
 if (!AfxOleInit())
 {
 AfxMessageBox(IDP_OLE_INIT_FAILED);
 return FALSE;
 }

At this point, add the following code segment, which will allow you to
check the return codes from LoadLibrary(), GetProcAddress(), and
DllRegisterServer.

#ifdef _WIN32
 HINSTANCE hDLL = LoadLibrary("some.ocx");
 if(NULL == hDLL)
 {
 // See Winerror.h for explaination of error code.
 DWORD error = GetLastError();
 TRACE1("LoadLibrary() Failed with: %i\n", error);
 return FALSE;
 }

 typedef HRESULT (CALLBACK *HCRET)(void);
 HCRET lpfnDllRegisterServer;

 lpfnDllRegisterServer =

 (HCRET)GetProcAddress(hDLL, "DllRegisterServer");
 if(NULL == lpfnDllRegisterServer)
 {
 // See Winerror.h for explaination of error code.
 DWORD error = GetLastError();
 TRACE1("GetProcAddress() Failed with %i\n", error);
 return FALSE;
 }

 if(FAILED((*lpfnDllRegisterServer)()))
 {
 TRACE("DLLRegisterServer() Failed");
 return FALSE;
 }

#else // 16-bit
 HINSTANCE hDLL = LoadLibrary("regtest.ocx");
 if(HINSTANCE_ERROR > hDLL)
 {
 // See LoadLibrary() help for explaination of error code.
 TRACE1("LoadLibrary() Failed with: %i\n", hDLL);
 return FALSE;
 }

 typedef HRESULT (CALLBACK *HCRET)(void);
 HCRET lpfnDllRegisterServer;

 lpfnDllRegisterServer =
 (HCRET)GetProcAddress(hDLL, "DllRegisterServer");
 if(NULL == lpfnDllRegisterServer)
 {
 // See GetProcAddress() help for explaination of error code.
 TRACE("GetProcAddress() Failed");
 return FALSE;
 }

 if(FAILED((*lpfnDllRegisterServer)()))
 {
 TRACE("DLLRegisterServer() Failed");
 return FALSE;
 }
#endif

Additional reference words: kbinf 1.51 1.52 1.52b 2.00 2.10 2.20 2.50
2.51 2.52 3.00 3.10 3.20 4.00
KBCategory: kbole kbtshoot kbcode
KBSubcategory: CDKIss

PRB: Adding OnClose Handler to COleControl Class Causes C2660
PSS ID Number: Q152391
--
The information in this article applies to:

 - Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2, 4.0, 4.1
--

SYMPTOMS
========

When building an ActiveX control (OLE Control), you may receive the
following error message:

 error C2660: 'OnClose' : function does not take 0 parameters

CAUSE
=====

This error occurs when using the Developer Studio or Class Wizard to add a
WM_CLOSE message handler to your COleControl derived class. The handler
created will have the following format:

 void CEdt_on_ctrlCtrl::OnClose() {
 // TODO: Add your message handler code here and/or call default
 COleControl::OnClose();
 }

However, an ActiveX Control is a COM object and, as such, uses a different
mechanism than processing a WM_CLOSE message to close down its window. For
this reason, COleControl has overridden OnClose with its own version using
the following prototype:

 void OnClose(DWORD dwSaveOption);

COleControl::OnClose has one parameter that is the reason for the error
message.

RESOLUTION
==========

Since the ActiveX Control doesn't handle the WM_CLOSE message, if you want
to do some processing when the OLE control is terminating, you can override
the COleControl::OnClose function as follows:

Add the following function prototype to the class definition in the header
file for your COleControl derived class (in this example, CEdt_on_ctrlCtr):

 void OnClose(DWORD dwSaveOption);

To replace CEdt_on_ctrlCtrl with the name of your OLE control class, add
the following implementation in the .cpp file:

 void CEdt_on_ctrlCtrl::OnClose(DWORD dwSaveOption) {

 // TODO: Add your message handler code here and/or call default
 COleControl::OnClose(dwSaveOption);
 }

STATUS
======

This behavior is by design.

Additional reference words: VC 2.00 2.10 2.20 4.00 4.10
KBCategory: kbprg kbole kberrmsg
KBSubcategory: MfcOLE CDKIss

PRB: Appearance Property Uses Windows 4.0 WS_EX_CLIENTEDGE
PSS ID Number: Q152000

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC), included with:
 Microsoft Visual C++, 32-bit Edition, versions 4.0, 4.1

SYMPTOMS
========

MFC Controls support a set of standard properties. One of these properties
is Appearance (DISPID_APPEARANCE). Appearance is implemented to give a
control a 3-D look. If the control is used on a version of Windows or
Windows NT less than 4.0, the Appearance property will not affect the
appearance of the control at run time.

CAUSE
=====

At run time, the Appearance property is implemented in an MFC control by
setting an extended window style WS_EX_CLIENTEDGE. This window style is not
supported on versions of Windows or Windows NT less than 4.0.

RESOLUTION
==========

It is possible to supply your own implementation of the Appearance property
although this technique will not work for subclassed Windows controls.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

Using the Class Wizard, add the stock Appearance property but choose
Get/Set methods rather that accepting the stock implementation. In the
control, declare a member variable of type BOOL to represent the Appearance
property. The stock Get/Set functions can be copied and changed slightly to
manipulate this variable as well as handle the property binding
requirements. In the Draw function, draw a 3-D border depending on the
value of this variable.

Sample Code

 // these get and set functions are the same as the original with a minor
 // change (noted in the code)

 short CTestAppearanceCtrl::GetAppearance()

 {
 return m_MyAppearance;
 }

 void CTestAppearanceCtrl::SetAppearance(short nNewValue)
 {
 if (nNewValue != 0 && nNewValue != 1)
 ThrowError(CTL_E_INVALIDPROPERTYVALUE,
 AFX_IDP_E_INVALIDPROPERTYVALUE);

 // Is the property changing?
 if (m_MyAppearance == nNewValue)
 return;

 if (!BoundPropertyRequestEdit(DISPID_APPEARANCE))
 SetNotPermitted();

 // changed from original
 // do not use the WS_EX_CLIENTEDGE style
 //ASSERT((m_hWnd == NULL) ||
 // ((GetExStyle() & WS_EX_CLIENTEDGE) == (DWORD)(m_sAppearance ?
 // WS_EX_CLIENTEDGE : 0)));

 m_MyAppearance = nNewValue;
 SetModifiedFlag();

 //ToggleAppearance(this);
 // end of changes

 OnAppearanceChanged();

 BoundPropertyChanged(DISPID_APPEARANCE);
 }

 void CTestAppearanceCtrl::OnDraw(
 CDC* pdc, const CRect& rcBounds, const CRect& rcInvalid)
 {
 // TODO: Replace the following code with your own drawing code.
 pdc->FillRect(rcBounds,
 CBrush::FromHandle((HBRUSH)GetStockObject(WHITE_BRUSH)));
 pdc->Ellipse(rcBounds);

 // draw as 3D if m_appearance is set

 if(m_appearance)
 {
 CRect rect(rcBounds);
 pdc->DrawEdge(rect, EDGE_SUNKEN, BF_RECT | BF_ADJUST);
 }
 }

Additional reference words: 4.00 4.10 DISPID_APPEARANCE
KBCategory: kbole kbprg kbusage kbprb kbtshoot
KBSubcategory: MfcOLE

PRB: Assertion While Switching Property Pages in OLE Control
PSS ID Number: Q140105

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:
 Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2, 4.0

SYMPTOMS
========

If you have implemented an OLE control that uses a basic MFC CPropertySheet
as a user interface, you may receive the following error when trying to
switch pages by clicking the tab:

 Assertion Failed
 OC30D.DLL: File DlgCore.CPP Line 194

CAUSE
=====

This assertion occurs in _AfxCheckDialogTemplate, when MFC cannot find the
dialog template resource for the property page.

RESOLUTION
==========

The solution is to override CPropertyPage::OnSetActive and use
AFX_MANAGE_STATE as in the following code:

Sample Code

/* Compile options needed - none
 Add the following code to each of your CPropertyPage-derived classes.
*/

BOOL CYourPropPage::OnSetActive()
{

 AFX_MANAGE_STATE(_afxModuleAddrThis);
 return CPropertyPage::OnSetActive();
}

The prototype for OnSetActive must also be added to your CPropertyPage-
derived class header file.

REFERENCES
==========

For information on AFX_MANAGE_STATE, please see the following article in
the Microsoft Knowledge Base:

 ARTICLE-ID: Q127074
 TITLE : How to Use AFX_MANAGE_STATE in an OLE Control

Additional refernce words: kbinf 2.00 2.10 2.20 4.00
KBCategory: kbprg kbui kbole kbprb
KBSubCategory: MfcOLE

PRB: ClassWizard Doesn't Support Property Change Notifications
PSS ID Number: Q146446
--
The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:
 Microsoft Visual C++, 32-bit Edition, version 4.0
--

SYMPTOMS
========

ClassWizard makes adding event handlers in an OLE control container much
easier by providing the required macros, function declarations, and the
function body. However, ClassWizard currently doesn't provide support to
add handlers for property change requests and property change
notifications. You must manually add the macros, function declarations, and
the function body required for defining an event sink map entry in order to
handle property change notifications. This article explains the steps
necessary for handling one such property change notification.

RESOLUTION
==========

The following steps illustrate how to handle property change notifications
for the "Caption" stock property of the Circ3 sample control in a dialog
based control container application:

1. Place the Circ3 control in the main dialog template of the container
 application.

2. Add an event sink map manually to the control container as follows:

 a. In the .h file of your Main Dialog class, add a
 DECLARE_EVENTSINK_MAP() macro inside the AFX_MSG section.

 b. In the .cpp file of your Main Dialog Class, add the following:

 BEGIN_EVENTSINK_MAP(COleCntrDlg, CDialog)
 //{{AFX_EVENTSINK_MAP(COleCntrDlg)
 //}}AFX_EVENTSINK_MAP
 END_EVENTSINK_MAP()

 In the this event sink map, COleCntrDlg is the name of your main
 dialog class.

3. Add the following two functions to the protected section in the .h file
 of your Main Dialog Class:

 BOOL CaptionRequest(BOOL *pChange);
 BOOL CaptionChanged(void);

4. Add the following ON_PROPNOTIFY macro outside of the AFX_EVENTSINK_MAP
 comments section in the event sink map:

 ON_PROPNOTIFY(COleCntrDlg, IDC_CIRC3CTRL1, DISPID_CAPTION,
 CaptionRequest, CaptionChanged)

 In this macro, IDC_CIRC3CTRL1 is the ID of the Circ3 control. Please
 refer to the ON_PROPNOTIFY documentation for the syntax of the macro and
 its parameters. The documentation incorrectly states that the changed
 notification function should take a UINT parameter. However, the
 property changed notification function takes VOID as its only parameter.

5. Add the following implementations for CaptionRequest and
 CaptionChanged in the .cpp file of your Main Dialog Class:

 // Property Change Notifications
 BOOL COleCntrDlg::CaptionRequest(BOOL *pChange)
 {
 // Perform customized processing here
 AfxMessageBox("IPropertyNotifySink::OnRequestEdit called");

 // Return TRUE to allow the property to change, else return
 // FALSE
 *pChange = TRUE;
 return TRUE; // Notification handled
 }

 BOOL COleCntrDlg::CaptionChanged(void)
 {
 // Perform customized processing here
 AfxMessageBox("IPropertyNotifySink::OnChanged called");

 return TRUE; // Notification handled
 }

MORE INFORMATION
================

An OLE control container would typically implement IPropertyNotifySink in
order to receive notifications about property changes from an OLE control.
The control container creates a sink with this interface and connects it to
the control through the connection point mechanism.

The OLE control itself is required to call the methods of
IPropertyNotifySink only for those properties marked with the [bindable]
and [requestedit] attributes in the object's type information. When the
control is about to change a [requestedit] property, it must call
IPropertyNotifySink::OnRequestEdit before changing the property and must
also honor the action by the sink on return from this call. Also, when the
control changes a [bindable] property, it is required to call
IPropertyNotifySink::OnChanged. An OLE control will send these
notifications only for property changes occurring after it is fully
constructed and initialized.

REFERENCES
==========

Online documentation for ON_PROPNOTIFY and ON_PROPNOTIFY_RANGE.
Online documentation for Property Change Notification.

Additional reference words: ocx ole control cdk 4.00
KBCategory: kbprg kbole kbhowto kbprb kbcode
KBSubcategory: MfcOLE CDKIss

PRB: COleControl::Serialize Not Called with VB as Container
PSS ID Number: Q141274

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic
 programming system for Windows, version 4.0

 - The Microsoft Foundation Classes (MFC) included with:

 - Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2, 4.0
 - Microsoft OLE Control Developer's Kit (CDK)

SYMPTOMS
========

Although OLE controls are used with certain control containers (such as
Microsoft Visual Basic version 4.0), the Serialize function for the control-
derived class is not called. These containers allow the control to store
its persistent information either by using the property sets or by using
the IPersistPropertyBag interface. Both these methods call
COleControl::DoPropExchange directly without calling the control's
Serialize function.

The resolution section of this article discusses a technique that you can
use in the DoPropExchange method to store CObject-derived objects.

CAUSE
=====

COleControl::Serialize is called by the framework when an OLE control
container uses one of the following persistent storage interfaces for
loading and saving the control: IPersistStorage, IPersistStreamInit, or
IPersistMemory.

If a control container uses any other method to store the control's
persistent information, then Serialize for the control-derived class will
not be called. Microsoft Visual Basic, for example, uses either
IPersistPropertyBag or property sets to store the persistent information
for an OLE control; therefore, the Serialize function for a control is not
called when Visual Basic is used as the control container.

RESOLUTION
==========

Although there is no direct support for serializing CObject-derived objects
in COleControl::DoPropExchange, you might want to use the following
technique to store objects in an OLE control:

1. Allocate a block of memory with GlobalAlloc.

 // cbGuess is a guess of how much memory will be needed.
 // If more is needed, CSharedFile will reallocate.

 HGLOBAL hMem = GlobalAlloc(GPTR, cbGuess);
 BYTE *pbMem = (BYTE *)hMem;

2. Construct an instance of CSharedFile and attach it to the memory block,
 starting four bytes in. Because the CSharedFile class is not yet
 documented, include afxpriv.h:

 CSharedFile file;
 file.Attach(pMem + sizeof(DWORD), cbGuess - sizeof(DWORD));

3. Construct an instance of CArchive on the file:

 CArchive ar(&file, CArchive::store);

4. Write the CObject-derived objects into the archive:

 // store data in the archive
 // for example, if m_myObject is a CObject-derived object, then
 m_myObject.Serialize(ar);

5. Get the length of the file and write it into the first DWORD of the
 memory block:

 (DWORD)pbMem = file.GetLength();

6. Pass the memory block to PX_Blob:

 PX_Blob(pPX, _T("MyObjects"), hMem);

This code could be used for loading the objects back out of the blob. For
more information about how to use PX_Blob to serialize/de-serialize data,
Please see the following article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q137333
 TITLE : DOCERR: How to Use the PX_Blob Function

To get optimal performance in IPersistStreamInit, ensure that the OLE
control maintains a separate Serialize method that writes the CObjects
directly to its archive. Care should be taken to save all of the control's
persistent data in both Serialize and DoPropExchange.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

An OLE control generated using ControlWizard can read and write its
persistent state using one of the following interfaces: IPersistMemory,
IPersistStorage, IPersistStreamInit, IPersistPropertyBag (not
implemented in versions before Visual C++ 4.x), and IDataObject through the
property sets implementation. Each of these interfaces with the exception
of IPersistPropertyBag and IDataObject call COleControl::Serialize passing

in a CArchive. This archive could be used to store CObject-derived objects
as part of the control's persistence.

Some OLE control containers (like Microsoft Visual Basic) use the "save as
text" mechanism in order to allow as much of the OLE control's state to be
represented in a human-readable format. For optimizing this mechanism, the
interfaces IPropertyBag and IPersistPropertyBag are used and therefore are
recommended for containers like Visual Basic. IPropertyBag is implemented
by the container and is roughly analogous to IStream. IPersistPropertyBag
is implemented by controls and is roughly analogous to
IPersistStream(Init).

Visual Basic uses the control's IPersistPropertyBag interface, if one is
implemented by the control, or it uses the property sets. Property sets are
communicated from and to the control through IDataObject::GetData and
IDataObject::SetData, implemented by the control. Note that OLE controls
generated using earlier versions of Visual C++ don't provide an
implementation for IPersistPropertyBag.

The implementation provided by the MFC framework for IPersistPropertyBag
and property sets directly call COleControl::DoPropExchange passing in an
instance of either CPropbagPropExchange or CPropsetPropExchange
respectively.

REFERENCES
==========

OLE Controls Inside Out - by Adam Denning

Additional reference words: 2.00 2.10 2.20 3.00 3.10 3.20 4.00
KBCategory: kbprg kbole kbprb
KBSubcategory: MfcOLE CDKIss

PRB: COleMessageFilter Doesn't Process WM_PAINT
PSS ID Number: Q152074

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:
 Microsoft Visual C++, 32-bit Edition, versions 4.0, 4.1

SYMPTOMS
========

If an automation client calls a method of an automation server that brings
up a modal dialog, the client area below the dialog may not re-paint itself
if the dialog is moved over it.

CAUSE
=====

The painting problem occurs because the WM_PAINT messages are in the queue,
but are not dispatched.

RESOLUTION
==========

One solution is to retrieve and dispatch all WM_PAINT messages when
IMessageFilter::MessagePending is called. The sample code below
demonstrates one way for this resolution to be implemented.

MORE INFORMATION
================

To fix the problem with MFC, create a new class that overrides
COleMessageFilter::OnMessagePending() as described below. Then revoke the
old message filter and register this new one.

Sample Code

 //
 // definition of new COleMessageFilter-derived class
 //
 class CMyMessageFilter : public COleMessageFilter
 {
 public:
 virtual BOOL OnMessagePending(const MSG* pMsg);
 };

 //
 // add a member variable to the CWinApp-derived class
 //
 public:
 CMyMessageFilter MMF;

 //
 // add to the CWinApp::InitInstance after calling AfxOleInit
 //
 COleMessageFilter* OldFilter = AfxOleGetMessageFilter();
 OldFilter->Revoke();
 MMF.Register();

 //
 // Definition of OnMessageFilter
 //
 CMyMessageFilter::OnMessagePending(const MSG* pMsg)
 {
 MSG msg;

 while (PeekMessage(&msg, NULL, WM_PAINT, WM_PAINT,
 PM_REMOVE | PM_NOYIELD))
 {
 DispatchMessage(&msg);
 }

 if (pMsg->message == WM_PAINT) return TRUE;

 return FALSE;
 }

 //
 // add to CWinApp::ExitInstance
 //
 MMF.Revoke();
 return CWinApp::ExitInstance();

Additional reference words: 2.00 2.10 2.20 4.00 4.10
KBCategory: kbole kbprb kbcode
KBSubcategory: MfcOLE VCx86

PRB: Component Gallery Unable to Import OLE Control
PSS ID Number: Q152392

The information in this article applies to:

 - Microsoft Visual C++, 32-bit Edition, versions 4.0, 4.1

SYMPTOMS
========

Microsoft Developer Studio reports the error message:

 Unable to import OLE control.

Make sure the control contains a valid type library" when attempting to
import an ActiveX control (OLE control).

CAUSE
=====

By default, MFC applications use ID binding to call methods in ActiveX
controls. Because of this behavior, Developer Studio checks to make sure
that the version of the type library is the same as that of the control. If
the versions are not the same, Developer Studio reports an error.

This error is usually caused by incrementing the version of the ActiveX
Control but not the version of the type library.

For more information on ID binding, please see the following article in the
Microsoft Knowledge Base:

 ARTICLE ID: Q138138
 TITLE : Three Binding Types (Late, ID, Early) Possible in VB for
 Apps

RESOLUTION
==========

Make sure that the version of the ActiveX control matches the version of
its type library.

In an MFC control, the version of the control is represented by constants
found in the implementation file for the OLE control class:

 const WORD _wVerMajor = 1;
 const WORD _wVerMinor = 0;

In the same project, the version for the type library is represented by the
version keyword in the .odl file for the OLE control:

 [uuid(AFCDB500-BB23-11CF-A685-00AA00A70FC2), version(1.0),
 helpstring("VersionTest OLE Control module"), control]

STATUS
======

This behavior is by design.

MORE INFORMATION
================

An updated version of this control would have version identifiers similar
to the following:

 const WORD _wVerMajor = 2;
 const WORD _wVerMinor = 4;

 [uuid(AFCDB500-BB23-11CF-A685-00AA00A70FC2), version(2.4),
 helpstring("VersionTest OLE Control module"), control]

Additional reference words: 4.00 4.10 import control
KBCategory: kbtool kbole kberrmsg
KBSubcategory: MfcOLE CDKIss VWBIss

PRB: Convert Dialog Doesn't Appear for OLE Object in MS Excel
PSS ID Number: Q135765

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:

 - Microsoft Visual C++ for Windows, versions 1.5, 1.51, 1.52, 1.52b
 - Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2,
 4.0, 4.1

SYMPTOMS
========

When the Edit|<Object>|Convert... menu item is selected for an OLE object
that is embedded within a Microsoft Excel document, the Convert dialog box
does not appear.

CAUSE
=====

Microsoft Excel displays the Convert dialog for an object only if
WriteFmtUserTypeStg has been used to write out a clipboard format and
user-readable name for the contents of the object. The MFC libraries do not
call this function when creating or saving OLE objects.

RESOLUTION
==========

Call WriteFmtUserTypeStg in the Serialize method of your server's document
class.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

WriteFmtUserTypeStg should be called as part of your server's
implementation of IPersistStorage::InitNew and IPersistStorage::Save. By
default, MFC OLE server applications do not call WriteFmtUserTypeStg in
their implementation of IPersistStorage::InitNew and IPersistStorage::Save.
One simple way to achieve this functionality in an MFC application is to
make the call to WriteFmtUserTypeStg in the Serialize method of the
server's document class.

Steps to Add a Call to WriteFmtUserTypeStg
--

1. Provide a private clipboard format for your object.

 WriteFmtUserTypeStg serializes a clipboard format and user-readable name
 for the contents of an object to its storage. The HIERSVR sample shows
 how to provide a private clipboard format for your object if you do not
 already have one.

2. Add the DoWriteFmtUserTypeStg helper function to your document class.

 This helper function is used to encapsulate retrieving the clipboard
 format and user-readable name when calling WriteFmtUserTypeStg. The code
 in the "Sample Code" section of this article shows how to implement this
 function for the HIERSVR sample.

3. Modify the server document's Serialize() method and add a call to the
 DoWriteFmtUserTypeStg helper function, as shown in the following sample
 code.

Sample Code

void CServerDoc::DoWriteFmtUserTypeStg(LPSTORAGE lpStorage)
{
 LPOLEOBJECT lpObject = (LPOLEOBJECT)GetInterface(&IID_IOleObject);
 ASSERT(lpObject != NULL);
 CLSID clsid;
 lpObject->GetUserClassID(&clsid);

 LPTSTR pszUserType = NULL;
 OleRegGetUserType(clsid, USERCLASSTYPE_FULL, &pszUserType);

 if (pszUserType)
 {
 WriteClassStg(lpStorage, clsid);
 WriteFmtUserTypeStg(lpStorage, m_cfPrivate, pszUserType);
 CoTaskMemFree(pszUserType);
 }
}

void CServerDoc::Serialize(CArchive& ar)
{
 ASSERT(m_pRoot != NULL);

 if(IsEmbedded() && ar.IsStoring())
 {
 ASSERT(m_lpRootStg != NULL);
 DoWriteFmtUserTypeStg(m_lpRootStg);
 }

 SerializeFontInfo(ar);
 m_pRoot->Serialize(ar);
}

Additional reference words: 1.50 1.51 1.52 1.52b 2.00 2.10 2.20 2.50
2.51 2.52 3.00 3.10 3.20 4.00 4.10
KBCategory: kbole kbprg kbinterop kbcode kbprb
KBSubcategory: MfcOLE

PRB: DoSuperclassPaint Calls WM_PRINT for Windows 95
PSS ID Number: Q147426

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:
 Microsoft Visual C++, 32-bit Edition, version 4.0

SYMPTOMS
========

In some cases, you may need to take a window's custom control and subclass
it with an OLE control. However, when the control is built using MFC 4.0
and being used in Windows 95, the OLE control may paint incorrectly.

CAUSE
=====

A typical OnDraw() handler in an OLE control that subclasses a window's
custom control makes a call to DoSuperclassPaint(). In Windows 95, The MFC
4.0 implementation of DoSuperClassPaint() has been changed to send a
WM_PRINT message to the custom control's window procedure instead of a
WM_PAINT message. If the original custom control does not handle WM_PRINT,
the OLE control will not paint correctly.

RESOLUTION
==========

It is necessary for the original custom control to handle the
WM_PRINTCLIENT message, which is what the DefWindowProc sends in response
to receiving a WM_PRINT message. The WM_PRINTCLIENT message should be
handled in the same manner as the WM_PAINT message except that the calls to
BeginPaint() and EndPaint() should be removed.

STATUS
======

This behavior is by design.

Additional reference words: 4.00
KBCategory: kbprg kbole kbprb
KBSubcategory: CDKIss MfcOLE

PRB: Drag and Drop with TYMED_FILE Runs Out of File Handles
PSS ID Number: Q135682

The information in this article applies to:

 - Microsoft Visual C++ for Windows, versions 1.5, 1.51, 1.52, 1.52b
 - Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2, 4.0

SYMPTOMS
========

Calling Open() on the CFile pointer returned from
COleDataObject::GetFileData() may return EMFILE. Usually, this will happen
after repeated drag and drop operations and subsequent calls to
GetFileData(). It is also possible to see memory leaks upon termination of
the application, specifically, of memory blocks the size of a CFile object.

CAUSE
=====

The documentation for COleDataObject::GetFileData() is lacking in that is
does not mention the fact that the returned CFile pointer is owned by the
caller. Therefore, it is the responsibility of the caller to call Close()
on or simply delete that pointer. The reason for the EMFILE return code is
that the files opened in the drag and drop operation are never closed and
therefore the system handles are exhausted. Memory leaks are caused by not
deleting the CFile objects that were dynamically allocated by
GetFileData().

The documentation for COleDataObject::GetFileData provided with
Visual C++ 4.0 has been improved. It mentions the fact that it is
the responsibility of the caller to delete the returned CFile
object, thereby closing the file.

RESOLUTION
==========

Remember to delete the CFile pointer returned from GetFileData() after
using it.

Sample Code

The following OnDrop() function definition illustrates the correct cleanup
after using the CFile pointer returned from GetFileData().

BOOL CMyView::OnDrop(COleDataObject* pDataObject, DROPEFFECT de,
 CPoint point)
{
 CFile * pFile = pDataObject->GetFileData(CF_HGLOBAL);
 char lpBuf[100];

 if (NULL != pFile)

 pFile->Read(lpBuf, 100);
 .
 .
 .
 // Make sure to delete the CFile *
 delete pFile;
 return TRUE;
}

Additional reference words: cfile delete stgm_hfile tymed_file 1.50
1.51 1.52 1.52b 2.00 2.10 2.20 4.00
KBCategory: kbole kbprb kbdocerr
KBSubcategory: MfcOLE

PRB: Dynamic Creation of Redistributable Control Fails
PSS ID Number: Q151804

The information in this article applies to:

 - Microsoft Visual C++, 32-bit Edition, versions 4.0, 4.1

SYMPTOMS
========

Attempting to dynamically create an instance of one of the redistributable
ActiveX controls supplied with Visual C++ fails on machines where Visual
C++ has not been installed. However, creating an instance of the same
control on a dialog box succeeds.

CAUSE
=====

The redistributable controls supplied with Visual C++ are licensed.

RESOLUTION
==========

Specify a valid License string when dynamically creating the control.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

When Visual C++ is installed on a machine, the entire machine becomes
licensed to use the redistributable ActiveX controls as part of the
installation process. If an instance of one of the redistributable controls
is created dynamically and no License key is specified, the creation will
succeed because the control is able to determine that the entire machine is
licensed and so will allow itself to be created. However, if the same code
that performs the dynamic creation of the control is executed on a machine
that has not had Visual C++ installed on it (such as Visual Basic or
another application that provides the same control), the creation will
fail. In this case the control will not allow itself to be created if a
License key is not specified and the machine has not been licensed.

The CWnd::CreateControl method can be used to dynamically create an
instance of an ActiveX control. When an ActiveX control is inserted into a
Visual C++ project via the Component Gallery, a wrapper class is created
that can be used to work with the control. The wrapper class provides two
overridden versions of the Create method. One of the versions allows a
string to be passed that will be used as the License key when creating the
control; the other version does not.

Dynamic creation of one of the redistributable ActiveX controls will fail
on a machine that has not had Visual C++ installed on it if any of the
following methods are used to create the control:

 - The version of the Create method in the wrapper class that does not
 allow a License key to be specified is used.

 - A NULL string is passed to the Create method in the wrapper class
 that does accept a License key.

 - The CWnd::CreateControl method is called with a value of NULL for the
 License key string.

 - IClassFactory::CreateInstanceLic is used with a NULL value as the
 License key parameter.

Creating instances of the redistributable ActiveX controls via a dialog box
template will succeed on a machine that has not had Visual C++ installed.
This behavior occurs because the Visual C++ resource editor asks the
control for its License key when the dialog template is created. The
License key is then cached as a DLGINIT resource in the project's .RC file.
At run time, when the MFC dialog box code creates the dialog and its
contained controls, the License key is read from the dialog resource and
used in the call to IClassFactory2::CreateInstanceLic to create the
control.

To allow a licensed control to be dynamically created on a machine that is
not licensed requires passing a License key. An application that performs
dynamic creation of a control must have the control's License key cached in
its own code. This must be done while the application is being designed.
For sample code illustrating how to request a License key from an object,
refer to the following article in the Microsoft Knowledge Base:

 ARTICLE ID: Q151771
 TITLE : SAMPLE: LicReqst Shows Requesting a License Key from an
 Object

The following redistributable controls supplied with Visual C++ 4.1 are
licensed and require a License key to be dynamically created on machines
that have not had Visual C++ installed:

 Control File Description

 anibtn32.ocx Animated button Control
 keysta32.ocx Key Status Control
 mci32.ocx Multimedia MCI Control
 mscomm32.ocx Communications Control
 msmask32.ocx Masked Edit
 grid32.ocx Grid Control
 picclp32.ocx Picture Clip Control

REFERENCES
==========

For more information, please see:

The Visual C++ documentation on the CWnd::CreateControl method.

The Visual C++ documentation on licensing an OLE control.

The Visual C++ documentation on using controls in a non-dialog container.

The OLE Programmer's Reference documentation on the IClassFactory2
interface.

Additional reference words: 4.00 4.10 ocx cdk
KBCategory: kbole kbprb
KBSubcategory: MfcOLE

PRB: Error C4226 and Defining WIN32
PSS ID Number: Q122306

The information in this article applies to:

 - Microsoft Visual C++ 32-bit Edition, version 2.0

SYMPTOMS
========

Compiling a source file that includes WINDOWS.H generates many C4226
errors, such as:

 C:\MSVC20\INCLUDE\olebase.h (8954) : error C4226: nonstandard extension
 used : '__export' is an obsolete keyword

 ...

 C:\MSVC20\INCLUDE\oleauto.h(293) : error C4226: nonstandard extension
 used : '__huge' is an obsolete keyword

 ...

 C:\MSVC20\INCLUDE\ole2.h(4818) : error C4226: nonstandard extension
 used : '__export' is an obsolete keyword

Including these header files individually causes the same problem.

CAUSE
=====

A number of the OLE header files that are included in the WINDOWS.H file
require WIN32 to be defined. While _WIN32 is defined for you, WIN32 is
not. Because WIN32 is not defined, the header file logic assumes that the
definitions are for 16-bit Windows-based applications and uses the
__export and __huge keywords.

RESOLUTION
==========

Here are three possible way to define WIN32:

 - Define WIN32 before the WINDOWS.H file is included.

 #define WIN32
 #include <windows.h>

 - Define WIN32 in a compiler switch. From the command line, use /DWIN32.
 In the development environment, follow these following steps:

 1. Choose Settings from the Projects menu, and click the C/C++ tab.

 2. Select the Preprocessor category.

 3. Add WIN32 to the Preprocessor Definitions field of the dialog box.

 - Add the following lines to the beginning of the WINDOWS.H file:

 #if(defined (_WIN32) && !defined (WIN32))
 #define WIN32
 #endif

 NOTE: This will not take care of the case where individual OLE
 header files are included in an application.

MORE INFORMATION
================

This problem will most likely occur when building console applications.

NOTE: Although this was by design, this behavior was changed in Microsoft
Visual C++, 32-bit Edition, version 4.0.

Additional reference words: 2.00
KBCategory: kbtool kbprg kbole kbprb
KBSubcategory: TlsMisc

PRB: Error Converting Visual C++ OLE Controls from 2.x to 4.0
PSS ID Number: Q139457

The information in this article applies to:

 - Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2, 4.0
 - Microsoft OLE Control Developer's Kit (CDK)

SYMPTOMS
========

When you use the following procedure to convert a project built with the
CDK that shipped with Visual C++ 2.x to Visual C++ 4.0, the following error
appears:

 Linking...
 LINK : fatal error LNK1104: cannot open file "ocs30d.lib"
 Error executing link.exe.
 circ1.ocx - 1 error(s), 0 warning(s)

Conversion Procedure

1. On the File menu, click Open Workspace.

2. Browse to the project directory.

3. List files of type *.mak.

4. Select the 32-bit project file.

5. Click Rebuild All. After it tries to link, the following error message
 will appear:

 Linking...
 LINK : fatal error LNK1104: cannot open file "ocs30d.lib"
 Error executing link.exe.
 circ1.ocx - 1 error(s), 0 warning(s)

 The actual .lib file that is displayed will be one of four variants of
 the Ocs30*.lib file depending on how the project is being built.

CAUSE
=====

The reason that the specified file cannot be found is that it no longer
exists in Visual C++ version 4.0. Because the Ocs30* libraries were
variants of the MFC libraries, the functionality was merged with the
Mfc40*.dll. This had several advantages, including better code reuse as one
MFC .dll file can be used for both the OLE Control container and the OLE
control. The problem is that the ocs30*.lib file is included within the
Settings, Link page thereby giving the error Ocs30*.lib cannot be found.

RESOLUTION
==========

Change the settings so that Visual C++ version 4.0 is no longer trying to
link in the Ocs30*.lib file. This can be done by following these steps:

1. On the Build menu, click Settings, and then click the Link tab.

2. Click the first of the four project build options under Settings For.

3. Delete Ocs30d.lib from the edit field under Object/Library Modules.

4. Click each of the other three project build options and repeat step 3.

Now when you build your project it will use the Mfc40*.dll as designed.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

Sample Code

/* Compile options needed:
*/

Try one of the Circ samples that ship with the 2.x CDK.

Additional reference words: visualc ocx ole control ocs30d ocs30 lib dll
KBCategory: kbtool kbenv kbprg kbole kbhowto
KBSubcategory: CDKIss MfcOLE

PRB: Failing to Initialize OLE Generates Out of Memory Error
PSS ID Number: Q128086

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:

 - Microsoft Visual C++ for Windows, versions 1.5, 1.51, and 1.52
 - Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1,
 4.0, and 4.1 on the following platform: x86

SYMPTOMS
========

If the OLE .DLL files are not initialized with a call to AfxOleInit(),
subsequent OLE calls will fail. For 32-bit MFC applications, debug output
sent to a debugging window may show these errors:

 Throwing exception of type COleException
 sCode = 0x8007000E E_OUTOFMEMORY

 -or-

 sCode = 0x80030008 STG_E_INSUFFICIENTMEMORY

For 16-bit MFC applications, debug output may show:

 Throwing exception of type COleException
 sCode = 0x80000002 E_OUTOFMEMORY

 -or-

 sCode = 0x80030008 STG_E_INSUFFICIENTMEMORY

RESOLUTION
==========

AfxOleInit() calls OleInitialize(LPMALLOC), which sets the task memory
allocator used by OLE. If this is not done, OLE cannot perform memory
allocations and any OLE calls will fail. Placing a call to AfxOleInit() in
the InitInstance() of an MFC application will fix this problem. The first
few lines from the InitInstance() of HIERSVR (MFC OLE sample provided with
Visual C++) below, shows the proper syntax for calling AfxOleInit().

Sample Code

/* Compile options needed: standard MFC project
*/

BOOL CServerApp::InitInstance()
{
 // OLE 2.0 initialization

 if (!AfxOleInit())
 {
 AfxMessageBox(IDP_OLE_INIT_FAILED);
 return FALSE;
 }
... function continues

STATUS
======

This behavior is by design.

Additional reference words: 1.50 1.51 1.52 2.00 2.10 2.50 2.51 2.52 3.00
3.10 4.00 4.10
KBCategory: kbole kbprg kbtshoot kbprb kbcode
KBSubCategory: MfcOLE

PRB: How to Use Automation Error Code & Help from Visual Basic
PSS ID Number: Q122488

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic
 programming system for Windows, version 3.0

 - The Microsoft Foundation Classes (MFC), included with:

 - Microsoft Visual C++ for Windows, versions 1.0 and 1.5
 - Microsoft Visual C++, 32-bit Edition, version 2.0
 on the following platform: x86

SYMPTOMS
========

Visual Basic version 3.0 does not report automation errors that result from
OLE automation exceptions. Instead, it reports an err value of 440 and a
description string of "OLE Automation exception." The actual wCode passed
by the automation server is lost.

WORKAROUND
==========

The More Information section in this article explains and illustrates a
method you can use to use the error information and help context code
returned by Visual Basic version 3.0 to start WinHelp from an MFC OLE
automation server.

STATUS
======

This behavior is by design in Visual Basic version 3.0. Visual Basic for
Applications, included in Excel version 5.0 and other Microsoft products,
returns the wCode correctly.

MORE INFORMATION
================

When an MFC automation server throws an OLE dispatch exception by calling
AfxThrowOleDispatchException, an object of class COleDispatchException is
built. Its member variables include an OLE SCODE, a help context, string
error description, and wCode (an integer code used by Visual Basic).

The only information that the Visual Basic automation controller preserves
is the string description. However, the MFC OLE automation server can
preserve the information used in the call to AfxThrowOleDispatchException()
and expose an additional "Help" method that uses this information to
provide help to the user. From within the Visual Basic error handling code,
Err is 440, Error(Err) is "OLE Dispatch Exception" and Error$ is the actual
string passed by the server.

Sample Code Snippets

/* Compile options needed:

 standard MFC OLE project generated by AppWizard*/

1. The method in the Automation server that throws the dispatch exception
 should retain the help context and wCode as member variable of the
 automation object as in this function:

 void CMyObject::Exception()
 {
 m_nIDContext = <some context>;
 m_nSomeCode = <some code>;
 AfxThrowOleDispatchException(m_nSomeCode,"String",m_nIDContext);
 }

2. The Automation server should expose a method that uses those member
 variables to start WinHelp or another help engine with the actual
 context from the exception as in this code:

 short CMyObject::GetError()
 {
 // From here you can use the member variable code
 // and context to start WinHelp or do whatever
 // help code you need to do ...
 AfxGetApp()->WinHelp(m_nIDContext);
 return m_nSomeCode;
 }

3. The Visual Basic error handling routine should call the exposed error
 method in the Automation server when a dispatch exception occurs. Here
 is example Visual Basic code:

 Sub Command1_Click ()
 On Error GoTo EHandle
 Dim a As object
 Set a = CreateObject("TestAuto")
 ' Next line causes exception:
 a.exception
 EHandle:
 Msg = "The error message for error number "
 Msg = Msg & Err & " is:" & NL & NL
 Msg = Msg & """" & Error(Err) & """"
 MsgBox Msg ' Display message.
 ' Next line starts WinHelp engine by calling method in server.
 a.GetError
 Exit Sub
 End Sub

Additional reference words: 1.00 1.50 2.00 2.50 3.00
KBCategory: kbole kbtshoot kbprg kbinterop kbprb
KBSubcategory: MfcMisc

PRB: LPPICTUREDISP Cannot Be Passed Across Process Boundaries
PSS ID Number: Q150034

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:

 - Microsoft Visual C++, 32-bit Edition, versions 4.0, 4.1
 - Microsoft OLE Control Developer's Kit (CDK) versions 1.0, 1.1, 1.2

SYMPTOMS
========

An automation server that implements a Picture object wrapped by the
CPictureHolder class in MFC fails when it attempts to pass a pointer to the
picture object's IPictureDisp implementation across process boundaries.

CAUSE
=====

IPictureDisp gains access to methods of the Picture object that cannot
be marshaled across process boundaries. For example, IPictureDisp
supports DISPID_PICT_RENDER to gain access to the Render method of the
Picture object. The Render method takes a handle to a device context as the
first parameter. Device context handles cannot be marshaled.

Dispatch interfaces can normally be marshalled by using the IDispatch
marshaling code, but the Picture object implements IMarshal specifically to
cause its marshaling to fail.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

The ClassWizard in Visual C++ allows you to select a return type of
LPPICTUREDISP for a method. This method might return the IPictureDisp
interface obtained by calling CPictureHolder::GetPictureDispatch. However,
if this method is called by a controller running in another process, the
method fails and returns an error code of E_FAIL.

Because the Picture object causes the marshaling of IPictureDisp to fail,
problems can also occur when trying to obtain an IPictureDisp interface
across thread boundaries in a multiple-thread apartment model object.

REFERENCES
==========

For more information on marshaling, please see "Inside OLE," second
edition, by Kraig Brockschmidt, Chapter 6, "Local/Remote Transparency,"

published by Microsoft Press.

Additional reference words: 1.50 1.51 1.52 2.00 2.10 2.20 4.00 4.10
KBCategory: kbole kbprg kbbpb
KBSubcategory: MfcOLE CDKIss

PRB: Msmask32.ocx Does Not Work Properly in MFC Containers
PSS ID Number: Q146443

The information in this article applies to:

 - The Microsoft Masked Edit Control included with:
 Microsoft Visual C++, 32-bit Edition, version 4.0

SYMPTOMS
========

When the Masked Edit Control's Format property is set, it does not
automatically format its contents upon losing focus. When embedded
in a Visual Basic 4.0 form or Microsoft Access 7.0 form, the control
automatically formats its contents when the control loses focus.

CAUSE
=====

The Masked Edit Control uses a proprietary Visual Basic interface called
IVBFormat. The absence of IVBFormat support in a control container prevents
the Masked Edit Control from automatically updating its contents as
specified by the Format property. Control containers created with Visual
C++ do not support IVBFormat. Other control containers, such as Visual
FoxPro 3.0 forms, which do not support this interface, will also experience
limited functionality from the Masked Edit Control.

RESOLUTION
==========

The IVBFormat interface is proprietary and subject to change. Documentation
or specifications for this interface are not available. The Masked Edit
Control can be used in a Visual C++ control container application, but the
automatic formatting feature will remain disabled. Other properties such as
the control's Mask property, will function properly in the absence of
IVBFormat support.

STATUS
======

This behavior is by design.

Additional reference words: 4.00
KBCategory: kbole kbprb
KBSubcategory: CDKIss

PRB: OLE Drop Target Does Not Permit Drop
PSS ID Number: Q139648

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:

 - Microsoft Visual C++ for Windows, versions 1.5, 1.51, 1.52, 1.52a
 - Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2

SYMPTOMS
========

When you drag an OLE object over a given drop target window, the cursor
feedback indicates that a drop is not allowed. However, the same object can
be dropped on other drop targets successfully, and other objects can be
dropped on the given drop target.

CAUSE
=====

The object descriptor for the object indicates the size of the object is
(0,0), and the drop target window's OnDragOver method is using the object
rectangle to determine whether the object is within the client area of the
window.

RESOLUTION
==========

If the computed position rectangle for a data object is empty, inflate the
rectangle to size (1,1) before testing whether the rectangle is within the
client area of the drop target window.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

Applications that register a window as an OLE drop target should probably
check the position of a data object that is dragged over the window before
permitting a drop to occur. For example, the MFC sample program Oclient
performs the following check in its OnDragOver method:

DROPEFFECT CMainView::OnDragOver(COleDataObject*,
 DWORD grfKeyState, CPoint point)
{
 // adjust target rect by original cursor offset
 point -= m_dragOffset;

 // check for point outside logical area (in hatched region)

 // GetTotalSize() returns the size passed to SetScrollSizes
 CRect rectScroll(CPoint(0, 0), GetTotalSize());

 CRect rectItem(point,m_dragSize);
 rectItem.OffsetRect(GetDeviceScrollPosition());

 DROPEFFECT de = DROPEFFECT_NONE;
 CRect rectTemp;
 if (rectTemp.IntersectRect(rectScroll, rectItem))
 {
 //... figure out the drop effect
 }

 //...update drop effect

 return de;
}

However, for some objects, such as Microsoft Word version 6.0 Documents,
the m_dragSize reported by the data object is (0,0). In this case, the call
to IntersectRect returns FALSE, and the drop effect returned is
DROPEFFECT_NONE.

When the object position rectangle is inflated to size (1,1), IntersectRect
returns TRUE and the correct drop effect is returned. In the previous
example, you would inflate the rectangle by adding the following lines
after the rectItem is declared:

 if (rectItem.IsRectEmpty())
 {
 // Some applications might have a null size in the object descriptor
 rectItem.InflateRect(1,1);
 }

Additional reference words: 1.50 1.51 1.52 1.52a 2.00 2.10 2.20
2.50 2.51 2.52 2.52a 3.0 3.10 3.2 0Client drag/drop Word
KBCategory: kbole kbprb
KBSubcategory: MfcOLE

PRB: Paste Link Fails in Microsoft Excel
PSS ID Number: Q141440

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:

 - Microsoft Visual C++ for Windows, versions 1.5, 1.51, 1.52
 - Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2, 4.0
 on the following platform: x86, Intel, Alpha, MIPS

SYMPTOMS
========

After you attempt to use Paste Link to paste the clipboard contents into
Microsoft Excel, Microsoft Excel fails and displays a warning:

 Unable to paste link.

CAUSE
=====

When Microsoft Excel attempts to paste link an object, it looks for a full
moniker for the object (OLEWHICHMK_OBJFULL). The full moniker consists of
the moniker of the object's container (OLEWHICHMK_CONTAINER) and the
moniker of the object relative to its container (OLEWHICHMK_OBJREL). In
MFC, if SetItemName() is not used to provide a name for the COleServerItem,
the OLEWHICHMK_OBJREL portion of the moniker cannot be provided. This
causes Paste Link to fail in Microsoft Excel.

RESOLUTION
==========

Set the name of the item to be paste linked by using the SetItemName()
function. The sample code in this article illustrates one way you might do
this.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

Steps to Reproduce Behavior

This behavior seems to be unique to Microsoft Excel but may exist in other
applications as well.

Run the scribble application (step 7) and save a document. In scribble, on

the Edit menu, click Copy to copy the document object and metafile
representation to the clipboard. Run Microsoft Excel, choose Paste Special,
and select the Paste Link option. Attempt to use Paste Link to paste the
Scrib Document Object or the "Picture." Microsoft Excel will not succeed
and will display a warning:

 Unable to paste link.

Sample Code

In the case of scribble, the following code will fix the problem

CScribItem::CScribItem(CScribDoc* pContainerDoc)
 : COleServerItem(pContainerDoc, TRUE)
{
 SetItemName("Scribble Item");
}

REFERENCES
==========

For more information, see COleServerItem::XOleObject::GetMoniker() in
Olesvr2.cpp and IOleObject::GetMoniker() in the OLE 2 Programmer's
Reference.

Additional reference words: 2.00 2.50 2.51 2.52 3.00 3.10 3.20 4.0
KBCategory: kbole kbtshoot kbprb kbcode
KBSubcategory: MfcOLE

PRB: Possible Recursion Problems with OLE Controls
PSS ID Number: Q140492

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:
 Microsoft Visual C++, 32-bit Edition, version 4.0

SYMPTOMS
========

Attempting to use an OLE control in the same module that implements it may
generate an exception caused by a stack overflow. One example of using an
OLE control in this manner is placing an instance of an OLE control in that
same OLE control's About dialog box.

CAUSE
=====

Calling certain CWnd members can create an infinitely recursive loop,
causing a stack overflow to occur.

RESOLUTION
==========

Avoid calling certain CWnd members when using an OLE control in the same
module that implements it.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

The COleControl class itself has been written to make sure that its members
are safe and can be called even when a control is being used in the module
that implements it. However, certain CWnd members are not safe to call when
a control is being used in this fashion. CWnd members that can cause
problems include ShowWindow, MoveWindow, SetWindowPos, EnableWindow,
SetWindowText, GetWindowText, and GetWindowTextLength.

There may be other members that can cause the same problem. If a control is
being used in the same module that implements it and a stack overflow
occurs, the first thing the control programmer should check for is this
problem.

Additional reference words: 4.00
KBCategory: kbole kbprb
KBSubcategory: mfcOLE CDKIss

PRB: Potential Limit of 64 Different .OCX Files per Process
PSS ID Number: Q133324

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:
 Microsoft OLE Control Developer's Kit (CDK) versions 1.0, 1.1, 1.2

SYMPTOMS
========

Attempting to create or insert an OLE control may cause the following
assertion message to be generated:

 Assertion Failed: <application>: File ctlmodul.cpp, Line 192

CAUSE
=====

The assertion is the function _AfxGetCtlModuleStatics and is the following:

 ASSERT(_afxCtlTlsIndex != NULL_TLS);

The assertion fails because the process creating the OLE control has used
up all of its available thread-local storage (TLS) slots.

RESOLUTION
==========

To avoid the problem, do one of the following:

 - Package more than one OLE control per .OCX file. A TLS slot is
 allocated when a process first attaches to an .OCX file.
 Implementing more than one OLE control per .OCX file will use only
 one TLS slot per .OCX file while still allowing the process to
 use each of the OLE controls associated with the .OCX file.

 -or-

 - Design the containing application in such a way that it does not need
 to be able to create so many OLE controls simultaneously.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

The 32-bit MFC implementation of OLE controls uses TLS to store control
module state information. One TLS slot is allocated every time a process
attaches to a new OLE control (.OCX) file. One process may allocate up to

TLS_MINIMUM_AVAILABLE TLS slots. TLS_MINIMUM_AVAILABLE is guaranteed to be
at least 64 slots on all systems.

NOTE: TLS_MINIMUM_AVAILABLE is a Win32 limitation rather than an MFC
limitation.

This problem will occur when a process tries to access more than
TLS_MINIMUM_AVAILABLE TLS slots, whether they are used for control module
state information or for some other purpose. TLS_MINIMUM_AVAILABLE is the
maximum number of different .OCX files (packages that contain OLE controls)
that may be loaded before the assertion occurs. Depending on how your
container uses thread local storage, you may encounter the assertion after
loading a fewer number of .OCX files.

Note, this does not restrict the number of OLE Controls that can be placed
in a container simultaneously. As long as your process uses no more than
TLS_MINIMUM_AVAILABLE TLS slots, the number of controls that can be created
is constrained only by available memory.

REFERENCES
==========

Chapter 8, Thread-Local Storage, in the book Advanced Windows NT, The
Developer's Guide to the Win32 Application Programming Interface by Jeffrey
Richter.

Additional reference words: 1.00 1.10 1.20 2.0 2.00 2.1 2.10 2.2 2.20
KBCategory: kbole kbprg kbprb
KBSubcategory: MfcOle

PRB: SetItemRects Causes Server to Change Zoom Factor
PSS ID Number: Q126563

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC), included with:

 - Microsoft Visual C++ for Windows, versions 1.50 and 1.51
 - Microsoft Visual C++, 32-bit Edition, versions 2.0 and 2.1

SYMPTOMS
========

Calling COleClientItem::SetItemRects() causes the server to change its
zoom-factor.

RESOLUTION
==========

In some cases, you may find it advantageous to have a container change the
area provided to an in-place active object without changing the zoom factor
of the object. To do this, have the container first set the object's
extents by calling COleClientItem::SetExtent and then set the in-place
item's window size by calling COleClientItem::SetItemRects.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

COleClientItem::SetItemRects() calls IOleInPlaceObject::SetObjectRects()
and passes its parameters. The following is the description of
IOleInPlaceObject::SetObjectRects() in Volume 2 of the OLE2 Programmer's
Reference:

 The object should compare its width and height with those
 provided by its container (conveyed through lprcPosRect).
 If the comparison does not result in a match, the container
 is applying either scaling or zooming to the object.
 The object must then decide whether it should continue the
 in-place editing in the scale/zoom mode or deactivate."

The object's width and height are determined by the extent information
passed to it via COleClientItem::SetExtent() -- which calls
IOleObject::SetExtent on the in-place object). Therefore if you want the
client application to change the rectangle used by an in-place active
object, have it first set the extent of the object in HIMETRIC units to the
size of the new rectangle and then set the rectangle.

The following sample code demonstrates this technique. It assumes that

CMyClientItem is derived from COleClientItem and that rect has coordinates
specified with respect to the view which contains the object. It returns
true if SetItemRects was successful.

Sample Code

BOOL CMyClientItem::MySetObjectRects(CRect &rect)
{
 ASSERT_VALID(this);
 ASSERT(m_lpObject != NULL);
 ASSERT(IsInPlaceActive());

 // get the size of this new rectangle
 CSize size = rect.Size();

 // now convert this size to HIMETRIC units
 size.cx = XformHeightInPixelsToHimetric(NULL, size.cx);
 size.cy = XformWidthInPixelsToHimetric(NULL, size.cy);

 // use this size to set the extent of the object
 SetExtent(size);

 // finally set the new size for the in-place window
 return SetItemRects(rect, rect);
}

Additional reference words: 1.00 1.50 2.00 2.10 2.50 2.51 3.00 3.10
KBCategory: kbole kbprb kbcode
KBSubcategory: MfcOLE

PRB: Stock Font and Color Property Pages Fail
PSS ID Number: Q137353

The information in this article applies to:

 - Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2

SYMPTOMS
========

When you include one of the stock CDK property pages (Font, Color, or
Picture) in your application, it may not appear when the property sheet
dialog box is displayed. The default and other custom property pages may
still be visible.

CAUSE
=====

One possible cause of this problem is the lack of registration of the
Oc30.dll file in the registry.

RESOLUTION
==========

Register Oc30.dll using Regsvr32.exe that comes with the CDK and is located
in the CDK \Bin directory. Use this line:

 REGSVR32 OC30.DLL

STATUS
======

Microsoft is researching this behavior and will post new information here
in the Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Microsoft has seen several cases where Oc30.dll was either not registered
at all or only partially registered. We have not been able to isolate the
cause of this failure.

Before attempting to register OC30.DLL, confirm that it is in the System32
directory in Windows NT and the System directory in Windows 95.

Steps to Reproduce Behavior

To demonstrate the problem, first confirm that the CIRC3 sample has been
compiled and registered. Confirm that the Font and Color property pages are
seen when the control is run by looking at the property sheet from the menu
selection Edit Properties. Then follow these steps:

1. Delete the Font class ID from the HKEY_CLASSES_ROOT\CLSID. The
 CLSID for the Font property page is:

 {2542F180-3532-1069-A2CD-00AA0034B50B}.

2. Run a container (On the Tools menu, click Test Container in Visual C++),
 and insert the CIRC3 Ole control.

3. On the Edit menu, click Properties, and note that the Font property page
 is no longer visible.

You could also delete the Color property page ID:

 {DDF5A00-B9C0-101A-AF1A-00AA0034B50B}

Or the Picture proper page ID:

 {FC7AF71D-FC74-101A-84ED-08002B2EC713}

NOTE: The class IDs for these property pages are different under Visual C++
version 4.0

Additional reference words: 2.00 2.10 2.20 invisible fail hidden
KBCategory: kbole kbprb kbtshoot
KBSubcategory:

PRB: Unable to Load Control from C:\Path\File.ocx
PSS ID Number: Q149565
--
The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:

 - Microsoft Visual C++, 32-bit Edition, versions 4.0, 4.1
 - Microsoft OLE Control Developer's Kit (CDK), version 2.0, 2.1, 2.2
--

SYMPTOMS
========

When you try to load an OLE Control generated by using ControlWizard into a
Visual Basic 4.0 form in Visual Basic by on the Tools menu, clicking Custom
Controls and then clicking the Browse button, the following error message
appears:

 "Unable to load control from: 'x:\path\file.ocx'"

CAUSE
=====

Visual Basic checks an OLE control to see whether it supports self-
registration by searching for the presence of an OLESelfRegister entry in
the StringFileInfo section of the control's version information resource.
ControlWizard-generated OLE controls do not provide the entry by default.

RESOLUTION
==========

Modify the OLE Control to indicate its support for the self-registration
feature. This can be achieved by including the OLESelfRegister entry with
an empty value in the StringFileInfo section of the control's version
resource. The following steps explain the process in detail.

Step-by-Step Procedure

1. Open the .rc file of the OLE Control as a Text file.

2. Find the StringFileInfo block under Version information.

3. Add the following line to the existing list of VALUE statements:

 VALUE "OLESelfRegister", "\0"

4. Build the OLE Control. Now you can load the OLE Control (.ocx file) by
 clicking Custom Controls on the Tools menu and clicking the Browse.

STATUS
======

This behavior is by design.

MORE INFORMATION
=================

A COM server typically indicates its support for self-registration by
including the OLESelfRegister entry with an empty value in the
StringFileInfo of its version resource. This entry is considered optional
because the actual self-registration mechanisms do not depend on its
presence. This information simply allows a client application to avoid
loading a DLL (that is, an in-process server or OLE control) or launching
an .exe (that is, a local server) for no gain.

The only requirement for an OCX/DLL to support the self-registration
mechanism is to provide the entry points DllRegisterServer and
DllUnregisterServer and export them. ControlWizard-generated OLE controls
provide these two entry points and export them, though they do not indicate
their self-registration support by not including the OLESelfRegister entry
by default.

REFERENCES
==========

Please refer to Chapter 5 of Inside OLE, Second Edition, for more
information on self-registration.

Additional reference words: 2.00 2.10 2.20 4.00 4.10 load failure
KBCategory: kbole kbhowto kbprb kbcode
KBSubcategory: CDKIss MfcOLE

PRB: VB 4.0 Does Not Support Dual Interfaces in OLE Controls
PSS ID Number: Q151903

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC), included with:
 Microsoft Visual C++, 32-bit Edition, versions 4.0, 4.1

SYMPTOMS
========

OLE Controls that implement a Dual Interface do not use early binding when
placed on a Visual Basic 4.0 form. Even if the Dual Interface is marked as
the DEFAULT interface in the OLE Control's ODL file, Visual Basic 4.0 still
uses the standard IDispatch interface for all automation calls.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

Dual Interface provides an alternative to using the standard IDispatch
interface when making OLE Automation calls. This technique is also referred
to as Early Binding because type checking is performed at compile time.
Dual Interfaces are rapidly becoming popular because they provide increased
performance over the standard IDispatch interface.

It is possible to add Dual Interface support to automation servers as well
as OLE Controls. The ACDUAL sample provided with Visual C++ 4.1
demonstrates the addition of a Dual Interface to the AutoClick automation
server. Tech Note 65, referenced in the References section below, outlines
the changes you must make to an automation server to support a Dual
Interface. Although ACDUAL and Tech Note 65 refer to automation servers,
the information they provide is also applicable to OLE Controls.

Visual Basic 4.0 does support early binding for automation servers that
support a Dual Interface, but currently does not support Dual Interface OLE
Controls. If you attempt to use the Dual Interface on an OLE Control in
Visual Basic 4.0, the standard IDispatch interface is used instead. Future
versions of Visual Basic may take advantage of Dual Interface OLE Controls,
but Visual Basic 4.0 does not.

REFERENCES
==========

ACDUAL Sample - MFC OLE Samples, Visual C++ 4.1

Tech Note 65: Dual-Interface Support for OLE Automation Servers

Additional reference words: 4.00 4.10

KBCategory: kbole kbinterop kbprb
KBSubcategory: MfcOLE CDKIss

PRB: Wrapper Class for Automation Object May Be Incomplete
PSS ID Number: Q152073

The information in this article applies to:

 - The Class Wizard, included with:
 Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2, 4.0, 4.1

SYMPTOMS
========

An automation object may support a statement and function with the same
name even though the statement and function will most likely have different
behaviors. Class Wizard will not recognize both the statement and function.
However, when generating a new class from the object's type library, the
Class Wizard will generate a function and prototype for a single function.
This generated function will not give you the ability to call both the
function and the statement.

CAUSE
=====

The similarly-named function and statement will share a single entry in the
.odl file for the object and a single entry in the type library. The Class
Wizard does the best job it can and generates a single function and
prototype based on this entry.

RESOLUTION
==========

Given adequate documentation for the statement and function, it is possible
to modify the wrapper class by hand so that the statement or function may
be called. If the parameter list for the statement and function vary, which
may be the case if optional parameters are used, the wrapper function can
be overridden. Otherwise, the wrapper for the statement and function will
need different names.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

An example of this problem is WordBasic's Bold. The Bold statement turns
the bold character formatting on and off just as selecting the Bold Toolbar
button in Word does. The Bold() function returns a short indicating whether
all, some, or none of the characters in a selection are formatted as bold.
Visual Basic will call the function if a return value is assigned to the
Bold() call. Otherwise, it will call the Bold statement.

The .odl statement for Bold is as follows:

 [id(0x00008048), helpstring("Makes the selection bold (toggle)"),
 helpcontext(0x00001d48)] short Bold([in, optional] VARIANT On);

The Class Wizard will generate the following function and prototype using
this information:

 short Bold(const VARIANT& On);

 short WordBasic::Bold(const VARIANT& On)
 {
 short result;
 static BYTE parms[] =
 VTS_VARIANT;
 InvokeHelper(0x8048, DISPATCH_METHOD, VT_I2, (void*)&result, parms,
 &On);
 return result;
 }

Using this function will result in the WordBasic Bold() function being
called. In order to call the statement, you could define BoldStatement()
and BoldFunction() functions. In this case, however, because there is no
reason to pass a parameter to the Bold() function, the parameter lists vary
and it is possible to overload the wrapper functions as follows:

 void Bold(const VARIANT& On);
 short Bold();

 void WordBasic::Bold(const VARIANT& On)
 {
 static BYTE parms[] =
 VTS_VARIANT;
 InvokeHelper(0x8048, DISPATCH_METHOD, VT_EMPTY, NULL, parms,
 &On);
 }

 short WordBasic::Bold()
 {
 short result;
 static BYTE parms[] =
 VTS_VARIANT;
 InvokeHelper(0x8048, DISPATCH_METHOD, VT_I2, (void*)&result, NULL);
 return result;
 }

REFERENCES
==========

Microsoft Office Developer's Kit - PART 2 Word Basic Reference,
Statements and Functions.

Additional reference words: 2.00 2.10 2.20 4.00 4.10 automation variant
KBCategory: kbprg kbole kbprb
KBSubcategory: MfcOLE

SAMPLE: CFormView-Based Server Shows Metafile When not Active
PSS ID Number: Q143299

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:
 Microsoft Visual C++, 32-bit Edition, version 4.0

SUMMARY
=======

The FVServer application demonstrates using a CFormView based application
as an OLE server object. One of the problems using CFormView is that the
dialog-based view will not render itself into the metafile used to display
the application when it has been in-place activated and then deactivated.

This sample demonstrates one method of overcoming this limitation.

Download FVVIEW.EXE, a self-extracting file, from the Microsoft
Software Library (MSL) on the following services:

 - Microsoft's World Wide Web Site on the Internet
 On the www.microsoft.com home page, click the Support icon
 Click Knowledge Base, and search for FVVIEW.EXE
 Open the article, and click the button to download the file

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the Softlib\Mslfiles directory
 Get FVVIEW.EXE

 - The Microsoft Network
 On the Edit menu, click Go To, and then click Other Location
 Type mssupport
 Double-click the MS Software Library icon
 Find the appropriate product area
 Download FVVIEW.EXE

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download FVVIEW.EXE

MORE INFORMATION
================

When you base your server on the CFormView class, you create a dialog
template with the resource editor to act as the view of the application. If
you activate the application in-place, the drawing occurs in the
CFormView::OnDraw(). Usually the CFormView derived class does not implement
any drawing.

When the user selects outside the in-place activation area the application
goes to the loaded state and any representation on the screen is handled by

rendering a presaved metafile. This metafile is created in the
COleServerItem::OnDraw() by passing in a device context (DC) for a metafile
and expecting the drawing to occur. In most cases the CView derived class's
OnDraw() or a separate function is called to actually render into the
metafile. See the Scribble tutorial for an example of how to accomplish
this.

In the case of a CFormView-derived class, this technique will not work
directly. One method of overcoming this limitation is to draw each of the
controls yourself. Some controls may not draw and you may have to use GDI
calls such as Rectangle() and LineTo() to actually draw the control.

Another method, which is demonstrated in this sample, is to BitBlt a
picture of the screen into a memory device context and save it. Then, when
the COleServerItem::OnDraw() is called, BitBlt the saved picture into the
metafile DC provided. The side benefit to this method is that you get a
Print Preview of the object for free from MFC, because it uses the same
metafile.

In the sample, the function CFVView::SetPicture() dynamically creates a
memory DC and a bitmap object. The bitmap object must be set to the size of
the current view before it is selected into the DC. This is accomplished by
setting a member variable in the document class to the size of the view
after the view is created. In the sample, the size is computed from the
size shown by the resource editor and uses hard-coded values. This seems
reasonable as long as you are not dynamically changing the size of the
dialog. See the documentation on CFVDoc::OnNewDocument() for the method
used to get the size in pixels of a dialog (also see KB article Q125681).

The only problem remaining is determining when the SetPicture() function
should be called. There are two locations. The first is in the
COleServerDoc derived class's CFVDoc::OnDeactivate(). This function is
called twice after the user selects outside the server's in-place
activation area. The first call is when the server is going from the
UIActive state to the Active state, and the second call is going from the
Active state to the Loaded state. We must distinguish between these two
calls because the first time it is called, the CFormView is visible and the
second time it's called, it is not visible. The server's DoVerb() is called
to hide the server between calls to OnDeactivate(). If we simply called
SetPicture() during OnDeactivate(), we would BitBlt a blank picture over
the good picture in the second call. Simply setting a switch solves that
problem.

The second place to call SetPicture() is in CFVView::OnActivateView(), an
override of the CView method. Check to make sure the view is being
activated, and then call SetPicture(). This last call is necessary for
embedding in Microsoft Excel, for example. Microsoft Excel does not
deactivate the server such that OnDeactivate() is called.

You must also handle the OnGetExtent() to set the initial size of the
CFormView application and handle OnSetExtent() to receive size changes. You
should also reset the size when the CFormView::OnSize() is called. If you
do not care to react to sizing changes these last calls are not necessary.
The sample handles some sizing problems, but not all. Disabling sizing
should be straight forward to accomplish.

You must also notify the container whenever the data changes. In this
simple application, NotifyChanged() is called in the SetPicture(), so any
time the application changes what the user is seeing, call SetPicture().
There may be other places where NotifyChanged() should be called. If you
call NotifyChanged() without calling SetPicture(), you will get the last
metafile that was saved and it may not show the current state the user
sees.

This application is not "bullet-proof", but is instead a starting point for
further development.

REFERENCES
==========

"Inside OLE", second edition, by Kraig Brockschmidt.
"OLE 2 Programmer's Reference, Vol 1"

Additional reference words: 4.00 meta-file
KBCategory: kbprg kbfile kbole kbprint kbhowto
KBSubcategory: CodeSam

SAMPLE: CLIBIN.EXE: Converting COleClientItem into CLongBinary
PSS ID Number: Q152533

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC), included with:
 Microsoft Visual C++, 32-bit Edition, versions 4.0, 4.1

SUMMARY
=======

CLIBIN.EXE is a Microsoft Foundation Class sample that demonstrates how to
write the data from an OLE Embedded Item to an OLE Object field in an
Access 7.0 Database. This particular sample uses the MFC/ODBC classes.

Download CLIBIN.EXE, a self-extracting file, from the following services:

 - Microsoft's World Wide Web site on the Internet
 On the www.microsoft.com home page, click the Support icon
 Click Knowledge Base, and select the product
 Enter kbfile CLIBIN.EXE, and click GO!
 Open the article, and click the button to download the file

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the Softlib/Mslfiles folder
 Get CLIBIN.EXE

 - The Microsoft Network
 On the Edit menu, click Go To, and then click Other Location
 Type "mssupport" (without the quotation marks)
 Double-click the MS Software Library icon
 Find the appropriate product area
 Locate and download CLIBIN.EXE

 - Microsoft Partner Network (MSPN)
 On MSPN Desktop, double-click the Software Library icon
 Search for CLIBIN.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download CLIBIN.EXE

For additional information about downloading, please see the following
article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q119591
 TITLE : How to Obtain Microsoft Support Files from Online Services

NOTE: Use the -d option when running CLIBIN.EXE to decompress the file
and recreate the proper directory structure.

MORE INFORMATION
================

This sample writes the OLE Embedded Item's data to an Access OLE Object
field from within the Container App's OnInsertItem member of the CView
class. There is an Access database that goes along with this sample located
in the project's directory called "longbin.mdb." Remember to register this
.mdb file with the ODBC Administrator.

The following code demonstrates how to accomplish this procedure:

Sample Code

 //
 // Extract COleClientItem data and write it out to an Access Field
 // m_pSet is the recordset object
 // The recordset's CLongBinary member is: m_longbin
 // pItem is the COleClientItem object (embed item)

 /**/
 //NOTE: This is a constant large enough for an average Winword
 // document. Increase this number if the item you will be
 // inserting is larger!!!!!!!!
 const int DOCSIZE = 100000;

 LPPERSISTSTORAGE pPersist = NULL;
 LPLOCKBYTES pLockBytes = NULL;
 LPSTORAGE pStorage = NULL;
 LPVOID pVoid = NULL;
 HRESULT hr = S_OK;

 // make sure the recordset is in Add mode
 m_pSet->AddNew();

 // free the current memory of the CLongBinary
 GlobalFree(m_pSet->m_longbin.m_hData);

 // pItem (the COleClientItem object) has a contained IOleObject
 // interface called m_lpObject.
 // Call QI to get the OLE objects data.
 if(FAILED(pItem->m_lpObject->QueryInterface(IID_IPersistStorage,
 (LPVOID*)&pPersist)))
 {
 AfxMessageBox(_T("interface not found"));
 return;
 }

 // Alloc the CLongBinary
 if((m_pSet->m_longbin.m_hData =
 GlobalAlloc(GMEM_MOVEABLE, DOCSIZE)) == NULL)
 {
 AfxMessageBox(_T("memory error"));
 goto term1; // special error condition clean-up label
 }

 // Now lock it so we can write to it.
 if((pVoid = GlobalLock(m_pSet->m_longbin.m_hData)) == NULL)
 {
 AfxMessageBox(_T("memory error"));
 goto term1; // special error condition clean-up label
 }

 // Create ILockBytes to be converted to an IStorage
 if(FAILED(CreateILockBytesOnHGlobal(m_pSet->m_longbin.m_hData,
 FALSE, &pLockBytes)))
 {
 AfxMessageBox(_T("interface not found"));
 goto term1; // special error condition clean-up label
 }

 // Convert the ILockBytes to an IStorage
 if(FAILED(StgCreateDocfileOnILockBytes(pLockBytes, STGM_DIRECT
 | STGM_CREATE | STGM_READWRITE | STGM_SHARE_EXCLUSIVE,
 0, &pStorage)))
 {
 AfxMessageBox(_T("interface not found"));
 goto term2; // special error condition clean-up label
 }

 // Now we can write the item's persistent data into the storage
 // we've provided.
 if(FAILED(pPersist->Save(pStorage, FALSE)))
 {
 AfxMessageBox(_T("Save failed"));
 goto term3; // special error condition clean-up label
 }

 // manage the field state for CLongBinary RFX
 m_pSet->SetFieldDirty(&m_pSet->m_longbin, TRUE);
 m_pSet->SetFieldNull(&m_pSet->m_longbin, FALSE);

 // set the CLongBinary length
 m_pSet->m_longbin.m_dwDataLength =
 GlobalSize(m_pSet->m_longbin.m_hData);

 // Update the datasource
 m_pSet->Update();

 // clean-up
 GlobalFree(m_pSet->m_longbin.m_hData);
 pStorage->Release();
 pLockBytes->Release();
 pPersist->Release();
 return;

Additional reference words: 4.00 4.10
KBCategory: kbprg kbfile kbole
KBSubcategory: MfcDatabase dbDao

SAMPLE: DAOPROP.EXE: DaoProp Uses MFC Properties Collection
PSS ID Number: Q152387

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC), included with:
 Microsoft Visual C++, 32-bit Edition, versions 4.0, 4.1

SUMMARY
=======

DAOPROP.EXE demonstrates how to extract information from the Properties
collection, which is not supported by the MFC DAO classes. In particular,
it demonstrates how to get a list of properties and how to add a property.

In order to properly manage variants, DAOPROP.EXE utilizes #defines and
classes defined in the DAO SDK. You will want to install the DAO SDK and
note the includes and pragmas in STDAFX.H in order to properly link with
the DAO SDK.

Download DAOPROP.EXE, a self-extracting file, from the following services:

 - Microsoft's World Wide Web site on the Internet
 On the www.microsoft.com home page, click the Support icon
 Click Knowledge Base, and select the product
 Enter kbfile DAOPROP.EXE, and click GO!
 Open the article, and click the button to download the file

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the Softlib/Mslfiles folder
 Get DAOPROP.EXE

 - The Microsoft Network
 On the Edit menu, click Go To, and then click Other Location
 Type "mssupport" (without the quotation marks)
 Double-click the MS Software Library icon
 Find the appropriate product area
 Locate and download DAOPROP.EXE

 - Microsoft Partner Network (MSPN)
 On MSPN Desktop, double-click the Software Library icon
 Search for DAOPROP.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download DAOPROP.EXE

For additional information about downloading, please see the following
article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q119591

 TITLE : How to Obtain Microsoft Support Files from Online Services

NOTE: Use the -d option when running DAOPROP.EXE to decompress the file and
recreate the proper directory structure.

MORE INFORMATION
================

Many DAO objects contain Properties collections but, to date, MFC does not
wrap the interface functions to extract properties. The following excerpts
from DAOPROP show how to get to the DAO interfaces and obtain properties.

For more information on installing and using the DAO SDK, please see the
following article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q149392
 TITLE : How to Use the DAO SDK dbDao Classes with Visual C++ 4.x

Sample Code

The following code demonstrates how to get the list of properties from a
given DAO object, and how to create a new property:

void CDaoPropDlg::OnButton1()
{
 CDaoDatabase db;
 db.Open(PATH_TO_MDB_FILE);
 CDaoTableDef td(&db);
 td.Open(TABLE);
 DAOProperties* prps;
 DAOProperty* prp;
 COleVariant var;

 TRY
 {
 td.m_pDAOTableDef->get_Properties(&prps);
 int i=0;
 m_ListBox.ResetContent();

 while(prps->get_Item(
 COleVariant((short)i++, VT_I2), &prp) == S_OK)
 {
 prp->get_Value(&var);

 if(var.vt == VT_BSTR || var.vt == VT_BSTRT)
 if(strlen((LPCTSTR) var.bstrVal) > 0)
 m_ListBox.AddString((LPCTSTR)var.bstrVal);
 }
 }
 CATCH (CDaoException, e)
 {
 AfxMessageBox(e-> m_pErrorInfo->m_strDescription);
 }
 END_CATCH

 UpdateData(FALSE);
 td.Close();
 db.Close();

}

void CDaoPropDlg::OnButton2()
{
 CDaoDatabase db;
 db.Open(PATH_TO_MDB_FILE);
 CDaoTableDef td(&db);
 td.Open(TABLE);
 DAOProperty* prp;
 DAOProperties* prps;

 UpdateData(TRUE);

 if(m_propname.GetLength() == 0)
 {
 AfxMessageBox("Please enter Property Name");
 return;
 }

 if(m_propval.GetLength() == 0)
 {
 AfxMessageBox("Please enter Property Value");
 return;
 }

 DAO_CHECK(td.m_pDAOTableDef->CreateProperty(STV(m_propname),
 OLTV(dbText),
 VTV(m_propval),
 BTV(0),
 &prp));

 if(FAILED(td.m_pDAOTableDef->get_Properties(&prps)))
 {
 AfxMessageBox("get_Properties Failed");
 goto term;
 }

 if(FAILED(prps->Append(prp)))
 {
 AfxMessageBox("Append Failed");
 goto term;
 }

 term:
 prp->Release();
 prps->Release();
 td.Close();
 db.Close();
}

Additional reference words: 4.00 4.10 prop
KBCategory: kbprg kbole kbfile kbcode
KBSubcategory: MfcDAO MfcDatabase

SAMPLE: DBCTL.EXE: Using ODBC in an ActiveX Control
PSS ID Number: Q152534

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC), included with:
 Microsoft Visual C++, 32-bit Edition, versions 4.0, 4.1

SUMMARY
=======

DBCTL demonstrates a way to use ODBC in an ActiveX Control (OLE Control). A
Visual C++ and a Visual Basic client application are included as part of
this sample. The Visual C++ client is called DBUSR, the Visual Basic client
is called DBVBUSR.

You can find DBCTL.EXE, a self-extracting file, on these services:

 - Microsoft's World Wide Web site on the Internet
 On the www.microsoft.com home page, click the Support icon
 Click Knowledge Base, and select the product
 Enter kbfile DBCTL.EXE, and click GO!
 Open the article, and click the button to download the file

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the Softlib/Mslfiles folder
 Get DBCTL.EXE

 - The Microsoft Network
 On the Edit menu, click Go To, and then click Other Location
 Type "mssupport" (without the quotation marks)
 Double-click the MS Software Library icon
 Find the appropriate product area
 Locate and Download DBCTL.EXE

 - Microsoft Partner Network (MSPN)
 On MSPN Desktop, double-click the Software Library icon
 Search for DBCTL.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download DBCTL.EXE

For additional information about downloading, please see the following
article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q119591
 TITLE : How to Obtain Microsoft Support Files from Online Services

NOTE: Use the -d option when running DBCTL.EXE to decompress the file and
recreate the proper directory structure.

MORE INFORMATION
================

DBCTL creates and opens a Class Wizard-configured CRecordset object from
within the virtual override of COleControl::OnSetClientSite. The CRecordset-
derived object is configured to the COURSE table of the STDREG32.MDB that
comes with the sample.

The CRecordset-derived object is closed from within its own destructor. The
CRecordset object is destructed with a call to the delete operator from
within the COleControl derived class destructor.

The control exposes one method, a DisplayRecords method, that simply lists
the contents of the recordset in the control.

The OLE Control subclasses a listbox. The string items are added to the
listbox by using SendMessage.

The DBUSR.EXE and DBVBUSR.EXE demonstrate using the custom control.

Additional reference words: 4.00 4.10
KBCategory: kbprg kbfile kbole
KBSubcategory: MfcDatabase

SAMPLE: Deriving an OLE Control from a Base Control
PSS ID Number: Q141489

The information in this sample applies to:

 The Microsoft Foundation Classes (MFC) included with:
 Microsoft Visual C++, 32-bit Edition, version 4.0, 4.1

This is the 32-bit version of this sample.

SUMMARY
=======

The SHAPES32 sample illustrates deriving an OLE control from another.

Download SHAPES32.EXE, a self-extracting file, from the Microsoft
Software Library (MSL) on the following services:

 - Microsoft's World Wide Web Site on the Internet
 On the www.microsoft.com home page, click the Support icon
 In the Microsoft Knowledge Base, search for SHAPES32.EXE
 Open the article, and click the button to download the file

 - The Microsoft Network
 On the Edit menu, click Go To, and then click Other Location
 Type mssupport
 Double-click the MS Software Library icon
 Find the appropriate product area
 Download SHAPES32.EXE

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download SHAPES32.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the Softlib\Mslfiles directory
 Get SHAPES32.EXE

MORE INFORMATION
================

The SHAPES32 sample illustrates deriving an OLE control from a base
control, thus allowing the derived control to take advantage of the base
control's methods, properties, and events.

The SHAPES32 sample implements a base control class called CBaseShapeCtrl,
and two derived control classes called CCircleCtrl and CRectangleCtrl.
CCircleCtrl and CRectangleCtrl draw themselves using the properties
provided by the base CBaseShapeCtrl class. CCircleCtrl and CRectangleCtrl
also allow access to the methods and events implemented in the base
CBaseShapeCtrl class.

Properties, Methods, and Events

The CBaseShapeCtrl class provides the base functionality of a simple shape
control. It implements the following properties, events, and methods:

Name Type Use

FillColor Property An OLE_COLOR value which represents the color used
 to fill the shape.

LineColor Property An OLE_COLOR value which represents the color used
 for the shape's outline.

LineWidth Property A short value which represents the line width in
 pixels of the shape's outline.

BaseMethod1 Method A test method which, when invoked, fires the
 BaseEvent1 event. Takes a single parameter of type
 long.

BaseMethod2 Method A test method which, when invoked, fires the
 BaseEvent2 event. Takes a single parameter of type
 BSTR.

BaseEvent1 Event A test event. Returns a long.

BaseEvent2 Event A test event. Returns a BSTR.

The CCircleCtrl class provides the functionality of a simple circle
control.

It implements the following properties, events, and methods:

Name Type Use

CircleShape Property A boolean value. If TRUE the control draws itself
 as a circle, if FALSE it draws itself as an
 ellipse.

CircleOffset Property A short value which represents the number of
 pixels offset from the center of the bounding
 rectangle at which the control will draw itself.

CircleMethod1 Method A test method which, when invoked, fires the
 CircleEvent1 event. Takes a single parameter of
 type long.

CircleMethod2 Method A test method which, when invoked, fires the
 CircleEvent2 event. Takes a single parameter of
 type long.

CircleEvent1 Event A test event. Returns a long.

CircleEvent2 Event A test event. Returns a long.

The CRectangleCtrl class provides the functionality of a simple rectangle
control. It implements the following properties, events, and methods:

Name Type Use

RoundedCorners Property A boolean value. If TRUE the control draws
 itself with rounded corners, if FALSE it draws
 itself with square corners.

RectangleInset Property A short value which represents the number of
 pixels inside the control's bounding rectangle
 by which the control will inset itself.

RectMethod1 Method A test method which, when invoked, fires the
 RectEvent1 event. Takes no parameters.

RectMethod2 Method A test method which, when invoked, fires the
 RectEvent2 event. Takes no parameters.

RectEvent1 Event A test event. Returns void.

RectEvent2 Event A test event. Returns void.

Modifying the Base Control Class

Several changes need be made to the code generated by ControlWizard to
allow a derived control to cleanly inherit the functionality provided by a
base control. The following changes were made to the files generated by
ClassWizard:

1. The ON_OLEVERB entry for AFX_IDS_VERB_PROPERTIES in the CBaseShapeCtrl
 message map was removed:

 BEGIN_MESSAGE_MAP(CBaseShapeCtrl, COleControl)
 //{{AFX_MSG_MAP(CBaseShapeCtrl)
 //}}AFX_MSG_MAP
 //ON_OLEVERB(AFX_IDS_VERB_PROPERTIES, OnProperties)
 END_MESSAGE_MAP()

 If this isn't done, control containers will list the Properties... verb
 twice when the Edit | Control Object menu is selected.

2. The CBaseShapeCtrl::CBaseShapeCtrlFactory::UpdateRegistry function was
 changed to simply return TRUE:

 BOOL CBaseShapeCtrl::CBaseShapeCtrlFactory::UpdateRegistry(BOOL
 bRegister)
 {
 return TRUE;
 }

 If this isn't done the base control will get registered and containers
 will list it along with the derived controls when the user attempts to
 insert a new control.

3. The CBaseShapePropPage::CBaseShapePropPageFactory::UpdateRegistry
 function was changed to simply return TRUE:

 BOOL CBaseShapePropPage::CBaseShapePropPageFactory::UpdateRegistry(
 BOOL bRegister)
 {
 return TRUE;
 }

 If this isn't done the base class control's property page will get
 registered and will appear in the registry.

4. The call to InitializeIIDs in the base control class' constructor was
 removed:

 CBaseShapeCtrl::CBaseShapeCtrl()
 {
 //InitializeIIDs(&IID_DBaseShape, &IID_DBaseShapeEvents);

 // TODO: Initialize your control's instance data here.
 }

 If this isn't done there will be a memory leak upon termination when the
 cached type information for the base class does not get freed.

5. The base control's section of the project's .ODL file was commented
 out.

 If this isn't done, some containers, for example, Visual Basic 4.0, will
 fail to load the control.

6. The CBaseShapeCtrl::DoPropExchange method was modified to not call the
 COleControl::ExchangeVersion function:

 void CBaseShapeCtrl::DoPropExchange(CPropExchange* pPX)
 {
 // ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));
 COleControl::DoPropExchange(pPX);

 ...
 }

 The _Version property is serialized via a call to the ExchangeVersion
 method in the DoPropExchange method of the derived control.

7. The DoPropExchange method of the derived OLE controls were changed to
 make a call to CBaseShapeCtrl::DoPropExchange instead of
 COleControl::DoPropExchange:

 void CCircleCtrl::DoPropExchange(CPropExchange* pPX)

 {
 ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));
 CBaseShapeCtrl::DoPropExchange(pPX);

 ...
 }

Manually Updating the Project's ODL File
--

ClassWizard does not provide any support for developing OLE controls which
are derived from another control. As a result, the property, method, and
event dispatch ID's used by a derived control class need to be manually
updated. MFC Technical Note #39 discusses the dispatch ID numbering scheme
used by MFC.

Basically, MFC divides a 32-bit dispatch ID (DISPID) into two parts. The
LOWORD of the DISPID contains the distance from the top of the dispatch map
(1 relative). The HIWORD contains the distance of the dispatch map from the
most derived class (0 relative).

The CCircleCtrl and CRectangleControl classes use this technique with their
DISPIDs. For example, the CCircleCtrl derived control inherits the
FillColor,LineColor, and LineWidth properties from CBaseShapeCtrl. The
DISPID's for these properties need to be manually added to the CCircleCtrl
properties section of the project's .ODL file and the HIWORD of the
DISPID's needs to be adjusted:

// Primary dispatch interface for CCircleCtrl
[uuid(A7EC6760-BFED-11CE-8250-524153480001),
 helpstring("Dispatch interface for sample Circle Control"), hidden]
dispinterface _DCircle
{
 properties:
 // NOTE - ClassWizard will maintain property information here.
 // Use extreme caution when editing this section.
 //{{AFX_ODL_PROP(CCircleCtrl)
 [id(65537)] OLE_COLOR FillColor;
 [id(65538)] OLE_COLOR LineColor;
 [id(65539)] short LineWidth;
 [id(1)] boolean CircleShape;
 [id(2)] short CircleOffset;
 //}}AFX_ODL_PROP
 ...

The FillColor, LineColor, and LineWidth properties implemented in the base
class have DISPID's of 1, 2, and 3 respectively. Once the HIWORD portion of
these DISPID's has been adjusted they become 65537, 65538, and 65539.

The DISPID's for events are handled differently than for properties and
methods. Event DISPID's do not have their HIWORD portion adjusted. Instead,
they are sequential. For example, CCircleCtrl inherits the BaseEvent1 and
BaseEvent2 events from the base control. The DISPID's for the base events
need to be manually added to the CCircleCtrl events section of the
project's .ODL file. Also, the DISPID's assigned by ClassWizard for the

events provided by CCircleCtrl (CircleEvent1 and CircleEvent2) need to have
their DISPIDs manually updated:

[uuid(A7EC6761-BFED-11CE-8250-524153480001),
 helpstring("Event interface for sample Circle Control")]
dispinterface _DCircleEvents
{
 properties:
 // Event interface has no properties

 methods:
 // NOTE - ClassWizard will maintain event information here.
 // Use extreme caution when editing this section.
 //{{AFX_ODL_EVENT(CCircleCtrl)
 [id(1)] void BaseEvent1(long lParam);
 [id(2)] void BaseEvent2(BSTR pszString);
 [id(3)] void CircleEvent1(long lParam);
 [id(4)] void CircleEvent2(long lParam);
 //}}AFX_ODL_EVENT
};

Manually updating the DISPIDs can be problematic because ClassWizard may
get confused when it sees the entries for the events in the base class.
It's possible that more than one event may be assigned the same DISPID.
After adding new events to a derived class, inspect the project's .ODL file
and fix any conflicts.

ClassWizard also maintains DISPID values for properties, methods, and
events, in an enum member of the COleControl derived class. Again, because
ClassWizard does not support deriving an OLE control from another control,
it may generate conflicting values for the different DISPIDs. If this
happens, manually edit the values so that they are correct and match the
values as specified in the .ODL file. Following is the portion of the
CCircleCtrl class that shows the DISPIDs used for both the base class and
derived class properties, events, and methods:

class CCircleCtrl : public CBaseShapeCtrl
{
...

// Dispatch and event IDs
public:
 enum {
 //{{AFX_DISP_ID(CCircleCtrl)
 //dispidFillColor = 65537L,
 //dispidLineColor = 65538L,
 //dispidLineWidth = 65539L,
 //dispidBaseMethod1 = 65540L,
 //dispidBaseMethod2 = 65541L,

 dispidCircleShape = 1L,
 dispidCircleOffset = 2L,
 dispidCircleMethod1 = 3L,
 dispidCircleMethod2 = 4L,

 //eventidBaseEvent1 = 1L,
 //eventidBaseEvent2 = 2L,
 eventidCircleEvent1 = 3L,
 eventidCircleEvent2 = 4L,
 //}}AFX_DISP_ID
};

SHAPES is based on a ControlWizard generated OLE control. Files included
with the sample which are directly related to deriving an OLE control from
a base control are:

 SHAPES.ODL -
 Shows the modified DISPIDs used by the derived control classes.

 BASECTL.CPP -
 Provides the implementation of the base CBaseShapeCtrl class.

 CIRCCTL.CPP -
 Provides the implementation of the derived CCircleCtrl class.

 RECTCTL.CPP -
 Provides the implementation of the derived CRectangleCtrl class.

REFERENCES
==========

MFC Technical Note #39.

Additional reference words: 4.00 4.10 Shapes Shapes2
KBCategory: kbole kbfile kbcode
KBSubcategory: MfcOLE

SAMPLE: Deriving an OLE Control from a Base Control
PSS ID Number: Q138411
--
The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:
 Microsoft OLE Control Developer's Kit (CDK), versions 1.0, 1.1, 1.2
--

This is the Visual C++ 1.5x and 2.x version of this sample. There is an
equivalent Visual C++ 4.x 32-bit sample available under the name SHAPES32.

SUMMARY
=======

The SHAPES sample illustrates how to derive an OLE control from a base
control thus allowing the derived control to take advantage of the base
control's methods, properties, and events.

Download Shapes2.exe, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - The Microsoft Network
 On the Edit menu, click Go To, and then click Other Location
 Type mssupport
 Double-click the MS Software Library icon
 Find the appropriate product area
 Download Shapes2.exe

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download Shapes2.exe

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the Softlib\Mslfiles directory
 Get Shapes2.exe

MORE INFORMATION
================

The Shapes2 sample implements a base control class called CBaseShapeCtrl
and two derived control classes called CCircleCtrl and CRectangleCtrl.
CCircleCtrl and CRectangleCtrl draw themselves using the properties
provided by the base CBaseShapeCtrl class. CCircleCtrl and CRectangleCtrl
also allow access to the methods and events implemented in the base
CBaseShapeCtrl class.

Properties, Methods, and Events

The CBaseShapeCtrl class provides the base functionality of a simple shape
control. It implements the following properties, events, and methods:

Name Type Use

FillColor Property An OLE_COLOR value that represents the color
 used to fill the shape.
LineColor Property An OLE_COLOR value that represents the color
 used for the shape's outline.
LineWidth Property A short value that represents the line width
 in pixels of the shape's outline.
BaseMethod1 Method A test method that, when invoked, fires the
 BaseEvent1 event. Takes a single parameter of
 type long.
BaseMethod2 Method A test method that, when invoked, fires the
 BaseEvent2 event. Takes a single parameter of
 type BSTR.
BaseEvent1 Event A test event. Returns a long.
BaseEvent2 Event A test event. Returns a BSTR.

The CCircleCtrl class provides the functionality of a simple circle
control. It implements the following properties, events, and methods:

Name Type Use

CircleShape Property A boolean value. If TRUE, the control draws
 itself as a circle. If FALSE, it draws itself
 as an ellipse.
CircleOffset Property A short value that represents the number of
 pixels offset from the center of the bounding
 rectangle where the control will draw itself.
CircleMethod1 Method A test method that, when invoked, fires the
 CircleEvent1 event. Takes a single parameter
 of type long.
CircleMethod2 Method A test method that, when invoked, fires the
 CircleEvent2 event. Takes a single parameter
 of type long.
CircleEvent1 Event A test event. Returns a long.
CircleEvent2 Event A test event. Returns a long.

The CRectangleCtrl class provides the functionality of a simple rectangle
control. It implements the following properties, events, and methods:

Name Type Use

RoundedCorners Property A boolean value. If TRUE, the control draws
 itself with rounded corners. If FALSE, it
 draws itself with square corners.
RectangleInset Property A short value that represents the number of
 pixels inside the control's bounding
 rectangle where the control will inset itself.
RectMethod1 Method A test method that, when invoked, fires the
 RectEvent1 event. Takes no parameters.
RectMethod2 Method A test method that, when invoked, fires the
 RectEvent2 event. Takes no parameters.
RectEvent1 Event A test event. Returns void.
RectEvent2 Event A test event. Returns void.

Modifying the Base Control Class

Several changes need be made to the code generated by ControlWizard to
allow a derived control to cleanly inherit the functionality provided by a
base control. The following changes were made to the files generated by
ClassWizard:

1. The ON_OLEVERB entry for AFX_IDS_VERB_PROPERTIES in the CBaseShapeCtrl
 message map was removed:

 BEGIN_MESSAGE_MAP(CBaseShapeCtrl, COleControl)
 //{{AFX_MSG_MAP(CBaseShapeCtrl)
 //}}AFX_MSG_MAP
 //ON_OLEVERB(AFX_IDS_VERB_PROPERTIES, OnProperties)
 END_MESSAGE_MAP()

 If this isn't done, control containers will list the Properties verb
 twice when the the user clicks Control Object on the Edit menu.

2. The CBaseShapeCtrl::CBaseShapeCtrlFactory::UpdateRegistry function was
 changed to simply return TRUE:

 BOOL CBaseShapeCtrl::CBaseShapeCtrlFactory::UpdateRegistry(
 BOOL bRegister)
 {
 return TRUE;
 }

 If this isn't done, the base control is registered and containers will
 list it along with the derived controls when the user attempts to
 insert a new control.

3. The CBaseShapePropPage::CBaseShapePropPageFactory::UpdateRegistry
 function was changed to simply return TRUE:

 BOOL CBaseShapePropPage::CBaseShapePropPageFactory::UpdateRegistry(
 BOOL bRegister)
 {
 return TRUE;
 }

 If this isn't done, the base class control's Property page is
 registered, so it will appear in the registry.

4. The call to InitializeIIDs in the base control class constructor was
 removed:

 CBaseShapeCtrl::CBaseShapeCtrl()
 {
 //InitializeIIDs(&IID_DBaseShape, &IID_DBaseShapeEvents);

 // TODO: Initialize your control's instance data here.
 }

 If this isn't done, there will be a memory leak upon termination
 when the cached type information for the base class is not freed.

5. The code in the base control's section of the project's .odl file was
 changed to comments (commented out). If this isn't done, some
 containers (for example, Visual Basic version 4.0) won't load the
 control.

6. The CBaseShapeCtrl::DoPropExchange method was modified to not call the
 COleControl::ExchangeVersion function:

 void CBaseShapeCtrl::DoPropExchange(CPropExchange* pPX)
 {
 // ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));
 COleControl::DoPropExchange(pPX);

 ...
 }

 If this isn't done, saving the state of the derived OLE control will
 generate an assertion on line 1169 of the Propset.cpp file. The
 assertion is generated because the _Version property has already been
 serialized by a call to the ExchangeVersion method in the DoPropExchange
 method of the derived control.

7. The DoPropExchange method of the derived OLE controls was changed to
 make a call to CBaseShapeCtrl::DoPropExchange instead of
 COleControl::DoPropExchange:

 void CCircleCtrl::DoPropExchange(CPropExchange* pPX)
 {
 ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));
 CBaseShapeCtrl::DoPropExchange(pPX);

 ...
 }

Manually Updating the Project's .Odl File

ClassWizard does not provide any support for developing OLE controls that
are derived from another control. As a result, the property, method, and
event dispatch ID's used by a derived control class need to be manually
updated. MFC Technical Note #39 discusses the dispatch ID numbering scheme
used by MFC. Basically, MFC divides a 32-bit dispatch ID (DISPID) into two
parts. The LOWORD of the DISPID contains the distance from the top of the
dispatch map (1 relative). The HIWORD contains the distance of the dispatch
map from the most derived class (0 relative).

The CCircleCtrl and CRectangleControl classes use this technique with their
DISPIDs. For example, the CCircleCtrl derived control inherits the
FillColor, LineColor, and LineWidth properties from CBaseShapeCtrl. The
DISPIDs for these properties need to be manually added to the CCircleCtrl
properties section of the project's .odl file and the HIWORD of the DISPIDs
needs to be adjusted:

// Primary dispatch interface for CCircleCtrl
[uuid(A7EC6760-BFED-11CE-8250-524153480001),
 helpstring("Dispatch interface for sample Circle Control"), hidden]
dispinterface _DCircle
{
 properties:
 // NOTE - ClassWizard will maintain property information here.
 // Use extreme caution when editing this section.
 //{{AFX_ODL_PROP(CCircleCtrl)
 [id(0x10001)] OLE_COLOR FillColor;
 [id(0x10002)] OLE_COLOR LineColor;
 [id(0x10003)] short LineWidth;
 [id(1)] boolean CircleShape;
 [id(2)] short CircleOffset;
 //}}AFX_ODL_PROP
 ...

The FillColor, LineColor, and LineWidth properties implemented in the base
class have DISPIDs of 1, 2, and 3 respectively. Once the HIWORD portion of
these DISPIDs has been adjusted, they become 0x10001 (65537), 0x10002
(65538), and 0x10003 (65539).

The DISPIDs for events are handled differently from those for properties
and methods. Event DISPIDs do not have their HIWORD portion adjusted.
Instead, they are sequential. For example, CCircleCtrl inherits the
BaseEvent1 and BaseEvent2 events from the base control. The DISPIDs for the
base events need to be manually added to the CCircleCtrl events section of
the project's .odl file. Also, the DISPIDs assigned by ClassWizard for the
events provided by CCircleCtrl (CircleEvent1 and CircleEvent2) need to have
their DISPIDs manually updated:

[uuid(A7EC6761-BFED-11CE-8250-524153480001),
 helpstring("Event interface for sample Circle Control")]
dispinterface _DCircleEvents
{
 properties:
 // Event interface has no properties

 methods:
 // NOTE - ClassWizard will maintain event information here.
 // Use extreme caution when editing this section.
 //{{AFX_ODL_EVENT(CCircleCtrl)
 [id(1)] void BaseEvent1(long lParam);
 [id(2)] void BaseEvent2(BSTR pszString);
 [id(3)] void CircleEvent1(long lParam);
 [id(4)] void CircleEvent2(long lParam);
 //}}AFX_ODL_EVENT
};

Manually updating the DISPIDs can be problematic because ClassWizard may
get confused when it sees the entries for the events in the base class.
As a result, more than one event may be assigned the same DISPID. After
adding new events to a derived class, inspect the project's .odl file,
and fix any conflicts.

ClassWizard also maintains DISPID values for properties, methods, and
events, in an enum member of the COleControl derived class. Again, because
ClassWizard does not support deriving an OLE control from another control,
it may generate conflicting values for the different DISPIDs. If this
happens, manually edit the values so that they are correct, and match the
values as specified in the .odl file. Following is the portion of the
CCircleCtrl class that shows the DISPIDs used for both the base class and
derived class properties, events, and methods:

class CCircleCtrl : public CBaseShapeCtrl
{
...

// Dispatch and event IDs
public:
 enum {
 //{{AFX_DISP_ID(CCircleCtrl)
 //dispidFillColor = 65537L,
 //dispidLineColor = 65538L,
 //dispidLineWidth = 65539L,
 //dispidBaseMethod1 = 65540L,
 //dispidBaseMethod2 = 65541L,

 dispidCircleShape = 1L,
 dispidCircleOffset = 2L,
 dispidCircleMethod1 = 3L,
 dispidCircleMethod2 = 4L,

 //eventidBaseEvent1 = 1L,
 //eventidBaseEvent2 = 2L,
 eventidCircleEvent1 = 3L,
 eventidCircleEvent2 = 4L,
 //}}AFX_DISP_ID
};

the Shapes2 sample is based on a ControlWizard-generated OLE control. Files
included with the sample that are directly related to deriving an OLE
control from a base control are:

 Shapes.odl -
 Shows the modified DISPIDs used by the derived control classes.

 Basectl.cpp -
 Provides the implementation of the base CBaseShapeCtrl class.

 Circctl.cpp -
 Provides the implementation of the derived CCircleCtrl class.

 Rectctl.cpp -
 Provides the implementation of the derived CRectangleCtrl class.

REFERENCES
==========

MFC Technical Note #39.

Additional reference words: 1.50 1.51 1.52 1.52b 2.00 2.10 2.20 2.50
2.51 2.52 3.00 3.10 3.20 shapes32
KBCategory: kbole kbfile kbcode
KBSubcategory: CDKIss

SAMPLE: FILEDRAG: How to Support File Drag Server Capabilities
PSS ID Number: Q139067

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SUMMARY
=======

Sample code is available that shows how an application can provide the File
Drag drop server capabilities. It shows how to set up the data structures
for CF_HDROP and ShellIDList formats. In this sample, the user can enable
support for any combination of CF_HDROP and ShellIDList format and see the
drag drop result. To obtain this sample:

Download FILEDRAG.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - The Microsoft Network
 On the Edit menu, click Go To, and then click Other Location
 Type mssupport
 Double-click the MS Software Library icon
 Find the appropriate product area
 Download FILEDRAG.EXE

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download FILEDRAG.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the Softlib\Mslfiles directory
 Get FILEDRAG.EXE

MORE INFORMATION
================

In Windows 3.x, the only application that could act as a File Drag-Drop
server was File Manager. Now the file drag-drop server capability is
extended to all applications via OLE Drag Drop.

An OLE drag-drop server application that supports the CF_HDROP format can
support file drag drop as does File Manager. The Windows system generates
the appropriate WM_DROPFILES message for client applications that support
File Drop, or the Windows system passes the IDataObject if the client
application supports OLE Drop target for CF_HDROP format.

One of the new features of the shell is when you drop files on an icon on
the desktop. The Shell opens the particular application with the drop file
in it provided the application supports command line arguments where file
can be passed as in this example:

 notepad.exe myfile.txt

This feature could also be provided by a file drag drop server that
supports the ShellIDList format, in addition to the CF_HDROP format.

Additional reference words: 4.00
KBCategory: kbole kbfile kbhowto
KBSubcategory:

SAMPLE: How to Use Enumerated Properties in an OLE Control
PSS ID Number: Q137354

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:
 Microsoft OLE Control Developer's Kit (CDK) versions 1.0, 1.1, 1.2

This is the Visual C++ 1.5x and 2.x version of this sample. There is an
equivalent Visual C++ 4.x 32-bit sample available under the name ENPROP32.

SUMMARY
=======

The Enumprop sample illustrates using enumerated properties in an OLE
control.

Download Enprop.exe, a self-extracting file, from the Microsoft
Software Library (MSL) on the following services:

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download Enprop.exe

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the SOFTLIB\MSLFILES directory
 Get Enprop.exe

After downloading Enprop.exe, run it in an empty directory using the -d
switch (as follows) to automatically create subdirectories to hold the many
files it contains:

 ENPROP.EXE -d

MORE INFORMATION
================

The ENUMPROP sample illustrates how to use enumerated properties in an OLE
control. An enumerated property is one that has a specific set of possible
values. For example, an OLE control might support a property named
FillPattern, which it uses to determine the type of brush to use when
drawing the control and limit the values the FillPattern property could be
set to. Accepted values for a FillPattern property might be cross-hatched,
vertical lines, horizontal lines, and so on.

An OLE control can limit a user's possible choices for a property by
presenting a drop list comobo box that lists the possibilities on its
property page. However, another mechanism is needed to enable a property
browser provided by another application to be able to provide the same type
of interface when editing the property.

There are two ways to implement an enumerated property so that a

property browser can gather enough information about the property to
provide the right editing interface. One method involves declaring an
enum type in the OLE control's .odl file and manually editing the
property's declaration to make it be of that type. For example:

 ...

 typedef enum
 {
 [helpstring("Solid")] Solid = 0,
 [helpstring("Dash")] Dash = 1,
 [helpstring("Dot")] Dot = 2,
 [helpstring("Dash-Dot")] DashDot = 3,
 [helpstring("Dash-Dot-Dot")] DashDotDot = 4,
 } enumLineStyle;

 ...

 properties:
 // NOTE - ClassWizard will maintain property information here.
 // Use extreme caution when editing this section.
 //{{AFX_ODL_PROP(CEnumCtrl)
 [id(1)] enumLineStyle LineStyle;
 //}}AFX_ODL_PROP

 ...

Another method involves overriding the COleControl methods
OnGetPredefinedStrings, OnGetPredefinedValue, and OnGetDisplayString.

The ENUMPROP sample illustrates using both methods. The OLE control
implemented in the sample supports two custom properties, LineStyle and
FillPattern. The LineStyle property is declared as an enum in the control's
.odl file. Support for using the FillPattern property as an enumerated
property is handled by using overrides of the OnGetPredefinedStrings,
OnGetPredefinedValue, and OnGetDisplayString methods.

ENUMPROP is based on a ControlWizard-generated OLE control. Files included
with the sample, which are directly related to using enumerated properties,
are:

 Enum.odl - Shows declaring the enum type for the LineStyle property.

 Enumctl.cpp - Illustrates overriding the COleControl members
 OnGetPredefinedStrings, OnGetPredefinedValue, and
 OnGetDisplayString.

NOTE: When building the sample, the MKTYPLIB utility will generate the
following warning when compiling the .odl file:

 warning M0002: Warning near line 35 column 35: specified type is not
 supported by IDispatch::Invoke

MKTYPLIB is issuing the warning because the enumLineStyle type is not one
of the predefined types supported by IDispatch::Invoke. You can ignore the

warning because the actual value of the LineStyle property is a short,
which is a type supported by IDispatch::Invoke.

NOTE: The test container tool provided with the CDK does not implement a
drop list comobo box on its property browser page when editing an
enumerated property. To see the full benefits of using an enumerated
property, use an OLE control container application that provides a
property browser with this capability.

RFERENCES
=========

For more information, please see the Per-Property Browsing section in
Appendix D, OLE Controls Architecture, in the CDK Books Online.

Additional reference words: 1.50 1.51 1.52 2.00 2.10 2.20 enprop32
KBCategory: kbole kbcode kbfile
KBSubcategory: CDKIss VCx86

SAMPLE: How to Use Enumerated Properties in an OLE Control
PSS ID Number: Q141488

The information in this sample applies to:

 The Microsoft Foundation Classes (MFC), included with:
 Microsoft Visual C++, 32-bit Edition, version 4.0, 4.1

This is the 32-bit version of this sample.

SUMMARY
=======

The ENPROP32 sample illustrates using enumerated properties in an OLE
control.

Download ENPROP32.EXE, a self-extracting file, from the Microsoft
Software Library (MSL) on the following services:

 - The Microsoft Network
 On the Edit menu, click Go To, and then click Other Location
 Type mssupport
 Double-click the MS Software Library icon
 Find the appropriate product area
 Download ENPROP32.EXE

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download ENPROP32.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the Softlib\Mslfiles directory
 Get ENPROP32.EXE

MORE INFORMATION
================

The ENPROP32 sample illustrates using enumerated properties in an OLE
control. An enumerated property is one which has a specific set
of possible values. For example, an OLE control might support a
property named FillPattern which it uses to determine the type of brush
to use when drawing the control. The control would want to limit the
values the FillPattern property could be set to. Accepted values for a
FillPattern property might be cross-hatched, vertical lines, horizontal
lines, etc.

An OLE control can limit the values a user has to choose from for a
property by using a Drop List combo box on its property page. However,
another mechanism is needed to enable a property browser provided by
another application to be able to provide the same type of interface
when editing the property.

There are two ways to implement an enumerated property so that a
property browser can gather enough information about the property to
provide the right editing interface. One method involves declaring an
enum type in the OLE control's .odl file and manually editing the
property's declaration to make it be of that type. For example:

 ...

 typedef enum
 {
 [helpstring("Solid")] Solid = 0,
 [helpstring("Dash")] Dash = 1,
 [helpstring("Dot")] Dot = 2,
 [helpstring("Dash-Dot")] DashDot = 3,
 [helpstring("Dash-Dot-Dot")] DashDotDot = 4,
 } enumLineStyle;

 ...

 properties:
 // NOTE - ClassWizard will maintain property information here.
 // Use extreme caution when editing this section.
 //{{AFX_ODL_PROP(CEnumCtrl)
 [id(1)] enumLineStyle LineStyle;
 //}}AFX_ODL_PROP

Another method involves overriding the COleControl methods
OnGetPredefinedStrings, OnGetPredefinedValue, and OnGetDisplayString.
The ENUMPROP sample illustrates using both methods. The OLE control
implemented in the sample supports two custom properties, LineStyle
and FillPattern. The LineStyle property is declared as an enum in the
control's .odl file. Support for using the FillPattern property as an
enumerated property is handled via overrides of the
OnGetPredefinedStrings, OnGetPredefinedValue, and OnGetDisplayString
methods.

ENPROP32 is based on a ControlWizard generated OLE control. Files
included with the sample, which are directly related to using
enumerated properties, are:

 ENUM.ODL -
 Shows declaring the enum type for the LineStyle property.

 ENUMCTL.CPP -
 Illustrates overriding the COleControl members
 OnGetPredefinedStrings, OnGetPredefinedValue, and
 OnGetDisplayString.

RFERENCES
=========

The Per-Property Browsing section in Appendix D, OLE Controls
Architecture, in the CDK Books Online.

NOTE: The OLE Control Test Container provided with Visual C++ does not

implement a Drop List combobox on its property browser page when editing
an enumerated property. To see the full benefits of using an enumerated
property, use an OLE control container application which provides a
property browser with this capability, such as Visual Basic 4.0.

Additional reference words: 4.00 4.10 Enumprop
KBCategory: kbole kbcode kbfile
KBSubcategory: MfcOLE

SAMPLE: Insert OLE Object Capabilities to the RichEdit Control
PSS ID Number: Q141549

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s version 1.3

SUMMARY
=======

RichEdit control supports embedding and inplace-activating OLE Objects. To
add these capabilities to a RichEdit control in your application, an
independent service vendor (ISV) must implement certain OLE interfaces. The
RichEdit sample shows how these interfaces are implemented and other
implementation details that are required in conjunction with the OLE
interfaces to embed and inplace-activate OLE objects.

MORE INFORMATION
================

An ISV must implement the following OLE interfaces to add the embedding and
inplace-activating capabilities to the RichEdit control in their
application:

 - IRichEditOleCallback, which is used by a RichEdit control to retrieve
 OLE-related information from its client. This interface is passed by the
 client application to the RichEdit control via EM_SETOLEINTERFACE
 message. This is a RichEdit control's custom interface.

 - IOleInPlaceFrame, which is used to control the container's top-level
 frame window. In addition, implementing this interface involves
 implementing IOleWindow and IOleInPlaceUIWindow interfaces also, because
 IOleInPlaceFrame is inherited from IOleInPlaceUIWindow, which in turn
 inherits IOleWindow.

There are a few caveats that are important to enable this feature work to
properly:

 - The Frame window, which will be the parent of the tool bar and status
 bar, needs to be created with the WS_CLIPCHILDREN style. If this style
 is not present, your applications will exhibit some painting problems
 when an object is inplace-active in your RichEdit control.

 - The RichEdit control itself should be created with WS_CLIPSIBLING style.
 Here too, if the style is not present, RichEdit control will exhibit
 painting problems when the Object creates child windows during inplace-
 active.

 - When destroying the RichEdit control, your application should deactivate

 any inplace-active Object and call IOleObject->Close() on all the
 embedded objects in the RichEdit control. If this is not done, some
 object applications may not close down, thus causing them to stay in
 memory, even after the RichEdit control is destroyed. Here is a code
 snippet that demonstrates how to handle closing of OLE Objects:

 if (m_pRichEditOle)
 {
 HRESULT hr = 0;

 //
 // Start by getting the total number of objects in the control.
 //
 int objectCount = m_pRichEditOle->GetObjectCount();

 //
 // Loop through each object in the control and if active
 // deactivate, and if open, close.
 //
 for (int i = 0; i < objectCount; i++)
 {
 REOBJECT reObj;
 ZeroMemory(&reObj, sizeof(REOBJECT));
 reObj.cbStruct = sizeof(REOBJECT);

 //
 // Get the Nth object
 //
 hr = m_pRichEditOle->GetObject(i,&reObj,REO_GETOBJ_POLEOBJ);
 if(SUCCEEDED(hr))
 {
 //
 // If active, deactivate.
 //
 if (reObj.dwFlags && REO_INPLACEACTIVE)
 m_pRichEditOle->InPlaceDeactivate();

 //
 // If the object is open, close it.
 //
 if(reObj.dwFlags&&REO_OPEN)
 hr = reObj.poleobj->Close(OLECLOSE_NOSAVE);

 reObj.poleobj->Release();
 }
 }
 m_pRichEditOle->Release();
 }

Download Richedit.exe, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - The Microsoft Network
 On the Edit menu, click Go To, and then click Other Location
 Type mssupport

 Double-click the MS Software Library icon
 Find the appropriate product area
 Download Richedit.exe

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download Richedit.exe

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the Softlib\Mslfiles directory
 Get Richedit.exe

Additional reference words: 4.00 1.30 softlib
KBCategory: kbui kbole kbhowto kbfile
KBSubcategory:

SAMPLE:CONDOC.EXE:Extract Container/Document Info with MFC DAO
PSS ID Number: Q152316

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC), included with:
 Microsoft Visual C++, 32-bit Edition, versions 4.0, 4.1

SUMMARY
=======

MFC does not currently provide methods for extracting container and
document information from DAO collections. The sample, CONDOC.EXE
demonstrates how to implement this extraction using MFC DAO objects and, in
particular, demonstrates using DAO OLE interfaces not directly available
from the MFC DAO classes.

Containers provide an application-independent way for an application to
store objects in a database. For example, Microsoft Access uses separate
containers to store forms, reports, macros, and modules. This is in a
format native only to Access. However, the code below shows how to see
which containers are stored in an Access database.

Documents are used to store a specific instance of an application-specific
object within a container, such as a form, a report, etc. A container can
have more than one document collection. To repeat, Microsoft Access
documents and containers are in a format native to Access and not available
programatically from other products except through OLE Automation using
Access itself.

Download CONDOC.EXE, a self-extracting file, from the following services:

 - Microsoft's World Wide Web site on the Internet
 On the www.microsoft.com home page, click the Support icon
 Click Knowledge Base, and select the product
 Enter kbfile CONDOC.EXE, and click GO!
 Open the article, and click the button to download the file

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the Softlib/Mslfiles folder
 Get CONDOC.EXE

 - The Microsoft Network
 On the Edit menu, click Go To, and then click Other Location
 Type "mssupport" (without the quotation marks)
 Double-click the MS Software Library icon
 Find the appropriate product area
 Locate and download CONDOC.EXE

 - Microsoft Partner Network (MSPN)
 On MSPN Desktop, double-click the Software Library icon
 Search for CONDOC.EXE

 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download CONDOC.EXE

For additional information about downloading, please see the following
article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q119591
 TITLE : How to Obtain Microsoft Support Files from Online Services

NOTE: Use the -d option when running CONDOC.EXE to decompress the file and
recreate the proper directory structure.

MORE INFORMATION
================

Sample Code

The following code demonstrates how to extract Container and Document
information and store it in a Tree View control:

 // Command handler which performs the pertinent operations
 ///
 //
 void CCONDOCView::OnGetinfoOpenMDB()
 {
 // Prepare the open file dialog
 static char BASED_CODE szFilter[] = _
 T("Access Database Files (*.mdb) | *.mdb");

 CFileDialog dlg(TRUE, "mdb", NULL,
 OFN_HIDEREADONLY| OFN_OVERWRITEPROMPT, szFilter);

 // To be retrieved by the open file dialog
 CString strFile;

 // open file dialog
 if(dlg.DoModal() == IDOK)
 {
 strFile = dlg.m_ofn.lpstrFile;

 if(strFile.Right(3) != "mdb") // verify extension
 {
 AfxMessageBox("File Extension error");
 return;
 }
 }

 // you will display the info in a tree control
 CTreeCtrl &tree = GetTreeCtrl();

 // the root of all items!

 HTREEITEM itemDatabase = tree.InsertItem(
 dlg.m_ofn.lpstrFile);

 // An MFC DAO object
 CDaoDatabase db;

 // straight DAO interface pointer variables
 ConDoctainers *pContainers=NULL;
 ConDoctainer* pCon=NULL;
 DAODocuments* pDocuments=NULL;
 DAODocument* pDoc=NULL;

 // To be used for iterating thru the collections
 short count;
 short doccount;

 // open the .MDB
 try
 {
 db.Open(strFile);
 }
 catch(CDaoException* e)
 {
 AfxMessageBox(e->m_pErrorInfo->m_strDescription);
 return;
 }

 // Using the DAODatabase interface pointer method contained
 // by the MFC/DAO class CDaoDatabase, you retrieve the interface's
 // set of collections.
 if(FAILED(db.m_pDAODatabase->get_Containers(&pContainers)))
 {
 AfxMessageBox("Collection not found");
 db.Close();
 return;
 }

 // Once you have the set of collections, you iterate thru each
 // individual collection, display some of its attributes,
 // then get the document collection on the container,
 // and iterate thru the individual documents, displaying some
 // of the attributes of the documents.
 // See the dbdao.h in the DAOSDK\INCLUDE for more information

 try
 {
 // get the count property of the containers collection
 pContainers->get_Count(&count);

 HTREEITEM itemContainers = tree.InsertItem(_T("Containers")
 , itemDatabase);

 // iterate thru the containers
 while(--count > 0)
 {

 // get an individual container and iterate thru its
 //attributes
 pContainers->get_Item(COleVariant(count, VT_I2),
 &pCon);
 BSTR bstr=NULL;

 pCon->get_Name(&bstr);
 CString strName((LPCTSTR) bstr);
 HTREEITEM itemName = tree.InsertItem(strName,
 itemContainers);

 pCon->get_Owner(&bstr);
 CString strOwner(_T("Owner: "));
 strOwner += (LPCTSTR) bstr;
 HTREEITEM itemOwner = tree.InsertItem(strOwner,
 itemName);

 pCon->get_UserName(&bstr);
 CString strUserName(_T("User Name: "));
 strUserName += (LPCTSTR) bstr;
 HTREEITEM itemUserName = tree.InsertItem(strUserName,
 itemName);

 // Now get the documents collection
 if(FAILED (pCon->get_Documents(&pDocuments)))
 {
 AfxMessageBox("Collection not found");
 db.Close();
 return;
 }

 // Now get the number of documents contained in the
 // container
 pDocuments->get_Count(&doccount);
 HTREEITEM itemDocuments = tree.InsertItem(
 _T("Documents"), itemName);

 // iterate thru the documents
 while(--doccount > 0)
 {
 // get an individual document and iterate thru
 // some of its attributes.
 pDocuments->get_Item(COleVariant(doccount, VT_I2),
 &pDoc);

 pDoc->get_Name(&bstr);
 CString strDocName((LPCTSTR) bstr);
 HTREEITEM itemDocName = tree.InsertItem(strDocName,
 itemDocuments);

 pDoc->get_Owner(&bstr);
 CString strDocOwner(_T("Owner: "));
 strDocOwner += (LPCTSTR) bstr;
 tree.InsertItem(strDocOwner, itemDocName);

 pCon->get_UserName(&bstr);
 CString strDocUserName(_T("User Name: "));
 strDocUserName += (LPCTSTR) bstr;
 tree.InsertItem(strDocUserName, itemDocName);
 }
 }
 }
 catch(CDaoException* e)
 {
 AfxMessageBox(e->m_pErrorInfo->m_strDescription);
 db.Close();
 return;
 }
 db.Close();
 }
 ///
 // END OF SAMPLE CODE

REFERENCES
==========

Microsoft Jet Database Engine Programmer's Guide, ISBN #: 1-55615-877-7.

Additional reference words: 4.00 4.10 prop
KBCategory: kbprg kbole kbfile kbcode
KBSubcategory: MfcDAO MfcDatabase

Tutorial: Debugging OLE Applications
PSS ID Number: Q122680

The information in this article applies to:

 - The Visual Workbench Integrated Debugger, included with:
 Microsoft Visual C++, 32-bit Edition, version 2.0 on the
 following platform: x86

SUMMARY
=======

This article provides a tutorial to assist you in learning how to use the
Visual Workbench Integrated Debugger.

The Visual C++ integrated debugger supports simultaneous debugging of OLE
client and server applications. You can seamlessly step across and into OLE
clients and servers, with the ability to step across OLE Remote Procedure
Calls. A second instance of the debugger is automatically spawned the first
time an OLE client calls into an OLE server.

When building OLE servers, you may want to debug them in the context of
being activated by an OLE container, thus debugging both the container and
the server at the same time. This tutorial provides an example of how to
debug an OLE server when the main debuggee is an OLE container. It shows
how a second instance of the debugger is automatically spawned when an OLE
client calls into an OLE server. The tutorial is designed to lead you step
by step through the code that creates the OLE server object and establishes
the connection between the OLE container and the OLE server. This is useful
in tracking down problems that occur when the OLE server does not get
created or initialized correctly.

All regular debugging facilities are available as you debug your OLE
application.

MORE INFORMATION
================

Preparing to Debug

To prepare for OLE Client/Server debugging:

1. Open the project for the OLE application and build a version with
 symbolic debugging information.

2. Choose Options from the Tools menu.

3. Select the Debug tab.

4. Ensure that the OLE RPC Debugging check box and the Just-In-Time (JIT)
 Debugging boxes are checked. (You must have Windows NT administrator
 privileges to enable OLE RPC Debugging.)

5. Choose OK. The information is now stored with your project.

6. Set breakpoints at the points in the source files for your OLE
 application where you want to determine the state of the application.

7. From the Debug menu, choose Go or press the F5 key to start the
 debugger.

Viewing Derived-Most Types

The QuickWatch dialog box provides support for the automatic downcast of
pointers in OLE and MFC debugging. The debugger automatically detects when
a pointer is pointing to a subclass of the type it is required to point to.
When the pointer is expanded, Visual C++ will add an extra member, which
looks like another base class and indicates the derived-most type. For
example, if you are displaying a pointer to a CObject and the pointer
really points to a CComboBox, the QuickWatch expression evaluator will
recognize this and introduce a pseudo CComboBox member so you can access
the CComboBox members.

The rest of the tutorial takes you through a debug session, using MFC
sample code.

Creating the Object

1. Build debug versions of the Microsoft Foundation Classes (MFC)
 samples in the development environment:

 - MSVC20\SAMPLES\MFC\CONTAIN\STEP2

 - MSVC20\SAMPLES\MFC\SCRIBBLE\STEP7

2. Run the SCRIBBLE.EXE file, built in step 1, to update the registry to
 point to this executable file.

3. Load the CONTAIN\STEP2 project into the Visual Workbench.

4. Choose Options from the Tools menu, select the Debug tab, and make sure
 OLE RPC Debugging is enabled, as described in step 4 of the "Preparing
 to Debug" section in this article.

5. Open the CONTRVW.CPP file in CONTAIN\STEP2, and set a breakpoint on line
 139, which contains a call to CreateItem.

6. Press the F5 key to run CONTAIN.EXE. In the CONTAIN main menu, choose
 Insert New Object from the Edit menu.

7. From the resulting Object Type list, choose Scrib Document, and then
 choose the OK button. At this point, the debugger should stop at the
 breakpoint you set in step 5. This is the call to the Insert Object
 dialog's CreateItem function. The purpose of CreateItem is to create and
 initialize an object of the type you selected from the dialog box. The

 CreateItem function is passed a CCntrItem object and it uses the object
 to handle this process.

 For a brief overview of what CCntrItem does, see its class definition in
 CNTRITEM.H. Then look at the definition of COleClientItem (which
 CCntrItem is derived from) on line 399 in AFXOLE.H.

8. Press the F8 key to step into the call to CreateItem. You are in the MFC
 source file OLEDLGS1.CPP. Press the F10 key to step over instructions
 until you get to the call to pNewItem->CreateItem on line 104.

9. Press the F8 key to step into the call to pNewItem->CreateItem. Then
 press the F10 key to step over instructions until you get to line 594,
 which contains a call to OleCreate. While stepping through the code,
 read the comments and observe that storage is allocated for the object
 and its rendering format is established.

10. Step into the call to OleCreate. At this point, execution proceeds
 through the RPC mechanism to the server code itself. Therefore, as the
 server code begins to execute, a new instance of the debugger is
 created in which to debug the server. A pseudo project for SCRIBBLE.EXE
 is loaded (as in JIT debugging), and the instruction pointer is set at
 the call to COleServerDoc::XPersistStorage::InitNew in OLESRV1.CPP. If
 you installed the .DBG files (see the "NT System Symbols Setup" icon in
 your Visual C++ program group), your callstack will include fully
 decorated names.

11. Step over instructions in Scribble's InitNew until you reach the call
 to pThis->OnNewEmbedding on line 1707. Then step into OnNewEmbedding.

12. Step over lines until you reach the call to OnNewDocument on line 856.
 Then step into the call to COleServerDoc::OnNewDocument. You are inside
 COleLinkingDoc::OnNewDocument. (COleServerDoc is derived from
 COleLinkingDoc.) Notice the code in this small function. It creates a
 new document object and attaches it to the server (Scribble).

13. Press SHIFT+F7 twice to step out twice to get back into
 COleServerDoc::XPersistStorage::InitNew, where you first came into
 Scribble.

14. Step out one more time. This will cause the container to return from
 its call to OleCreate, the function that took you into Scribble in the
 first place. At this time, the instance of the debugger that has
 Contain loaded gets the focus and you are back in OLECLI1.CPP
 immediately following the call to OleCreate. The embedded Scribble
 object has now been created, but it is not yet fully initialized.

15. Step into the next line, the call to FinishCreate. Step through the
 FinishCreate code to see how OLE finalizes the connection between the
 container and the server, then step out of FinishCreate.

Now a Scribble object has been created and initialized in memory, but it is
not yet editable in the container; Scribble hasn't been activated. In fact,
Contain still has only an IUnknown interface to Scribble. You can see this
by expanding the lpClientSite variable in the Locals Window.

Activating the Object

1. Step out two more times to get back to Contain's OnInsertObject function
 in CONTRVW.CPP.

2. In Contain's OnInsertObject function, step over five times to get to the
 call to DoVerb on line 149. This function activates Scribble.

3. Step into the call to DoVerb. Then step over a few lines until you come
 to the call to Activate on line 71.

4. Step into Activate. Now you are in OLECLI3.CPP. Before going on, scan
 through the code for Activate. Notice that a rectangle is first created
 for the embedded Scribble item to live in. Then GetClientSite is called
 to establish an interface back to the container for the Scribble server.
 Then the server's DoVerb function is called to pass both of these to the
 server.

5. Step to line 75. Then step into the call to DoVerb. At this point,
 execution proceeds once again through the RPC mechanism to the server
 code itself. As you would expect, the instruction pointer is pointing to
 the first instruction in the server's COleServerDoc:: XOleObject::DoVerb
 function.

6. Step to line 2064, the call to OnDoVerb. Then step into OnDoVerb.
 OnDoVerb consists of a switch statement that executes the command (verb)
 passed to it. In this case, the command is OLEIVERB_SHOW. Step over
 instructions until you get to OnShow.

7. Step into OnShow. Then step three lines to ActivateInPlace, and step
 into ActivateInPlace.

 The ActivateInPlace function does many things, and is worth examining
 in detail. While it is beyond the scope of this tutorial to go into all
 the details, it is worthwhile to step through the code and observe the
 comments. At this point, step over each instruction until you get to
 line 1098 in OLESRV1.CPP -- the call to OnFrameWindowActivate. Among
 other things, you will see the following tasks accomplished:

 - Get the document type used in SetActiveObject calls.

 - Get the in-place client-site interface.

 - See if the container wants to go in-place right now.

 - Get the parent window to create the COleIPFrameWnd.

 - Create the inplace frame window.

 - Send an activate notification to the container.

 - Get the frame and doc window interfaces as well as other information.

 - Set up the shared menu.

 - Allow the server to install frame controls in the container.

 - Update the zoom factor information before creating control bars.

 - Resize the window to match the object.

 - Set the active object.

 - Add the frame and the document-level frame controls.

 - Show any hidden modeless dialogs.

 - Attempt toolbar negotiation.

 - Install the menu and a hook that forwards messages from the menu to
 the inplace frame window.

 - Make sure the object is scrolled into view.

 - Show the inplace frame window and set the focus.

 As you can see, ActivateInPlace does a lot of work. It is also very
 RPC-intensive.

8. Step into the first line of OnFrameWindowActivate. Observe that this
 function sends the final notifications via the container to activate
 the server.

9. Press the F5 key or choose the GO button to finish executing
 OnFrameWindowActivate. Under normal circumstances, Scribble would come
 up already activated in place within Contain. However, in this case, you
 have already executed past the code that set the focus to the activated
 server. Rremember the call to pFrameWnd->Set Focus on line 1094 in the
 ActivateInPlace function in OLESRV1.CPP? By continuing to step through
 the code you have reset the focus back to the debugger. Therefore, you
 must now switch tasks manually to Contain.

10. Switch tasks to Contain. You will see Scribble's menu and toolbar
 within Contain, and you will be able to draw in the embedded item's
 rectangle.

Finishing the Debug Session

When you finish with Scribble, close the document window. Contain's menu
and toolbar reappear, and the Scribble debugging session ends within the
second instance of the debugger.

Although Scribble has terminated, the second instance of the debugger is
still running. To avoid complications, terminate the second instance of the
debugger. You need to do this because whenever you call into a server to
embed a new item or activate an existing one, the debugger will start
another instance to debug this server, even if it is the same server that

is already attached to another item in the document. Therefore, it is
possible (but not desirable) to have multiple instances of the debugger
debugging multiple instances of the same server all connected to the same
container.

Once the second instance of the debugger has been terminated, it is safe
to embed another Scrib Document object in Contain. It is not necessary to
terminate the container before doing so.

Trying New Things in Future Debug Sessions
--

If you have more time in a subsequent debugging session, try stepping
into (rather than over) some of the function calls. The flow of control
goes back and forth between the container and the server many times, and
the debugger will track this flow accurately, bringing you into container
code, then server code, and so forth. Functions of interest include:

 CanInPlaceActivate
 OnInPlaceActivate
 GetWindow
 OnUIActivate
 GetWindowContext
 SetActiveObject
 SetMenu
 ShowObject

The server maintains several pointers (interfaces) into the container's
code through which it calls the container's member functions. These
pointers include m_lpClientSite, lpInPlaceSite, and pFrameWnd.

Additional reference words: kbinf 2.00
KBCategory: kbtool kbole kbinterop
KBSubcategory: WBDebug VCx86

Using Single/Multiple Instances of an OLE Object in MFC
PSS ID Number: Q141154

The information in this article applies to:

 - The Microsoft Foundation Classes (MFC) included with:

 - Microsoft Visual C++ for Windows, versions 1.0, 1.5, 1.51, 1.52
 - Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2, 4.0

SUMMARY
=======

This article explains how class factories are registered in an OLE local
server created using MFC. This topic is discussed with respect to whether a
single instance of an application can service multiple clients or whether a
separate instance will be launched for each request made by a client.

The class factory specifically attached to the document template behaves
differently based on whether it's a default SDI (single document interface)
or an MDI (multiple document interface) application. Other generic class
factories behave according to how they are registered with OLE.

MORE INFORMATION
================

MFC provides an interface implementation for the class factory
(IClassFactory) in a class called COleObjectFactory, which serves as a
generic type of factory. In addition, MFC also provides a specific class
factory called COleTemplateServer, derived from COleObjectFactory, to
create documents using the framework's document/view architecture.

In the case of a local server, the class factories have to be registered
with OLE so that other applications can connect to them. In MFC, all the
class factories of a server are typically registered in
CWinApp::InitInstance by calling the static function
COleObjectFactory::RegisterAll(). This function calls
COleObjectFactory::Register() for each of the class factories, which in
turn calls CoRegisterClassObject in the case of a local server. In the case
of an inproc server, there is no need to register the class factories with
OLE because COM loads the DLL (that is, the server) and invokes a well-
known entry-point, called DllGetClassObject, to retrieve an IClassFactory
interface.

When a client requests that a server create an instance of an object, the
decision to use a running instance of the server, if one is available, or
to launch another instance of the server is made by OLE depending on how
the class factory for the object is registered. The determining factor is
the fourth parameter to CoRegisterClassObject, which specifies how many
objects can be created using this class factory. If REGCLS_SINGLEUSE is
specified, OLE will launch another instance of the application each time a
client requests an instance of an object class. If REGCLS_MULTIPLEUSE is
specified, one instance of the application can service any number of

objects.

MDI applications use the same main frame window (that is, the same instance
of the application) and create a new MDI child window for each request made
by a client to create an object instance. When a client calls
CoCreateInstance to create a document window object exposed by
COleTemplateServer, a new MDI child window is created using the same MDI
frame window. MFC implements this concept by passing in FALSE as the
m_bMultiInstance parameter to the ConnectTemplate function of
COleTemplateServer. This registers the class factory as single instance by
passing REGCLS_MULTIPLEUSE to CoRegisterClassObject.

SDI applications, on the other hand, can manage only one document window at
a time. Hence, SDI applications are by default single use only; that is, a
separate instance (or a document window) is created for each call to
CoCreateInstance made by a client. This is implemented in an MFC
application by passing in TRUE as the m_bMultiInstance parameter to
COleTemplateServer::ConnectTemplate, which registers the class factory as
multiple instance by passing REGCLS_SINGLEUSE to CoRegisterClassObject.

Generic class factories that are used to create any C++ object are
registered as single- or multiple-use based on how the constructor for
COleObjectFactory is invoked. The constructor takes a bMultiInstance
parameter that specifies whether the class factory is registered as
REGCLS_SINGLEUSE (bMultiInstance == TRUE) or REGCLS_MULTIPLEUSE
(bMultiInstance == FALSE).

When ClassWizard is used to add OLE-creatable classes to an MFC
application, it adds the DECLARE_OLECREATE and IMPLEMENT_OLECREATE macros.
DECLARE_OLECREATE declares a static object of type COleObjectFactory, and
IMPLEMENT_OLECREATE creates this object by invoking the constructor of
COleObjectFactory with the bMultiInstance parameter set to FALSE. In other
words, ClassWizard registers the generic class factory as
REGCLS_MULTIPLEUSE. Hence by default, a single instance of an OLE-creatable
class generated by ClassWizard can serve multiple requests to create an
instance of this object class.

This behavior can be altered by replacing IMPLEMENT_OLECREATE with a custom
macro, say MY_IMPLEMENT_OLECREATE, which invokes the COleObjectFactory
constructor with the bMultiInstance parameter set to TRUE, which will then
register a REGCLS_SINGLEUSE class factory. For example:

#define MY_IMPLEMENT_OLECREATE(class_name, external_name, l, w1, w2,
 b1, b2, b3, b4, b5, b6, b7, b8) \
 COleObjectFactory class_name::factory(class_name::guid, \
 RUNTIME_CLASS(class_name), TRUE, _T(external_name)); \
 const GUID CDECL class_name::guid = \
 { l, w1, w2, { b1, b2, b3, b4, b5, b6, b7, b8 } }; \

MY_IMPLEMENT_OLECREATE(CMyClass, "Test", 0xc9c99ae0, 0xad41, 0x101b,
 0x83, 0xea, 0x0, 0x0, 0x83, 0x78, 0xac, 0x8b)

The CLSID used in this macro call should be replaced with the actual CLSID
assigned for this particular object, which can be found in the original
IMPLEMENT_OLECREATE macro.

REFERENCES
==========

Inside OLE 2.0, Second Edition.

Visual C++ Books Online and the MFC source code for the functions mentioned
in the article.

Additional reference words: kbinf 1.00 1.50 2.00 2.10 2.51 2.52 3.00 3.10
3.20 4.00
KBCategory: kbole
KBSubcategory: MfcOLE

Variant Handling in an MFC Server w/ VB 4.0 as Its Client
PSS ID Number: Q142223

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic
 programming system for Windows, version 4.0

- The Microsoft Foundation Classes (MFC) included with:
 Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2, 4.0

SUMMARY
=======

It is possible for Visual Basic 4.0 to pass parameters to automation
methods either by value (ByVal) or by reference (ByRef). For a method that
expects a non-VARIANT parameter passed by value, MFC's implementation of
IDispatch will coerce a parameter passed by reference to a value. However,
this is not the case with an automation method expecting a VARIANT
parameter. The MFC framework cannot coerce a VARIANT parameter because it
does not know what type is expected by the method. This can cause problems
in a method that expects a VARIANT parameter to be passed by value. If the
parameter is passed by reference and the VARIANT is referenced directly,
the value obtained from the variant will be incorrect. Hence, an automation
method that expects a VARIANT to be passed by value should check whether it
was passed a reference and coerce the VARIANT if necessary. This article
illustrates how you could implement this.

MORE INFORMATION
================

Consider the following method named Add exposed by a MFC automation server
with a ProgID TestVar.Document:

 LPDISPATCH Add(const VARIANT FAR& varTest);

Given the following code in Visual Basic, it may pass the parameter either
by reference or by value:

 Dim doc As Object
 Set doc = CreateObject("TestVar.Document")

 Dim docDispatch As Object
 Dim varParam As Variant
 varParam = 2

Visual Basic will pass the parameter by reference in these cases:

 Set docDispatch = doc.Add(varParam)
 doc.Add varParam

Visual Basic will pass the parameter by value in these cases:

 Set docDispatch = doc.Add((varParam))
 doc.Add (varParam)
 Set docDispatch = doc.Add(2)
 doc.Add 2

From these examples, you may notice that Visual Basic will pass all
variables by reference unless the () operator is used to indicate that the
variable should be passed by value. Moreover, Visual Basic will pass all
constants by value.

Because of the possibility of the parameter being passed by reference, it
is necessary to coerce the parameter to a value before using it in the
automation server. Making a copy of the VARIANT parameter using the
VariantCopyInd function will perform the necessary indirection, if the
source VARIANT parameter passed is specified to be VT_BYREF. The following
code will properly handle a VARIANT passed either by reference or by value.

LPDISPATCH CTestVarDoc::Add(const VARIANT FAR& varTest)
{
 HRESULT hr;
 VARIANT var;
 VariantInit(&var);

 hr = VariantCopyInd(&var, (LPVARIANT)&varTest);

 if (FAILED(hr))
 return NULL;

 // Now use var instead of varTest
 ...
}

Additional reference words: kbinf 4.00 3.00 3.10 3.20 4.0 2.0 2.1 2.2
KBCategory: kbprg kbole kbcode
KBSubcategory: MfcOLE

VB Automation of Visual C++ Server Using OBJ1.OBJ2.prop Syntax
PSS ID Number: Q137343

The information in this article applies to:

 - The Microsoft Foundation Classes included with:

 - Microsoft Visual C++ for Windows, versions 1.5, 1.51, 1.52
 - Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2,
 4.0, 4.1

SUMMARY
=======

It is often necessary to access properties within nested objects exposed by
OLE Automation. The Visual Basic syntax is:

 OBJ1.OBJ2.Property

This article demonstrates the creation of a simple OLE Automation server
with Visual C++, accessible from Visual Basic, that exposes such an object.

MORE INFORMATION
================

The following steps demonstrate how to create a Visual C++ OLE Automation
server that allows Visual Basic to use the OBJ1.OBJ2.Property syntax.

Steps to Create the Visual C++ OLE Automation Server
--

1. Create an AppWizard-generated project called AutoServ with OLE
 Automation enabled.

2. Once the project has been generated, start ClassWizard.

3. Click the OLE Automation tab.

4. Click the Add Class button, enter the following values, and then click
 Create Class:

 Class Name: nested
 Class Type: CCmdTarget
 Check: OLE Automation

5. Click the ClassWizard's OLE Automation tab. Set the Class Name to
 nested, click the Add Property button, enter the following values, and
 then click OK:

 External Name: Value
 Type: long

6. Change the Class Name in ClassWizard to CAutoServDoc. If you are

 prompted to save changes, click Yes. Then click the Add Method button,
 enter the following values, and click OK:

 External Name: Nested
 Return Type: LPDISPATCH

7. Click OK to accept the additions created by ClassWizard.

8. Open the project's AutoServDoc.h file, and add the following line to
 the beginning of the file:

 #include "nested.h"

9. To the same file, add a public member variable m_nested of type nested.
 A pointer mechanism could have been used to maintain the nested class;
 however, for this example, the chosen method will automatically create
 and destroy the nested object within the Documents constructor and
 destructor respectively.

10. Open the project's nested.h file, and modify the class so that the
 constructor and destructor are public methods.

11. Open the projects AutoServDoc.cpp file, and modify the Nested Method
 as follows:

 LPDISPATCH CAutoServDoc::Nested()
 {
 //TODO: Add your dispatch handler code here
 return m_nested.GetIDispatch(TRUE);
 }

12. Build the project, and then run AutoServ.exe to register the server.

Steps to Test the Server in Visual Basic
--

1. Start a new project in Visual Basic that will be used to test the OLE
 Automation server.

2. On the View menu, click Code.

3. In the Object combo box, select (general).

4. Enter the following code:

 Dim Server As object

5. Select Form in the Object combo box. Modify the Sub procedure as
 follows:

 Sub Form_Load ()
 Set Server = CreateObject("autoserv.document")
 Server.Nested.Value = 10
 x = Server.Nested.Value
 End Sub

6. Add x and Server.Nested.Value to the Visual Basic watch window, so that
 you can observe the changes while stepping into the Visual Basic
 program.

Additional reference words: 1.50 1.51 1.52 2.00 2.10 2.20 2.50 2.51 2.52
3.00 3.10 3.20 4.00 4.10 vc vb client controller
KBCategory: kbole kbinterop kbprg kbcode
KBSubcategory: MfcOLE

Win32s OLE 16/32 Interoperability
PSS ID Number: Q123422

The information in this article applies to:

 - Microsoft Win32s version 1.20

The OLE support provided in Win32s version 1.2 provides full 16/32
interoperabililty for local servers (EXE servers). Therefore, you can
embed a 32-bit object implemented by a local server in a 16-bit container
and vice-versa.

There is no built-in support in Win32s for 16/32 interoperability for
in-process servers (DLL servers). However, you can use Universal Thunks
to load a 16-bit DLL in the context of a 32-bit process. This allows you
to embed a 16-bit object implemented by a DLL server in a 32-bit
container. However, it is quite complicated to write this code because:

 - Any OLE interface has a hidden "this" pointer which you must handle in
 your thunking code.
 - OLE uses callbacks. If your 32-bit container calls IDataObject:DAdvise,
 then your 16-bit server may call back into the 32-bit side with the
 Advise interface. Your thunking code will have to handle this type of
 conversation.

NOTE: Embedding a 32-bit object implemented by an in-process server in a
16-bit container is supported under Windows NT 3.5. However, this
functionality may not work correctly for your in-process server because
IDispatch and any custom interfaces do not work.

Additional reference words: 1.20
KBCategory: kbole
KBSubcategory: W32s

16-Bit App WNetGetCaps Call Return Value on Win32
PSS ID Number: Q120359
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.5, 3.51,
 and 4.0
--

16-bit Windows-based applications often call WNetGetCaps() to determine the
capabilities of the installed network. When a Windows-based application
running on Windows NT calls WNetGetCaps(), the return value is 0x8004,
which corresponds to WNNC_NET_Multinet | WNNC_SUBNET_WinWorkgroups.

However, the Windows NT Windows on Windows (WOW) layer and Windows 95 do
not support the Windows for Workgroups Multinet (MNet) APIs, so a call to
one of these APIs returns a failed Dynalink error.

The return value of WNetGetCaps() may not seem technically correct for
Windows for Workgroups. It was designed to be compatible with all existing
16-bit Windows-based applications.

If you need to determine whether a 16-bit Windows-based application is
running on Windows NT or MS-DOS/Windows version 3.1, use GetWinFlags().
GetWinFlags() returns a WF_WINNT flag if the application is running under
WOW on Windows NT.

GetWinFlags() is an existing function that was modified in WOW to add the
following flag:

 #define WF_WINNT 0x4000

Additional reference words: 3.50 4.00
KBCategory: kbprg
KBSubcategory: SubSys

32-Bit Scroll Ranges
PSS ID Number: Q104311

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

You can use 32-bit scroll ranges by calling GetScrollPos(); however, you
cannot get 32-bit positions for notifications sent while thumb tracking,
that is, via the SB_THUMBPOSITION message. This is because thumb position
information is not queryable via an application programming interface
(API). You only can obtain the 32-bit scroll information only before or
after the scroll has taken place.

The scroll bar APIs allow setting a scroll range up to 0x7FFFFFFF via
SetScrollRange(), and setting a scroll position within that range using
SetScrollPos(). If the WM_HSCROLL or WM_VSCROLL message is processed, the
information returned for scroll bar position, nPos, is only a 16-bit value.
To obtain the 32-bit information, the GetScrollPos() API must be used.

Additional reference words: 3.10 3.50 scrollbar
KBCategory: kbui
KBSubcategory: UsrCtl

Accessing Parent Window's Menu from Child Window w/ focus
PSS ID Number: Q92527

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In an MDI-like application, the user must be allowed to pull down menus in
the parent window by using menu mnemonics even though the child window or
one of its children may have the focus. This can be done by creating child
windows without a system menu or by processing the WM_MENUCHAR and
WM_SYSCOMMAND/SC_KEYMENU messages to programatically pull down the parent's
menu.

MORE INFORMATION
================

If a child window with a system menu has the focus and the user attempts to
access the parent's menu with the keyboard using the menu mnemonic
(ALT+mnemonic character), Windows will beep and the parent's menu will not
be pulled down. This problem occurs because the parent window does not have
the focus and because the window with the focus does not have a menu
corresponding to the mnemonic. (Child windows cannot have menus other than
the system menu.)

If the child window with the focus does not have a system menu, Windows
assumes that the menu mnemonic is for the nearest ancestor with a system
menu and passes the message to that parent. Consequently, it is possible to
use menu mnemonics to pull down a parent's menu if the descendant windows
do not have system menus.

If the child window with the focus has a system menu, Windows will beep if
a menu mnemonic corresponding to a parent menu is typed. This can be
prevented and the parent menu can be dropped down using the following code
in the window procedure of the child window:

 case WM_MENUCHAR:
 PostMessage(hwndWindowWithMenu, WM_SYSCOMMAND, SC_KEYMENU, wParam);
 return(MAKELRESULT(0, 1));

WM_MENUCHAR is sent to the child window when the user presses a key
sequence that does not match any of the predefined mnemonics in the current
menu. wParam contains the mnemonic character. The child window posts a
WM_SYSCOMMAND/SC_KEYMENU message to the parent whose menu is to be dropped
down, with lParam set to the character that corresponds to the menu

mnemonic.

The above code can also be used if the child window with the focus does not
have a system menu but an intermediate child window with a system menu
exists between the child with the focus and the ancestor whose menu is to
be dropped. In this case, the code would be placed in the intermediate
window's window procedure.

Additional reference words: 3.10 3.00 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrMen

Accessing the Application Desktop from a Service
PSS ID Number: Q115825

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51

SUMMARY
=======

Under Windows NT, version 3.1, if you want a service to have access to the
application desktop, you must run the service in the LocalSystem account. A
service process running in the LocalSystem account (or a process started
from such a service) can display message boxes, windows, and dialog boxes.
Processes that are running in the LocalSystem account are not terminated by
the system during logoff. A number of changes were made to Windows NT,
version 3.5, that affect the way Windows NT interacts with these services.
In addition, Windows NT 3.51 has a richer set of desktop APIs.

NOTE: Running interactive services under the system account is a VERY
dangerous practice. This is especially true of the command processor and
batch files. A user who wants to control the system can just hit CTRL+C
to get an interactive system command prompt.

MORE INFORMATION
================

The following are new features of Windows NT, version 3.5, that affect
services:

 - The account of the logged in user is the only account granted access to
 the application desktop. The LocalSystem no longer has access.
 Therefore, it is possible to get access to the desktop by impersonating
 the user before making any USER or GDI calls.

 - Console and GUI applications started from a service process during a
 particular logon session are run on an invisible window station and
 desktop that are unique to that session. The window station and desktop
 are created automatically when the first application in the session
 starts; they are destroyed when the last application exits. There is no
 way to make these invisible desktops visible.

 - If you want a service in the localsystem account to interact with the
 logged-on user, specify the SERVICE_INTERACTIVE_PROCESS flag in the call
 to CreateService(). For example:

 schService = CreateService(
 schSCManager,
 serviceName,
 serviceName,
 SERVICE_ALL_ACCESS,

 SERVICE_INTERACTIVE_PROCESS | SERVICE_WIN32_OWN_PROCESS,
 SERVICE_DEMAND_START,
 SERVICE_ERROR_NORMAL,
 lpszBinaryPathName,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL);

 If you specify an account other than localsystem when using
 SERVICE_INTERACTIVE_PROCESS, you will get error INVALID_PARAMETER (87).

 - If you use CreateProcess() to launch your process and you want your
 service to log onto the users desktop, assign the lpdesktop parameter of
 the STARTUPINFO struct with "WinSta0\\Default".

 - Services that simply need a visible user notification can do this by
 calling MessageBox() with the MB_SERVICE_NOTIFICATION flag. Using the
 MB_DEFAULT_DESKTOP_ONLY flag works as well, but only if the user's
 desktop is active. If the workstation is locked or a screen saver is
 running, the call will fail.

 NOTE: If you are writing code for an application that can be run as
 either a service or an executable, you can't use MB_SERVICE_NOTIFICATION
 as well as a non-NULL hwndOwner.

 - Any output done to a window is not displayed or made available to the
 application in any way. Attempts to read bits from the display results
 in a failure.

 - GUI services do not receive WM_QUERYENDSESSION/WM_ENDSESSION messages
 at logoff and shutdown; instead, they receive CTRL_LOGOFF_EVENT
 and CTRL_SHUTDOWN_EVENT events. These services are not terminated by the
 system at logoff.

Additional reference words: 3.50
KBCategory: kbprg
KBSubcategory: BseService

Accessing the Event Logs
PSS ID Number: Q108230

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

Event logs are used to store significant events, such as warnings, errors,
or information. There are five operations that can be performed on event
logs through the event logging application programming interface (API):
backup, clear, query, read, and write.

The default event logs are the Application event log, the Security event
log, and the System event log. Access to these event logs is determined by
which account the application is running under.

MORE INFORMATION
================

The following table shows which accounts are granted access to which logs
and what type of access is granted under Windows NT 3.1:

 Log Account Access Granted

 Application LocalSys read write clear
 Admins read write clear
 ServerOp read write clear
 World read write

 Security LocalSys read write clear
 Admins read clear

 System LocalSys read write clear
 Admins read clear
 ServerOp read clear
 World read

 Table 1 - access granted in Windows NT 3.1

The Local System account (LocalSys) is a special account that may be used
by Windows NT services. The Administrator account (Admins) consists of the
administrators for the system. The Server Operator account (ServerOp)
consists of the administrators of the domain server. The World account
includes all users on all systems.

Changes made were for Windows NT 3.5:

 Log Account Access Granted

 Application LocalSys read write clear
 Admins read write clear
 ServerOp read write clear
 World read write

 Security LocalSys read write clear
 Admins read clear
 World read clear *

 System LocalSys read write clear
 Admins read write clear **
 ServerOp read clear
 World read

 Table 2 - access granted under Windows NT 3.5

 * Users that have been granted manage auditing and security log rights
 can read and clear the Security log.

 ** Admins can write to the System log.

The following table shows which types of access are required for the
corresponding event logging API:

 Event Logging API Access Required

 OpenEventLog() read
 OpenBackupEventLog() read
 RegisterEventSource() write
 ClearEventLog() clear

 Table 3 - access required for event logging APIs

As an example, OpenEventLog() requires read access (see Table 2). A member
of the ServerOp account can call OpenEventLog() for the Application event
log and the System event log, because ServerOp has read access for both of
these logs (see Table 1). However, a member of the ServerOp account cannot
call OpenEventLog() for the Security log, because it does not have read
access for this log (see Table 1).

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseMisc

Accessing the Macintosh Resource Fork
PSS ID Number: Q106663

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

Resource forks are implemented as NTFS streams named AFP_Resource. There is
no structure to the fork; it is exactly whatever the Macintosh writes to
it. The resource fork can be written to using standard Win32 application
programming interfaces (APIs). Refer to the forks as
<FileName>:AFP_Resource.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseMisc

Accurately Showing on the Screen What Will Print
PSS ID Number: Q75469

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Many applications have an option where the screen display is set to
closely correspond to the printed output. This article discusses some
of the issues involved in implementing this feature.

MORE INFORMATION
================

If a screen font is available that exactly matches (or at least very
closely corresponds to) the chosen printer font, then the process is
very straightforward and consists of seven steps:

1. Retrieve a device context (DC) or an information context (IC) for
 the printer.

2. Call EnumFontFamilies() to obtain a LOGFONT structure for the chosen
 printer font. The nFontType parameter to the EnumFontFamilies() callback
 function specifies if a given font is a device font.

3. Get a DC for the screen.

4. Convert the lfHeight and lfWidth members of the LOGFONT structure
 from printer resolution units to screen resolution units. If a
 mapping mode other than MM_TEXT is used, round-off error may occur.

5. Call CreateFontIndirect() with the LOGFONT structure.

6. Call SelectObject(). GDI will select the appropriate screen font to
 match the printer font.

7. Release the printer device context or information context and the
 screen device context.

If a screen font that corresponds to the selected printer font is not
available, the process is more difficult. It is possible to modify the
character placement on the screen to match the printer font to show
justification, line breaks, and page layout. However, visual
similarity between the printer fonts and screen fonts depends on a

number of factors, including the number and variety of screen fonts
available, the selected printer font, and how the printer driver
describes the font. For example, if the printer has a serifed Roman-
style font, one of the GDI serifed Roman-style fonts will appear to be
very similar to the printer font. However, if the printer has a
decorative Old English-style font, no corresponding screen font will
typically be available. The closest available match would not be very
similar.

To have a screen font that matches the character placement of a
printer font, do the following:

1. Perform the seven steps above to retrieve an appropriate screen
 font.

2. Get the character width from the TEXTMETRIC structure returned by
 the EnumFonts function in step 2 above. Use this information to
 calculate the page position of each character to be printed in the
 printer font.

3. Allocate a block of memory and specify the spacing between
 characters. Make sure that this information is in screen resolution
 units.

4. Specify the address of the memory block as the lpDx parameter to
 ExtTextOut(). GDI will space the characters as listed in the array.

Additional reference words: 3.00 3.10 3.50 4.00 95 WYSIWYG
KBCategory: kbprint
KBSubcategory: GdiPrn

Action of Static Text Controls with Mnemonics
PSS ID Number: Q65883

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The text of a static control may contain a mnemonic, which is a
character with which the user can access the control. A mnemonic is
indicated to the user by underlining the character in the text of the
control, and is created by preceding the desired character with an
ampersand (&).

Mnemonic characters are used in conjunction with the ALT key to allow
quick access to a control with the keyboard. When the user enters the
key combination of the ALT key and the mnemonic character, Windows
sets the input focus to the corresponding control and performs the
same action as when the mouse is clicked on that control. Push
buttons, option buttons, and check boxes all behave in this manner.

Because static text controls do not accept the focus, the behavior of
a mnemonic in a static text control is different. When the user enters
the mnemonic of a static text control, the focus is set to the next
enabled nonstatic control. A static text control with a mnemonic is
primarily used to label an edit control or list box. When the user
enters the mnemonic, the corresponding control gains the focus.

In this context, the order in which windows are created is important.
In a dialog box template, the control defined on the line following
the static text control is considered to be "next."

When the user enters the mnemonic of a static text control and the
next control is either another static text control or a disabled
control, Windows searches for a control that is nonstatic and enabled.
In some cases, it may be preferable to disable the mnemonic of a
static text control when the control it labels is also disabled. For
more information, please query in the Microsoft Knowledge Base on the
following word:

 mnemonic

MORE INFORMATION
================

The dialog box described by the following dialog box template might be

displayed by an application when the user chooses Open from the File
menu:

IDD_FILEOPEN DIALOG LOADONCALL MOVEABLE DISCARDABLE 9, 22, 178, 112
CAPTION "File Open..."
STYLE WS_CAPTION | DS_MODALFRAME | WS_SYSMENU | WS_VISIBLE | WS_POPUP
BEGIN
 CONTROL "File&name:", ID_NULL, "static",
 SS_LEFT | WS_GROUP | WS_CHILD, 5, 5, 33, 8
 CONTROL "", ID_NAMEEDIT, "edit",
 ES_LEFT | ES_AUTOHSCROLL | WS_BORDER | WS_TABSTOP
 | WS_CHILD | ES_OEMCONVERT, 40, 4, 90, 12
 CONTROL "Directory:", ID_NULL, "static", SS_LEFT | WS_CHILD,
 5, 20, 35, 8
 CONTROL "", ID_PATH, "static", SS_LEFT | WS_CHILD, 40, 20, 91, 8
 CONTROL "&Files:", ID_NULL, "static", SS_LEFT | WS_GROUP
 | WS_CHILD, 5, 33, 21, 8
 CONTROL "", ID_FILELIST, "listbox", LBS_NOTIFY | LBS_SORT
 | LBS_STANDARD | LBS_HASSTRINGS | WS_BORDER | WS_VSCROLL
 | WS_TABSTOP | WS_CHILD, 5, 43, 66, 65
 CONTROL "&Directories:", ID_NULL, "static", SS_LEFT | WS_GROUP
 | WS_CHILD, 75, 33, 49, 8
 CONTROL "", ID_DIRLIST, "listbox", LBS_NOTIFY | LBS_SORT
 | LBS_STANDARD | LBS_HASSTRINGS | WS_BORDER | WS_VSCROLL
 | WS_TABSTOP | WS_CHILD, 75, 43, 65, 65
 CONTROL "OK", IDOK, "button", BS_DEFPUSHBUTTON | WS_TABSTOP
 | WS_CHILD, 139, 4, 35, 14
 CONTROL "Cancel", IDCANCEL, "button", BS_PUSHBUTTON | WS_TABSTOP
 | WS_CHILD, 139, 23, 35, 14
END

In this dialog box, one static text control, with identifier ID_PATH,
is used to display the current path. The other four static text
controls label other controls, as follows:

 "File&name" labels the ID_NAMEEDIT edit control
 "Directory" labels the ID_PATH static control display
 "&Files" labels the ID_FILELIST list box
 "&Directories" labels the ID_DIRLIST list box

When the user enters the key combination ALT+N, Windows sets the focus
to the edit control identified in the dialog template as ID_NAMEEDIT,
because it is the next enabled nonstatic control. If that edit control
was disabled by the EnableWindow function, pressing ALT+N would move
the focus to the next enabled nonstatic control. This control would be
the list box identified as ID_FILELIST.

Note that the static control "Directory" has no mnemonic; therefore,
keyboard input does not affect it.

When the user enters ALT+F, the focus moves to the ID_FILELIST list
box, if it is enabled. In the same manner, ALT+D moves the focus to
the ID_DIRLIST list box.

If ID_DIRBOX is disabled, ALT+D moves the focus to the OK button, the

next enabled nonstatic control. Windows treats this as if the user
pressed and released the mouse button over the OK button. For more
information on how to prevent this behavior, query the Microsoft
Knowledge Base on the following word:

 mnemonic

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95 radio shortcut
KBCategory: kbui
KBSubcategory: UsrCtl

Adding a Custom Template to a Common Dialog Box
PSS ID Number: Q86720

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.5

SUMMARY
=======

Many applications developed for the Microsoft Windows environment using
dialog boxes from the common dialogs library (COMMDLG.DLL) require custom
dialog templates. An application generally uses a custom dialog box
template to add controls to a standard common dialog box. The text below
discusses the steps required to implement a custom dialog box template with
a common dialog box.

A custom dialog box template is most often used in conjunction with a hook
function. For details on using a hook function with one of the common
dialog boxes, query on the following words in the Microsoft Knowledge Base:

 steps adding hook function

MORE INFORMATION
================

CDDEMO, one of the advanced sample applications provided with version 3.1
of the Microsoft Windows Software Development Kit (SDK), demonstrates
adding a hook function to the File Open dialog box. The five steps required
to modify the CDDEMO application to use a custom dialog box template in its
File Open dialog box are as follows:

 1. Edit the FILEOPEN.DLG template in the Windows SDK advanced sample
 applications directory (by default, C:\WINDEV\SAMPLES\COMMDLG). All
 existing controls must remain in the dialog template; add
 additional controls, if desired. To demonstrate the process, make a
 copy of the FILEOPEN.DLG template and include it in the CDDEMO.RC
 file. Modify the title of the "Cancel" button to "CANCEL." Renaming
 the button minimizes the potential for error while demonstrating
 that the application loaded the custom dialog box template.

 2. In the application, modify the Flags member of the OPENFILENAME
 data structure to include the OFN_ENABLETEMPLATE initialization
 flag.

 3. Specify MAKEINTRESOURCE(FILEOPENORD) as the value of the
 lpTemplateName member of the OPENFILENAME data structure.

 4. Specify ghInst as the value of the hInstance member of the

 OPENFILENAME data structure.

 5. Use the #include directive to include DLGS.H in the CDDEMO.RC file.

If an application adds a hook function to a common dialog box, the hook
receives all messages addressed to the dialog box. With the exception of
the WM_INITDIALOG message, the hook function receives messages before its
associated common dialog box does. If the hook function processes a message
completely, it returns TRUE. If the common dialog box must provide default
processing for a message, the hook function returns FALSE.

In the hook function, the application should process messages for any new
controls added through the custom dialog box template. If the standard
common dialog box template contains a control that is unnecessary in a
particular application, hide the control when the hook function processes
the WM_INITDIALOG message. Use the ShowWindow() API to hide a control; do
not delete any controls from the common dialog box template. To indicate
that the common dialog boxes DLL does not function properly if any controls
are missing, the debug version of Windows displays FatalExit 0x0007.

Additional reference words: 3.10 3.50
KBCategory: kbui
KBSubcategory: UsrCmnDlg

Adding a Hook Function to a Common Dialog Box
PSS ID Number: Q86721

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Many applications developed for the Microsoft Windows environment using
dialog boxes from the common dialogs library (COMMDLG.DLL) require hook
functions. A hook function for one of the common dialog boxes is similar to
a subclass procedure for a standard Window control, such as an edit
control. Through a hook function, an application can process all messages
addressed to the dialog box. The text below discusses the steps required to
implement a hook function with a common dialog box.

A hook function is most often used in conjunction with a custom dialog
template. For details using a custom dialog template with one of the
common dialog boxes, query on the following words in the Microsoft
Knowledge Base:

 steps add custom template

MORE INFORMATION
================

The hook function receives all messages addressed to a common dialog box.
With the exception of the WM_INITDIALOG message, the hook function receives
messages before its associated common dialog box does. If the hook function
processes a message completely, it returns TRUE. If the common dialog box
must provide default processing for a message, the hook function returns
FALSE.

CDDEMO, one of the advanced sample applications provided with version 3.1
of the Microsoft Windows Software Development Kit (SDK), demonstrates
adding a hook function to the File Open dialog box. The eight steps
involved in this process are as follows:

 1. Add the standard common dialog box to the application without the
 hook function.

 2. In the application's module definition (DEF) file, list the hook
 procedure name (for example, MyHookProc) in the EXPORTS section.

 3. Define a FARPROC variable (for example, lpfnHookProc)

 4. In the application, before completing the OPENFILENAME data
 structure, call the MakeProcInstance function to create a procedure
 instance address for the hook procedure.

 5. Set the lpfnHook member of the OPENFILENAME data structure to the
 procedure address of the hook function.

 6. Specify OFN_ENABLEHOOK as one of the initialization flags in the
 Flags member of the OPENFILENAME structure.

 7. Code the hook function to process messages as required. A sample
 hook function follows below.

 8. After the user dismisses the common dialog box, call the
 FreeProcInstance function to free the procedure instance address.

The following code is a sample hook function:

 BOOL FAR PASCAL MyHookProc(HWND hDlg, unsigned message,
 WORD wParam, LONG lParam)
 {
 switch (message)
 {
 case WM_INITDIALOG:
 OutputDebugString("Hello hook function!");
 return TRUE;

 case WM_COMMAND:
 switch(wParam)
 {
 case IDD_MYNEWCONTROL:
 // Perform appropriate processing here...
 return TRUE;

 default:
 break;
 }
 break;

 default:
 break;
 }
 return FALSE;
 }

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrCmnDlg

Adding Categories for Events
PSS ID Number: Q115947

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51

SUMMARY
=======

The ReportEvent() API accepts a category ID as one of the arguments. The
"Microsoft Win32 Programmer's Reference" states that you can add your own
categories for events. This article shows you how to add categories that
will be recognized by the Event Viewer; however, the article assumes that
you already know how to create a message file and add an event source to
the registry. For information about basic event logging, please see the
logging sample in the Q_A\SAMPLES\logging directory on the "Win32 SDK" CD.

NOTE: The logging example that comes with Visual C++ 2.0 does not bind the
MESSAGES.RC to the MESSAGES.DLL unlike the logging example that accompanies
the Win32 SDK or NSDN Level 2. Binding MESSAGES.RC to the MESSAGES.DLL can
be accomplished by adding MESSAGES.RC to MESSAGES.MAK.

NOTE: If you notice that there are some entries that have a .DLL name and a
driver name while you are attempting to read messages from the event log,
this means that the event message source has more than one message file.
This means you need to parse the string and load each message file.

MORE INFORMATION
================

Just like events, category IDs are simply IDs in message file resources.
However, in order to use categories, the following two requirements must be
met:

 - The category IDs must be sequentially numbered, starting with a
 message ID of 1.

 - The event source entry in the registry must specify the category
 message file and the number of categories in the message file.

The first requirement is simply a matter of setting the MessageID entries
in the message file for the categories. If all of your categories are
listed at the top of the message file, you can assign the ID of 1 to the
first message. Each message after that automatically gets the next ID value
unless you specify otherwise in the MessageID entry.

The category entries in the registry are made by adding values to your
event key. Normally, your event log application key already contains
EventMessageFile and TypesSupported entries. You should add the following
two entries:

 - CategoryMessageFile

 - CategoryCount

The CategoryMessageFile entry is of type REG_EXPAND_SZ. It should be set to
the full path to the message file that contains the categories.

The CategoryCount entry is a REG_DWORD type. You should set this entry to
the number of categories in the message file specified in
CategoryMessageFile.

REFERENCES
==========

"Microsoft Win32 Programmer's Reference," Microsoft Corporation.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseMisc

Adding Custom Error Strings to an MCI Device Driver
PSS ID Number: Q76411
--
The information in this article applies to:

 - Microsoft Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
--

SUMMARY
=======

In the Microsoft Windows graphical environment, an application can use
mciGetErrorString() to obtain the string associated with an error code
returned from a media control interface (MCI) device driver.

An MCI driver can use a STRINGTABLE resource to store its error strings.
The identifier constant for each string should correspond to the error
value returned by the DriverProc function. This value must be greater than
or equal to the constant MCIERR_CUSTOM_DRIVER_BASE to avoid confusion with
the predefined MCI error codes.

MORE INFORMATION
================

For example, the Pioneer LaserDisc device driver, MCIPIONR.DRV, included
with the Microsoft Device Development Kit (DDK) for Windows 3.1, contains
the following declarations in its header file, MCIPIONR.H:

#define MCIERR_PIONEER_ILLEGAL_FOR_CLV (MCIERR_CUSTOM_DRIVER_BASE)
#define MCIERR_PIONEER_NOT_SPINNING (MCIERR_CUSTOM_DRIVER_BASE+1)
#define MCIERR_PIONEER_NO_CHAPTERS (MCIERR_CUSTOM_DRIVER_BASE+2)
#define MCIERR_PIONEER_NO_TIMERS (MCIERR_CUSTOM_DRIVER_BASE+3)

Its resource file, MCIPIONR.RC, contains the following STRINGTABLE
definition:

STRINGTABLE
BEGIN
 MCIERR_PIONEER_ILLEGAL_FOR_CLV, "Illegal operation for CLV type disc."
 MCIERR_PIONEER_NOT_SPINNING, "The disc must be spun up to perform this \
operation."
 MCIERR_PIONEER_NO_CHAPTERS, "Chapters are not supported for this disc."
 MCIERR_PIONEER_NO_TIMERS, "All timers are in use. Cannot enable \
notification."
END

When mciGetErrorString() receives a value greater than or equal to
MCIERR_CUSTOM_DRIVER_BASE, it looks in the driver's resource table for a
string with the corresponding identifier.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbmm kbprg

KBSubcategory: MMMisc

Adding Point Sizes to the ChooseFont() Common Dialog Box
PSS ID Number: Q99668

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

When a TrueType font (or any other scalable font) is selected in the
ChooseFont() common dialog box, a list of reasonable point sizes is
displayed for selection. In some cases it is necessary to change this
list to allow fewer or more selections.

The initial list of point sizes is hard-coded into COMMDLG.DLL but can
be changed programmatically using a common dialog box hook function.

MORE INFORMATION
================

Most scalable fonts can be created at nearly any point size. Some
TrueType fonts can be sized from 4 points to 999 points. A complete
list of available point sizes for a font of this type would contain
about 1000 elements, which can be prohibitively long and
time-consuming to construct.

The ChooseFont() common dialog box attempts to limit the selection by
listing only a few of the available point sizes in the size selection
combo box.

In certain cases, it may be desirable to offer more point-size
selections in this dialog box. In this case, a common dialog box hook
procedure can be used to insert point sizes when a specific font is
selected.

The following steps describe a technique that will allow new point
sizes to be added to the size selection combo box. Pay special
attention to step number 4:

1. In your common dialog box hook procedure, look for WM_COMMAND
 messages with wParam equal to the font name combo box (which is
 "cmb1" for Windows version 3.1).

2. When you get this message(s), check for the font name you are
 looking for (for example, you can compare the current selection to
 "Courier New"). If it's not the font you want, return.

3. If this is the font you want, post yourself a user-defined
 message. In response to this message, add the new point size to the
 Point Size combo box (which is "cmb3" for Windows 3.1). It's a good
 idea to double-check here that the point size you are adding isn't
 already in the combo box (so you don't get duplicates).

4. Once you add the new point size, set the item data for the new
 item equal to the point size you are adding. For example, if you
 are adding the string "15" to the combo box, you need to set the
 item data of this new item to 15.

The following code fragment demonstrates the above steps:

// Common Dialog ChooseFont() hook procedure.

UINT CALLBACK __export FontHook(HWND hwnd, UINT wm, WPARAM wParam,
LPARAM lParam)
{
 char szBuf[150];
 DWORD dwIndex;

 switch(wm)
 {
 case WM_COMMAND:
 // See if the notification is for the "Font name" combo box.
 if (wParam == cmb1)
 {
 switch (HIWORD(lParam))
 {
 case CBN_SETFOCUS:
 case CBN_KILLFOCUS:
 break;
 default:
 // Check to see if it's the font we're looking for.
 dwIndex = SendDlgItemMessage(hwnd, cmb1, CB_GETCURSEL,
 0, 0);
 if (dwIndex != CB_ERR)
 SendDlgItemMessage(hwnd, cmb1, CB_GETLBTEXT, (WPARAM)
 dwIndex, (LPARAM) ((LPSTR) szBuf));

 // Compare list box contents to the font we are looking for.
 // In this case, it's "Courier New".
 if (strcmp(szBuf, "Courier New") == 0)
 // It's the font we want. Post ourselves a message.
 PostMessage(hwnd, WM_ADDNEWPOINTSIZES, 0, 0L);
 }
 }
 break;

 case WM_ADDNEWPOINTSIZES:
 // First look to see if we've already added point sizes to this
 // combo box.
 if (SendDlgItemMessage(hwnd, cmb3, CB_FINDSTRING, -1,
 (LPARAM)(LPCSTR)"6") == CB_ERR)
 {

 // Not found, add new point size.
 dwIndex = SendDlgItemMessage(hwnd, cmb3, CB_INSERTSTRING,
 0, (LPARAM)(LPSTR)"6");

 // Also set the item data equal to the point size.
 SendDlgItemMessage(hwnd, cmb3, CB_SETITEMDATA,
 (WPARAM)dwIndex, 6);
 }
 return TRUE; // Don't pass this message on.
 }
 return FALSE;
}

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrCmnDlg

Adding to or Removing Windows from the Task List
PSS ID Number: Q99800

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

There are no functions included in the Windows Software Development
Kit (SDK) to add or remove windows from the task list. All top-level
windows (that is, windows without parents) that are visible will
automatically appear in the task list. A window can be removed from
the task list by making it hidden. Call ShowWindow() with the SW_HIDE
parameter to hide the window. To make it visible again, call
ShowWindow() with the appropriate parameter such as SW_SHOW or
SW_SHOWNORMAL.

Additional reference words: 3.00 3.10 3.50 tasklist
KBCategory: kbui
KBSubcategory: UsrMisc

Additional Information About GetTypeByName
PSS ID Number: Q138038
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.51, 4.0
--

SUMMARY
=======

GetTypeByName takes a service name in string format and returns a global
unique identifier (GUID) for it. GetTypeByName is documented in the Win32
SDK. This article is an addendum to the documentation.

MORE INFORMATION
================

The purpose of GetTypeByName is to retrieve a GUID of a service. It does
this first by examining the registry, looking for a local service. If the
key does not exist, the function conducts a search of well-known TCP and
UDP service types. If the service GUID is still unknown, a final comparison
is made against a hard-coded list. See Srvguid.h for a list of most of the
known GUIDs.

All comparisons made by GetTypeByName are case-sensitive.

GetTypeByName is exported from Wsock32.dll. To use it for anything other
than registry information retrieval, call WSAStartup first. If WSAStartup
is not called prior to calling GetTypeByName, the function fails, and
GetLastError returns ERROR_SERVICE_DOES_NOT_EXIST, not WSANOTINITIALIZED.

REFERENCES
==========

"Win32 Software Development Kit Programmer's Reference," version 3.51.

Additional reference words: 4.00 GetTypeByName Windows 95
KBCategory: kbnetwork kbprg
KBSubcategory:

Additional Information for WIN32_FIND_DATA
PSS ID Number: Q120697

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

This article contains additional information about the WIN32_FIND_DATA
members.

The WIN32_FIND_DATA structure contains three members that store the
creation, last access, and last write time of a file. The time format
for these three members (ftCreationTime, ftLastAccessTime, and
ftLastWriteTime) are expressed in the Universal Time Convention (UTC).
These three data members can be converted from UTC time to local time by
calling the FileTimeToLocalFileTime api.

The WIN32_FIND_DATA structure contains two members that store the file
size: nFileSizeHigh and nFileSizeLow. They are described as being the high
and low order words of the size, but they are actually DWORDs. Therefore,
nFileSizeHigh will be zero unless the file size is greater than 0xffffffff
(4.2 Gig).

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseMisc

Additional Remote Debugging Requirement
PSS ID Number: Q106066
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0
--

The printed and online documentation for remote debugging with WinDbgRm
fail to mention one requirement. The binaries must be in the same drive and
directory on both the target machine and the development machine.

WinDbg also expects to find the source files in the same directory in which
the the binary file was built, but will browse for the source if it is not
found in this location. WinDbg will automatically locate the source if the
files are specified to the compiler with fully qualified paths.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsWindbg

Administrator Access to Files
PSS ID Number: Q102099

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51

A user that is a member of the Administrator group is not automatically
granted access to any file on the local machine. For an administrator to
access a file, permission must be specifically granted (as for any user) in
the file's discretionary access control list (DACL).

If an administrator wants to access a file that he or she is not granted
access to, the administrator must first take ownership of that file. Once
ownership is taken, the administrator will have full access to the file. It
is important to note that administrator cannot give ownership back to the
original owner. If this were so, the administrator could take ownership of
a file, examine it, and then assign it back to the original owner without
that owner's knowledge.

NOTE: Because administrators have backup privileges, an administrator could
back up a file (or entire volume) and restore it onto another system. The
administrator could then take ownership of a file on this new system,
examine it, and then restore from backup with original permissions, without
the owner's knowledge. Please keep this in mind when thinking about file
security.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

Advanced Graphics Settings Slider under Windows 95
PSS ID Number: Q127066

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

The following table shows exactly what the Advanced Graphics Settings
Slider control does:

Slider Hardware Memory Accelerated
Control Cursor Mapped I/O Functions

None No No Safe mode level 2
Basic No No Safe mode level 1
Most No Yes All
Full Yes Yes All

NOTES:

 - The hardware cursor adjusts the SWCursor switch in SYSTEM.INI [display]
 section. It applies only to S3 and WD drivers.

 - The Memory Mapped I/O adjusts the MMIO switch in SYSTEM.INI [display]
 section. It applies only to the S3 driver.

 - Accelerated Functions adjusts the SafeMode switch in WIN.INI [Windows]
 section. It applies to all DIB engine minidrivers. Level 1 allows basic,
 safe acceleration, such as srcCopy bitblt, patblt, and so on. Level 2
 completely bypasses the driver for all operations (except cursor).

Additional reference words: 4.00 95 Video SYSTEM Applet
KBCategory: kbui
KBSubcategory: UsrCtl

Advantages of Device-Dependent Bitmaps
PSS ID Number: Q94918

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

A DDB (device-dependent bitmap) is much faster than a DIB (device
independent-bitmap) to BitBlt(). For this reason, it is often a good
strategy under Win32 (as well as under Windows 3.1) to create a DDB from a
DIB when caching or calling *Blt() functions.

The slight drawback of memory overhead for the DDB is handled well by
Win32. Under Windows 3.1, the DDB memory could be marked as discardable.
Under Win32, the memory will be paged out if system resources become tight
(at least until the next repaint); if the memory is marked as
PAGE_READONLY, it can be efficiently reused, [see VirtualProtect() in the
Win32 application programming interface (API) Help file].

However, saving the DDB to disk as a mechanism for transfer to other
applications or for later display (another invocation) is not recommended.
This is because DDBs are driver and driver version dependent. DDBs do not
have header information, which is needed for proper translation if passed
to another driver or, potentially, to a later version of the driver for the
same card.

MORE INFORMATION
================

Windows 95 and Windows NT 3.5 and later support DIBSections. DIBSections
are the fastest and easiest to manipulate, giving the speed of DDBs with
direct access to the DIB bits. NOTE: Win32s does not support DIBSections.

Additional reference words: 3.10 3.50 4.00
KBCategory: kbgraphic
KBSubcategory: GdiBmp

Allocating and Using Class and Window Extra Bytes
PSS ID Number: Q34611

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The WNDCLASS structure contains two fields, cbClsExtra and cbWndExtra,
which can be used to specify a number of additional bytes of memory to
be allocated to the class structure itself or to each window created
using that class.

MORE INFORMATION
================

Every application that uses class extra bytes and window extra bytes
must specify the appropriate number of bytes before the window class
is registered. If no bytes are specified, an attempt to store
information in extra bytes will cause the application to write into
some random portion of Windows memory, causing data corruption.

Windows version 3.1 will FatalExit if extra bytes are used improperly.

If an application does not use class extra bytes or window extra
bytes, it is important that the cbClsExtra and cbWndExtra fields be
set to zero.

Class and window extra bytes are a scarce resource. If more than 4
extra bytes are required, use the GlobalAlloc fucntion to allocate a
block of memory and store the handle in class or window extra bytes.

Class Extra Bytes

For example, setting the value of the cbClsExtra field to 4 will cause
4 extra bytes to be added to the end of the class structure when the
class is registered. This memory is accessible by all windows of that
class. The number of additional bytes allocated to a window's class
can be retrieved through the following call to the GetClassWord
function:

 nClassExtraBytes = GetClassWord(hWnd, GCW_CBCLSEXTRA);

The additional memory can be accessed one word at a time by specifying
an offset, in BYTES (starting at 0), as the nIndex parameter in calls

to the GetClassWord function. These values can be set using the
SetClassWord function.

The GetClassLong and SetClassLong functions perform in a similar
manner and get or set four bytes of memory respectively:

 nClassExtraBytes = GetClassLong(hWnd, GCL_CBCLSEXTRA);

NOTE: A Win32-based application should use GetClassLong and SetClassLong,
because the GCW_ indices are obsolete under Win32.

Window Extra Bytes

Assigning a value to cbWndExtra will cause additional memory to be
allocated for each window of the class. If, for example, cbWndExtra is
set to 4, every window created using that class will have 4 extra
bytes allocated for it. This memory is accessible only by using the
GetWindowWord and GetWindowLong functions, and specifying a handle
to the window. These values can be set by calling the SetClassWord
or SetClassLong functions. As with the class structures, the offset
is always specified in bytes.

An example of using window extra bytes would be a text editor that has
a variable number of files open at once. The file handle and other
file-specific variables can be stored in the window extra bytes of the
corresponding text window. This eliminates the requirement to always
consume memory for the maximum number of handles or to search a data
structure each time a window is opened or closed.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbui
KBSubcategory: UsrWndw

AllocConsole() Necessary to Get Valid Handles
PSS ID Number: Q89750

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

If a graphical user interface (GUI) application redirects a standard
handle, such as stderr or stdout, and then spawns a child process, the
output of the child process will not be seen unless the AllocConsole()
application programming interface (API) is called before the standard
handle is redirected.

If an application spawns a child process without calling AllocConsole()
first, the child's console window will appear on the screen and the GUI
application will not be able to control this window (for example, it cannot
minimize the child window). In addition, users can terminate the child
process by choosing Close from the console window's Control (system) menu.
This causes users to think that only the window is closed, when in
actuality, the entire application is terminated. This can cause the user to
lose data in the console window.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseCon

Allowing Only One Application Instance on Win32s
PSS ID Number: Q124134

The information in this article applies to:

 - Microsoft Win32s, versions 1.1, 1.15, 1.15a, and 1.2

SUMMARY
=======

The entry point for both Windows-based and Win32-based applications is:

 int WinMain(hInstance, hPrevInstance, lpszCmdLine, nCmdShow)

 HINSTANCE hInstance; /* Handle of current instance */
 HINSTANCE hPrevInstance; /* Handle of previous instance */
 LPSTR lpszCmdLine; /* Address of command line */
 int nCmdShow; /* Show state of window */

You can allow only one instance of your Windows-based application to run
at a time by using hPrevInstance to determine if there is already an
existing application instance; then exit the process if there is one. If
there is no previous instance, hPrevInstance is NULL.

However, in a Win32-based application, hPrevInstance is always NULL.
Therefore, you cannot determine if another instance of your application
has been started simply by examining hPrevInstance. This article gives you
a method you can use.

MORE INFORMATION
================

Use one of the following four methods to determine if there is an existing
application instance on Win32s:

 - Synchronize with a named object, such as a file mapping.

 -or-

 - Synchronize with a global atom.

 -or-

 - Synchronize with a private message.

 -or-

 - Use FindWindow() to check for the application.

Using a File Mapping

Using a file mapping works well on any Win32 platform. The global atom is a

cheaper resource, whereas a file mapping will cost a page of memory. A
private message is good if you want to inform the first instance that the
user attempted to start a second instance, and then let it handle the
request -- post a message, become the active application, and so on.

NOTE: You need to clean up before terminating the second instance.
FindWindow() doesn't require cleanup, but this method will not work as
reliably in a preemptive multitasking environment, such as Windows NT,
because you can get in a race condition.

The following code fragment demonstrates how a file mapping can be used
to allow only one instance of a Win32-based application. This code should
avoid any race conditions. Place this code at the beginning of WinMain().

The code creates a file mapping named MyTestMap using CreateFileMapping().
If MyTestMap already exists, then you know that there is already a running
instance of this application. A similar technique would be used with a
global atom.

Sample Code

 HANDLE hMapping;

 hMapping = CreateFileMapping((HANDLE) 0xffffffff,
 NULL,
 PAGE_READONLY,
 0,
 32,
 "MyTestMap");
 if(hMapping)
 {
 if(GetLastError() == ERROR_ALREADY_EXISTS)
 {
 //
 // Display something that tells the user
 // the app is already running.
 //
 MessageBox(NULL, "Application is running.", "Test", MB_OK);
 ExitProcess(1);
 }
 }
 else
 {
 //
 // Some other error; handle error.
 //
 MessageBox(NULL, "Error creating mapping", "Test", MB_OK);
 ExitProcess(1);
 }

Additional reference words: 1.10 1.20
KBCategory: kbprg kbcode
KBSubcategory: W32s

Alternative to PtInRegion() for Hit-Testing
PSS ID Number: Q121960

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

It may be useful to perform hit-testing on an object that is defined by a
polygon. To accomplish this, you could call CreatePolygonRgn() to create a
region from the polygon, and then call PtInRegion() to determine if the
point falls within the region. However, this method can be expensive both
in terms of GDI resources, and in terms of speed. If a polygon is complex,
CreatePolygonRgn() will often fail due to lack of memory in Windows because
regions are in GDI's heap.

The code below provides a better method. Use it to determine if a point
lies within a polygon. It is fast and does not use regions. The trick lies
in determining the number of times an imaginary line drawn from the point
you want to test crosses edges of your polygon. If the line crosses edges
an even number of times, the point is outside the polygon. If it crosses an
odd number of times it is inside. The line is drawn horizontally from the
point to the right.

MORE INFORMATION
================

WARNING: ANY USE BY YOU OF THE CODE PROVIDED IN THIS ARTICLE IS AT YOUR OWN
RISK. Microsoft provides this code "as is" without warranty of any kind,
either express or implied, including but not limited to the implied
warranties of merchantability and/or fitness for a particular purpose. The
references below do not constitute a recommendation. You are encouraged to
examine any resource to determine whether or not it meets your needs. These
books are not recommended over any others.

The following code is based on an algorithm presented in "Algorithms" by
Robert Sedgewick, Addison-Wesley, 1988, 2nd ed. ISBN 0201066734. The
algorithm is on p.354, in the section "Inclusion in a Polygon" in the
chapter "Elementary Geometric Methods." It is also discussed in "Computer
Graphics" by Foley, van Dam, Feiner and Hughes, Addison-Wesley, 1990, 2nd
ed. ISBN 0201121107, chapter 2, section 1, p.34.

Sample Code

#include "windows.h"
#include "limits.h"
BOOL G_PtInPolygon(POINT *rgpts, WORD wnumpts, POINT ptTest,
 RECT *prbound) ;
BOOL G_PtInPolyRect(POINT *rgpts, WORD wnumpts, POINT ptTest,
 RECT *prbound) ;
BOOL Intersect(POINT p1, POINT p2, POINT p3, POINT p4) ;
int CCW(POINT p0, POINT p1, POINT p2) ;

/***

 * FUNCTION: G_PtInPolygon
 *
 * PURPOSE
 * This routine determines if the point passed is in the polygon. It uses

 * the classical polygon hit-testing algorithm: a horizontal ray starting

 * at the point is extended infinitely rightwards and the number of
 * polygon edges that intersect the ray are counted. If the number is odd,

 * the point is inside the polygon.
 *
 * RETURN VALUE
 * (BOOL) TRUE if the point is inside the polygon, FALSE if not.
 ***/

BOOL G_PtInPolygon(POINT *rgpts, WORD wnumpts, POINT ptTest,
 RECT *prbound)
{
 RECT r ;
 POINT *ppt ;
 WORD i ;
 POINT pt1, pt2 ;
 WORD wnumintsct = 0 ;

 if (!G_PtInPolyRect(rgpts,wnumpts,ptTest,prbound))
 return FALSE ;

 pt1 = pt2 = ptTest ;
 pt2.x = r.right + 50 ;

 // Now go through each of the lines in the polygon and see if it
 // intersects
 for (i = 0, ppt = rgpts ; i < wnumpts-1 ; i++, ppt++)
 {
 if (Intersect(ptTest, pt2, *ppt, *(ppt+1)))
 wnumintsct++ ;
 }

 // And the last line
 if (Intersect(ptTest, pt2, *ppt, *rgpts))
 wnumintsct++ ;

 return (wnumintsct&1) ;

}

/***

 * FUNCTION: G_PtInPolyRect
 *
 * PURPOSE
 * This routine determines if a point is within the smallest rectangle
 * that encloses a polygon.
 *
 * RETURN VALUE
 * (BOOL) TRUE or FALSE depending on whether the point is in the rect or

 * not.
 ***/

BOOL G_PtInPolyRect(POINT *rgpts, WORD wnumpts, POINT ptTest,
 RECT *prbound)
{
 RECT r ;
 // If a bounding rect has not been passed in, calculate it
 if (prbound)
 r = *prbound ;
 else
 {
 int xmin, xmax, ymin, ymax ;
 POINT *ppt ;
 WORD i ;

 xmin = ymin = INT_MAX ;
 xmax = ymax = -INT_MAX ;

 for (i=0, ppt = rgpts ; i < wnumpts ; i++, ppt++)
 {
 if (ppt->x < xmin)
 xmin = ppt->x ;
 if (ppt->x > xmax)
 xmax = ppt->x ;
 if (ppt->y < ymin)
 ymin = ppt->y ;
 if (ppt->y > ymax)
 ymax = ppt->y ;
 }
 SetRect(&r, xmin, ymin, xmax, ymax) ;
 }
 return (PtInRect(&r,ptTest)) ;
}

/***

 * FUNCTION: Intersect
 *
 * PURPOSE
 * Given two line segments, determine if they intersect.
 *

 * RETURN VALUE
 * TRUE if they intersect, FALSE if not.
 ***/

BOOL Intersect(POINT p1, POINT p2, POINT p3, POINT p4)
{
 return (((CCW(p1, p2, p3) * CCW(p1, p2, p4)) <= 0)
 && ((CCW(p3, p4, p1) * CCW(p3, p4, p2) <= 0))) ;
}

/***

 * FUNCTION: CCW (CounterClockWise)
 *
 * PURPOSE
 * Determines, given three points, if when travelling from the first to
 * the second to the third, we travel in a counterclockwise direction.
 *
 * RETURN VALUE
 * (int) 1 if the movement is in a counterclockwise direction, -1 if
 * not.
 ***/

int CCW(POINT p0, POINT p1, POINT p2)
{
 LONG dx1, dx2 ;
 LONG dy1, dy2 ;

 dx1 = p1.x - p0.x ; dx2 = p2.x - p0.x ;
 dy1 = p1.y - p0.y ; dy2 = p2.y - p0.y ;

 /* This is basically a slope comparison: we don't do divisions because

 * of divide by zero possibilities with pure horizontal and pure
 * vertical lines.
 */
 return ((dx1 * dy2 > dy1 * dx2) ? 1 : -1) ;
}

/***
 * The above code might be tested as follows:
 ***/
void PASCAL TestProc(HWND hWnd)
{
 POINT rgpts[] = {0,0, 10,0, 10,10, 5,15, 0,10};
 WORD wnumpts = 5;
 POINT ptTest = {3,10};
 RECT prbound = {0, 0, 20, 20};
 BOOL bInside;

 bInside = G_PtInPolygon(rgpts, wnumpts, ptTest, &prbound);

 if (bInside)
 MessageBox(hWnd, "Point is inside!", "Test", MB_OK);
 else

 MessageBox(hWnd, "Point is outside!", "Test", MB_OK);
}
/* code ends */

Additional reference words: 3.00 3.10 3.50 4.00 95 hittest hit-test fails
KBCategory: kbgraphic kbcode
KBSubcategory: GdiMisc

Alternatives to Using GetProcAddress() With LoadLibrary()
PSS ID Number: Q92862

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

When loading a DLL with LoadLibrary(), an alternative to calling
GetProcAddress() for each of your DLL entry points is to have the DLL
initialization function initialize a global structure or array containing
the addresses of these DLL entry points, then call a DLL function from your
executable which will return the address of this structure or array to your
executable. You can then call your DLL functions via the function pointers
in this structure or array.

MORE INFORMATION
================

The best place to initialize this structure or array of function pointers
would be in the DLL_PROCESS_ATTACH code of your DLL's main entry point. The
structure or array containing these function pointers must be declared as
either a global variable or as dynamically allocated memory (malloc(),
GlobalAlloc(), etc.) in your DLL in order for the executable to be able to
address this memory properly.

It is also possible, though not as clean, to export the global structure or
array of function pointers so that your executable can use the structure or
array by name directly in your executable. For more information on how to
declare and export global data in a Win32 DLL, please see the following
article(s) in the Microsoft Knowledge Base:

 ARTICLE-ID: Q90530
 TITLE : Exporting Data From a DLL

Be careful not to call these DLL functions via the function pointers after
the DLL is unloaded via FreeLibrary(). After FreeLibrary() is called, these
function pointer addresses are invalid and calling them will result in an
access violation.

This technique of returning pointers to DLL entry points is a supported
technique and will work on all hardware platforms that Windows NT supports.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseDll

An Efficient Animation Algorithm
PSS ID Number: Q75431

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

An application that shows an animated image cannot rely solely on Windows
graphical device interface (GDI) functions because they will be too slow.
Instead, the application must create its own set of bitmaps. This article
discusses the process required and provides tips to improve performance and
memory use.

This information applies to any type of animation or fast drawing, from
painting the game pieces in Reversi to updating the time each second in
Clock.

MORE INFORMATION
================

There are three major steps to this process:

1. Allocate the bitmap.

It is preferable to allocate a single bitmap to store all the different
"cels"--the components of the animated scene. The contents of the bitmap
should be arranged in a column that is wide enough to hold a single cel;
the height is determined by the number of cels. To improve memory usage,
the bitmap should be discardable.

For example, given the definitions of the three constants below, the
following code allocates the correct size bitmap:

 X_SIZE = width of the cel
 Y_SIZE = height of the cel
 NUM_CELS = number of cels in the animated sequence

 HBITMAP hbm;

 hbm = CreateDiscardableBitmap(hDC, X_SIZE, NUM_CELS * Y_SIZE);
 if (!hbm)
 {
 // error - could not allocate bitmap
 }

2. Prepare the bitmaps.

To draw into the bitmap, it must be selected into a display context (DC).
Allocate a (temporary) compatible DC for this purpose:

 if (hTmpDC = CreateCompatibleDC(hDC))
 {
 HBITMAP hOldBm;

 hOldBm = SelectObject(hTmpDC, hbm);
 // and so forth
 }

In many cases, all cels will share the same background. Rather than drawing
this background several times onto the bitmap, draw it once onto the first
cel and copy it to the other cels, as the following code demonstrates:

 // GDI calls to draw to hbm from (0, 0) to (X_SIZE, Y_SIZE)

 for (i = 1; i < NUM_CELS; i++) // Perform the copy
 BitBlt(hTmpDC, 0, i * Y_SIZE, X_SIZE, Y_SIZE, hTmpDC, 0, 0,
 SRCCOPY);

After the background is copied, draw the foreground on each cel, using
regular GDI calls (in TRANSPARENT drawing mode). The coordinates for cel
"i" in bitmap hbm are:

 x_pos: 0 to (X_SIZE - 1)
 y_pos: (i * Y_SIZE) to (((i + 1) * Y_SIZE) - 1)

If the cels in the bitmap contain sequential images, animating to the
screen is simplified.

To finish this step, release the temporary DC.

 SelectObject(hTmpDC, hOldBm);
 DeleteDC(hTmpDC);

3. Animate.

A temporary, off-screen DC is required to allow the application to select
the bitmap. Note that selecting the object may fail if the bitmap has been
discarded. If this has occurred, another bitmap must be allocated (if
memory allows) and the bitmap must be initialized (as outlined in step 2,
above).

 if ((hTmpDC = CreateCompatibleDC(hDC)) != NULL)
 {
 HBITMAP hOldBm;

 if (!(hOldBm = SelectObject(hTmpDC, hbm))
 // must re-allocate bitmap. Note that this MAY FAIL!!!

At this point, call the BitBlt() function to copy the various stages of the

animation sequence to the screen. If the cels in the bitmap contain
sequential images, a simple loop will do the job nicely, as the following
code demonstrates:

 for (i = 0; i < NUM_CELS; i++)
 {
 BitBlt (hDC, x_pos, y_pos, X_SIZE, Y_SIZE, hTmpDC, 0,
 i * Y_SIZE, SRCCOPY);

 // Some form of delay goes here. A real-time wait, based on
 // clock ticks, is recommended.
 }

When the drawing is done, delete the temporary DC:

 SelectObject(hTmpDC, hOldBm);
 DeleteDC(hTmpDC);

It is important to cancel the selection of the bitmap between passes
through the for loop. This allows the bitmap to be discarded if the system
runs low on memory.

Additional reference words: 3.00 3.10 3.50 4.00 95 animation
KBCategory: kbgraphic
KBSubcategory: GdiBmp

Animating Textures in Direct3D Immediate Mode
PSS ID Number: Q153158
--
The information in this article applies to:

 - Microsoft DirectX 2 Software Development Kit (SDK), for Windows 95
--

SUMMARY
=======

A texture in Direct3D immediate mode is stored in a DirectDraw surface with
the DDSCAPS_TEXTURE flag set in the dwCaps field of the ddsCaps structure.
Since the textures are stored in DirectDraw surfaces, you can alter the
bits in these surfaces to perform texture animation in your Direct3D
applications. To make changes to the pixels in a texture, you would lock
down the DirectDraw surface associated with that texture with Lock() and
then you would make the changes necessary. You would then load the revised
texture on the video card when 3D hardware is used with
IDirect3DTexture::Load(). The next time the execute buffer is executed
with IDirect3DDevice::Execute(), the revised texture will be used when
rendering.

MORE INFORMATION
================

It is important to create a source texture DirectDraw surface in system
memory and a destination DirectDraw surface (in video memory, if 3D
hardware is present). The source surface should be created with the
DDSCAPS_TEXTURE flag set and it should be created in system memory. The
destination texture surface should be created with both the DDSCAPS_TEXTURE
and DDSCAPS_ALLOCONLOAD flags set. The destination surface will created
initially empty. You should call QueryInterface() on both the source and
destination textures to get the IDirect3DTexture interface for the texture
surfaces. After you have loaded the source texture surface with the bitmap
data desired, you should call the destination texture's
IDirect3DTexture::Load() method, specifying the source texture, to load the
texture onto the destination surface. You can now call the destination
texture's IDirect3DTexture::GetHandle() method to obtain a Direct3D texture
handle to be used in the execute buffer. When you are done with your
texture animation and these textures and surface are no longer required,
you should call Release() on the source and destination textures as well as
the source and destination surfaces.

The following five steps describe how to implement texture animation in a
rendering loop for a Direct3D immediate mode application:

1. Call the destination texture's Unload() method to unload the current
 texture.

2. Lock down the source texture surface with its Lock() method. Place the
 new texture data in the surface. Unlock the source texture surface
 with its Unlock() method.

3. Call the destination texture's Load() method to load the new texture.
 Make sure to specify the source texture as the texture to be loaded.

4. Call the destination texture's GetHandle() method to obtain the
 texture handle for the destination Direct3DTexture object. This handle
 is used in all Direct3D API calls where a texture is to be referenced.

5. Execute your current execute buffer. The revised texture will be used
 for rendering.

Sample Code

Here is a code example to implement the steps above:

 lpTexture->lpVtbl->Unload(lpTexture);

 ddsd.dwSize = sizeof(ddsd);
 if (lpSrcTextureSurf->lpVtbl->Lock(lpSrcTextureSurf, NULL,
 &ddsd, DDLOCK_WAIT, NULL) == DD_OK)
 {
 lpDst = (BYTE *)ddsd.lpSurface;

 // Modify the surface with the new texture bitmap.

 lpSrcTextureSurf->lpVtbl->Unlock(lpSrcTextureSurf,NULL);
 }

 lpTexture->lpVtbl->Load(lpTexture, lpSrcTexture);
 lpTexture->lpVtbl->GetHandle(lpTexture,
 lpDev, &TextureHandle);

 if (lpDev->lpVtbl->BeginScene(lpDev) != D3D_OK)
 return FALSE;
 if (lpDev->lpVtbl->Execute(lpDev, lpD3DExBuf,
 lpView, D3DEXECUTE_UNCLIPPED) != D3D_OK)
 return FALSE;
 if (lpDev->lpVtbl->EndScene(lpDev) != D3D_OK)
 return FALSE;

Additional reference words: 4.00
KBCategory: kbgraphic kbhowto
KBSubcategory: Direct3D

AppInit_DLLs Registry Value and Windows 95
PSS ID Number: Q134655

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Windows 95 does not support the loading of a DLL into a process' address
space through the use of the AppInit_DLLs registry value. In Windows NT,
for every process executed, Windows NT loads the DLLs listed in the
AppInit_DLLs registry value into the process' address space. For similar
functionality in Windows 95, you can implement a system-wide hook. This
article shows by example how to do it.

MORE INFORMATION
==================

To implement a system-wide hook, you must ensure that the hooked function
(callback function) exists in a DLL. Then when the this function is called
the operating system maps the hooked DLL into the target application's
address space. The actual hooked function then operates as part of the
target application's process.

There are essentially two steps involved in creating a system-wide hook:

1. Create a DLL with an exported function that is used as the hooking
 function. In the sample function that follows, the callback function is
 modeled after a callback function required to implement a WH_KEYBOARD
 system-wide hook:

 // Trap keyboard messages
 __declspec(dllexport) LRESULT CALLBACK HookFunction(
 int code,
 WPARAM wParam,
 LPARAM lParam)
 {
 char szVCode[50];

 //display the virtual key code trapped
 sprintf(szVCode, "Virtual Key code: %lx", wParam);
 MessageBox(NULL, szVCode,"Key stroke", MB_OK);
 :
 :
 }

 The associated .def file for this DLL might resemble this:

 LIBRARY HOOK

 EXPORTS
 HookFunction

2. Install the system-wide hook. To install the hook, the DLL must be
 loaded, the hook function's address retrieved, and SetWindowsHookEx
 called with the function's address. Here's an example:

 // add system-wide hook
 hHookDll = LoadLibrary("hook");
 hHookProc = (HOOKPROC) GetProcAddress(hHookDll, "HookFunction");

 // Install keyboard hook to trap all keyboard messages
 hSystemHook = SetWindowsHookEx(WH_KEYBOARD,hHookProc,hHookDll,0);

 Once the application has finished with the system-wide hook, be sure to
 undo the hooking process as follows:

 // Remove the hook and unload the DLL used for the hooking process
 UnhookWindowsHookEx(hSystemHook);
 FreeLibrary(hHookDll);

Additional reference words: 4.00 95
KBCategory: kbprg kbcode
KBSubcategory: BseMisc

Application Can Allocate Memory with DdeCreateDataHandle
PSS ID Number: Q85680

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

An application can use the DdeCreateDataHandle function to create a
handle to a block of data. The application can use the handle to pass
the data to another application in a dynamic data exchange (DDE)
conversation using the Dynamic Data Exchange Management Libraries
(DDEML). All DDEML functions refer to blocks of memory using data
handles.

An application can allocate memory and manually create a data handle
associated with the memory (using method 1 below), or automatically by
using the DdeCreateDataHandle function (method 2 below).

Method 1

1. Obtain a block of memory using the GlobalAlloc or LocalAlloc
 function or by declaring a variable in your application.

2. Fill the block of memory with the desired data.

3. Call the DdeCreateDataHandle function to create a data handle
 associated with the block of memory.

Method 2

1. Call the DdeCreateDataHandle function with the lpvSrcBuf parameter
 set to NULL, the cbInitData parameter set to zero, and the
 offSrcBuf parameter set to the number of bytes of memory required.

2. To retrieve a handle to the memory block, specify the data handle
 returned by DdeCreateDataHandle as the hData parameter of the
 DdeAccessData function. This operation is similar to calling the
 GlobalLock function on a handle returned from GlobalAlloc.

3. Use the pointer to fill the memory block with data.

4. Call DdeUnaccessData to unaccess the object. This operation is
 similar to calling the GlobalUnlock function on a handle returned

 from GlobalAlloc.

The following code fragment demonstrates method 2:

 // Retrieve the length of the data to be stored
 cbLen = lstrlen("This is a test") + 1;

 // Create the data handle and allocate the memory
 hData = DdeCreateDataHandle(idInst, NULL, 0, cbLen,
 hszItem, wFmt, 0);

 // Access the data handle
 lpstrData = (LPSTR)DdeAccessData(hData, NULL);

 // Fill the block of memory
 lstrcpy(lpstrData, "This is a test");

 // Unaccess the data handle
 DdeUnaccessData(hData);

When an application obtains a data handle from DdeCreateDataHandle,
the application should next call DdeAccessData with the handle. If a
data handle is first specified as a parameter to a DDEML function
other than DdeAccessData, when the application later calls
DdeAccessData, the application receives only read access to the
associated memory block.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrDde

Application Exception Error Codes
PSS ID Number: Q101774

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

Many exception errors are not processed by applications. The most common
exception error is EXCEPTION_ACCESS_VIOLATION (c0000005). It occurs when a
pointer is dereferenced and the pointer points to inaccessible memory or a
write operation is attempted on read-only memory. If an application does
not trap an exception, the Win32 module, UnhandledExceptionFilter, will do
one of the following: display a message box, invoke Dr. Watson, or attach
your application to a debugger.

The following are standard exception errors:

 EXCEPTION_ACCESS_VIOLATION
 EXCEPTION_ARRAY_BOUNDS_EXCEEDED
 EXCEPTION_BREAKPOINT
 EXCEPTION_DATATYPE_MISALIGNMENT
 EXCEPTION_FLT_DENORMAL_OPERAND
 EXCEPTION_FLT_DIVIDE_BY_ZERO
 EXCEPTION_FLT_INEXACT_RESULT
 EXCEPTION_FLT_INVALID_OPERATION
 EXCEPTION_FLT_OVERFLOW
 EXCEPTION_FLT_STACK_CHECK
 EXCEPTION_FLT_UNDERFLOW
 EXCEPTION_ILLEGAL_INSTRUCTION
 EXCEPTION_IN_PAGE_ERROR
 EXCEPTION_INT_DIVIDE_BY_ZERO
 EXCEPTION_INT_OVERFLOW
 EXCEPTION_INVALID_DISPOSITION
 EXCEPTION_NONCONTINUABLE_EXCEPTION
 EXCEPTION_PRIV_INSTRUCTION
 EXCEPTION_SINGLE_STEP
 EXCEPTION_STACK_OVERFLOW

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseExcept

Application Version Marking in Windows 95
PSS ID Number: Q125705

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Applications designed for Windows 95, whether 16- or 32-bit, should be
marked for Windows version 4.0 so they receive the full benefit of new user
interface features in Windows 95. Applications marked as being designed for
earlier versions of Windows will display behavior consistent with the
Windows version 3.1 user interface, which is not always identical to
Windows 95 behavior.

Executables marked for Windows version 4.0 will load on Windows 95, Windows
NT version 3.5, Win32s version 1.15, and later versions, but not on earlier
versions.

NOTE: This article deals solely with marking executable files as compatible
with a particular Windows version. This is different from the version
resources (VS_VERSION_INFO) that may be contained in an executable.

MORE INFORMATION
================

The Microsoft Visual C++ version 2.1 linker defaults to marking executables
for Windows version 4.0 while the version 2.0 linker defaults to 3.1. The
Books Online section "Appendix B: Link Reference" incorrectly states that
versions 2.1 and 2.2 default to a subsystem of 3.10. To override the
default, the Microsoft Visual C++ linkers accept the following syntax for
the /SUBSYSTEM option:

 /SUBSYSTEM:WINDOWS,4.0

In the development environment, you can change the /SUBSYSTEM option by
going to the Project menu, selecting Settings, selecting either Win32 Debug
or Win32 Release, choosing the Link tab, and editing the Project Options.
To explicitly set the subsystem to the version prior to 4.0, specify a
subsystem of 3.10. The trailing 0 in 3.10 is required in this case.

You may need to perform a full link for this to take effect, but subsequent
incremental linking with this switch will work correctly.

To mark a 16-bit executable as Windows version 4.0 compatible, use the
16-bit resource compiler (RC.EXE) from the Windows 95 SDK to bind the
resources into the executable file. By default, this version of RC marks
the executable for version 4.0, but this can be overridden by using
the -30 or -31 switch.

An application will display several behavioral differences depending on
which Windows version the application is compatible with:

1. All standard control windows owned by a version 4.0 application are
 drawn with a chiseled 3D look. To obtain the same effect for dialogs
 owned by a version 3.1 application, use the DS_3DLOOK dialog style.
 This style is ignored if the application is run on Windows platforms
 other than Windows 95. The dialog style DS_3DLOOK is not defined in the
 standard WINRES.H. Therefore, to use this style, you must define it as

 #define DS_3DLOOK 0x0004L

 and or DS_3DLOOK into the STYLE line of each dialog in the project's .RC
 file. NOTE: Editing a dialog template using the resource editor removes
 this DS_3DLOOK style bit.

 NOTE: This symbol will be defined in a future release of Visual C++. At
 that time, you will get the error "symbol redefined". At that point, you
 can remove your definition of DS_3DLOOK.

2. Thunks created using the Windows 95 SDK Thunk Compiler will not work
 unless the 16-bit thunk DLL is marked for version 4.0.

3. Windows version 3.1 allowed 16-bit applications to share GDI resources
 such as font or bitmap handles. For backwards compatibility, Windows 95
 does not clean up objects left undeleted by a 16-bit version 3.x
 application when that application terminates because these objects may
 be in use by another application. Instead, such objects remain valid as
 long as there are any 16-bit applications running. When all 16-bit
 applications are closed, these objects are freed.

 On the other hand, is is assumed that 16-bit version 4.0 applications
 follow the Windows 95 guidelines, and do not share objects. Thus, all
 objects owned by a 16-bit version 4.0-based application are freed when
 the application terminates.

 Win32-based applications cannot freely share GDI objects, so all owned
 objects are freed when a Win32-based application terminates regardless
 of the version of the application.

4. New window messages, such as WM_STYLECHANGED, are only sent to windows
 owned by a version 4.0 application.

5. Printer DCs are reset during StartPage() in applications marked with
 version 4.0

Additional reference words: 4.00
KBCategory: kbui
KBSubcategory: UsrMisc

Assigning Mnemonics to Owner-Draw Push Buttons
PSS ID Number: Q67716

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

An application that uses owner-draw push buttons is always responsible for
the appearance of the buttons. It might seem that in doing so, the ability
to assign a mnemonic character to an owner-draw button is lost because text
containing the mnemonic may not be displayed.

Fortunately, this is not the case. If an owner-draw button should be
activated by ALT+X, place "&X" into the button text. NOTE: You have to use
DrawText() to get the & character to underline the next character. Using
TextOut() will not cause the & character to underline the next character in
the string.

When the ALT key is pressed in combination with any character, Windows
examines the text of each control to determine which control, if any, uses
that particular mnemonic. With an owner-draw button, the text exists, but
may not necessarily be used to paint the button.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbui
KBSubcategory: UsrCtl

Associating Data with a List Box Entry
PSS ID Number: Q74345

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In the Microsoft Windows graphical environment, an application can use the
LB_SETITEMDATA and LB_GETITEMDATA messages to associate additional
information with each entry in a list box. These messages enable an
application to associate an arbitrary LONG value with each entry and to
retrieve that value. This article documents how an application uses these
messages.

MORE INFORMATION
================

In this example, the application will associate a 64-byte block of data
with each list box entry. This is accomplished by allocating a global
memory block and using the LB_SETITEMDATA message to associate the handle
of the memory block with the appropriate list box item.

During list box initialization, the following code is executed for each
list box item:

 if ((hLBData = GlobalAlloc(GMEM_MOVEABLE, 64)))
 {
 if ((lpLBData = GlobalLock(hLBData)))
 {
 // Store data in 64-byte block.

 GlobalUnlock(hLBData);
 }
 }
// NOTE: The MAKELONG is not needed on 32-bit platforms.
 SendMessage(hListBox, LB_SETITEMDATA, nIndex, MAKELONG(hLBData, 0));

To retrieve the information associated with a list box entry, the following
code can be used:

// NOTE: The return from LB_GETITEMDATA is a long on 32-bit platforms.
 if ((hLBData = LOWORD(SendMessage(hListBox, LB_GETITEMDATA,
 nIndex, 0L))))
 {
 if ((lpLBData = GlobalLock(hLBData)))

 {
 // Access or manipulate the data or both.

 GlobalUnlock(hLBData);
 }
 }

Before the application terminates, it must free the memory associated with
each list box item. The following code frees the memory associated with one
list box item:

 if ((hLBData = LOWORD(SendMessage(hListBox, LB_GETITEMDATA,
 nIndex, 0L))))
 GlobalFree(hLBData);

These techniques can be used to associated data with an entry in a combo
box by substituting the CB_SETITEMDATA and CB_GETITEMDATA messages.

Additional reference words: 3.00 3.10 3.50 4.00 95 combobox listbox
KBCategory: kbui
KBSubcategory: UsrCtl

Authoring Windows Help Files for Performance
PSS ID Number: Q74937
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
--

SUMMARY
=======

The Windows Help Compiler allows an application developer to create
hypertext documentation, richly annotated with color and graphics.
This article discusses methods to author help files to achieve maximum
performance when the file is used. These comments apply to Windows
Help versions 3.06 and later.

This information is subject to change in future versions of the Help
Compiler and of the Help application as new technology is incorporated
into these products.

There are four major suggestions:

1. Use OPTCDROM=1 for all files destined for CD-ROM (compact-disk
 read-only memory), and potentially on files where up to an
 additional 10K of size is not significant.

2. Use bitmaps placed with data for small bitmaps that are referenced
 only once or infrequently in the help file.

3. Use bitmaps not placed with data for large bitmaps, all bitmaps
 referenced frequently, or bitmaps referenced by two or more topics
 that generally will be viewed in succession.

4. Use segmented hypergraphics to generate graphics with multiple hot
 spots, rather than several bitmaps positioned next to each other.

Coincidentally, suggestions 2, 3, and 4 are also generally space-saving
techniques as well.

MORE INFORMATION
================

1. Use OPTCDROM=1 for files destined for CD-ROM.

 When OPTCDROM is placed in the [OPTIONS] section of the .HPJ file,
 the topic information in the help file is aligned on 2K boundaries.
 This option is aimed at maximizing performance on CD-ROM drives,
 where reading aligned information can be significantly faster.

 Estimates indicate that sequential reads from CD-ROM can be up to
 twice as fast when aligned. While reads are not always sequential,
 a high percentage can be, depending on how the help file is

 authored. Minor improvements have also been noted on magnetic
 media.

 This option can cause up to 10K of additional file space to be
 used.

2. Store small bitmaps with data.

 Placing bitmaps with data keeps the graphical and textual
 information in the same location in the help file. This avoids
 reading from different locations on disk to display a topic. Seeks
 to different locations are exceptionally time consuming on CD-ROM,
 and can be time consuming on magnetic media. Bitmaps with data also
 help maximize the effects of the OPTCDROM option.

 Up to 12K of compressed topic text is buffered in memory. Since
 bitmaps are kept with the topic text, they take advantage of this
 buffering. Thus, topics under 12K in compressed size generally do
 not need to be reread when the window is resized or redrawn.

 Note that large bitmaps kept with data may cause performance to
 become worse. Topics may be laid out twice as part of scroll bar
 removal. Topics over 12K in size will be read, laid out, and then
 reread as they are laid out a second time before display. Bitmaps
 are often the cause of exceeding the 12K size. Bitmaps NOT kept
 with data are buffered elsewhere (see #3 below), and if the
 remaining textual data is less than 12K, the topic will be read
 from disk only once.

 Bitmaps with data cost space only when the same bitmap is used more
 than once in the help file. If a bitmap is used frequently, not
 placing it "with data" may be more appropriate, unless the
 performance benefit is determined to outweigh the size hit.

3. Store large and frequently accessed bitmaps separately.

 The 50 most recently accessed bitmaps not stored with data are
 cached in memory. This means that the bitmap may have to be read
 from disk only once if two successively displayed help topics
 reference it. Unlike bitmaps stored with data, these cached bitmaps
 only have to be reread if they are bumped out of the cache by the
 subsequent display of 50 more bitmaps, or by low memory conditions.

 Cached bitmaps not stored with data cost some speed when they are
 typically displayed by the user only once in a session. Since they
 are stored in a different portion of the help file from the topic
 text, an additional seek is required to locate them. This cost, if
 incurred, is generally negligible on disk, and high on CD-ROM.
 Note, however, that this cost MAY be less than the cost of reading
 the topic twice, if the topic is laid out twice as a result of not
 needing scroll bars, and is larger than 12K.

4. Use segmented hypergraphics.

 Segmented hypergraphics is the term used to describe the ability to

 take a single bitmap, and define several regions that are hot
 spots. Hot spots can overlap, and can each perform different
 actions.

 The primary benefit of using segmented hypergraphics is that a
 single bitmap can be used. Previous techniques utilizing several
 bitmaps carefully placed in the topic text to generate a single
 image have the drawback of requiring several bitmap-locating
 operations at display time, which can translate to several disk
 seeks and reads. On CD-ROM, especially, this can be quite
 significant.

 The only cost involved in using segmented hypergraphics is that the
 segmented hypergraphics editor must be used to define the hot spots
 within the bitmaps.

In summary, there are a few simple authoring techniques that can
improve performance of help files. While especially significant for
CD-ROM hosted help files, they are of benefit to disk-based help files.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsHlp

Availability of Multimedia Timers
PSS ID Number: Q140104

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 Software Development Kit (SDK) versions 3.5, 3.51, 4.0
 - Microsoft Win32s version 1.2

SUMMARY
=======

The number of multimedia timers your application can create at one time can
vary based on the operating system it is running on and whether the
application is 16-bit or 32-bit.

MORE INFORMATION
================

The following table gives an indication of what you can expect:

Operating System 16-bit app 32-bit app
--
Windows 3.11 8 0 (Not supported on Win32s)
Windows 95 32 32
Windows NT 3.51 16 16 per process

Note that a multimedia timer is created by using the timeSetEvent() API.
With the exception of a 32-bit application running under Windows NT, these
numbers represent the total number of available timers in the entire
system. With this in mind, the number of multimedia timers your application
can allocate at one time could be less then the amount shown in the table.
Win32s does not support multimedia callbacks, so the timeSetEvent() API is
not available under Win32s.

Additional reference words: limit
KBCategory: kbmm kbprg
KBSubcategory: MMTimer

Availability of Microsoft Network SDKs
PSS ID Number: Q115604
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK), version 3.1
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0
 - Windows for Workgroups SDK, version 3.11
 - Microsoft LAN Manager SDK
--

SUMMARY
=======

The following SDKs are available for programmers writing network
applications on Microsoft platforms:

Microsoft Windows for Workgroups SDK

This is available on the April 1994 (and later) Microsoft Developer Network
(MSDN) Level 2 CDs.

The SDK, documentation, debug kernel, and other files for network
programmers on Windows for Workgroups, version 3.11 are available on the
April 1994 MSDN. This SDK includes APIs for the network extensions to
Windows for Workgroups, version 3.11.

Microsoft LAN Manager SDK

The documentation is available in two books:

 - "Microsoft LAN Manager, A Programmer's Guide," Ralph Ryan, Microsoft
 Press, ISBN 1-55615-166-7.

 - "Microsoft LAN Manager Programmer's Reference," Microsoft Corporation,
 Microsoft Press, ISBN 1-55615-313-9.

This SDK includes APIs for writing distributed applications and
administration programs for Microsoft LAN Manager.

LAN Manager APIs for Windows NT

The file DOC\SDK\MISC\LMAPI.HLP on the CD-ROM describes the ported LAN
Manager APIs. Windows NT supports 32-bit equivalents of most of the LAN
Manager APIs.

The LAN Manager APIs are included in the header file LMACCESS.H and in the
import library NETAPI32.LIB. These APIs are described in the Win32 API help
file.

Windows Sockets APIs

The Windows Sockets APIs are available through the SDKs. The file
WINSOCK.HLP gives the details.

The files needed to support Windows Sockets APIs (conforming to the Windows
Sockets specifications) for Microsoft LAN Manager may be obtained on the
Internet (FTP.MICROSOFT.COM, ADVSYS\LANMAN\SUP-ED\WINSOCK).

The Windows Sockets specifications, libraries, header files and samples may
also be obtained from the Internet in the ADVSYS\WINSOCK directory.

Microsoft Remote Procedure Call (RPC)

The support for RPC is included in the Win32 SDKs. The Win32 API help file
includes the RPC APIs. The RPC.HLP file gives the details of RPC support.

RPC support files for MS-DOS and Microsoft Windows may be obtained from the
Win32SDK CD-ROM. The directory MSTOOLS\RPC_DOS has the required files.

NOTE: Microsoft also provides other kinds of network APIs. For example, the
NetBIOSCall() API provides a mechanism to write NetBIOS applications on
Microsoft Windows; on Windows NT this is accomplished with the Netbios()
API. Information on these other APIs may be obtained from the Windows and
Win32 SDK documentation.

Additional reference words: 3.10 3.50 4.00 95 3.11 msdnl2
KBCategory: kbref
KBSubcategory: NtwkMisc

AVI Video Authoring Tips & Compression Options Dialog Box
PSS ID Number: Q139826

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.5
 - Microsoft Video for Windows Development Kit (DK) version 1.1

SUMMARY
=======

This article provides tips you can use to help you compress AVI (audio-
video interleaved) files. This article should help to clarify the
information in the documentation. This article also provides hints
concerning the settings for Interleave, Compression Quality, Key Frame
Every, and Data Rate - all settings available in the Video Compression
Options dialog box.

MORE INFORMATION
================

Authoring/Compression Tips

 - Don't capture on low or medium end equipment.

 - Avoid noise. Noise reduces the quality of the image and can effect the
 compression.

 - Use a low-pass filter such as the LOWPASS sample included with Visual
 C++ version 2.x and with the Win32 SDK to get rid of some of the audio
 noise.

 - Avoid compressing the movie more than once. Edit your uncompressed bits
 of video together before doing any compression, and then compress the
 final product. Editing always works faster with uncompressed video.

Video Dimensions and Frame Rate

When authoring, consider that most display cards support up to 320x240x15
frames per second (fps). Larger images or faster frame rates increase the
importance of testing on multiple machines with multiple configurations (CD-
ROM drive speeds, video boards, display monitors, and so on).

Full Screen Playback

If your movie is 320x240 or less, you should get excellent full-screen
playback that can handle 15 fps regardless of the video card. If your movie
is bigger, it will play full screen, but performance may be poor. Test
across multiple configurations to help identify the impact of stretching on
various displays.

Video Compression Options

The following options are presented in the Compression Options dialog box.
To gain access to this dialog box, on the File menu, click Save Options in
SDK samples such as Aviedit and Aviview. Similar options are available
in the Videdit utility from Video for Windows by clicking Save As on the
File menu.

Interleave:

The interleave option places audio data physically between video frame data
in the AVI file to ensure the best performance and synchronization. For
example, with a 1:1 interleave setting, each frame of a 15 fps video would
have 1/15 seconds of audio data. This setting does not matter when editing
the file. When saving for playback, interleave every frame for best
playback performance. Interleaving multiple audio streams is not possible
using this option.

Compression Quality:

Use the highest quality number to get the best quality, but use the entire
allowable data rate. A lower quality may take up less than the requested
data rate.

Key Frame Every:

Normally, use the default key frame value for a particular codec. Fewer key
frames could give a little better picture quality, but if your system can't
keep up on playback, you'll stall for a longer time, and you won't degrade
as gracefully. More key frames means fewer frames skipped when playback
can't keep up.

Data Rate:

The minimum data rate that can be achieved on most computers is 100K/sec
for single spin CD-ROM drives, and 225K/sec for double spin CD-ROM drives.
Most computers can do more (150K and 300K for single and double speed
respectively).

REFERENCES
==========

The AVIMakeCompressedStream(), AVISave(), and AVISaveOptions() functions
use the AVICOMPRESSOPTIONS structure to specify some of the compression
options discussed in this article. The ICCompressorChoose() function
uses the COMPVARS structure for a similar purpose. See the documentation
for the products listed at the beginning of this article for more
information.

Additional reference words: 3.10 4.00 3.50 dwKeyFrameEvery dwQuality
dwBytesPerSecond dwInterleaveEvery lKey lDataRate lQ fullscreen authoring
author save
KBCategory: kbmm kbprg kbdocerr

KBSubcategory: MMVideo

Avoid Calling SendMessage() Inside a Hook Filter Function
PSS ID Number: Q74857

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

A hook filter function should not call SendMessage() to pass intertask
messages because this behavior can create a deadlock condition in
Windows. If a hook filter function is called as a result of an
intertask SendMessage(), and if the hook function then yields control
with an intertask SendMessage(), a message deadlock condition may
occur. For this reason, hook filters should use PostMessage() rather
than SendMessage() to pass messages to other applications.

NOTE: A hook filter can use SendMessage() to pass a message to the
current task because this will not yield the control.

Section 1.1.5 of the "Microsoft Windows Software Development Kit Reference
Volume 1" from the Windows SDK version 3.0 documentation has more
information on message deadlocks.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrHks

Background Colors Affect BitBlt() from Mono to Color
PSS ID Number: Q41464

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

When using BitBlt() to convert a monochrome bitmap to a color bitmap, GDI
transforms all white bits (1) to the background color of the destination
device context (DC). GDI transforms all black bits (0) to the text (or
foreground) color of the destination DC.

When using BitBlt() to convert a color bitmap to a monochrome bitmap, GDI
sets to white (1) all pixels that match the background color of the source
DC. All other bits are set to black (0).

These features are mentioned in the BitBlt() documentation.
manual.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbgraphic
KBSubcategory: GdiBmp

Background, Foreground, and System Palette Management
PSS ID Number: Q72386

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

On a device that supports the Microsoft Windows palette management APIs, an
application can create a logical palette, select the palette into a device
context (DC), and realize the palette. Realizing a logical palette maps its
colors to the system (hardware) color palette. The GetDeviceCaps() API is
available to inform an application whether the device is capable of
supporting palette management functions and, if so, the size of its system
palette. This article discusses the different types of logical palettes and
the effect of each on the system palette when a logical palette is
realized.

MORE INFORMATION
================

When a logical palette is selected into a DC, it can be selected as either
a foreground or a background palette. Setting the bForceBackground
parameter of the SelectPalette() API to TRUE selects the palette as a
background palette. If this parameter is FALSE, the palette can be selected
as a foreground palette. A palette will be selected as a foreground palette
only if the DC into which the palette is selected is one of the five cached
DCs managed by the GetDC() API and the DC is retrieved on behalf of the
active window. If the DC is returned by CreateDC() or CreateCompatibleDC()
or if the window is not the active window, the palette will be forced
into the background.

The status as a foreground or a background palette affects how the colors
in the logical palette are mapped into the system palette when the logical
palette is realized.

When a foreground palette is realized, every entry in the system palette
that can be modified by an application is accessible to the logical
palette. Logical palette entries are mapped into the system palette
starting at the first available entry. Because a logical palette entry that
exactly matches a reserved system palette entry is mapped to that system
entry, it does not consume a separate palette slot. If the logical palette
has more entries than available slots in the system palette, the available
slots are filled, in order, from the logical palette. The remaining logical
palette entries are mapped to the closest colors already present in the

system palette. There is one exception to this rule: if a logical palette
entry is marked with the PC_RESERVED flag, no colors will be mapped to that
entry. If all available system palette entries are reserved, additional
colors will not be mapped to any entry and will be displayed as black on
the screen.

A palette entry marked as PC_NOCOLLAPSE will always take a separate slot if
available, just as for PC_RESERVED. Unlike a PC_RESERVED color, if no slots
are available, it will map to the nearest color, and other colors may map
onto it.

The first available entry in the system palette is the first palette entry
not marked as used. For example, assume a device with 256 palette entries,
20 of which are reserved for the system. An application realizes a palette
of 36 colors on this device; therefore, the first 36 entries are marked
used. Another application realizes a 100-entry palette; therefore, the next
100 entries are marked used. If a third application receives the input
focus and realizes a foreground palette with 236 entries, Windows maps the
first 100 colors into the remainder of the system palette. Each of the
remaining 136 colors of the logical palette is mapped into the closest
color available in the system palette.

When a background palette is realized, any empty positions in the system
palette are filled. Any colors that remain are mapped to the closest color
in the system palette. A background palette entry cannot overlay a
foreground entry in the system palette; however, a foreground palette entry
can overlay a background entry in the system palette.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbgraphic
KBSubcategory: GdiPal

BeginPaint() Invalid Rectangle in Client Coordinates
PSS ID Number: Q19963

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

The BeginPaint() function returns a pointer to a PAINTSTRUCT data structure
through its second parameter. The rcPaint field of this structure specifies
the update rectangle in client-area coordinates (relative to the upper-left
corner of the window client area).

This update rectangle also serves as the clipping area for painting in
the window, unless the invalid area of the window is expanded using the
InvalidateRect() function.

Additional reference words: 3.00 3.10 3.5 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrPnt

Binary and Source Compatibility Under Windows NT
PSS ID Number: Q93213
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5
--

SUMMARY
=======

There are currently three hardware platforms for which Win32-based
applications can be written; they are Intel (x86), MIPS, and DEC Alpha.
Binary compatibility across these hardware platforms is not a viable
alternative. Therefore, Windows NT offers source compatibility. This means
that developers may create versions of their Win32 applications for each
CPU by recompiling.

For example, suppose that you have written a Win32-based application in C
and have used a 32-bit compiler that targets the Intel platform. In order
to produce a Win32-based application that runs on DEC Alpha, you would
purchase a 32-bit compiler that targets Alpha and recompile your code.

MORE INFORMATION
================

It is important not to confuse source compatibility across hardware
platforms with binary compatibility across application execution
environments. Windows NT and Win32s do support binary compatibility between
different application execution environments. For example, the typical
16-bit Windows-based application can be run without modification on any
Windows NT machine. On the MIPS and Alpha platforms, this is achieved
through emulation. In addition, it is possible to design an x86 Win32-based
application so that it runs on Windows 3.1. This is achieved through
Win32s.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: SubSys

Binary Compatibility Basics
PSS ID Number: Q95162
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5
--

SUMMARY
=======

Because of differing instruction sets between processors, object code is
not binary-compatible across platforms. To enable object code compiled for
processor X to run on processor Y, a virtual machine must be created on
processor Y to emulate processor X's instructions, which results in a
considerable performance hit. For this reason, Windows NT offers a strong
source compatibility, which makes it a relatively simple matter to compile
the same code into native object code for each platform.

The Hardware Abstraction Layer (HAL), smooths over differences between
hardware implementations. All access to the hardware from the operating
system (OS) goes through the HAL, which makes changing of both the hardware
and the OS itself much simpler. The HAL, however, does not emulate the
instruction set of the platform; a common misconception.

MORE INFORMATION
================

Source code is compiled into executable or object code for the instruction
set of a specific processor or family (x86, 680x0, R3000/4000, and so
forth). This code runs natively only on that type of processor. Remember,
this reduces to 1's and 0's, hence binary, so even if two processors have a
large overlap in the available instructions (and they do; MOVs, XORs, or
whatever at the assembly language level), what is actually executed is not
even relatively "high level" human-readable assembly code but merely a
series of bytes that by convention/definition only are assigned the
meanings that are human-readable at the assembly language level.

For example, probably every microprocessor has an OR instruction. On the
Intel x86, the OR instruction may be represented in the instruction stream
by the bytes "09 [effective address]" (see page 456 of Microsoft's
80386/80486 Programming Guide, 2nd Ed.). On the R4000, however, it's nearly
guaranteed to be something different.

Thus, if you want to run an executable compiled for Intel on a MIPS chip,
you must run a program that behaves as an Intel instruction interpreter
(similar to a Basic interpreter, but much more complex). Such a program is
called an emulator, and will scan through the Intel object code and then in
turn execute equivalent commands in MIPS form on the processor. But the
emulator must do much more than that; it must also create a "virtual
machine," a complete software execution environment that behaves similar to
the original hardware/software environment that the executable was
originally compiled for.

Note that even in an ideal case, every processor X instruction requires
about 5-20 instructions on processor Y. The object code interpreter must
examine the next instruction/byte, compare its value to known instruction
values via some kind of table (depending on the implementation), and then
execute the equivalent native instruction. There is room for optimization
but it will never be very fast (relative to native code).

Therefore, run non-native object code only if you absolutely must. Below is
a binary compatibility table for Windows NT:

 System Binary-Compatible on NT?
 ------ ------------------------

 Win16 apps Yes (via Insignia's x86 emulation code)
 Win32 apps No (must re-compile)
 POSIX apps No (POSIX is a source-code standard)(1)
 OS/2 1.x apps No (Don't run on non-x86 machines at all)(2)

Notes: (1) POSIX 1003.1 is a C-language source-level standard for basic
operating system services. POSIX applications don't need to be binary-
compatible even on the same instruction set! That is, a POSIX application
compiled and linked for SCO on x86 will NOT run on x86 Windows NT POSIX or
x86 Sun/Interactive POSIX. (2) OS/2 1.x support is technically feasible but
would have required more work on the non-Intel platforms, and was not
considered a high priority.

The Hardware Abstraction Layer (HAL)

A common misconception is that the HAL should allow binary compatibility.
The Windows NT HAL has absolutely nothing to do with the issue discussed
above; that is, running code complied for processor X on processor Y. Nor
is the HAL akin to a "virtual machine" implementation; it does not simulate
anything. Rather, the HAL is simply an example of a good modular software
design that deals with the issue of differences in hardware design between
machines with the same instruction set (or between instruction sets).

The HAL provides a set of services to the rest of the Windows NT executive
that abstracts and "hides" the differences between low- level hardware-
software interfaces, such as with DMA controllers, programmable interrupt
controllers, clocks and timers, and so forth. In a typical pre-Windows NT
operating system, there is lots of code embedded throughout the operating
system (particularly in device drivers) that is specifically tied to
particular implementations of hardware services (a particular PIC, a
particular DMA chip, and so forth). If one of these hardware pieces is
changed, lots of code scattered throughout the system will break. As a
result, the hardware never changed and a typical 486/66 machine today uses
the same low-function hardware devices that appear in the IBM AT 286 (if
not the IBM PC itself).

In Windows NT, any other part of the OS (including the kernel and all
device drivers) that needs to deal with those low-level devices now uses
HAL services, and is therefore isolated from changes in the hardware. If
you change those hardware pieces you only need to change the HAL. This

results in at least the following two advantages:

 - A cleaner, easier to write and debug design for the OS and device
 drivers.
 - The real possibility for innovation and change in the underlying
 hardware.

But the HAL does not provide an abstract instruction set, or the services
necessary for running object code from processor X on processor Y. It is
possible to write an such as OS if you are willing to take the huge
performance hit, but Windows NT isn't it. And because a well-designed OS
such as Windows NT can provide a very complete level of source-code
compatibility across instruction sets, and therefore a relatively painless
way of getting native-code versions of Win32-based applications, probably
no one will be willing to take that performance hit in a mainstream
operating system, no matter how fast the hardware.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: SubSys

Broadcasting Messages Using PostMessage() & SendMessage()
PSS ID Number: Q64296

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

When SendMessage() is used to send a broadcast message (hwnd = 0xFFFF or
hwnd = -1), the message is sent to all top-level windows. A message
broadcast by PostMessage() is only sent to top-level windows that are
visible, enabled, and have no owner.

You might observe the effect of the difference when, for example, the top-
level window of your application calls DialogBox() to present a modal
dialog box. While the modal dialog box exists, its owner (your top-level
window) will be disabled. Messages broadcast using PostMessage() will not
reach the top-level window because the window is disabled, and will not
reach the dialog box because the dialog box has an owner. Messages
broadcast using SendMessage() will reach both the top-level window and the
dialog.

In Windows 3.1, PostMessage() will broadcast to invisible and disabled
windows just like SendMessage() already does.

Both PostMessage() and SendMessage() actually broadcast using the same
broadcast procedure. This procedure does some additional screening to make
sure that pop-up menus, the task manager window, and icon title windows are
insulated from broadcast messages.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrMsg

BUG: 16-bit RPC Samples Print Meaningless Error Codes
PSS ID Number: Q139717
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5,
 3.51, 4.0
--

SYMPTOMS
========

Some of the 16-bit RPC samples print meaningless error codes. For example:

 Runtime reported exception 378535963

CAUSE
=====

The 16-bit applications method for generating exceptions are different from
those used by 32-bit applications. This is encapsulated to ease
programming. Please look in the header file Rpcx86.h.

RpcExceptionCode is defined as _exception_code. However, _excpetion_code is
a 16-bit integer, so when this is printed as an unsigned long integer, the
result is not meaningful.

RESOLUTION
==========

Any of the following methods should result in meaningful error codes:

 - Explicitly cast the value returned by RpcExceptionCode() as an unsigned
 long. For example:

 printf("Runtime reported exception %ld\n", (unsigned long)
 RpcExceptionCode());

 -or-

 - Use an unsigned long variable to trap the value of RpcExceptionCode().
 For example:

 unsigned long ulCode;
 ulCode = RpcExceptionCode();
 printf("Runtime reported exception %ld\n", ulCode);

 Note that this method is used by the samples that do not exhibit the
 problem.

 -or-

 - Print the value as an unsigned quantity. For example:

 printf("Runtime reported exception %u\n", RpcExceptionCode());

 -or-

 printf("Runtime reported exception %ul\n", RpcExceptionCode());

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are reasearching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

MORE INFORMATION
================

This bug is exhibited by the following samples:

callback\callc.c
data\dunion\dunionc.c
data\inout\inoutc.c
data\repas\repasc.c
data\xmit\xmitc.c
doctor\doctorc.c
rpcssm\rpcssmc.c

REFERENCES
==========

The SDK header file Rpcerr.h that installs with the 16-bit runtimes for
RPC.

Additional reference words: 3.10 3.50 3.51 4.00 win16sdk
KBCategory: kbnetwork kbbuglist
KBSubcategory: NtwkRpc

BUG: 32-Bit .Fon File Causes GP Fault with Standard VGA Driver
PSS ID Number: Q137882

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.51, 4.0

SYMPTOMS
========

Windows NT and Windows 95 can use 32-bit .fon files in the PE format. These
raster font files can be created when using the 32-bit compiler or linker
if you create a 32-bit DLL that contains one or more .fnt files in its
resources. However, If you run Windows 95 with the "Standard Display
Adapter (VGA)(Microsoft)," your application will shut down (perform an
illegal operation or produce a general protection (GP) fault) if you try to
call TextOut() with a 32-bit .fon raster font selected into the device
context you are calling TextOut() on.

RESOLUTION
==========

Create a 16-bit .fon file instead of a 32-bit .fon file if you want your
font to function properly on all video drivers. The following article in
the Microsoft Knowledge Base describes a technique you can use to create a
16-bit .fon file:

 ARTICLE_ID: Q76535
 TITLE : SAMPLE: Creating a Custom Raster Font

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Create a 32-bit .fon raster font file by using the 32-bit compiler.

2. Call CreateFont() to create a logical font for it, and select it into a
 device context.

3. Try calling TextOut() to draw some text. A GP fault occurs.

Additional reference words: 4.00 TextOut .fnt
KBCategory: kbgraphic kbbuglist

KBSubcategory: GdiFnt

BUG: 32-bit StampResource() Function Won't Work in Windows 95
PSS ID Number: Q133700

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SYMPTOMS
========

Setup programs created with the 32-bit Setup Toolkit fail on a call to
StampResource() in Windows 95.

CAUSE
=====

StampResource() makes use of a Win32 API called UpdateResource() to write
string table resource data into binary (executable) files.
UpdateResource() is not implemented in Windows 95, so StampResource()
fails to work.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 4.00
KBCategory: kbtool kbbuglist
KBSubcategory: tlsmss

BUG: Bad Characters in 32-bit App on Win32s on Russian Windows
PSS ID Number: Q126865
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.5
 - Microsoft Win32s versions 1.2 and 1.25
--

SYMPTOMS
========

When compiling, linking, and running a Russian application which was built
using Microsoft Visual C++ version 2 under on Windows NT version 3.5 the
application runs correctly. If this application is run on Russian Windows
version 3.1 with the Win32s libraries version 1.2 or 1.25 installed, some
parts of the user interface appear as meaningless set of characters.

CAUSE
=====

The strings in the resources are stored in UNICODE format. Yet you must
pass all strings to Windows 3.1 in ANSI format. The drawing of the
resources is done by Windows 3.1. Win32s simply reads the 32-bit resources,
converts them to the 16-bit format equivalent, and passes the resources to
Windows 3.1. One stage of the conversion is to convert the UNICODE strings
into ANSI strings. This conversion for the Russian language is broken.

STATUS
======

Microsoft has confirmed this to be a problem in the product(s) listed at
the beginning of this article. This bug will be fixed in the next release
of Win32s.

Additional reference words: Cyrillic Russia 2.00 garbage corruption
KBCategory: kbbuglist
KBSubcategory: WIntlDev W32s

BUG: Can't Justify Text with Japanese Script Terminal Font
PSS ID Number: Q145755
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows 95
--

SYMPTOMS
========

If the Japanese Script of the Terminal font is selected into the device
context and then SetTextJustification is called to justify a text string,
the text is not justified.

CAUSE
=====

The Japanese Script of the Terminal font has a tmBreakChar value of zero.
This prevents SetTextJustification from specifying the amount of space
Windows should add to the break characters in a string of text. The
tmBreakChar value should be 32 which is the half-space character.

RESOLUTION
==========

The Japanese Script of the Terminal font should not be used to create
justified text using SetTextJustification. This problem will be fixed in
the next release of Windows 95.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 4.00
KBCategory: kbprg kbbuglist
KBSubcategory: wintldev

BUG: ChooseColor Dialog Box Quits When Edit Control Subclassed
PSS ID Number: Q141202
--
The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included
 with Microsoft Windows NT version 3.51
--

SYMPTOMS
========

When the ChooseColor() API is called to display the custom color selection
dialog box in an application that is globally subclassing edit controls, an
application error (The memory could not be read) occurs in the application.

CAUSE
=====

Certain messages are sent to this dialog before WM_INITDIALOG. These
messages manipulate the dialog's edit controls. However, these messages
assume the standard system edit control and act accordingly, thus causing
the problem.

RESOLUTION
==========

To avoid this error, applications that use a global customized edit control
should use a superclassed edit control.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words:
KBCategory: kbprb kbbuglist
KBSubcategory:

BUG: ChooseFont() Sample Text Displays DBCS Chars Incorrectly
PSS ID Number: Q145756
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows 95
--

SYMPTOMS
========

The Font dialog's Sample text window displays DBCS characters incorrectly
for the MSP-Gothic typeface font if the user selects a font style other
than Regular.

CAUSE
=====

If the CHOOSEFONT structure's Flags field contains the CF_NOSCRIPTSEL flag
when the ChooseFont() API is called and the user subsequently selects the
MPS Gothic font in the Font list box and then sets the font style to a
style other than regular, the DBCS text is displayed incorrectly. The
CF_NOSCRIPTSEL flag is used in Windows 95 only and specifies that there
should be no selection in the character set (Script) combo box.

Applications use this flag to support multiple character set selections.
This flag is set on input only. When it is set, the script combo box is
disabled and the lfCharSet member of the LOGFONT structure is set to
DEFAULT_CHARSET.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

MORE INFORMATION
================

The occurance of this problem does not depend on any fonts or size of font.
Therefore, the problem may occur while the sample text is displaying other
fonts.

Additional reference words: 4.00
KBCategory: kbprg kbbuglist
KBSubcategory: wintldev

BUG: Console Applications Do Not Receive Signals on Windows 95
PSS ID Number: Q130717

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

Console applications call SetConsoleCtrlHandler() to install or remove
application-defined callback functions to handle signals. On Windows 95,
the signal handler function only gets called for the CTRL_C_EVENT and
CTRL_BREAK_EVENT signals; the signal handler function is never called for
the CTRL_SHUTDOWN_EVENT, CTRL_LOGOFF_EVENT, and CTRL_CLOSE_EVENT signals.

CAUSE
=====

Windows 95 sends CTRL_C_EVENT and CTRL_BREAK_EVENT signals to console
applications that have installed signal handers, but does not send
CTRL_SHUTDOWN_EVENT, CTRL_LOGOFF_EVENT, or CTRL_CLOSE_EVENT signals.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: Win95 4.00 console event signal
KBCategory: kbprg kbbuglist
KBSubcategory: BseCon

BUG: Console Control Events May Be Missed
PSS ID Number: Q134284

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

In Windows 95, console applications that install console control handler
functions by using SetConsoleCtrlHandler() do not always get all events
when two or more events occur at almost the same time.

CAUSE
=====

The Windows 95 console system does not queue up console control events. If
multiple events occur rapidly in succession, events received later
overwrite those received earlier, resulting in the earlier events being
lost. The number of events that the console application receives depends on
when the events actually arrive; the shorter the interval between the
events, the more likely that one or more will be lost.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

MORE INFORMATION
================

The following code demonstrates the problem. It should receive five
CTRL_C_EVENT and five CTRL_BREAK_EVENT events, and print a line for
each. However, because events are not queued, it will print less than
five of each event type, and may print only the last CTRL_BREAK_EVENT.

Code to Demonstrate Problem

// Console Application
#include <windows.h>
#include <stdio.h>

BOOL WINAPI CtrlHandler (DWORD dwEvent);

void main (void)
{

 printf ("Installing handler\n");
 SetConsoleCtrlHandler (CtrlHandler, TRUE);

 GenerateConsoleCtrlEvent (CTRL_C_EVENT, 0);
 GenerateConsoleCtrlEvent (CTRL_C_EVENT, 0);
 GenerateConsoleCtrlEvent (CTRL_C_EVENT, 0);
 GenerateConsoleCtrlEvent (CTRL_C_EVENT, 0);
 GenerateConsoleCtrlEvent (CTRL_C_EVENT, 0);

 GenerateConsoleCtrlEvent (CTRL_BREAK_EVENT, 0);
 GenerateConsoleCtrlEvent (CTRL_BREAK_EVENT, 0);
 GenerateConsoleCtrlEvent (CTRL_BREAK_EVENT, 0);
 GenerateConsoleCtrlEvent (CTRL_BREAK_EVENT, 0);
 GenerateConsoleCtrlEvent (CTRL_BREAK_EVENT, 0);

 printf ("Removing handler\n");
 SetConsoleCtrlHandler (CtrlHandler, FALSE);
}

BOOL WINAPI CtrlHandler (DWORD dwEvent)
{
 switch (dwEvent)
 {
 case CTRL_C_EVENT:
 printf("Got CTRL_C_EVENT\n");
 break;

 case CTRL_BREAK_EVENT:
 printf("Got CTRL_BREAK_EVENT\n");
 break;

 case CTRL_LOGOFF_EVENT:
 printf("Got CTRL_LOGOFF_EVENT\n");
 break;

 case CTRL_SHUTDOWN_EVENT:
 printf("Got CTRL_SHUTDOWN_EVENT\n");
 break;

 case CTRL_CLOSE_EVENT:
 printf("Got CTRL_CLOSE_EVENT\n");
 break;

 default:
 // unknown type--better pass it on.
 return (FALSE);
 }
 // Handled all known events
 return (TRUE);
}

Additional reference words: 4.00 Windows 95
KBCategory: kbui kbprg kbbuglist
KBSubcategory: BseCon

BUG: CopyFile Fails with Read-Only Files
PSS ID Number: Q145935
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit for
 Microsoft Windows 95
--

SYMPTOMS
========

The CopyFile function fails and GetLastError returns ERROR_ACCESS_DENIED
when you try to copy a read-only file to a core SMB server (such as a LAN
Manager for UNIX server) or to a Netware server when the client computer
uses real-mode network drivers. The destination file is created as a
read-only file and is zero in length.

CAUSE
=====

This error message occurs because there is a mismatch between the way that
the Windows 95 redirector accesses files and the way that these servers
expect this access.

RESOLUTION
==========

Remove the read-only attribute before calling the CopyFile function to
allow the file to be copied correctly. After the copy is complete, then
the read-only attribute can be restored.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 4.00
KBCategory: kbprg kbbuglist
KBSubcategory: BseFileio

BUG: CreateDC Does Not Thunk DEVMODE Structure Correctly
PSS ID Number: Q128701
--
The information in this article applies to:

 - Microsoft Win32s, versions 1.2 and 1.25
--

SYMPTOMS
========

Under Win32s version 1.2 and 1.25, when a Win32-based application displays
a printer setup dialog box that calls PrintDlg with the PD_PRINTSETUP flag
and the printing orientation is changed from Portrait to Landscape, the
DEVMODE structure obtained from the PrintDlg call to CreateDC is passed and
creates a printer DC. If the printer driver is a postscript driver,
anything printed using this DC is still in Portrait mode.

CAUSE
=====

The thunking layer for CreateDC does not thunk the DEVMODE structure for
the postcript driver correctly.

RESOLUTION
==========

To work around the problem, avoid calling CreateDC with a DEVMODE
structure. Instead, directly create the pinter DC by calling PrintDlg with
the PD_RETURNDC flag. Then change the printing orientation from within the
print dialog box.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are reasearching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 1.20 1.25 3.10 3.50
KBCategory: kbprint kbbuglist
KBSubcategory: GdiPrn

BUG: CreateDC Fails in Windows NT-Based Service Application
PSS ID Number: Q137631
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.51
--

SYMPTOMS
========

A CreateDC call fails in a Windows NT-based service application when
printing to a network printer in Windows NT by clicking Printer and then
Connect To on the Printer Manage menu.

WORKAROUND
==========

Create a local printer using the same printer model as the network printer
and redirect the printer port to the network printer.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: service printing
KBCategory: kbprg kbprint kbbuglist
KBSubcategory: GdiPrn

BUG: CreateDirectoryEx() Returns Failure Although API Succeeds
PSS ID Number: Q140455

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included
 with Microsoft Windows 95

 - Microsoft Win32 Software Development Kit (SDK) version 4.0
--

SYMPTOMS
========

When CreateDirectoryEx uses the template directory parameter
lpTemplateDirectory to create a directory, the function reports that it
failed if the template directory string contains two back slashes (\\) at
the end of the string.

For example, if the lpTemplateDirectory is set to C:\\, CreateDirectoryEx
returns FALSE, and it sets the last error flag to (87L)
ERROR_INVALID_PARAMETER, even though API successfully created the new
directory.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words 4.00
KBCategory: kbprg kbbuglist
KBSubcategory:

BUG: CreateFile() Opens Read-Only File with Read/Write Access
PSS ID Number: Q140020

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows 95

SYMPTOMS
========

A Win32 application calls CreateFile() with GENERIC_READ and GENERIC_WRITE
as the parameters for the desired access. The application tries to open an
existing file on a Novell Netware server. This file has a read-only access
permission set. The call to CreateFile() is successful.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are reasearching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

MORE INFORMATION
================

The information in this article is applicable only to the Microsoft Client
for Netware for Windows 95. Ideally, in the previously described scenerio,
the call to CreateFile() should fail with error 5L (ERRROR_ACCESS_DENIED),
as it does on another Win32 platform - Windows NT. However, in Windows 95,
an attempt to write to the opened file does fails. The condition described
in this article applies only to files residing on Novell Netware Servers.

Additional reference words: 4.00
KBCategory: kbnetwork kbbuglist kb3rdparty
KBSubcategory: NtwkMisc BseFileio

BUG: DdeConnect Never Returns
PSS ID Number: Q136218

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s version 1.3

SYMPTOMS
========

A 32-bit application calls DdeConnect when all previous DDEML
initialization has been performed. DdeConnect never returns.

CAUSE
=====

Any thread that creates a top-level window and doesn't have a message
loop will cause DdeConnect to block. This is because DdeConnect calls
SendMessage(HWND_BROADCAST...). In this call, SendMessage will put the
message in the target thread's message queue and block the calling
thread. If the target thread doesn't have a message loop, it will never
process this message and therefore never return.

One complication is that some things create windows without the knowledge
of the calling thread. It is known that some SQL, RPC, and DDEML function
calls will do this. Any top-level window that is created by a thread that
has no message loop will cause this to happen.

RESOLUTION
==========

The only current solution is to add a message loop to the thread that
created the window.

STATUS
======

Microsoft has confirmed this to be a problem in the Microsoft products
listed at the beginning of this article. We are researching this problem
and will post new information here in the Microsoft Knowledge Base as it
becomes available.

Additional reference words: 4.00
KBCategory: kbui kbbuglist
KBSubcategory: UsrDde

BUG: Deadkey Not Accepted in Windows 95 Console Application
PSS ID Number: Q140456

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included
 with Microsoft Windows 95

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SYMPTOMS
========

Deadkeys cannot be accepted as input to a Windows 95 Console application
even when the appropriate keyboard layout is selected. ReadConsoleInput()
cannot read in deadkeys on Windows 95.

For example, pressing the circumflex (^) and then the letter e should
produce an e with the circumflex on top. However, the combination keys do
not print in a console application on a system running Windows 95 with a
German keyboard selected.

CAUSE
=====

Some of the code handling deadkey input to the console is missing from
Windows 95.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 4.00
KBCategory: kbui kbbuglist
KBSubcategory:

BUG: DeletePrinter on Remote Printers Causes GPFs
PSS ID Number: Q151076
--
The information in this article applies to:

 - Microsoft Win32 Application Programming Interface included with:
 Microsoft Windows 95
--

SYMPTOMS
========

The DeletePrinter function in Windows 95 causes a General Protection Fault
(GPF) if the printer is opened by specifying a UNC pathname.

Note that calling DeletePrinter on remote printers in Windows 95 is not
supported. However, DeletePrinter should fail the call rather than cause a
General Protection Fault.

RESOLUTION
==========

Do not call DeletePrinter in Windows 95 on a printer handle that was opened
by specifying a UNC path in the OpenPrinter function.

Applications should check the version of the operating system and prevent
DeletePrinter from being called when the application is running on Windows
95 and the target printer is specified by a UNC path.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this bug and will post
new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 4.00 Crash failure Spool32 GPF gp gp-f
KBCategory: kbprg kbbuglist
KBSubcategory: GdiPrn

BUG: ESC/ENTER Keys Don't Work When Editing Labels in TreeView
PSS ID Number: Q130691

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s version 1.3

SYMPTOMS
========

When editing labels in a TreeView control, you should be able to press the
ESC key to cancel the changes or press the ENTER key to accept the changes.
However, when the TreeView control is contained in a dialog box,
IsDialogMessage processes the ESC and ENTER keystrokes and does not pass
them on to the edit control created by the TreeView control, so the
keystrokes have no effect.

CAUSE
=====

The TreeView control creates and subclasses the edit control used for
in-place editing. The subclass procedure does not process the WM_GETDLGCODE
and WM_CHAR messages for the edit control properly.

RESOLUTION
==========

To work around the problem, subclass the edit control and return
DLGC_WANTALLKEYS in response to the WM_GETDLGCODE message. Then process the
WM_CHAR messages for VK_ESCAPE and VK_RETURN.

To subclass the edit control, obtain the handle to the edit control by
using the TVM_GETEDITCONTROL message, then use normal subclassing
techniques. The control should be subclassed in response to the
TVN_BEGINLABELEDIT notification. Remove the subclassing when the
TVN_ENDLABELEDIT notification is received.

In response to the WM_CHAR|VK_ESCAPE message, have the application send the
TVM_ENDEDITLABELNOW with fCancel = TRUE message to cancel the edit. In
response to the WM_CHAR|VK_RETURN message, have the application send the
TVM_ENDEDITLABELNOW with fCancel = FALSE message to accept the edit.

All other WM_CHAR messages should be passed on to the default edit control
window procedure.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed

at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 1.30 4.00 95
KBCategory: kbui kbbuglist
KBSubcategory: UsrCtl W32s

BUG: EV_RING Isn't Detected in WaitCommEvent
PSS ID Number: Q137862

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SYMPTOMS
========

In a Win32-based environment, an application is supposed to detect a RING
indication on a serial communications port by passing EV_RING as one of the
flags in SetCommMask. After a RING has occurred, a call to WaitCommEvent
should indicate that an EV_RING event has occurred. However, when this is
done in Windows 95, WaitCommEvent never indicates that an EV_RING event
occurred. In Windows NT, WaitCommEvent does indicate the EV_RING properly.

RESOLUTION
==========

There are two possible resolutions. One solution to this problem is to
enable your modem device to indicate a ring by sending the string "RING" to
the port. Your application can detect that a RING has occurred by reading
the characters coming into the port and determining if the string "RING"
has been received.

Another solution is to create a thread that repeatedly calls
GetCommModemStatus to look for the MS_RING_ON flag to be set in the
returned modem status. This method, however, severely degrades system
performance.

The following code demonstrates this method:

 for (;;)
 {
 GetCommModemStatus(hCommPort, &dwModemStatus)
 if (MS_RING_ON & dwModemStatus)
 // RING has occurred
 }

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 4.00 Windows 95
KBCategory: kbprg kbbuglist
KBSubcategory: BseComm

BUG: FindFirstFile() Does Not Handle Wildcard (?) Correctly
PSS ID Number: Q130860

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

In Windows 95, the FindFirstFile() function interprets a wildcard (?) as
"any character" instead of "zero or one character," its true meaning. This
incorrect interpretation causes some searches to return invalid results.
For example, if the files, TEMP.TXT and TEMPTEMP.TXT, are in the same
directory, the following code finds the TEMPTEMP.TXT file, but not the
TEMP.TXT file:

 HANDLE hFind;
 WIN32_FIND_DATA findData = {0};

 hFind = FindFirstFile ("TEM?????.???", &findData);

 if (hFind == INVALID_HANDLE_VALUE)
 MessageBox (hwnd, "FindFirstFile() failed.", NULL, MB_OK);
 else
 {
 do
 {
 MessageBox (hwnd, findData.cFileName, "File found", MB_OK);
 }
 while (FindNextFile(hFind, &findData));

 CloseHandle (hFind);
 }

Windows NT correctly finds both the TEMP.TXT and TEMPTEMP.TXT files.

RESOLUTION
==========

To work around this problem, choose an alternative wildcard search and
apply further processing to eliminate files that are found by the
alternative search, but do not match the original search. For example, the
code above could be changed to search for TEM*.* instead of TEM?????.???.
Then you could make an additional test for filenames that are up to 8
characters in length, followed by a ".", followed by up to 3 more
characters (8.3).

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products
listed at the beginning of this article. We are researching this bug
and will post new information here in the Microsoft Knowledge Base
as it becomes available.

Additional reference words: 95 4.00 regular expression wild
KBCategory: kbprg kbbuglist
KBSubcategory: BseFileio

BUG: GetCommProperties Leaks a Handle
PSS ID Number: Q139657

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.51

SYMPTOMS
========

Repeated calls to GetCommProperties cause the process handle count to
increase and never decrease. This can be detected by running PerfMon. This
eventually causes system failures.

RESOLUTION
==========

To work around this problem, don't call GetCommProperties repeatedly. Call
GetCommProperties once, and then store the result for use later. If you
must repeatedly call GetCommProperties, you should periodically exit the
process and restart. You may want to create a separate, short-lived process
to get the desired information and communicate it to the main process by
using IPC methods.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words:
KBCategory: kbprg kbbuglist
KBSubcategory: BseCommapi

BUG: GetDiskFreeSpace() Fails with a UNC Path to Network Share
PSS ID Number: Q137230

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), version 4.0

SYMPTOMS
========

The GetDiskFreeSpace() function fails with a universal naming convention
(UNC) path to a network share. This failure causes problems for various
applications. For example, WinHelp can neither load nor create a full-text
index through a UNC path. The same operation works fine using a
drive-relative path.

This problem does not occur under Microsoft Windows NT. However, you must
include a trailing backslash, so that the UNC path looks like the
following:

 \\server\share\

RESOLUTION
==========

Use a drive letter instead. For example:

 GetDiskFreeSpace(<UNC name>)
 if <GetDiskFreeSpace fails>
 WNetAddConnection() // Connect and get a drive letter.
 GetDiskFreeSpace(<drive letter>:)
 WNetCancelConnection() // Disconnect.

NOTE: A trailing backslash is required for the drive letter under Microsoft
Windows 95. Under Microsoft Windows NT, the call succeeds with or without
the trailing backslash.

STATUS
======

Microsoft has confirmed this to be a bug in Microsoft Windows 95. We are
researching this problem and will post new information here in the
Microsoft Knowledge Base as it becomes available.

Additional reference words: 4.00 95 buglist4.00
KBCategory: kbprg kbbuglist
KBSubcategory: BseFileio

BUG: GetKerningPairs Sometimes Fails on Win32s 1.2 and 1.25a
PSS ID Number: Q125872

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Win32s versions 1.2 and 1.25a

SYMPTOMS
========

GetKerningPairs will sometimes fail on Win32s version 1.2 causing the
32-bit application to exit mysteriously. The problem may only occur once in
a while with many successful runs interrupted by a single unsuccessful run.

CAUSE
=====

The thunking layer for GetKerningPairs contains a bug in the code that
allocates a temporary buffer passed to the 16-bit version of
GetKerningPairs. The errant code executes whenever the number of kerning
pairs requested is equal to or less than 128. Requesting GetKerningPairs to
return 129 or more kerning pairs forces the thunking layer to use an
alternative buffer allocation method.

RESOLUTION
==========

To work around the problem, ensure that the number of kerning pairs
requested from GetKerningPairs is greater than 128.

Typically, kerning pairs are retrieved with two calls to GetKerningPairs.
The first call retrieves the number of kerning pairs available. A buffer is
allocated based on the number of pairs returned. Then the second call to
GetKerningPairs retrieves the kerning pairs into the buffer.

To avoid the bug in GetKerningPairs, follow these steps:

1. Retrieve the number of kerning pairs available from GetKerningPairs.

2. Check that this value is greater than 128. If it is less than or
 equal to 128, reset the variable to an arbitrary value greater than
 128 -- like 129.

3. Use the new value to allocate the buffer of KERNINGPAIRS and pass
 this new value with the buffer to the second GetKerningPairs call.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will

post new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 1.20 font kerning
KBCategory: kbgraphic kbbuglist
KBSubcategory: W32s GdiFnt

BUG: GetObject Returns Partial Information for DIBSections
PSS ID Number: Q151072
--
The information in this article applies to:

 - Microsoft Win32 Application Programming Interface included with:
 Microsoft Windows 95
--

SYMPTOMS
========

The dshSection and dsOffset members of the DIBSECTION structure contain
NULL when the GetObject function is called on a file-mapped DIBSection.
These structure members should contain the handle to the file-mapping
object and the offset that were passed into the original CreatDIBSection
function call. Note that this is a problem only when DIBSections are
created from file-mapping objects. Normally, NULLs are used in the hSection
and dwOffset parameters of the CreateDIBSection function to ask Windows to
allocate the DIBSection’s memory. Under these conditions, GetObject would
be expected to return NULL for these structure members.

RESOLUTION
==========

To work around this problem, applications must cache the values passed to
the CreateDIBSection function.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this bug and will post
new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 4.00 DIB CreateFileMapping MapViewOfFile
KBCategory: kbprg kbgraphic kbbuglist
KBSubcategory: GdiBmp

BUG: GetService Gives Only Local Service Names
PSS ID Number: Q138039

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.51, 4.0

SYMPTOMS
========

An application's attempt to use name registration and the resolution API
GetService is unsuccessful. Service names, other than those on the local
computer, cannot be found.

CAUSE
=====

GetService does not work for both Windows NT build 1057 and Windows 95
build 950.6. GetService is designed to enumerate through all name space
providers to query a service. However, none of the providers currently
implement GetService helper functions.

WORKAROUND
==========

Use GetAddressByName. Alternately, for NetWare services, send SAP packets
manually using WinSock. Use gethostbyname for TCP/IP services.

The best workaround is to call GetAddressByName, which can obtain addresses
for TCP/IP services, NetWare services and NetBIOS names. GetAddressByName
takes service names and global unique identifiers (GUID) just as GetService
does, and it returns the associated address for that service.

Another workaround is to query each name space independently. For example,
you might send out a SAP query to NetWare services for services registered
in the Bindery or NDS for a NetWare server. To learn more about SAP
queries, refer to the IPX router specification provided by Novell.

To find the IP address of a TCP/IP service, you can use gethostbyname in
the WinSock API. Your service must be registered in the DNS database.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 4.00
KBCategory: kbnetwork kbprg kbbuglist
KBSubcategory:

BUG: getsockopt for IPX_MAX_ADAPTER_NUM Fails on Windows 95
PSS ID Number: Q139131

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SYMPTOMS
========

When an application calls getsockopt with option IPX_MAX_ADAPTER_NUM on
Windows 95, the call fails with Winsock error 10042 (Bad Protocol Option).

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products
listed at the beginning of this article. We are reasearching this bug
and will post new information here in the Microsoft Knowledge Base
as it becomes available.

MORE INFORMATION
================

The following article in the Microsoft Knowledge Base illustrates a way to
use getsockopt() and IPX_MAX_ADAPTER_NUM to enumerate addresses for Winsock
families other than IP. This example works in Windows NT, but because of
the problem documented in this article, it will not work in Windows 95

 ARTICLE-ID: Q129315
 TITLE : How to Use WinSock to Enumerate Addresses

Additional reference words: 4.00 Windows 95
KBCategory: kbnetwork kbbuglist
KBSubcategory: NtwkMisc

BUG: GetTextExtentPoint Fails in App Based on Windows/Win32s
PSS ID Number: Q147647
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 Application Programming Interface included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s version 1.30c
--

SYMPTOMS
========

GetTextExtentPoint fails when all of the following conditions are present:

 - You have either a 16-bit application running under Windows 3.1 or a
 32-bit application running under Win32s.

 - The application uses GetTextExtentPoint().

 - The string buffer parameter has been allocated with GlobalAlloc() or has
 been reallocated with GlobalReAlloc().

 - The string size is an exact multiple of 32 bytes.

Under Win32s, GetLastError returns an error 87 (Invalid Parameter). The
debug version of Windows 3.1 displays a Fatal Exit code 0x700A with this
error message:

 GetTextExtentPoint - Invalid string

CAUSE
=====

As stated earlier, this problem occurs only when the allocated size of the
string is an exact multiple of 32 bytes.

This is a bug in Microsoft Windows 3.1 that causes ramifications in a
16-bit application running under Windows 3.1. A 16-bit application running
under Windows NT 3.51 will have the same problem, but it will run without
any problems under Windows 95.

This bug is not specific to Win32s. However, because Win32s runs under the
Windows environment, a 32-bit application running under Windows 3.1 by way
of Win32s will also exhibit this problem. However, a 32-bit application
running under Windows NT or Windows 95 will not exhibit this problem.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed

at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

MORE INFORMATION
================

Note that GetTextExtentPoint() will succeed if you pass a string constant
that has a size that is a multiple of 32. For example, the following will
work:

 GetTextExtentPoint(hDC, "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA", 32, &size);

Sample Code to Reproduce Problem

Note that error checking is not implemented in the following code.

 HGLOBAL hMem;
 HDC hDC;
 SIZE size;
 int blksize, i;
 char szMsg[256];
 LPSTR lpBuf;

 blksize=32;
 #ifdef WIN32
 SetLastError(0);
 #endif

 hDC = GetDC(hWnd);
 hMem = GlobalAlloc(GHND, blksize);
 lpBuf = (LPSTR) GlobalLock(hMem);
 for (i=0; i<blksize; i++)
 lpBuf[i] = 't';

 if (!GetTextExtentPoint(hDC, lpBuf, blksize, &size))
 {
 #ifdef WIN32
 wsprintf(szMsg, "GetTextExtentPoint Error %d\r\n", GetLastError());
 #else
 wsprintf(szMsg, "GetTextExtentPoint Error\r\n);
 #endif
 MessageBox(NULL, szMsg, "Test", MB_OK);
 }
 GlobalUnlock(hMem);

 #ifdef WIN32
 SetLastError(0);
 #endif

 hMem = GlobalReAlloc(hMem, 2*blksize, GMEM_ZEROINIT);
 lpBuf = (LPSTR) GlobalLock(hMem);
 for (i=0; i<blksize; i++)
 lpBuf[blksize+i] = 'T';

 if (!GetTextExtentPoint(hDC, lpBuf, 2*blksize, &size))
 {
 #ifdef WIN32
 wsprintf(szMsg, "GetTextExtentPoint Error %d\r\n", GetLastError());
 #else
 wsprintf(szMsg, "GetTextExtentPoint Error \r\n");
 #endif
 MessageBox(NULL, szMsg, "Test", MB_OK);
 }

 GlobalUnlock(hMem);
 if (hMem) GlobalFree(hMem);

Additional reference words: win32s gdi 1.30c 4.00 3.10 3.51
KBCategory: kbprg kbbuglist
KBSubcategory: w32s kbgdi

BUG: ImmSetConversionStatus Doesn't Work When IME Is Closed
PSS ID Number: Q150024
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 Software Development Kit (SDK) for:

 - Microsoft Windows NT, version 3.51
 - Microsoft Windows 95, version 4.0
--

SYMPTOMS
========

Under Microsoft Japanese Windows 95 and Microsoft Japanese Windows NT 3.51,
ImmSetConversionStatus doesn't work if the native IME -- MS IME 95 -- is
used when IME is closed.

If the IME is closed and ImmSetConversionStatus is called to set the
conversion status, the new conversion status is not used when the IME is
opened again. Instead, the conversion status reverts to the old setting,
although the IME status window shows the new setting.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Open MS IME 95. Set it to double-byte Hiragana mode, and type in some
 Hiragana characters. Then close the IME.

2. Call ImmSetConversionStatus to set the IME to Katakana mode.

3. Open IME. The status window appears to be in Katakana mode.

4. Start typing, and notice that the Status Window reverts back to
 double-byte Hiragana mode.

Additional reference words: 4.00 3.51 DBCS IMM IME
KBCategory: kbprg kbbuglist
KBSubcategory: wintldeb

BUG: Incomplete IPX_ADDRESS_DATA Structure Under Windows 95
PSS ID Number: Q139130

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SYMPTOMS
========

When an application calls getsockopt with option IPX_ADDRESS on Windows 95,
the IPX_ADDRESS_DATA structure is only partially filled. The only parts of
the IPX_ADDRESS_DATA structure that are filled in are the UCHAR netnum[4]
and UCHAR nodenum[6] fields.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products
listed at the beginning of this article. We are reasearching this problem
and will post new information here in the Microsoft Knowledge Base
as it becomes available.

Additional reference words: 4.00 Windows 95
KBCategory: kbnetwork kbbuglist
KBSubcategory: NtwkMisc

BUG: Incorrect Painting Using Pattern Brushes on DIBSections
PSS ID Number: Q149956
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), version 4.0
--

SYMPTOMS
========

When using a pattern brush from CreatePatternBrush() on a DIBSection,
where the DIBSection is of a different bit-depth than the screen,
the result of the painting is incorrect.

RESOLUTION
==========

A pattern brush, created with a call to CreatePatternBrush(), can only be
used on device dependent bitmaps (DDBs) or DIBSections of the same
bit-depth as the screen. A DIBPatternBrush should be used on a DIBSection
having a different bit-depth than the screen. This DIBPatternBrush is
created with a call to CreateDIBPatternBrushPt().

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products
listed at the beginning of this article. We are researching this problem
and will post new information here in the Microsoft Knowledge Base
as it becomes available.

Additional reference words: 4.00 DIB brush pattern
KBCategory: kbgraphic kbbuglist
KBSubcategory:

BUG: LoadString Returns Wrong Number of Chars for DBCS Strings
PSS ID Number: Q140452

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included
 with Microsoft Windows 95

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SYMPTOMS
========

Under the Japanese version of Windows 95, the LoadString API returns an
incorrect number of single-byte characters when loading a string that meets
both of these conditions:

 - The string contains at least one DBCS character.
 - The string resource contains more than cchBuffer bytes.

CAUSE
=====

The LoadString API returns the number of single-byte characters into the
buffer. However, when it loads a DBCS string that is longer than the given
maximum size, LoadString returns an incorrect value. LoadString loads
cchBuffer characters and returns the length in bytes. LoadString should
load cchBuffer bytes, not characters. The return value will be equal to or
greater than cchBuffer. The resulting string copied into the buffer is not
properly null terminated.

In Windows NT (Unicode), the API returns the number of characters. In
Windows 95 (ANSI version), the API returns the number of bytes. Likewise,
the cchBuffer parameter is characters for Windows NT and bytes for Windows
95.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 4.00
KBCategory: kbprg kbbuglist
KBSubcategory:

BUG: MCI Open of MIDI File with Installable I/O Proc Fails
PSS ID Number: Q142894
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1

 - Microsoft Win32 Software Development Kit (SDK) for:

 - Windows NT versions 3.5 and 3.51
 - Windows 95
--

SYMPTOMS
========

On various Windows platforms, using MCI to open a MIDI file element with
the FOURCC of an installed I/O procedure as part of the element name fails
according to the following table:

Platform EXE MCI Open Results
--
Windows 3.1 16-bit fails, error #1
Win32s 32-bit fails, error #1
Windows 95 16-bit ok
Windows 95 32-bit fails, error #2
Windows NT 3.51 16-bit fails, error #1
Windows NT 3.51 32-bit fails, error #1

error #1 "MCI Error: Cannot find the specified file. Make
 sure the path and filename are correct."

error #2 "MMTask caused an invalid page fault in module
 <unknown> at 0000:1000100A"

CAUSE
=====

MCI uses the Sequencer device to open and play MIDI file elements.
Mciseq.drv is the system component that contains the MCI MIDI sequencer
functionality. In Windows 3.1 and Windows NT 3.51, Mciseq.drv has a bug
that causes the user-supplied FOURCC to be overriden. Mciseq.drv always
sets the fccIOProc field of the MMIOINFO structure that it passes to
mmioOpen() to FOURCC_DOS instead of the user-supplied FOURCC. This causes
mmioOpen() to use the built-in MS-DOS file system I/O procedure instead of
the user-installed I/O procedure. The result is the error "MCI Error:
Cannot find the specified file. Make sure the path and filename are
correct."

Although this bug is fixed for 16-bit applications in Windows 95, a
limitation in the Windows 95 system architecture affects 32-bit application
code that attempts this operation. In the 32-bit case, attempting to play a
MIDI file using MCISEQ.DRV and an installed I/O procedure results in the

error "MMTask caused an invalid page fault in module <unknown> at
0000:1000100A".

RESOLUTION
==========

There is no workaround in Windows 3.1 or Windows NT 3.51 that will allow
MCI to open and play a MIDI file element using an installed I/O procedure.
Therefore alternative solutions should be pursued on these platforms. For
example, in the case of playing a MIDI application resource using MCI, you
can work around the installed I/O procedure problem by first copying the
MIDI resource to a temporary file and then using MCI to play the file
element from disk with the default I/O procedure.

Because 16-bit application code in Windows 95 is not affected by the system
architecture limitation that does affect 32-bit code in Windows 95, a
32-bit application based on Windows 95 can thunk to a 16-bit DLL to play
back a MIDI file using MCI and an installed I/O procedure.

STATUS
======

Microsoft has confirmed these problems as bugs in the Microsoft products
listed at the beginning of this article. We are researching these problems
and will post new information here in the Microsoft Knowledge Base as it
becomes available.

Additional reference words: 3.10 3.50 4.00 mmio ioproc
KBCategory: kbmm kbbuglist
KBSubcategory: MMMidi

BUG: MCI Unable to Open .AVI File Using File-Interface Pointer
PSS ID Number: Q140750

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SYMPTOMS
========

When you attempt to use MCI to access an .avi file by using its reference
pointer returned from AVIFileOpen(), the following error message occurs
under Windows 95:

 mmsystem 275: CANNOT FIND THE SPECIFIED FILE, MAKE SURE THE FILE AND
 PATHNAME ARE CORRECT"

This problem does not occur under Windows NT or Windows 3.11.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

MORE INFORMATION
================

Code to Demonstrate the Problem

hrReturnVal = AVIFileOpen(&pfile,
 "c:\\winvideo\\sample.avi",
 OF_SHARE_DENY_WRITE,
 0L);

if (hrReturnVal == 0)
{
 wsprintf(ach, "AVIVideo!@%ld", pfile);
 MCIWndOpen(hwndMci, ach, 0); //Bug occurs here.
 MCIWndPlay(hwndMci);
}

Additional reference words: 4.00 file-interface stream-interface pointer
KBCategory: kbmm kbprg kbbuglist
KBSubcategory: MMVideo

BUG: MCIWndGetPositionString Makes Time Format Milliseconds
PSS ID Number: Q135304

The information in this article applies to:

 - Microsoft Video for Windows Development Kit version 1.1
 - Microsoft Win32 Software Development Kit (SDK)
 versions 3.1, 3.5, 3.51, 4.0

SYMPTOMS
========

Calling MCIWndGetPositionString causes the time format (set with
MCIWndSetTimeFormat) to change to milliseconds. This applies only to
devices that have tracks.

WORKAROUND
==========

To work around the problem, reset the time format after calling
MCIWndGetPositionString as follows:

#ifdef _WIN32

TCHAR pszFormat[30]; // Use a TCHAR in Win32
TCHAR pszPosition[30];

#else // Not Win32

char pszFormat[30];
char pszPosition[30];
#endif

 // Get the time format - hWnd is the hWnd of the MCIWnd
 MCIWndGetTimeFormat(hWnd, pszFormat, sizeof(pszFormat));

 // Get the position - hWnd is the hWnd of the MCIWnd
 MCIWndGetPositionString(hWnd, pszPosition, sizeof(pszPosition));

 // Reset the time format - hWnd is the hWnd of the MCIWnd
 if (0 == MCIWndSetTimeFormat(hWnd, pszFormat))
 // Successful
 else
 // Could not reset time format

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 3.50 3.10 4.00
KBCategory: kbmm kbbuglist kbprg kbcode
KBSubcategory: MMVideo MMMisc MCIWnd

BUG: MIDL compiler structure packing problems
PSS ID Number: Q136500
--
The information in this article applies to:

 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0
--

SYMPTOMS
========

An RPC application that uses stub code generated by MIDL throws memory
exceptions, causes a general protection (GP) fault, or overwrites memory in
the data heap. The RPC application is using a structure or union in the IDL
file.

CAUSE
=====

The /Zp (packing) option of the MIDL compiler does not affect the size of
the structure; MIDL always uses a packing of 1. However, the /Zp option of
the C compiler does increase the size of the structure. Because MIDL
assumes a packing of one, it generates code that allocates less memory
than what is actually needed.

You can verify the behavior of the MIDL compiler by searching your client
stub code for _StubMsg.pfnAllocate. This call is present only with semi-
interpreted stubs (the default MIDL option, /Os). Try compiling your IDL
file with different /Zp settings, and notice that the memory allocated by
_StubMsg.pfnAllocate is unchanged, though it should change to accommodate
packing space.

RESOLUTION
==========

There are three solutions to correct this problem:

1. Use MIDL's /Oi option.

 -or-

2. Use #pragma pack(1) in the stub code to use a packing of 1.

 -or-

3. Pad your interface declaration to match the padding done by the C
 compiler.

Please see MORE INFORMATION for details.

STATUS
======

Microsoft has confirmed this to be a problem in MIDL 2.00.0102 for the

Win32 SDK. This problem has been fixed in MIDL 3.0, now shipping with
Windows NT 4.0 beta SDK.

MORE INFORMATION
================

Fully interpreted stubs (MIDL option /Oi) use another approach for
parameter marshaling, and this alternative approach does not have the
problem with the packing. The stub code produced with /Oi is slightly
slower, but for most applications the loss is negligible. If you decide to
use the /Oi option, make sure your remote procedures are declared as
__stdcall. Refer to the MIDL documentation for more information on /Oi.

If you are not interested in using the /Oi option, you can manually pad
your interface declaration. To manually pad your interface declaration,
you must first determine the packing used by the C compiler. Visual C++
2.x for the x86 uses a packing of 4 by default. Otherwise, the packing is
specified by /Zp or #pramga pack(). Each element must start on a multiple
of the packing size.

The following example shows how to pad a structure with a packing of 4.

 typedef struct // This struct goes in the C code
 {
 char c;
 long l;
 } PADDED_BY_COMPILER_STRUCT;

 typedef struct // This struct goes in the IDL file
 {
 char c;
 char pad[3]; // Add 3 bytes to align the next field on byte 4
 long l;
 } MANUALLY_PADDED_IDL_STRUCT;

Another alternative is to wrap the stub code generated by MIDL with

 #pragma pack(1)

Each time MIDL generates the stub code, you must insert #pragma pack
statements into the server stub.

For example:

 /* File created by MIDL compiler version 2.00.0102 */
 /* at Fri Aug 18 13:48:23 1995
 */
 //@@MIDL_FILE_HEADING()

 #pragma pack(1) // Added to fix MIDL pack problem

 #include <string.h>
 #include "bug.h"

 ... code generated by MIDL ...

 #pragma pack() // Added to revert to default packing

Additional reference words: 3.50 4.00 95 2.00.0102
KBCategory: kbnetwork kbbuglist kbtool
KBSubcategory: NtwkRpc

BUG: Multiple Definitions for EM_CHARFROMPOS & EM_POSFROMCHAR
PSS ID Number: Q137249

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s version 1.3

SYMPTOMS
========

If you are using the EM_CHARFROMPOS and EM_POSFROMCHAR messages with a
RichEdit control as outlined in the Win32 SDK documentation, and they are
not working, it is likely that your application is using incorrect values
for EM_CHARFROMPOS and EM_POSFROMCHAR.

CAUSE
=====

The definitions for EM_CHARFROMPOS and EM_POSFROMCHAR in Richedit.h are
different from the definitions in Winuser.h.

RESOLUTION
==========

The programmer needs to use the definitions from Winuser.h as these work
correctly. Include Winuser.h before Richedit.h. If these messages still
don't work, the message values should be hard-coded to those from
Winuser.h.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 1.30 4.00
KBCategory: kbui kbbuglist
KBSubcategory: UsrCtl

BUG: NetBIOS Find Name Does Not Work for IPX/SPX and NetBEUI
PSS ID Number: Q137916

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SYMPTOMS
========

If an application does a NetBIOS find name (NCBFINDNAME) on a LANA that
corresponds to the NetBEUI protocol, the command fails and the error code
returned is 0x03 (Invalid command).

If the LANA number corresponds to the IPX/SPX protocol, then although a
valid FIND_NAME_BUFFER is returned, all the fields are set to zero.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products
listed at the beginning of this article. We are reasearching this bug
and will post new information here in the Microsoft Knowledge Base
as it becomes available.

MORE INFORMATION
================

Using the LANA number that corresponds to the TCP/IP protocol returns
expected results.

REFERENCES
==========

IBM Local Area Network Technical Reference #SC30-3382-2.

Additional reference words: 4.00 Windows 95
KBCategory: kbnetwork kbtshoot kbbuglist
KBSubcategory: NtwkNetbios

BUG: NetBIOS Returns Wrong Adapter Type for NetBEUI
PSS ID Number: Q137915

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SYMPTOMS
========

When an application calls Adapter Status (NCBASTAT) on a LANA number that
corresponds to the NetBEUI protocol, the adapter_type field of the
ADAPTER_STATUS structure for an ethernet card is incorrectly set to 0xFF.

This is interpreted to be a Token Ring card.

If a LANA number is used that corresponds to any other protocol (for
example, TCP/IP or IPX/SPX), the adapter_type is correctly reported as
Ethernet.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are reasearching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

REFERENCES
==========

IBM Local Area Network Technical Reference #SC30-3382-2.

Additional reference words: 4.00 Windows 95
KBCategory: kbnetwork kbtshoot kbbuglist
KBSubcategory: NtwkNetbios

BUG: Pressing SHIFT+ESC Doesn't Generate WM_CHAR on Windows 95
PSS ID Number: Q129861

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

Pressing SHIFT+ESC in an application running under Windows 95 doesn't
generate a WM_CHAR message even though it does generates a WM_CHAR
message for applications running under Windows version 3.x and Windows NT.

CAUSE
=====

The key table that TranslateMessage on Windows 95 uses to generate the
WM_CHAR messages doesn't include the SHIFT+ESC key combination.

RESOLUTION
==========

If you need to use this key combination, use the WM_KEYDOWN or WM_KEYUP
messages.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products
listed at the beginning of this article. We are researching this problem
and will post new information here in the Microsoft Knowledge Base as it
becomes available. This bug is scheduled to be corrected in a future
version of Windows 95.

Additional reference words: 4.00
KBCategory: kbui kbbuglist
KBSubcategory: UsrInp

BUG: Printer Port Redirection Not Effective for Windows Apps
PSS ID Number: Q152788
--
The information in this article applies to:

 - Microsoft Win32 Application Programming Interface included with:
 - Microsoft Windows 95
--

SYMPTOMS
========

Changing the redirection of an MS-DOS LPT device that is used by Windows
fails. This problem occurs when using the WNetCancelConnection and
WNetAddConnection functions to change a previously-redirected LPT port.
Although the functions succeed and Windows reports the new device
redirection, any Windows printer driver using the device continues to print
to the original remote printer.

Similar behavior occurs if the Capture Printer Port feature is used in the
printer properties dialog. Any attempt to change a printer port's
connection to a different remote printer will appear to succeed but the
print jobs arrive at the original remote printer.

This problem occurs only with Windows applications. MS-DOS applications
executed within a console or "DOS" box are not affected by this problem and
their output will be properly directed to the network print share for the
LPTX device.

RESOLUTION
==========

To work around this problem, do not use WNetAddConnection and MS-DOS
devices to connect Windows printer drivers to network print shares.
Instead, configure Windows printers to use print shares directly via
network ports. This behavior is accomplished by using the Print Spooler
functions: OpenPrinter, GetPrinter, SetPrinter, ClosePrinter, EnumPorts,
and AddPort. Continue to use the WNet functions in Windows to redirect
MS-DOS devices for MS-DOS applications.

The Print Spooler is a new feature of Windows 95 and Windows NT. For more
information on using the Print Spooler APIs to configure network printers,
please see the following article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q152551
 TITLE : How to Connect Local Printers to Network Print Shares

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this bug and will post
new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 4.00 network print queue spooler
KBCategory: kbprg kbprint kbbuglist
KBSubcategory: NtwkMisc

BUG: Problem Setting a Systemwide WH_CALLWNDPROC Hook
PSS ID Number: Q149862

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), version 4.0

SYMPTOMS
========

Under both Windows NT and Windows 95, a Win32 application can set a system
wide WH_CALLWNDPROC hook using the SetWindowsHookEx() API. This hook allows
the application to examine messages being sent by any process in the system
using the SendMessage() API. The DLL containing the hook callback procedure
is automatically injected into the address spaces of any process that calls
SendMessage(). Under WINDOWS 95, pressing the ALT+ESC keys when the hook is
installed injects the DLL into the KERNEL32.DLL process.

When the application later uninstalls the hook by calling
UnHookWIndowsHookEx(), the DLL is unmapped from the address spaces of all
the processes, except KERNEL32.DLL, in the system where it was injected.
This leads to problems when you try to copy over or delete the DLL from the
machine. These operations cause an error because the DLL file is considered
to be in use by KERNEL32.DLL.

RESOLUTION
==========

The only way to resolve this problem currently is to restart the machine.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed at the
beginning of this article. We are researching this problem and will post
new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 4.00
KBCategory: kbprg kbbuglist
KBSubcategory:

BUG: QueryPerformanceFrequency Returns Wrong Value on PC 9800
PSS ID Number: Q152145
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit for
 - Microsoft Windows 95, version 4.0
 - Microsoft Windows NT, version 3.51
--

SYMPTOMS
========

QueryPerformanceFrequency() called from an application running on an NEC
PC9800 Series computer with Japanese Win95 (PC9800 version), returns a
static value (1193180 Ticks/sec) regardless of the actual frequency of the
high-resolution performance counter. On NEC PC 9800 Series computers, the
static value can be 2457600 ticks/sec.

RESOLUTION
==========

The same API returns the correct value on NEC PC9800 Series computers
running Windows NT PC 9800 version.

This problem does not exist on any other platforms.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this bug and will post
new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 3.51 4.00
KBCategory: kbprg kbbuglist
KBSubcategory: wintldev

BUG: Race Between 2 Threads Sharing a Socket Causes Problem
PSS ID Number: Q126346

The information in this article applies to:

 - Microsoft Win32 Device Development Kit (DDK) for Windows NT
 version 3.5

SYMPTOMS
========

Packets between the TCP, UDP, and IP layers are lost.

CAUSE
=====

There appears to be a problem with a race condition between two threads
that share a socket where one is closing a socket while the other tries to
call recvfrom() on the same socket. This causes problems the next time a
socket is bound to the same UDP port.

RESOLUTION
==========

The vendor should implement a workaround within the application so that
this race condition does not occur.

STATUS
======

Microsoft has confirmed this to be a problem in the Microsoft products
listed at the beginning of this article. We are researching this problem
and will post new information here in the Microsoft Knowledge Base as it
becomes available.

MORE INFORMATION
================

This Sockets/UDP problem was discovered while testing the TX1000 NCPI
driver for Windows NT. Here are some notes showing what appears to be
happening:

Thread 1 Thread 2
-------- ---------
Create DGRAM socket x
Bind socket x to:
 IPADDR = ANY
 PORT = 1571
Create thread 2 ----------------->
 RecvFrom on socket x
 ...
 Packet received on x (recvfrom completes)
 <---------------signal main thread

Process rec'd packet wait for main thread to consume buffer
Signal buffer available--------->
 RecvFrom on socket x
 ... { repeats many times }

Normal Shutdown Sequence (on Last Packet)

 Packet received on x (recvfrom completes)
 <---------------signal main thread
Process rec'd packet wait for main thread to consume buffer
Signal buffer available--------->
Application done (1) RecvFrom on socket x
(2) close socket x
 (3) RecvFrom fails with expected error
 Thread terminates

Usually, events occur in sequence (1, 2, then 3). In this normal case, the
socket is cleared correctly, and everything works the next time the
application runs.

Shutdown Sequence that Causes Problems (on Last Packet)

 Packet received on x (recvfrom completes)
 <---------------signal main thread
Process rec'd packet wait for main thread to consume buffer
Signal buffer available--------->
Application done
(1) close socket x (2) RecvFrom on socket x
 (3) RecvFrom fails with expected error
 Thread terminates

In this case, the sequence is slightly different. The closesocket()
function from main thread starts, but does not complete, before thread 2
runs. While thread 1 is suspended awaiting completion of closesocket(),
thread 2 runs and posts next recvfrom() on same socket. The closesocket()
function completes successfully, and recvfrom() fails as in normal case.
But the next time the application runs and binds to the same UDP port, the
following occurs:

 - All socket calls (bind(), recvfrom()) are successful

 - All incoming packets to that UDP port are discarded before reaching the
 application -- recvfrom() never completes. The following command shows
 that the "receive errors" count has been incremented once for each
 incoming packet that was lost:

 netstat -s -p udp

The conclusion is that in this case the socket was not cleaned up properly
due to the race condition between the closesocket() and the recvfrom()
functions.

Additional reference words: 3.50

KBCategory: kbnetwork
KBSubcategory: NtwkWinsock

BUG: ReadFile Returns Wrong Error Code for Mailslots
PSS ID Number: Q139715

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SYMPTOMS
========

If a server opens a Mailslot using CreateMailslot(), specifies a timeout,
and then uses ReadFile to recieve data, the ReadFile will fail if there is
no data available. GetLastError() returns an error code of 5 (access
denied).

RESOLUTION
==========

Interpret this error code to mean that no data is available.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are reasearching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 4.00 Windows 95
KBCategory: kbnetwork kbbuglist
KBSubcategory:

BUG: Reading Past End of Volume with FAT File Produces Errors
PSS ID Number: Q150860
--
The information in this article applies to:

 - Microsoft Win32 Application Programming Interface included with:
 - Microsoft Windows NT version 3.51

SYMPTOMS
========

Windows NT allows access to partitions by opening a volume using the
"\\.\x:" nomenclature. This procedure allows a process to access a
partition directly. Reading beyond the end of a volume formatted with the
New Technology File System (NTFS) causes the read operation to truncate.
Subsequent read operations succeed, but the amount read is set to zero
bytes, which indicates the End-Of-File (EOF) condition. Reading beyond the
end of a volume formatted with the FAT file system causes the read
operation to fail and GetLastError to return ERROR_INVALID_PARAMETER.

RESOLUTION
==========

To work around this behavior, do not perform read operations that extend
beyond the length of the volume. The length of the volume is determined by
examining the results of the DeviceIoControl function when called with the
IOCTL_DISK_GET_PARTITION_INFO control code. The PartitionLength member of
the PARTITION_INFORMATION structure filled out by the IOCTL contains a pair
of DWORDS that indicate the size of the volume in bytes.

STATUS
======

Microsoft has confirmed this to be a problem in the Microsoft products
listed at the beginning of this article. We are researching this problem
and will post new information here in the Microsoft Knowledge Base as it
becomes available.

Additional reference words: 3.51
KBCategory: kbprg kbbuglist
KBSubcategory: BseFileio

BUG: Rich Edit Control Improperly Displays Print Preview
PSS ID Number: Q142320
--
The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s version 1.3
--

SYMPTOMS
========

When you implement print preview using a rich edit control, the preview
looks incorrect. For example, the text is the wrong size or is not placed
at the correct location. A common manifestation of this bug is to have the
text extend beyond the end of the printable area.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 1.30 4.00 1.0 RTF RichEdit WordPad
EM_FORMATRANGE
KBCategory: kbgraphic kbbuglist
KBSubcategory: UsrCtl

BUG: RTS_CONTROL_TOGGLE Doesn't Cause RTS to Toggle
PSS ID Number: Q140030

The information in this article applies to:

 - Microsoft Win32 Software Development Kit for Windows 95

SYMPTOMS
========

Setting the fRtsControl member of the DCB structure to RTS_CONTROL_TOGGLE
should cause the RTS line to go high when data is available for sending.
When no more bytes are available for transfer, the RTS line should be set
to low. In Windows 95, the RTS line stays high.

RESOLUTION
==========

To work around this problem, use EscapeCommFunction to change the state of
the RTS line manually. Because the system doesn't do the RTS manipulation,
the application should implement the functionality itself. When data is
about to be sent, the application should set RTS high. When all of the data
has been sent, RTS should be set to low. This is only necessary when the
device being communicated with requires it. For more information, see the
Win32 documentation for help on EscapeCommFunction.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 4.00
KBCategory: kbprg kbbuglist
KBSubcategory: BseCommapi

BUG: Screen Saver Not Getting WM_DESTROY in Windows NT
PSS ID Number: Q140727

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included
 with Microsoft Windows NT versions 3.5, 3.51

SYMPTOMS
========

When a 32-bit screen saver running under Windows NT 3.5 or 3.51 terminates
due to a mouse move, mouse click, or key press, although the application
terminates, the window never gets the WM_DESTROY message. Failure to
receive this message poses a problem as applications are not able to call
clean-up routines such as deleting GDI objects, freeing memory objects, and
so on. This results in a memory leak and further reduction of system
resources each time the screen saver application is run.

This problem does not occur when the screen saver is run in Test mode under
Windows NT's Control Panel. In Test mode, the screen saver receives the
WM_DESTROY message.

STATUS
======

Microsoft has confirmed this to be a problem with the Scrnsave.lib file
that shipped with the Win32 SDK for Windows NT 3.51 and Windows 95. It is
scheduled to be fixed in the next release of the Win32 SDK. However, this
problem is specific to Windows NT; it does not occur with 32-bit screen
savers under Windows 95.

Additional reference words: 3.50
KBCategory: kbgraphic kbbuglist
KBSubcategory: GdiScrSav

BUG: SetStretchBltMode() Ignored
PSS ID Number: Q138105

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SYMPTOMS
========

On Windows 95, calling SetStretchBltMode() does not change the behavior of
StretchBlt(). StretchBlt() continues to operate as if the stretching mode
were STRETCH_DELETESCANS or COLORONCOLOR.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 4.00 GetStretchBltMode SetStretchBltMode
StretchDIBits STRETCH_ANDSCANS BLACKONWHITE STRETCH_HALFTONE
HALFTONE STRETCH_ORSCANS WHITEONBLACK
KBCategory: kbgraphic kbbuglist
KBSubcategory:

BUG: SetWindowPlacement and ptMin.x or ptMax.x = -1
PSS ID Number: Q110793

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

Passing an X coordinate value of -1 to SetWindowPlacement causes the
parameter to be ignored. If ptMinPosition.x is set to -1,
SetWindowPlacement won't reset the minimized window coordinate; this is
also true for ptMaxPosition.x. This was undocumented in the Windows 3.1 SDK
documentation.

CAUSE
=====

This problem is caused by the use of -1 as a special value. A value of -1
in the X coordinate causes the API (application programming interface) to
use the window's current coordinate for the specified parameter.

RESOLUTION
==========

Microsoft has confirmed this to be a bug in the products list above.

This behavior may be a problem for application developers because they may
want to set the maximized or minimized horizontal coordinate of a window to
-1. To avoid this problem, the developer should trap values of -1, and use
a value of -2 or 0 (zero) as appropriate.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui kbbuglist
KBSubcategory: UsrWndw

BUG: SNMP Service Produces Bad "Error on getproc(InitEx) 127"
PSS ID Number: Q130699
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5
--

SYMPTOMS
========

When the SNMP service is started with debug level 2 or greater, it returns
this error message:

 error on getproc(InitEx) 127

RESOLUTION
==========

This error message should be ignored.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are reasearching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

MORE INFORMATION
================

How to Start the SNMP Service

The SNMP service can be started from either the control panel or from
a console window.

Type "net help start snmp" in a console box to see how to configure error
logging of the SNMP agent.

The syntax of the command is:

 net start snmp [/logtype: type] [/loglevel: level]

where:

 - /LOGTYPE: type determines where the log will be created. The possible
 values are 2 for file, 4 for eventlog, and 6 for both. The default is 4.
 The file option creates a file under \WINNT\SYSTEM32 called SNMPDBG.LOG.

 - /LOGLEVEL: level determines the debug level. The higher the number, the
 more the detail obtained. The default is 1 (minimum), and the range is

 from 1 to 20.

Here is an example:

 net start snmp /logtype:6 /loglevel:10

This starts the SNMP service with loglevel 10, and logs events in the
eventlog as well as in SNMPDBG.LOG.

The SNMP service can also be started from a console window without typing
"net start." This makes all error messages go to the console window and can
be used to help in debugging when writing SNMP applications. For example,
the following starts the SNMP service:

 cmd-prompt> snmp

Additional reference words: 3.10 3.50
KBCategory: kbnetwork kbbuglist
KBSubcategory: NtwkSnmp

BUG: Socket Inheritance in Windows 95 and Windows NT 3.51
PSS ID Number: Q150523
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for
 Windows NT version 3.51 and Windows 95
--

SYMPTOMS
========

Windows 95 does not treat inheritance of Winsock socket handles in the same
manner as Windows NT. This article summarises the difference between the
two operating systems.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are reasearching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

MORE INFORMATION
================

On Windows NT, socket handles are inheritable by default. This feature is
often used by a process that wants to spawn a child process and have the
child process interact with the remote application on the other end of the
connection.

It is also common practice on Windows NT to set the standard handles
(standard input, output, or error) of the child process to the socket
handle. In such cases, the child process usually does not know that its
standard handles are actually sockets.

Windows 95 differs from Windows NT in the following manner:

 - Socket handles are not inheritable when created. To ensure that a child
 process can obtain and use a socket handle created in the parent, the
 handle must be explicitly duplicated using the Win32 API
 DuplicateHandle. Set the bInheritHandle parameter of the API to TRUE.

 - Socket handles cannot be set to the standard handles of the child
 process. A programmer may use other mechanisms to pass the socket handle
 to the client, such as passing the handle values as command line
 arguments so that the child process can simply look at its argument
 vector.

The following segment of code illustrates how to write applications that
will inherit sockets in child processes on both Windows 95 and Windows NT.
Please note that this is 32-bit code only. 16-bit applications cannot
inherit socket handles.

Code Sample

 // This is a Winsock server that is listening on a port

 // When a client connects, the server spawns a child process and
 // passes the socket handle to the child.
 // The child can use this socket handle to interact with the
 // client and the parent is free to go back to waiting for
 // other clients to connect.

 OrigSock=accept(listen_socket,(struct sockaddr *)&from,&fromlen);

 if (OrigSock == INVALID_SOCKET) {
 fprintf(stderr,"accept failed %d\n",GetLastError());
 return -1;
 }
 {
 STARTUPINFO si;
 PROCESS_INFORMATION pi;
 char argbuf[256];

 memset(&si,0,sizeof(si));

 //
 // Duplicate the socket OrigSock to create an inheritable copy.
 //
 if (!DuplicateHandle(GetCurrentProcess(),
 (HANDLE)OrigSock,
 GetCurrentProcess(),
 (HANDLE*)&DuplicateSock,
 0,
 TRUE, // Inheritable
 DUPLICATE_SAME_ACCESS)) {

 fprintf(stderr,"dup error %d\n",GetLastError());
 return -1;
 }
 //
 // Spawn the child process.
 // The first command line argument (argv[1]) is the socket handle
 //

 wsprintf(argbuf,"child.exe %d",DuplicateSock);
 if (!CreateProcess(NULL,argbuf,NULL,NULL,
 TRUE, // inherit handles
 0,NULL,NULL,&si,&pi)){
 fprintf(stderr,"createprocess failed %d\n",GetLastError());
 return -1;
 }

 }
 //
 // The parent must close both copies of the socket handles.

 //
 closesocket(OrigSock);
 closesocket(DuplicateSock);

The following segment of code illustrate how the newly created process
would then extract the socket handle from its command line.

 main(int argc, char *argv[]){
 SOCKET Sock;

 /* WSAStartup etc. */
 if (2 == argc){
 Sock = atoi(argv[1]); // use Sock
 }
 }

Additional reference words: 4.00
KBCategory: kbnetwork kbbuglist kbcode
KBSubcategory: NtwkMisc

BUG: Sound Fails to Continue in DirectSound
PSS ID Number: Q139924

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0
 - Microsoft Game Software Development Kit (SDK) version 1.0

SYMPTOMS
========

If a DirectSound application's window is minimized while it is playing a
sound, the sound fails to resume when the window is maximized.

Note that the transition from the minimized to the maximized state is the
only transition that leads to a problem. All other state transitions behave
as expected. For example, if a non-maximized window is minimized and then
restored to its former size, the sound resumes properly. Also the problem
does not occur if a non-minimized window is maximized.

RESOLUTION
==========

If the maximized window for which the sound failed to restart is reduced to
a smaller sized, non-minimized window, the sound will restart.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 1.00 4.00 Windows 95
KBCategory: kbmm kbsound kbbuglist
KBSubcategory: MMWave

BUG: SpoolFile() Fails in Windows 95
PSS ID Number: Q139011

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SYMPTOMS
========

SpoolFile() fails in Windows 95, or it fails to remove the spooled file.

RESOLUTION
==========

SpoolFile() will spool the file if the first two parameters are reversed.

SpoolFile() is documented as:

 HANDLE SpoolFile(lpszPrinter, lpszPort, lpszJob, lpszFile);

But, to make it work, call it this way:

 HANDLE SpoolFile(lpszPort, lpszPrinter, lpszJob, lpszFile);

There is no way to get SpoolFile() to remove the spooled file. The file
must be removed by the calling application once the file has been printed.

MORE INFORMATION
================

For information on an alternative to SpoolFile(), please see the following
article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q111010
 TITLE : An Alternative to SpoolFile()

For more information on sending printer-specific data to a printer in
Win32, please see the following article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q138594
 TITLE : How to Send Raw Data to a Printer by Using the Win32 API

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 4.00 SpoolFile Raw RAW.DRV PASSTHROUGH
KBCategory: kbprint kbbuglist

KBSubcategory: GdiPrn

BUG: Timimg Out on recvfrom() Causes Windows 95 to Quit
PSS ID Number: Q138267

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows 95
 version 4.0

SYMPTOMS
========

If a Winsock application is continuosly doing a recvfrom() and has a
timeout associated with the call, then after some time Windows 95 will
either restart or hang (stop responding) as soon as it receives some data.

RESOLUTION
==========

The application should use select() to determine if the socket is ready for
reading before doing a recvfrom().

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are reasearching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

MORE INFORMATION
================

This problem is observed in this situation:

An application opens a UDP or IPX socket. It then binds to INADDR_ANY
in case of UDP and to network number 0 and host number 0 in case of
IPX. It then uses the setsockopt() call with the SO_RCVTIMEO option
to set up a timeout of 1 second.

The application then does a recvfrom() in an infinite loop in such a
way so that it can receive a packet from any host. After running for
approximately 1000 seconds, if a server sends a UDP or IPX broadcast,
either the operating system stops resonding or it restarts.

Note that it might be possible to observe the same behaviour with slight
variations in circumstances such as different timeouts.

REFERENCES
==========

For more information, please see the following article in the Microsoft
Knowledge Base:

 ARTICLE-ID: Q137914
 TITLE : BUG: Windows 95-Based Winsock App Can't Receive IPX
 Broadacast

Additional reference words: 4.00
KBCategory: kbnetwork kbtshoot kbbuglist
KBSubcategory: NtwkWinsock

BUG: Tooltip for an Edit Control Is Not Displayed
PSS ID Number: Q149700
--
The information in this article applies to:

 - Microsoft Win32s versions 1.3, 1.3c
--

SYMPTOMS
==========

When a tooltip is assigned to an edit control, it never or very rarely
shows up. As a side effect, when the edit control has focus, the mouse
pointer blinks with the speed of the caret.

CAUSE
======

The tooltips code calculates the position to place the tooltip window, by
scanning the mask bitmap of the mouse pointer and finding the lowest point
that is not transparent. The beam mouse pointer has a mask bitmap that is
completely transparent, so the tooltips code never finds a lowest point and
places the tooltip too high. Once the tooltip window appears, it gets a
WM_MOUSEMOVE message, because the mouse pointer is inside the tooltip
window, and therefore disappears immediately.

RESOLUTION
===========

Replace the edit control mouse pointer's bitmap with a non-transparent
bitmap.

STATUS
======

Microsoft has confirmed this to be a bug in Win32s version 1.30 and later.
We are researching this problem and will post new information here in the
Microsoft Knowledge Base as it becomes available.

Additional reference words: 1.30 1.30c
KBCategory: kbprg kbbuglist
KBSubcategory: w32s

BUG: TrueType Fonts Don't Produce Glyphs in Windows NT 3.51
PSS ID Number: Q139510

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included
 with Microsoft Windows NT version 3.51

SYMPTOMS
========

Some TrueType fonts from other versions of Windows or third party font
vendors may not produce glyphs on Windows NT 3.51.

For example, if installed in Windows NT version 3.51, the Traditional
Arabic font (Trad.ttf) from Arabic Windows 3.11 will not produce glyphs.
The font installs, but attempts to view it produce the default character
indicating that the character codes do not have a glyph.

RESOLUTION
==========

Microsoft has confirmed this to be a problem in Windows NT version 3.51.
This problem was corrected in the WINSRV.DLL file included in the latest
Windows NT version 3.51 U.S. Service Pack.

MORE INFORMATION
================

The bug can be reproduced by viewing a suspect font in the character map
application in Windows NT version 3.50 and version 3.51. A problematic font
has no characters in any of the character subsets in Windows NT 3.51 while
the characters do show up in Windows NT 3.50.

The TrueType fonts most likely to encounter this problem are those that
have been constructed for foreign language versions of Windows such as
Arabic Windows version 3.11 or 3.1.

Additional reference words: default character far east 3.11 3.10
KBCategory: kbprg kbgraphics kbbuglist kbfixlist
KBSubcategory: GdiFnt GdiTt

BUG: Using WM_SETREDRAW w/ TreeView Control Gives Odd Results
PSS ID Number: Q130611

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

If a program uses the WM_SETREDRAW message to turn off updating of a
TreeView control before adding items, the TreeView control can behave
strangely.

For example, if the item being added to the control uses the TVI_FIRST
style to insert it to the top of the tree and the top of the tree is
scrolled above the top of the visible window, it may be impossible to bring
the item into view.

Another possible symptom is that the TreeView control doesn't repaint
itself at all. These problems occur only if the program has used the
WM_SETREDRAW message to turn off updating the TreeView control.

RESOLUTION
==========

Don't use the WM_SETREDRAW message with the TreeView control while adding
items to the control.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 4.00 95
KBCategory: kbui kbbuglist
KBSubcategory: UsrCtl

BUG: WAVEHDR.dwBytesRecorded Set to Zero in Win32s
PSS ID Number: Q147430
--
The information in this article applies to:

 - Microsoft Win32s version 1.3
--

SYMPTOMS
========

When you are using the Multimedia low-level Wave input functions in Win32s
for recording purposes, the dwBytesRecorded member of the WAVEHDR structure
is set to zero when you handle the MM_WIM_DATA message.

CAUSE
=====

Win32s does not copy the dwBytesRecorded member as it should when handling
the MM_WIM_DATA message.

RESOLUTION
==========

You will have to call waveInUnprepareHeader() before you examine the
dwBytesRecorded member in the WAVEHDR structure when you are handling the
MM_WIM_DATA message. Then you will get the correct result.

Note that the dwBytesRecorded value will be non-zero when you handle the
MM_WIM_DATA message the second time or later. This non-zero value is still
incorrect as it corresponds to the value of the dwBytesRecored from the
previous attempt. Therefore, you should always call waveInUnprepareHeader()
to get the correct result from dwBytesRecorded member in the MM_WIM_DATA
message. This means you will need to call waveInPrepareHeader() again if
recording is continued and the buffer is sent back to the driver.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 1.30 win32s winmm low level wave
KBCategory: kbmm kbbuglist
KBSubcategory: w32s

BUG: Win32 on Windows NT Version 3.51 Bug List - Base
PSS ID Number: Q136432

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51

SUMMARY
=======

This article lists the bugs in the Win32 API implemented on Windows NT
version 3.51 that were known at the time the product was released.

MORE INFORMATION
================

 - Call CreateProcess() with the command line "myapp" in the directory
 where Myapp.exe exists. CreateProcess() does not execute myapp.exe if
 the directory that contains Myapp.exe also contains a subdirectory
 named Myapp.

 - FindFirstFile() returns incorrect file time on FAT.

 - GetMailSlotInfo() returns the wrong next message size.

 - 32-bit string I/O instructions are not supported.

 - NetUserSetInfo() returns NERR_PasswordTooShort instead of returning
 NERR_PasswordHistConflict during password history conflict.

 - NetGroupAdd() returns the wrong error code with invalid group name.

 - LogonUser() is not multithread protected.

 - Logon to a domain doesn't generate a logon event on the DC.

 - The documentation for MsgWaitForMultipleObjects() says that the API
 returns successfully when either the objects are signalled or the input
 is available. However, the API behaves as if it requires that the
 objects are signalled and the input is available.

 - CreateProcess() fails to locate .exe file is the current directory is a
 UNC name.

 - SetLastErrorEx() does not raise a RIP_INFO debug event.

 - The Characteristics field of the IMAGE_IMPORT_DESCRIPTOR structure is
 declared incorrectly in Winnt.h. The field is really the RVA of the INT
 array.

 - ASCII characters in the command line of a console application are

 converted to ANSI.

 - The SourceName and Computername fields of the EVENTLOGRECORD structure
 are not WCHAR if you call the ANSI version of the API. They should be
 declared TCHAR.

 - WINDEF.H should define CDECL as __cdecl.

 - AddAtom does not return an error for an illegal parameter.

 - CreateFileMapping() of a device handle returns different error codes
 from FAT, NTFS, and CDFS. The error on NTFS is ERROR_INVALID_PARAMETER,
 while the error on FAT and CDFS is ERROR_BAD_EXE_FORMAT.

 - InterruptRegister() does not notify of Ctrl+Alt+SysRq.

 - Windows NT cannot use or boot from a DblSpace drive.

 - Overlapped I/O that extends the file is not asynchronous on NTFS.

 - Using file compression causes the mouse to become unresponsive.

 - Deleting *.tes deletes file.test, because its short name is file~1.tes.

 - Windows NT can only mount up to 26 file systems.

 - GetInformationByHandle returns an incorrect link count over the network.

 - OpenSCManager() does not work when passed the name of the local machine.

 - Service Control Manager will not delay more than 20 seconds PENDING time
 with SERVICE_PAUSE_PENDING, then error 2186 is generated.

 - If a service has a timeout of 30 sec, the value stored in the event log
 is 30 msec.

 - The service controller does not allow multiple logged-on services which
 share a process.

 - Redirected drives created by services not listed by net use.

 - QueryServiceObjectSecurity corrupts the handle if passed an invalid
 pointer for the security descriptor.

Additional reference words:
KBCategory: kbprg kbbuglist
KBSubcategory: BseMisc

BUG: Win32 SDK Version 3.5 Bug List - OLE
PSS ID Number: Q122679

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), version 3.5

SUMMARY
=======

The following lists the bugs in the Win32 SDK and OLE API that were known
when the SDK was released.

MORE INFORMATION
================

 - Packager will report that there is not enough memory when you try to
 package a file which is in use.

 - VB can't activate Word object if Word is running in separate VDM.

 - MFC 2.5 OLE 2.0 Automation Server fails initialization.

 - If a client thread terminates without calling CoUnitialize(), its
 servers in the same process are not released.

 - OLE 2.0 hides application aborts. The server does not receive the
 exception.

 - CoCreateInstance() returns REGDB_E_CLASSNOTREG when the object create
 fails, instead of the return code from DllGetClassObject() from the
 inproc server DLL.

 - OLE objects inherit only "system" environment variables, not "user"
 environment variables.

 - Users can log on and start an ole app before the OLE service is
 autostarted.

 - Passing CoMarshalInterface() a NULL pUnk (pointer to IUnknown)
 causes an access violation.

 - CoGetClassObject() returns E_OUTOFMEMORY when DllGetClassObject()
 fails.

 - If an OLE Server which dies after registering its class, the container
 will stall waiting for CoGetClassObject() to succeed.

 - Class cache never shrinks - all classes are treated as InUse.

 - Default handler causes RPC_E_FAULT exceptions during OnClose.

 - ::SetColorScheme() does not validate lpLogPal.

 - Messages for server ownerdraw menuitems on menu bar go to the
 container.

 - The server is started if you "Insert" a "Link from File" choosing
 icon format.

 - IsLinkUpToDate() returns S_FALSE after object creation. This can cause
 containers to run the server twice during creation of the object.

 - Setting the link source with IOL::SetSourceMoniker() does not update
 the presentation cache, even though it does run the server app.

 - AddRef() does not marshall count back properly for return value.

 - BindToStorage() on non-existent file returns MK_E_INVALIDEXTEN.

 - IOleCache::Cache() fails for ICON aspect unless metafile format is
 used.

 - IOleCache2::DiscardCache() does not persist uncaches.

 - If an enhanced metafile node exists and IOleCache::Cache is used to
 cache multiple NULL FORMATETCs, a node is added.

 - IViewObject::GetColorSet() after flushing cache should return
 OLE_E_BLANK, but signals Win32 error 0x8007000e.

 - OleDuplicateMedium() does not GlobalUnlock() source METAFILEPICT in
 the error case.

 - Iconic aspect has incorrect colors when played in metafile.

 - OLE Cache has a limit of 100 nodes, but accepts more and never
 returns from the call.

 - GetColorSet() for WMF should return LOGPALLETE, which is the union
 of colors used in the contained CreatePalette() calls. GetColorSet()
 only returns the first colorset found in this case.

Additional reference words: 3.50
KBCategory: kbprg kbbuglist
KBSubcategory: LeTwoMisc

BUG: Win32 SDK Version 3.5 Bug List - Subsystems & WOW
PSS ID Number: Q122048

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), version 3.5

SUMMARY
=======

The following is a list of the bugs in the Win32 version 3.5 SDK that were
known when Win32 version 3.5 was released. The list is divided into three
sections: OS/2 Subsystem, POSIX Subsystem, and Windows on Win32 (WOW).

MORE INFORMATION
================

OS/2 Subsystem

 - Extended characters in editors don't work with right-hand Alt key.

 - DosRmDir() returns ERROR_PATH_NOT_FOUND, not ERROR_FILE_NOT_FOUND, if
 passed the name of a directory that does not exist.

 - CTRL-X doesn't show with OS/2 Epsilon, although it is received by the
 application.

 - DosSelectDisk() returns error if disk not ready, but not under OS/2.

 - DosFindFirst() doesn't find config.sys in the registry.

 - Ctrl-C doesn't centre text in Word 5.5 for OS/2.

 - Ctrl-C will not cancel Fortran 5.1 setup.

 - DosQApptype() returns ERROR_INVALID_EXE_SIGNATURE (191) if pszFileName
 does not use the correct .EXE format, but OS/2 returns
 ERROR_BAD_EXE_FORMAT (193).

 - DosMove() returns error 80 if the target file exists, but OS/2 returns
 error 5.

 - DosSetFileMode() returns error 0x02 if the file does not exist, but
 OS/2 returns error 0xCE.

 - OS/2 subsystem doesn't load REXXINIT.DLL on startup, as OS/2 does,
 so OS/2 applications using REXX will fail on the first attempt.

 - Flags3 field not preserved between DosDevIOCtl/ASYNC_SETDCB and
 DosDevIOCtl/ASYNC_GETDCB. Flags3 is always returned with a value of 3.

 - Many vio functions return the wrong error code.

 - Epsilon not jumping back after matching braces.

 - NetHandleGetInfo() returns error 87 at level 2 or level 3.

 - DosCreateThread() corrupts 11 words of temporary (under OS/2, only
 2 words are corrupted).

 - UUPC OS/2 1.x application tries to open and write to the com port. CTS
 and DTR come up, but RTS never does.

 - SQL 4.2 setup fails to configure sort order.

 - DosKillProcess() of ancestor with DKP_PROCESSTREE succeeds, but OS/2
 returns ERROR_NOT_DESCENDANT.

 - DosCWait() with DCWA_PROCESSTREE returns when the process terminates,
 not when the tree terminates.

 - OS/2 CMD.EXE hangs after running Epsilon or PWB.

 - Signals not held while resizing data segments with DosReallocSeg().

POSIX Subsystem

 - printf() doesn't check to see if writing fails on the first character;
 it tries to write the second character instead of returning an error.

Windows on Win32 (WOW)

 - GlobalSize() of handle returned by GetMetaFile() may not match.

 - Invalid TEMP environment variable causes problems, whereas Windows 3.1
 will use the root if the TEMP environment variable is invalid.

 - GetExitCodeProcess() does not return exit codes for WOW applications.

 - Floating point exceptions are not reported to the debugger.

 - Segment Load Failure in KRNL386 after using WINDISK.EXE.

 - Locking at negative offset fails on WOW with EACCES, but works under
 Windows.

 - WIN16 emulator incorrectly handles FBSTP instruction on MIPS, Alpha,
 and x86 with no math coprocessor.

 - WOW passes wrong size buffer to spooler when 16-bit application passes
 wrong size structure to WOW.

 - WOW uses Windows 3.0 devmode structure, not 3.1 devmode structure,
 which has two extra fields.

 - Fast Alt+Tab between WOW apps selects the File menu from one of the
 applications.

 - WM_MENUSELECT wParam and lParam are lost in PostMessage().

 - EndDeferWindowPos() returns 0 for success, but returns nonzero for
 success under Windows.

Additional reference words: 3.50 buglist3.50
KBCategory: kbprg kbbuglist
KBSubcategory: SubSys

BUG: Win32 SDK Version 3.5 Bug List - WinDbg Debugger
PSS ID Number: Q122681

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), version 3.5

SUMMARY
=======

The following is a list of bugs in the WinDbg debugger that were known
at the time of the release of the Win32 SDK version 3.5.

MORE INFORMATION
================

 - Enter rgbGlobal, s in watch window (note: rgbGlobal is defined as a
 character array). The variable is displayed as a character string and
 an array that can be expanded. When expanding the array, the value of
 each element is "CAN0026: Error: bad format string."

 - REP and REPE are the same prefix codes. REPE is to be used for string
 comparisons and REP for all other instructions. WinDbg always uses REP.

 - Type information defined in a DLL is not available when the current
 context is another DLL or an EXE.

 - Breakpoint message classes do not match class list in SPY.

 - C++ expresssion evaluator doesn't handle default function arguments.
 This is because the compiler does not include them in the debug
 information.

 - Locals window updates on radix change.

 - Evaluation of a function with breakpoints returns an incomplete result.

 - The Memory Window can't be scrolled up before the starting address.

 - Locals window collapses expanded structures on change of scope, such
 as stepping into a block (not a new function).

 - The value of array members cannot be changed.

 - The expression evaluator does not handle casting from a class to a
 primitive data type.

 - Remove Last in Quickwatch only works once when multiple items are added
 to the watch list in a single quickwatch session.

 - The return value type is not reported for ?<FuncName>.

 - Function evaluation reports "Error: function requires implicit

 conversion" for a function taking a structure (not a pointer to
 a structure).

 - Watch window shift-key selection is not consistent: sometimes all
 characters from the beginning of the expression to the caret position
 are selected, sometimes 2 characters are selected.

 - User DLLs dialog silently discards edits after picking a DLL and
 changing the radio button from suppress to load.

 - Information windows don't maintain color after structure expansion.

 - WinDbg disassembles F2 66 F0 F0 AF as "repne lock lock sca" not
 "repne lock lock scasw".

 - Breakpoints may not work correctly in multithreaded apps in areas not
 protected by critical sections.

 - Choosing Stop Debugging and Restart causes memory leak (100K per
 iteration).

 - Combo box in dialog for browsing symbol files is too narrow to show
 the *.dbg.

 - Debug.Watch does not set default watch expression to the selection
 made in the source window.

 - If you set a conditional breakpoint, you step over it with an F10, and
 the condition is not currently satisfied, the program will run to
 completion, rather than stepping.

 - Long expression (?arg00+arg01+...+arg31) causes debuggee to run to
 termination.

 - ?<function returning near pointer> displays segment.

 - Windbg hangs if exited during aedebug start.

 - A vararg function evaluation fails on Mips and Alpha.

 - Private members may not be evaluatable.

 - First Command Window prompt after connecting to target machine for
 kernel debugging is ">", not "KDx86>", "KDMIPS>", or "KDALPHA>".

 - Context expression evaluation of item up the callstack cannot be
 evaluated and causes CXX0036: Error: bad context {...} specification.

 - Alpha: Disassembly of RS, RC, RPCC, FETCH, and FETCH_M instructions
 displays no operand.

 - Help file says "u" command is for unfreezing a thread. The "u" command
 is for unassemble; it is the "z" command that is used for unfreezing a
 thread.

 - Automatic forward searching not done by breakpoint dialog. Otherwise,
 when setting a breakpoint on a line that does not contain executable
 code, the breakpoint is set on the next executable line.

 - Automatic forward searching not done when modules are loaded. Otherwise,
 when setting a breakpoint on a line that does not contain executable
 code, the breakpoint is set on the next executable line.

 - OK button not always active on Set Process dialog.

 - Alpha: Large enumerated value not displayed correctly (16-bits instead
 of 32-bits).

 - The Delete button in User DLLs dialog is always active.

 - ?Spinlock::Spinlock should display the prototype for the function, but
 it causes CXX0046: Error: argument list required for member function.

 - Flat callstack displayed debugging 16-bit Windows-based application.

 - File menu Save_All is not enabled consistently on all platforms.

 - Page up/down goes farther than scroll thumb in the Memory Window.

 - Page up/down doesn't move scroll thumb in Memory Window.

 - Disassembler option "Display Symbols" ignored on Alpha.

 - Ppcodes always displayed in lower case in MIPS disasembly, even if
 "Uppercase symbols and opcodes" is checked.

 - Create several workspaces for a single program, choose Delete from the
 Program menu, and select several of the workspaces. WinDbg locks up
 when you select OK.

 - Deleting the last debugger DLL causes an access violation.

 - Bad caret movement when editing Memory Window with ASCII format.

 - Calls window not updated if the current thread is changed with the
 Set Thread dialog. The Calls window is updated if the Command window is
 used to set the current thread.

 - Thread-specific translations of segment registers is not done. The
 segment register is translated using thread 0's descriptor table.

 - When stepping over a function which contains a breakpoint, execution
 halts, but there is no message indicating that a breakpoint was hit.

 - Value of "this" pointer is incorrect in a virtual function in a derived
 class.

 - Based pointers in flat segments are displayed as a 16-bit value, not a
 32-bit value. In addition, nothing happens when you click the expansion
 button.

 - WINDBG won't set a breakpoint on code placed in memory and then
 executed.

 - Windbg does not know about all exceptions that can occur while
 debugging 16-bit code.

 - Alpha: CVTxx instructions disassembled with 3 operands, instead of
 only 2 operands. The first operand is wrong, the second operand would be
 the correct first operand, and the third operand would be the correct
 second operand.

 - !help <str> reports that there is no help available.

 - Set a breakpoint on a function call which spans multiple source lines,
 but don't set the breakpoint on the last line. Save the information and
 leave the debugger. When you restart WinDbg with the saved information,
 WinDbg cannot resolve the breakpoint.

 - Alpha: Cannot step through call through a function pointer.

 - Commands sxeld and sxdld cause the debugger to stop when a DLL is
 loaded.

 - If there are no symbols loaded, double-clicking a symbol in the call
 stack produces a disassembly window with a starting address of 0.

 - The following context operators cause "CXX0036: Error: bad context {...}
 specification":

 ?{,functest.c,functest.exe}count
 ?{,functest.c,}count

 The following context operators cause "CXX0017: Error: symbol not
 found":
 ?{,,functest.exe}count
 ?{,,}count

 - When the current instruction is "cmp dword ptr [esp+18],01", the
 register window shows a calculation based on [esp], rather than
 [esp+18].

 - WinDbg displays only the first letter of a 'const WCHAR *const'
 variable. Casting the variable to a WCHAR * in the Watch window
 works around the problem.

 - Run windbg -g cmd.exe and invoke a batch file that repeatedly invokes
 another command; WinDbg will leak memory.

 - x86: f2a6 is disassembled as "repnee cmpsb", not "repne cmpsb",
 f2a7 is disassembled as "repnee cmpsb", not "repne cmpsd",
 f2ae is disassembled as "repnee scasb", not "repne scasb",
 f2af is disassembled as "repnee scasd", not "repne scasd",
 f0a6 is disassembled as "locke cmpsb", not "lock cmpsb",
 f0af is disassembled as "locke scasd", not "lock scasd",

 f32ea6 is disassembled as "rep cmpsb", not "repe cmpsb",
 f326a7 is disassembled as "rep cmpsd", not "repe cmpsd",
 f32ea7 is disassembled as "rep cmpsd", not "repe cmpsd",
 f366a7 is disassembled as "rep cmpsw", not "repe cmpsw",
 f36665a7 is disassembled as "rep cmpsw", not "repe cmpsw",
 f326ae is disassembled as "rep scasb", not "repe scasb",
 f365af is disassembled as "rep scasd", not "repe scasd",
 f33eaf is disassembled as "rep scasd", not "repe scasd",
 f3f0af is disassembled as "rep locke scasw", not "repe lock scasw",
 f366af is disassembled as "rep scasw", not "repe scasw",
 f36636af is disassembled as "rep scasw", not "repe scasw".

 - dc doesn't accept the '&' prefix for an address specifier.

 - CXX0004: Error: syntax error on reference to float array. For
 example, the error is produced by "g .115;?Pf[8], where Pf is
 declared float Pf[11].

 - If you have a DLL built with multiple files with the same name (that
 live in different source directories), you cannot set a break point in
 2nd file with same name.

 - Error "CXX0034: Error: types incompatable with operator" accessing
 members, member functions, and overloaded operators of base classes
 and virtual base classes or a derived class.

 - Alpha: WinDbg doesn't display floating part of a float constant.

 - Crash dumps fail because of bad symbol lookup. This breaks !process
 when kernel debugging as well.

Additional reference words: 3.50
KBCategory: kbtool kbbuglist
KBSubcategory: TlsWindbg

BUG: Win32 SDK Version 3.51 Bug List - GDI
PSS ID Number: Q136438

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51

SUMMARY
=======

This article lists the bugs in the Win32 API implemented in Windows
NT version 3.51 that were known at the time the product was released.

MORE INFORMATION
================

 - GetBitmapBits() returns different values from Windows 3.1.

 - PolyBezier() call with certain coordinates hangs the GDI.

 - MoveToEx() and LineTo() do not give an error when the delta is
 greater than 2^27.

 - DrawText() ignores a single space if it is followed by "\r\n".

 - The insertion pointer is set to a wrong place if Alt+0146 is entered
 twice in a multiple-line edit box with Arial font.

 - Use of Far East fonts causes csrss to grow very large.

 - ScaleWindowExtEx() and ScaleViewportExt() do not fail when the
 denominator parameter is zero.

 - CreateDC() returns error code 126 (ERROR_MOD_NOT_FOUND) on a printer
 with no access right. The call should return error code 5
 (ERROR_ACCESS_DENIED).

 - SetDIBits() succeeds when HBITMAP parameter is a handle to region, pen,
 or font.

 - GetObject() does not check the cbBuffer parameter for negative values.

 - UnrealizeObject() returns TRUE when passed an invalid handle.

 - EndDoc() reports success when given an information context (IC).

 - glGet() does not return an error when called between glBegin and glEnd.

 - EnumPrintProcessors() fails for a remote server.

 - GetPrintProcessorDirectory() does not return the UNC path.

 - EnumMonitors() fails on a remote server.

 - Job Priority can be set without Manage Documents permission.

 - StartDocPrinter() sets the wrong error code on failure.

 - StartDocPrinter() after StartDocPrinter(), with no EndDocPrinter()
 in between, does not fail. This is because no state checking is
 performed.

 - WritePrinter() should fail after EndDocPrinter().

 - WritePrinter() should fail after AbortPrinter().

 - WritePrinter() returns the wrong error code after AddJob().

 - SetPrinter does not fail with an invalid level of 1.

 - EnumPrinters() returns remote printers when only local printers are
 requested.

 - AddPrintProcessor() fails with pPath set to a path.

 - WritePrinter() does not dispatch the last cleanup bytes to printer.

 - AddPrinter() does not set an error code if pPrinter is NULL.

 - ScheduleJob() does not fail if there is no spool file.

 - If you send WritePrinter() a server handle, the wrong error code is
 returned.

 - The wrong error code is returned when AddMonitor() is called with the
 path to an invalid monitor.

 - AddPrinter() succeeds with an unknown data type.

 - If you send ScheduleJob() an invalid job ID, the wrong error code is
 returned.

 - JOB_INFO_2 time is never set.

 - ScheduleJob() fails on a deleted job with no spool file.

 - RemoteOpenPrinter() sometimes does not open printers.

 - OpenPrintProcessor() failure results in an application hang.

 - Cannot set or get the security descriptor for a pIniJob.

 - ClosePrinter() cleanup code doesn't keep states correctly.

 - AddPrinter with port == NUL returns ERROR_UNKNOWN_PRINTER.

 - EnumPrinters(NULL, PRINTER_ENUM_REMOTE) does not work.

 - There is no default printer if AddPrinterConnection() is called.

 - Rundown does not clean up StartDocPrinter() print jobs.

 - DeletePrinter() returns wrong type.

 - JOB_INFO_2 PagesPrinted should match Windows 95 when pages is zero.

 - There is no security check against the job during OpenPrinter().

 - There is ambiguity during OpenPrinter() for printers with same name.

 - Character '4' may be printed at upper-left of PCL seperator page.

 - SetJob(), GetJob(), and EnumJobs() do not set or return a security
 descriptor.

 - DeletePrinterConnection() on a share name returns TRUE but does not
 delete the connection.

 - Creating large Perpetua fonts (lfHeight > 1500) can cause the system to
 fail.

 - DCIOpenProvider() fails on some video cards. Not all cards support DCI.

 - WinWatchDidStatusChange() and WinWatchGetClipList() can be called only
 from within the DCIBeginAccess() / DCIEndAccess() pair.

Additional reference words:
KBCategory: kbgraphic kbbuglist
KBSubcategory: GdiMisc

BUG: Win32 SDK Version 3.51 Bug List - Multimedia
PSS ID Number: Q136439

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.51

SUMMARY
=======

This article lists the bugs in the Win32 API implemented in Windows
NT version 3.51 that were known at the time the product was released.

MORE INFORMATION
================

 - AVISave fails. To reproduce the problem, start aviedit, open a file, use
 CTRL+I to get information on streams, set the start field to a large
 number, and try to save the file.

 - AVIStreamGetFrame() returns NULL if you take an uncompressed stream,
 copy it into the clipboard, and paste it into a different 32-bit app.

 - When querying for the description of a codec, it will be listed twice
 if you have both the 32-bit and 16-bit version. Both times, the 32-bit
 description is displayed.

 - MCIAVI32 causes a general protection (GP) fault if playing RLE or Video
 1 encoded AVI files without these Codecs loaded.

 - Shuffle streams 16-bit causes GP fault in AVIFILE.DLL on MIPS.

 - When all ACM Codecs are disabled, hardware formats are not available
 with acmMetrics.

 - SoundBlaster 16 driver doesn't enable volume on speaker input.

 - SoundBlaster driver setup does not adjust DMA buffer size correctly.

 - After executing the MCI command Play Fullscreen At End Element, Status
 Position can return the wrong value.

 - The MCI command Put Source At inconsistently does not return errors for
 invalid coordinates.

 - MediaPlayer jumps back one frame as Clock.avi completes. MCIAVI may
 return an incorrect position if it does not use the most granular
 stream.

 - Under certain circumstances, Resume Notify Behavior Element returns
 incorrect notification codes.

 - AVIFileWriteData allows you to write a data chunk that has an ID that

 already exists.

 - MPlayer does not play clipped videos in Word correctly.

Additional reference words:
KBCategory: kbmm kbbuglist
KBSubcategory: MMMisc

BUG: Win32 SDK Version 3.51 Bug List - Networking
PSS ID Number: Q136437

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.51

SUMMARY
========

The following is the list of bugs in the Win32 API implemented on Windows
NT 3.51 that were known at the time the product was released. This list is
divided into 4 sections: LanMan API, RAS, RPC, and TCP/IP.

MORE INFORMATION
================

LanMan API

 - NetWkstaGetInfo returns wrong platform ID (PLATFORM_ID_OS2) for Windows
 for Workgroups.

 - NetGetDCName with a domain name of "." or "?" returns
 NERR_NetNotStarted. The expected error is NERR_DCNotFound.

 - NetUseEnum with a preferred buffer size less than 40 bytes returns
 ERROR_MORE_DATA (234) rather than NERR_BufTooSmall (2134).

 - NetServerEnum with a preferred buffer size less than 40 bytes returns
 ERROR_MORE_DATA (234) rather than NERR_BufTooSmall (2134).

 - NetScheduleJobEnum with a preferred buffer size less than 40 bytes
 return ERROR_MORE_DATA (234) rather than NERR_BufTooSmall (2134).

 - NetStatisticsGet remoted to downLevel OS/2 server does not work for the
 service "LanmanWorkstation." It returns error 50.

 - NetAccessEnum with a NULL base path generates an access violation. Use a
 null string to indicate that no base path is to be used.

 - The following are documentation errors:

 - NetUserModals supports a level 3 structure.

 - NetGroupSetUsers also supports level 1.

 - NetAccessCheck is not in the header files.

 - NetAuditClear parameter LPWSTR service should be marked as a
 reserved field; it must be NULL.

 - NetAuditClear parameter LPWSTR Service should be marked as a

 reserved field; it must be NULL.

 - NetWkstaUserSetInfo level 0 returns error 124 (invalid level), but
 the docs say that level 0 is supported.

 - NetMessageBufferSend returns error 123 (invalid computer name) if the
 FromName is not NULL or the client computer.

 - NetReplImportDirDel generates the following assert on a checked build:
 assert:\net\svcdlls\repl\common\impconf.c line 121. This occurs when
 an invalid directory name is used.

 - NetReplExportDirDel generates the following assert on a check build:
 assert:\net\svcdlls\repl\common\expconf.c line 120. This occurs when
 an invalid directory name is used.

 - NetMessageNameEnum returns error NERR_Sucess (0) with a zero-length
 buffer rather than NERR_BufTooSmall.

 - NETBIOS send datagram and broadcast datagram return NRC_SYSTEM when
 given a buffer size of 32000, not NRC_BUFLEN (invalid buffer length).

 - The NETBIOS send datagram is issued with a buffer size of 512 and the
 receive datagram is issued with a buffer size of 40. The receive
 datagram returns NRC_GOODRET, not NRC_INCOMP (incomplete message).

 - WNetEnumResource returns the wrong buffer size if the buffer is not big
 enough. WHen the buffer is NULL (size 0), the error returned is
 ERROR_NO_NETWORK.

 - Calling the MNet APIs results in the error "call to undefined dynalink"
 because WFWNET.DRV does not stub these APIs.

 - NetAccessGetInfo returns code 53 (ERROR_BAD_NETPATH) with the local
 server name.

 - NTVDM NetServerEnum2 with a bad domain name should return 2320.

 - NTVDM NetShareGetInfo level 2 fails with error 87.

 - NTVDM NetShareGetInfo level 3 returns NERR_Success.

 - NTVDM NetUserAdd remoted to server with long name fails with error 59
 (unexpected network error).

 - NetServiceEnum resume handle and prefMaxLen ignored. The API allocates
 the required size and returns all information.

 - NetConfigGet, NetConfigGetAll, and NetConfigSet remoted to Windows NT
 should fail.

 - NetReplExportDirEnum ignores the suggested buffer size.

 - NetUseEnum with level 2 returns error 50 (not supported), not 124
 (invalid level).

 - NetWkstaUserSetInfo with an incorrect level returns error 87 (invalid
 parameter), not 124 (invalid level).

 - MS-DOS NetWkstaSetUID2 does not return 2242 NERR_PASSWORD_EXPIRED when
 Windows NT forces the user to change passwords.

 - NetAccessEnum level 0 returns error 234 (ERROR_MORE_DATA) when remoted
 to OS/2.

 - NetServerEnum resume handle resumes call at start of list. This will
 cause an infinite loop.

 - NetMessageNameEnum returns error 1733 (RPC_S_INVALID_TAG) with an
 incorrect info level.

 - NetMessageNameEnum with a resume handle and a small buffer goes into
 an infinite loop.

 - NetMessageNameEnum total entries is off by one on the first iteration
 if resume key is used.

 - NetMessageNameGetInfo returns error 1733 (RPC_S_INVALID_TAG) with an
 incorrect info level.

 - NetAccessGetUserPerms remoted to OS/2 works corrected, but then NET.EXE
 commands no longer work.

 - NetUserModalsSet with level 1007 fails with error 87 when remoted to
 OS/2.

 - NetMessageBufferSend fails with error 50 when remoted to OS/2.

 - NetShareCheck fails with error 2311 (NERR_DeviceNotShared) when remoted
 to OS/2.

 - NetGroupSetInfo with a bad level remote to OS/2 succeeds. It should
 return 124 (invalid level).

 - NetSessionEnum with a bad level remoted to OS/2 succeeds. It should
 return 124 (invalid level).

 - NetUserGetGroups with a bad level remoted to OS/2 succeeds. It should
 return 124 (invalid level).

 - NetSessionGetInfo causes assert \rpcxlate\rxapi\sessget.c line 207 if
 remoted to OS/2 with a bad info level. If you ignore the assertion,
 the error return is 2221 (user not found), not 124 (invalid level).

RAS

 - RasDial exhibits unexpected behaviour when used simultaneously from two
 threads of the same process.

 - Shutting down RAS server from command line does not warn about connected
 RAS clients and disconnects them.

 - RASETHER.DLL version information says it's RASTAPI.DLL, the TAPI
 compliance layer.

 - If a long entry is connected and RASPHONE is brought up with the phone
 book containing the long entry, then RASPHONE cannot hang up the
 connection. The error is 6 (handle is invalid).

 - RAS fails to establish more than 100 sessions.

RPC

 - When a procedure with the [notify] attribute is called, the server stub
 must also call the server manager routine proc_notify(). No code is
 generated for this.

 - The MIDL compiler does not generate an error when an implicit handle
 uses a type that has been defined but is not a generic handle type.

 - Specifying [first_is(0, ...), last_is(0, ...), size_is(1, ...)] for the
 "short (*as)" pointer gives runtime error "invalid array bounds" on the
 client side.

 - The MIDL compiler allows [ptr] on interface pointers.

 - RPC: Varying multidimensional arrays are not put on wire correctly.

 - [out] ref ptr doesn't work properly in MIDL -Oi mode.

 - Sizing comes up short on a struct with a union in MIDL.

 - MIDL compiler allows typedef [comm_status, fault_status] .ACF.

 - The handle_t * binding parameter is broken in -Os stub.

 - Unmarshalling 2D fixed arrays on a Mac client causes an access violation
 on a Windows NT server.

 - [in, out] encapsulates a union with interface pointers.

 - MIDL produces "warning MIDL2207: value out of range" for the following
 statement: const char HexNotationChar = '\xFF';.

 - MIDL does not give warning M2180 (CASE_VALUE_OUT_OF_RANGE) for the
 following code:

 typedef union _small_union switch(small sm) un
 {
 case 0: short *ps;
 case 1: long *pl;
 case 256: short s; <<-- out of range for a small
 default: char ch;

 } small_union;

 - MIDL should not accept type byte in a switch.

 - In -Oi mode, if the first parameter is a transmit_as parameter, and the
 presented type is smaller than 32 bits, then the top of stack pointer
 passed to the interpreter is incorrect.

 - MIDL allows multiple types mapped to the same user_marshal type.

 - If the following output switches are given on a non-object interface
 (where these files aren't generated), a warning should be produced.

 /dlldata filename
 /iid filename
 /proxy filename
 /sstub filename

 - MIDL allows a generic handle with [handle] specified twice.

 - The following code causes error MIDL2235: [implicit_handle] references
 a type which is not a handle : [Interface 'implicit']

 // In IDL

 typedef handle_t PRIMITIVE;

 // In ACF

 [implicit_handle(PRIMITIVE long_binding_handle)
] interface implicit

 - MIDL accepts byte_count on an [in, out] pointer.

 - MIDL should generate STDMETHODIMP instead of __stdcall so that the .h
 files can be used on the Mac.

 - MS-DOS RPC install does not list Windows TCP/IP as an option.

 - RpcNsBindingImportNext has a small memory leak.

 - RpcEpRegister and RpcEpRegisterNoReplace behave differently from the OSF
 DCE spec in two ways:

 - When replacing an entry in the endpoint map, the annotation
 string should replace the existing annotation string.

 - When an annotation string greater than 64 characters wide is
 supplied, the DCE spec specifies that it is truncated. The functions
 currently return EPT_S_INVALID_ENTRY.

 - RpcBindingServerFromClient with ncalrpc fails with an object uuid.

 - In connection oriented RPC, the cancel packet does not have the call_id
 field set.

 - RpcServerRegisterAuthInfo with RPC_C_AUTHN_DEFAULT should load the
 default provider specified in the registry.

 - With an HPUX server, a Windows NT client and protocol ncadg_ip_udp,
 all calls raise exception RPC_S_SERVER_UNAVAILABLE.

 - RpcBindingInqObject() does not take 0 as binding handle.

 - RPC cancel support does not work on all platforms and transports.
 Cancels are supported only with Windows NT clients and transports
 ncacn_ip_tcp and ncacn_spx.

 - Client obtains binding from CDS using RpcNsBindingImport routines and
 calls RpcNsBindingInqEntryName with parameter RPC_C_NS_SYNTAX_DEFAULT.
 The routine returns error 1736 (invalid syntax). This occurs only if
 the DCE CDS locator is used.

 - RPC_C_BINDING_MAX_COUNT_DEFAULT is documented, but not supported yet.

 - When a fully bound handle that does not represent something registered
 in with EPT, a NULL object uuid, and a NULL host binding handle are
 supplied to rpc_ep_unregister, the routine returns rpc_s_ok instead of
 ept_s_cant_perform.

 - Possible Deadlock due to TCP/IP thread waiting forever when server has
 crashed.

 - Auto handles in Win16 DLL cause stranded runtime DLLs.

 - When rpc_object_inq_type is passed a null uuid as the object uuid, RPC
 returns status 1710 (object uuid not found), instead of returning the
 null type uuid (which is the default mapping for the null object uuid).

 - RPC_C_PROFILE_DEFAULT_ELT is defined as 0 in rpcnsi.h, but it is
 defined as 1 by DCE. As a result, rpc_ns_profile_elt_inq_begin, next,
 and done do not work with nsid on DCE machines.

 - Win16 NetBIOS method of obtaining NIC addresses for UUID generation
 does not check LANAs greater than 4.

 - Win16 NotifyRegister callback is owned by the currently running
 task, therefore, it is cleaned up at task exit. This causes trouble if
 multiple RPC apps start up and the first to start is not the last to
 exit.

 - RPC name resolution on slow IPX MS-DOS clients may fail if the Novell
 server is not available.

 - RpcServerInqBindings only returns information for a net card.

TCP/IP

 - When resolving a name that is not in the hosts file, if DNS is not

 configured, gethostbyname fails to go to netbt if the first interface
 in the machine can not resolve the name.

 - Cannot establish trust when DNS for Windows Name Resolution is on.

 - NBTSTAT only reports info for first adapter.

 - Some IRPs passed from NetBT to TCP have a stack frame of 1.

 - If the Domain name is changed on the DHCP server, it is not picked up
 by NetBT until the clients are rebooted.

 - FIND NAME fails on multihome machines.

 - Multicast address not removed on IP_DROP_MEMBERSHIP.

 - Multiple proxys on same subnet cause client connect problems.

 - When the SNMP service is started with debug level 2 or greater, it
 prints the error message "error on GetProc(InitEx) 127".

 - SetService causes access violation when SrvInfo is unitialized.

 - SetService should return -1 for SERVICE_FLAG_HARD with dwOperation
 SERVICE_ADD_TYPE.

 - SetService() should not allow SERVICE_FLAG_HARD|SERVICE_FLAG_DEFER
 with SERVICE_REGISTER or SERVICE_DEREGISTER.

 - SetService should fail when you register the same service again.

 - Debugger does not free socket descriptors after application faults and
 causes the debugger to attach to the running process.

 - A race condition occurs when two threads share a socket. One thread
 closes a socket and the other thread tries to do a recvfrom on the
 socket. This causes problems the next time a socket is bound to the same
 UDP port.

Additional reference words:
KBCategory: kbnetwork kbbuglist
KBSubcategory: NtwkMisc

BUG: Win32 SDK Version 3.51 Bug List - OLE
PSS ID Number: Q136433

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT

SUMMARY
=======

This article lists the bugs in the OLE libraries released with
Windows NT version 3.51 that were known at the time the product was
released.

MORE INFORMATION
================

 - IMoniker::BindToObject always returns MK_E_INVALIDEEXTENSION if an
 error occurs during open. It should only associate the file extension
 if the file is not a .doc file.

 - CreateFileMoniker expands letters to UNC names. If in doing so, the path
 becomes greater than MAX_PATH, CreateFileMoniker returns E_OUTOFMEMORY.

 - Cannot call CoCreateInstance for first time from the DllEntry. If you
 need the DLL to create an object, you can either do this by having the
 .exe call a creation function in your DLL or post a message to a window
 owned by your DLL.

 - IOleCache::SetData returns OLE_E_BLANK for invalid lIndex, FormatEtc,
 aspect, and target device. It should return DV_E_LINDEX, DV_E_FORMATETC,
 DV_E_DVASPECT, and DV_E_TARGETDEVICE, respectively.

 - Calling freeze on a frozen icon aspect with an invalid lIndex returns
 VIEW_S_ALREADYFROZEN rather than DV_E_INDEXFreeze of Icon aspect
 returns.

 - IStream::Write of 0 bytes returns E_INVALIDARG from a 16-bit OLE
 application running in the WOW layer. Zero is a valid parameter to pass
 to Write.

 - "Alt -" accelerator does not work with MDI windows.

 - IOleObject::IsUpToDate always returns S_FALSE after link track move.

 - The proxy for IEnumVARIANT::Next allows a NULL pceltFetched when celt is
 greater than 1.

 - If you place a dataobject which only has a TYMED_FILE format using
 OleSetClipboardData, GetClipboardData returns NULL.

 - The file version of IStream::CopyTo uses Windows NT signed 64-bit math
 to compute values it needs. Some of the math could overflow 63 bits if

 the sizes and/or seek pointers of the streams are 63 bits or more.

 - OleCreateFromData does not update the OBJREL moniker of the newly
 created embedded object.

 - OleCreateLinkToFile succeeds for non-existent files. Your code should
 check for the existance of the file before calling this function.

 - OleUIAddVerbMenu is not setting up the single menu item correctly.

 - OleUIConvert and OleUIChangeIcon crash on invalid hMetaPict.

 - CoFreeUnusedLibraries fails to unload DLLs that are no longer in use.

 - The AddControl option, when calling OleUIInsertObject, does not work
 as expected.

Additional reference words:
KBCategory: kbole kbbuglist
KBSubcategory: LeTwoMisc

BUG: Win32 SDK Version 3.51 Bug List - User
PSS ID Number: Q136435

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51

SUMMARY
=======

This article lists the bugs in the Win32 API implemented in Windows NT
version 3.51 that were known at the time the product was released.

MORE INFORMATION
================

 - GetSystemMetrics(SM_SHOWSOUNDS) and
 SystemParametersInfo(SPI_GETSHOWSOUNDS) do not return the same thing.

 - Applications do not get a WM_KILLFOCUS if the focus is taken while the
 window is being created.

 - 16-bit Paste Link does not clear the clipboard correctly.

 - DlgDirSelectEx() does not fill in the buffer if wParam is 0 or 1.

 - GetTabbedTextExtent(), TabbbedTextOut(), TextOut(), and ExtTextOut() all
 fail when an incorrect string length is passed in.

 - SystemParametersInfo(SPI_SETDESKWALLPAPER) does not update the wallpaper
 correctly.

 - The WH_MSGFILTER hook doesn't get MSGF_NEXTWINDOW when the user presses
 ALT+TAB.

 - Use of NUMLOCK as PF1 for Terminal Emulation programs does not work.

 - GetKeyState() and GetKeyboardState() do not update the key state if the
 queue is not being read.

 - If MA_NOACTIVATE is returned from WM_MOUSEACTIVATE, no windows are left
 active.

 - Popup menu can not be dismissed without selecting an item if the owner
 is not the foreground window.

 - GetMenuItemInfo() returns bad information for menu items that are not
 type string.

 - Applications receive one extra WM_TIMER message after a call to
 KillTimer().

 - Edit controls clip the right edge of italic text.

 - Hotkeys not checked during journal playback.

 - Windows NT positions nonclient scrollbars differently from Windows 95.

 - CreateDesktop() with pDevMode != NULL causes the screen to go blank.

 - Creating a window with WS_POPUP and WS_CHILD causes a general protection
 (GP) fault.

 - CreateWindowStation() fails with ERROR_NOT_ENOUGH_MEMORY when a
 security descriptor greater than 64K is passed in.

 - AdjustWindowRect() returns a bad value in large font video mode.

Additional reference words:
KBCategory: kbui kbbuglist
KBSubcategory: UsrMisc

BUG: Win32 SDK Version 3.51 Bug List - WinDbg
PSS ID Number: Q136434

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.51

SUMMARY
========

This article lists the bugs in the WinDbg debugger released with the Win32
SDK for Windows NT version 3.51 that were known at the time the product was
released.

MORE INFORMATION
================

 - If you set a breakpoint in a function that is evaluated by EE, execution
 stops at the breakpoint and incomplete results are returned. Generally,
 the result is wrong and you are not notified of the problem.

 - The z-order of windows is not correctly restored when a workspace is
 reloaded. For example, the Registers window that was on top when you
 exited is not when you restart.

 - In cases where the application has source files that have identical
 names but are located in different directories, Windbg may confuse one
 with the other during source-level debugging. Therefore, putting
 breakpoints in a line in one of the files may not work.

 - If you use F10 to step over a function that contains a conditional
 breakpoint and the condition is not met, the program runs to completion.

 - When the system is under a heavy load, a hardcoded breakpoint hit may
 be erroneously reported.

 - WinDbg may hang if it is opened using the AeDebug registry entry and
 closed while the debuggee is still active.

 - When you use the toolbar to place a breakpoint on a source line that is
 not an executable line, the breakpoint is correctly placed on the next
 line that contains executable code. However, if this is done before the
 module is loaded, you get an unresolved breakpoint when the module
 is loaded.

 - If you ise the Breakpoints dialog box to set a breakpoint on a source
 line that is not an exectuable line and the system DLLs were loaded with
 deferred symbols, the debugger will load them now and you will get a
 message about an uninstantiated breakpoint. The breakpoint should have
 been placed on the next line that contains executable code.

 - WinDbg does not show a wait pointer while setting a breakpoint.

 - When you use the scroll thumb in the Memory Window, there is a limit to
 how far down the view can be changed. Once the thumb is dragged to the
 bottom, nothing more can be viewed. However, you can move as far
 beyond that point as you want by using the PAGE DOWN key.

 - The PAGE UP and PAGE DOWN keys do not move the scroll thumb in the
 Memory Window.

 - Narrow window size prevents Memory Window reformatting.

 - WinDbg won't set a breakpoint in generated code that is executed.

 - If the Command window is scrolled away from the current input line, it
 cannot be scrolled back. Scrolling always stops about one line too soon.

 - WinDbg may display a popup window if there is no disk in the drive.

 - The sxeld and sxdld commands are not supported.

 - Pressing CTRL+SHIFT+HOME does not select text in the Command window.

 - For functions that take a class member as an argument, WinDbg displays
 CXX0019: Error: bad type cast evaluating member functions.

 - WinDbg cannot evaluate functions using string constants.

 - WinDbg shows the value of thread-local static local variables as 0.

 - Pressing p when using remote WinDbg behaves as if you pressed g.

 - A maximized source window doesn't show the path or dirty flag.

 - WinDbg source window title text is sometimes clipped when the window
 size is changed.

 - A popup box is presented when WinDbg is run using an input script and
 the debugee cannot be found.

 - The WinDbg expression evaluator truncates long strings.

 - The floating-point register displays do not line up in fixed columns.

 - The Address field defaults to the next token from the last active menu
 when you click Address on the View menu.

 - Type information defined in a DLL is not available when the current
 context is another DLL or the .exe file.

 - Breakpoint message classes are not all-inclusive.

 - You cannot set a breakpoint on a message for which no WM_xxx message
 exists.

 - You cannot set a single breakpoint on multiple messages.

 - Message enumeration does not highlight messages belonging to the
 selected class.

 - Several break types listed when adding breakpoints are extraneous.

 - Exception number processing should not allow bit 28 to be set.

 - Length field in breakpoint dialog box does not accept expressions.

 - All common file dialog boxes should use a single saved directory.

 - Status bar should display toolbar button description.

 - Toolbar is clipped if main window is too narrow.

 - C++ EE doesn't handle default function arguments.

 - Floating point registers cannot be displayed in HEX format.

 - Changing radix in the Debug dialog box from the Options menu highlights
 all the values as changed.

 - Pressing CTRL+S does not pause dump command output.

 - Locals window collapses expanded structure when scope changes.

 - Hex values are displayed using different case for first level and lower
 level values.

 - The value of array members cannot be changed.

 - The File Open dialog box does not save the previous file type.

 - There is no help for Source/Asm mode.

 - WinDbg does not always automatically scroll when selecting text with the
 mouse on the Disassembly window while the mouse is below the Disassembly
 window.

 - The expression evaluator does not correctly deal with the possiblity of
 a cast from a class to a primitive data type.

 - The User DLLs dialog box shows single status item for multiple
 possibilities.

 - A full path is needed when selecting a DLL from the Debugger DLLs dialog
 box, and there is no Browse button to choose the path.

 - Continue to Cursor on the Run menu should be Continue to Caret, because
 the execution stop point is indicated by the caret in the active window,
 not the position of the mouse pointer.

 - The symbol information output from the X command is not sorted in
 alphabetical order.

 - EE does not allow "context not allowed" to be an l-value.

 - The LN command displays only public symbols, not line numbers.

 - Focus changes momentarily when disassembly view overlaps source view and
 View.Address is updated.

 - Constants in Source Windows that have suffixes are improperly syntax
 colored. The numeric part is colored, but the suffix is not.

 - The return value type is not reported for ?<FuncName>.

 - Function evaluation reports "Error: function requires implicit
 conversion" for a function taking a structure, not a pointer to
 a structure.

 - ?<10-byte real> displays a leading blank.

 - ?<10-byte real>,<format modifier> fails with modifiers Lf, Lg, LG, Le,
 and LE.

 - Options tool buttons are enabled when no watch item is selected.

 - The Disassembly window does not scroll properly. The current line
 sometimes does not appear in the window.

 - Watch window shift-key selection is not consistent. Sometimes all
 characters from the beginning of the expression to the caret position
 are selected, but sometimes only two characters are selected.

 - The User DLLs dialog box silently discards edits after picking a DLL and
 changing the radio button from suppress to load.

 - The DS register display is nine bits long for MIPS. It is currently
 displayed with the minimum number of digits necessary for its value. It
 should be displayed as a three-digit field padded with zeros.

 - When you click Stop Debugging on the Run menu, all values in the watch
 window (left and right panes) are cleared.

 - While you step through a program, the information windows display
 changes data in red. When a structure is expanded, the changed data
 selection (red) is lost.

 - The Command window does not scroll correctly. Unless the Command window
 is positioned at the bottom, new messages are not always visible.

 - "DW BP" currently uses DS as the default selector. It should use SS.

 - Expanding character pointers in the Watch window shows only the first
 character in the string.

 - The Replace dialog box is missing a Find Previous Button.

 - The Watch window does not preserve watchpoints between runs in a single

 debugging session or between separate debugging sessions.

 - The File Open dialog box does not default to the program directory of an
 open workspace.

 - ?<function name> does not display the function prototype.

 - fr st fails with MIPS host and x86 target with windbgrm.

 - In a stack trace, the function name displayed for a function without a
 symbol is the return address of the next frame.

 - The base expression of expanded structure is added using quick watch,
 not the selected item.

 - Breakpoints may not work correctly in multithreaded applications in
 areas not protected by critical sections.

 - Choosing Stop Debugging and Restart causes a memory leak (100K per
 iteration).

 - The Watch dialog does not set default watch expression to the selection
 made in the source window.

 - A Long expression (?arg00+arg01+...+arg31) causes the debuggee to run to
 termination.

 - ?<function returning near pointer> displays segment.

 - When setting up for kernel debugging, the user must enter the target
 processor architecture in the Kernel Debugging dialog box. If the wrong
 value is selected, the target machine will crash the first time the
 user tries to set a breakpoint, or change its context.

 - Module load messages lock up WinDbg. While a module is loading, no
 other input is allowed.

 - WinDbg cannot debug ntvdm on the RISC platform.

 - The Find dialog box can be reselected while the dialog box "The string
 xxxx was not found" is still open.

 - The Cancel button from the "Ask to save workspace if Modified" dialog
 box causes WinDbg to exit, instead of return.

 - You cannot move the caret in the Dissassembly Window by pressing the UP
 ARROW and DOWN ARROW keys.

 - You cannot set a breakpoint on the first line in the Dissassembly
 window.

 - WinDbg can close prematurely if a breakpoint is ambiguous.

 - Data type "const WCHAR *const" displays only the first letter of the
 string.

 - A previously added exception is selected when you attempt to add a new
 exception in the Exceptions dialog box.

 - WinDbg is unable to evaluate an enum expression on PPC.

 - WinDbg cannot find symbols for class names on PPC. Therefore WinDbg is
 unable to set breakpoints on constructors or other member functions.

 - When server debugging, WinDbg does not look in the symbol search path
 set in the User DLLs dialog box. Instead, it looks in the current path.

 - The Single Message list does not contain WM_ENTERMENULOOP or
 WM_EXITMENULOOP.

 - An Access Violation occurs if the LM command is used when debugging a
 16-bit Windows-based application.

Additional reference words:
KBCategory: kbtool kbbuglist
KBSubcategory: TlsWindbg

BUG: Win32 SDK Version 3.51 Bug List - WOW and Subsystems
PSS ID Number: Q136436

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.51

SUMMARY
=======

This article lists the bugs in the WOW and the OS/2, POSIX, and Windows on
Win32 (WOW) Subsystems that were known at the time the product was
released.

MORE INFORMATION
================

This list is divided into two sections: WOW and Subsystems.

WOW

 - Windows NT loses long file names saved by 16-bit Windows-based
 applications.

 - 16-bit Windows-based applications require DLLs on the local machine.

 - GetExitCodeProcess() does not return exit codes for 16-bit Windows-based
 applications in WOW.

 - Locking at negative offsets fails in WOW.

 - WOW incorrectly handles the FBSTP instruction.

 - WOW incorrectly handles FISTP DWORD PTR.

 - GetWindowPlacement() returns the wrong length in WINDOWPLACEMENT in WOW.

 - WOW EndDeferWindowPos() does not return a nonzero value for success.

 - You cannot change the number of NetBIOS names available for WOW.

 - GetMessageTime() can return a value greater than GetCurrentTime()
 returns.

 - Custom focus does not work in WOW.

 - WOW WNetServerBrowseDialog() returns WM_SUCCESS, not WM_CANCEL, when
 the user clicks the Cancel button.

 - WOW WNetDisconnectDialog() returns error 5 for printers under WOW, even
 printers connected explicitly with the NET USE command.

 - Printing from 16-bit Windows-based applications using old quick linker
 fails in WOW.

Subsystems

 - A remote NetUserAdd from the OS/2 subsystem causes an internal OS/2
 subsystem error.

 - Calls to OS/2 DosSemClose can fail if another process called DosSemWait
 on the same semaphore.

 - OS/2 queue handles should be enumerated starting from 1, not 0.

 - OS/2 DosPeekQueue causes a general protection (GP) fault in the OS/2
 subsystem.

 - POSIX printf does not handle EINTR.

 - POSIX does not handle NTFS_MAX_LINK_COUNT.

 - Command prompt is changed by MS-DOS-based applications upon exit.

 - INT 21, function 60 returns incorrect UNC handles.

 - The mouse pointer is reset with Full Screen MS-DOS-based applications.

 - The mouse pointer trapped in the upper-left corner with MS-DOS-based
 applications.

 - VddInstallHook() does not block duplicate mappings.

 - Line-by-line scrolling by pressing CTRL+UP and CTRL+DOWN does not work
 in an MS-DOS-based editor if NUM LOCK is enabled.

Additional reference words:
KBCategory: kbprg kbbuglist
KBSubcategory: Subsys

BUG: Win32s 1.25a Bug List
PSS ID Number: Q130138

The information in this article applies to:

 - Microsoft Win32s, version 1.25a

The following is a list of the known bugs in Win32s version 1.25 at the
time of its release.

 - Incorrect context at EXIT_PROCESS_DEBUG_EVENT.

 - Progman gets restored when debugger app exits.

 - Using StartDoc() does not produce document from printer.

 - EM_GETWORDBREAKPROC return code is incorrect.

 - Int 3 cannot be trapped via Structured Exception Handling (SEH) on
 Win32s.

 - Win32s does not open all files in RAW mode, as Windows NT does.

 - Cannot do ReadProcessMemory (RPM) on memory that has a hardware
 breakpoint set on it.

 - C run-time functions getdcwd()/getcwd() do not work.

 - GetFullPathName() returns the root directory for any drive that is not
 the current drive.

 - PlayMetaFileRecord()/EnumMetaFile() contains incorrect lpHTable.

 - Size of memory mapped files is rounded to a whole number of pages,
 meaning that the size is a multiple of 4096 bytes.

 - Functions chdrive() and SetCurrentDirectory() fail on PCNFS network
 drives.

 - GetExitCodeProcess() does not return exit codes for 16-bit Windows-based
 applications.

 - Memory passed to Netbios() must be allocated with GlobalAlloc().

 - biSizeImage field of BITMAPINFOHEADER is zero.

 - CreateFile() on certain invalid long filesnames closes Windows.

 - Only the first CBT hook gets messages.

 - Most registry functions return the Windows 3.1 return codes, not the
 Windows NT return codes.

 - GlobalReAlloc(x,y,GMEM_MOVEABLE) returns wrong handle type.

 - GetVolumeInformation() fails for Universal Naming Convention (UNC)
 root path.

 - ResumeThread while debugging writes to debuggee stack.

 - GetShortPathName() doesn't fail with a bad path, as it does on
 Windows NT.

 - CreateDirectory()/RemoveDirectory() handle errors differently than on
 Windows NT.

 - SetCurrentDirctory() returns different error codes than on Windows NT.

 - FindText() leaks memory.

 - Win32s doesn't support language files other than default (l_intl.nls).

 - spawnl does not pass parameters to an MS-DOS-based application.

 - Win32s does not support forwarded exports.

 - GetDlgItemInt() only translates numbers <= 32767 (a 16-bit integer).

 - Changing system locale in Win32s will not have an effect until Win32s
 is loaded again, unlike on Windows NT.

 - Module Management APIs missing ANSI to OEM translation.

 - When WS_TABSTOP is passed to CreateWindow(), this forces a
 WS_MAXIMIZEBOX.

 - Stubbed API FindFirstFileW() does not return -1 to indicate failure.

 - SearchPath() and OpenFile() don't work properly with OEM chars in the
 filename.

 - GetSystemInfo() doesn't set correct ProcessorType for the Pentium.

 - FormatMessage() doesn't set last error.

 - FormatMessage() fails with LANG_NEUTRAL | SUBLANG_DEFAULT, but works
 with LANG_ENGLISH | SUBLANG_ENGLISH_US.

 - After calling CreateFile() on a write-protected floppy GetLastError()
 returns 2, instead of 19, as it should.

 - VirtualProtect() with anything other than PAGE_NOACCESS, PAGE_READ, OR
 PAGE_READWRITE yields unpredictable page protections.

 - COMPAREITEMSTRUCT, DELETEITEMSTRUCT, DRAWITEMSTRUCT, AND
 MEASUREITEMSTRUCT incorrectly sign-extend fields.

 - GetWindowTextLength() & GetWindowText() incorrectly sign-extend the

 return value.

 - MoveFile() fails on Windows for Workgroups when the source is remote and
 the destination is local.

Additional reference words: 1.25 1.25a
KBCategory: kbprg kbbuglist
KBSubcategory: W32s

BUG: Win32s 1.3 Bug List
PSS ID Number: Q133026

The information in this article applies to:

 - Microsoft Win32s version 1.3

The following is a list of the known bugs in Win32s version 1.3 at the
time of its release.

 - Incorrect context at EXIT_PROCESS_DEBUG_EVENT.

 - Progman gets restored when debugger application exits.

 - Using StartDoc() does not produce document from printer.

 - EM_GETWORDBREAKPROC return code is incorrect.

 - Int 3 cannot be trapped via Structured Exception Handling (SEH) on
 Win32s.

 - Win32s does not open all files in RAW mode, as Windows NT does.

 - Cannot do ReadProcessMemory (RPM) on memory that has a hardware
 breakpoint set on it.

 - C run-time functions getdcwd()/getcwd() do not work.

 - GetFullPathName() returns the root directory for any drive that is not
 the current drive.

 - PlayMetaFileRecord()/EnumMetaFile() contains incorrect lpHTable.

 - Size of memory mapped files is rounded to a whole number of pages,
 meaning that the size is a multiple of 4096 bytes.

 - Functions chdrive() and SetCurrentDirectory() fail on PCNFS network
 drives.

 - GetExitCodeProcess() does not return exit codes for 16-bit Windows-based
 applications.

 - Memory passed to Netbios() must be allocated with GlobalAlloc().

 - biSizeImage field of BITMAPINFOHEADER is zero.

 - CreateFile() on certain invalid long filesnames closes Windows.

 - Only the first CBT hook gets messages.

 - Most registry functions return the Windows 3.1 return codes, not the
 Windows NT return codes.

 - GlobalReAlloc(x,y,GMEM_MOVEABLE) returns wrong handle type.

 - GetVolumeInformation() fails for Universal Naming Convention (UNC)
 root path.

 - ResumeThread while debugging writes to debuggee stack.

 - GetShortPathName() doesn't fail with a bad path, as it does on
 Windows NT.

 - CreateDirectory()/RemoveDirectory() handle errors differently than they
 do in Windows NT.

 - SetCurrentDirctory() returns different error codes than does Windows NT.

 - FindText() leaks memory.

 - Win32s doesn't support language files other than default (l_intl.nls).

 - spawnl does not pass parameters to an MS-DOS-based application.

 - Win32s does not support forwarded exports.

 - GetDlgItemInt() only translates numbers <= 32767 (a 16-bit integer).

 - Changing system locale in Win32s has no effect until Win32s
 is loaded again, unlike in Windows NT.

 - Module Management APIs missing ANSI to OEM translation.

 - Stubbed API FindFirstFileW() does not return -1 to indicate failure.

 - FormatMessage() doesn't set last error.

 - FormatMessage() fails with LANG_NEUTRAL | SUBLANG_DEFAULT, but works
 with LANG_ENGLISH | SUBLANG_ENGLISH_US.

 - After calling CreateFile() on a write-protected floppy disk,
 GetLastError() returns 2, instead of 19, as it should.

 - MEASUREITEMSTRUCT and DRAWITEMSTRUCT do not have itemID or itemData
 fields initialized with owner draw menu items.

 - With winhlp32, deleting an annotation in a popup causes an unhandled
 exception. This occurs with Windows NT 3.51 and Windows 95 as well.

 - SetEnvironmentVariables() does not handle an empty string, an equal
 sign (=), or foreign lowercase characters in the variable name.

 - With the help authoring switched on with winhlp32, if you use
 PopupContext with an invalid context number, the error message displayed
 is "Cannot find the windows.hlp file. Do you want to find it?"

 - With the help authoring switched on with winhlp32, if you use
 PopupContext with a file that has an .HLP extension but isn't help file,

 the error message displayed is "Cannot find the windows.hlp file. Do you
 want to find it?"

 - With the help authoring switched on with winhlp32, if you use
 PopupContext with a context string that does not exist, no error message
 is produced.

 - You can still write to a file that was opened with GENERIC_READ.

 - When a file is opened a second time, the attributes are not updated
 even with CREATE_ALWAYS.

 - PrintDlg() with a NULL hPrintTemplate and PD_ENABLEPRINTTEMPLATE
 returns 7 (ERROR_ARENA_TRASHED), not 6 (ERROR_INVALID_HANDLE).

 - PrintDlg() does not fail with a NULL hSetupTemplate and the flags
 PD_ENABLESETUPTEMPLATE | PD_PRINTSETUP. The expected return code is 6
 (ERROR_INVALID_HANDLE). Instead, the regular Print Dialog is displayed.

 - PrintDlg() succeeds with a NULL hInstance.

 - PrintDlg() succeeds with a From value that is bigger than the To value.

 - PrintDlg() succeeds with an emptry From value or an emptry To value.

 - The winhlp32 Find tab does not paint correctly.

 - Winhlp32 does not have context-sensitive help for itself.

 - The return value of GetDlgCtrlID() is sign-extended. This causes a
 problem for IDs greater than 0x7fff.

 - Winhlp32 cannot play .AVI files.

 - The winhlp32 Find highlight feature doesn't work on the first try.
 After opening and closing the Find options, the problem goes away.

 - When a help file with a .CNT file is brought up from a write-protected
 floppy disk, there's a system error the first time that the help file is
 invoked. This does not happen if winhlp32 is invoked from the command
 line (winhlp32 a:file.hlp) or if the .GID is already created.

 - When you attempt to print a secondary window from Word version 6.0, an
 application error occurs.

 - When you open up a different help file, the window title changes to
 the title of the new help file. When you go back to the original help
 file, the window title does not change back to the original title.

 - When you bring up a help file in File Manager with a .CNT file but no
 keywords, the Find tab is brought up.

 - TAB keys and hot keys do not work properly in property sheet controls
 unless the application's message loop calls PropSheet_IsDialogMessage().

Additional reference words: 1.30
KBCategory: kbprg kbbuglist
KBSubcategory: W32s

BUG: Win95 CreateEnhMetaFile Returns hDC with Characteristics
PSS ID Number: Q151918

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:
 Microsoft Windows 95, version 4.0

SYMPTOMS
========

In Windows 95, calling CreateEnhMetaFile and specifying a reference printer
DC (hdcRef) as the first parameter results in an hDC with characteristics
of the default printer, not of the hdcRef specified.

RESOLUTION
==========

To work around this problem, obtain the current ENHMETAHEADER information
by calling GetEnhMetafileBits. Modify the appropriate members of the
structure to reflect the correct values, and then call SetEnhMetafileBits()
to write the modified header information back.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed at the
beginning of this article. We are researching this bug and will post new
information here in the Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

This problem can be demonstrated when the resolution of the device
specified as hdcRef to CreateEnhMetafile is different from the resolution
of the default printer.

Steps to Reproduce Problem

1. From the Control Panel, set the default printer to print at 300 dots-
 per-inch (dpi).

2. Modify the DEVMODE structure using DocumentProperties to reset this
 resolution to 600 dpi for your application.

3. Create a DC using CreateDC with the modified 600 dpi DEVMODE structure
 from step 2, specifying the same driver, device, and port name as the
 default printer.

4. Create an enhanced metafile using CreateEnhMetaFile, passing this
 printer DC from step 3 as the reference DC.

5. Call GetDeviceCaps on the hDC returned from step 4, and verify that the
 LOGPIXELSX and LOGPIXELSY values are set to 300 dpi, which is the
 resolution of the default printer device, and not of the modified
 printer DC created in step 3. Any attempt to draw a 2x2 rectangle onto
 this enhanced metafile results in a 4x4 rectangle due to the 300 dpi
 resolution, instead of the desired 600 dpi.

6. To work around the problem, call GetEnhMetaFileBits to obtain an
 ENHMETAHEADER structure. The szlDevice member of this structure
 specifies the resolution of the device on which the picture was created.
 Modify this to reflect the 600 dpi change and write the modified
 information back using SetEnhMetaFileBits.

Additional reference words: 4.00
KBCategory: kbgraphic kbprg kbbuglist
KBSubcategory: GdiMeta

BUG: Win95 GDI Resets Window/ViewportOrg in MM_TEXT Mode
PSS ID Number: Q152236
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows 95,
 versions 3.1, 4.0
--

SYMPTOMS
========

An application marked as 3.1 will have its window origin and viewport
origin reset on Windows 95 when StartPage() is called and the device
context (DC) is in the MM_TEXT mapping mode.

This is a problem only in Windows 95 for both 16-bit and 32-bit
applications marked as 3.1.

CAUSE
=====

This bug occurs when enhanced metafiles (EMF) are used to print in Windows
95.

In Windows 95, all output to a non-Postsript printer spools as EMFs. While
EMF spooling or EMF banding, GDI fails to record the window or viewport
origins unless the mapping mode is set to something other than MM_TEXT.

This problem should not occur when printing to Postscript printers, because
these printers do not support spooling using EMFs.

RESOLUTION
==========

The best way to work around this behavior is to call StartPage() before
changing any DC attributes. Doing this guarantees that the DC attributes do
not get reset regardless of the operating system or whether the application
is marked 3.1 or 4.0.

STATUS
======

Microsoft has confirmed this to be a problem in the Microsoft products
listed at the beginning of this article. We are researching this problem
and will post new information here in the Microsoft Knowledge Base as it
becomes available.

MORE INFORMATION
================

When an application prints, Windows 95 directs all GDI output calls for a
page to an ENHANCED metafile. When EndPage is called, GDI steps through the

bands on the page and plays the metafile into every band. In Windows 95,
GDI fails to record the origin and extent information into the metafile
unless the mapping mode is set to something other than MM_TEXT.

In Windows 95, StartPage resets the printer DC attributes for 4.0-marked
applications, while 3.1-marked applications do not reset the printer DC
attributes until EndPage is called. Windows NT 3.x does not reset printer
DC attributes at all during a print job. For more information, please see
the following article in the Microsoft Knowledge Base:

 ARTICLE ID: Q125696
 TITLE : StartPage/EndPage Resets Printer DC Attributes in Windows 95

Additional reference words: 3.10 4.00 SetWindowOrg SetViewportOrg
KBCategory: kbgraphic kbbuglist
KBSubcategory: GdiDC

BUG: Windows 95 Access Violation Error After Disabling CTRL+C
PSS ID Number: Q137379

The information in this article applies to:

 - Microsoft Win32 Software Development KIT (SDK)
 versions 3.5, 3.51, 4.0

SYMPTOMS
========

In a Win32 environment, a console application can be terminated by pressing
CTRL+C. To disable CTRL+C input, a console application can call the
SetConsoleCtrlHandler(NULL, TRUE) API function.

When this API function is called in Windows NT, CTRL+C is ignored if
pressed. However, when it is called in Windows 95, pressing CTRL+C
generates an Access Violation error. Similarly, when this API is called in
Windows 95, pressing CTRL+BREAK generates an Access Violation error.

RESOLUTION
==========

There are two alternatives for the programmer who wants to disable CTRL+C
and avoid generating an Access Violation error:

 - Install a console control handler to capture and ignore the CTRL+C
 keypress:

 SetConsoleCtrlHandler(MyHandler, TRUE);
 BOOL MyHandler(DWORD dwEventType)
 {
 if (dwEvnetType == CTRL_C_EVENT
 return TRUE; // CTRL+C handle by function
 else
 return FALSE; // pass to next handler
 }

 -or-

 - Disable CTRL+C by disabling the ENABLE_PROCESSED_INPUT console mode.
 Disabling the ENABLE_PROCESSED_INPUT console mode then reports CTRL+C to
 the input buffer, not the system.

 SetConsoleMode(hConsoleHandle,
 (Mode & ~ ENABLE_PROCESSED_INPUT));

STATUS
======

Microsoft has confirmed this to be a bug in the products listed at the
beginning of this article. We are researching this problem and will post
new information here in the Microsoft Knowledge Base as it becomes

available.

Additional reference words: 4.00 Windows 95
KBCategory: kbprg kbbuglist
KBSubcategory: BseCon

BUG: Windows 95 DDEML Faults with Multiple Threads
PSS ID Number: Q137193

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

If an application has multiple threads calling the DDEML APIs
simulataneously, warnings may be generated under debug Windows. In
cases, the application may fault inside DDEML.

CAUSE
=====

The DDEML library has a bug that can cause re-entrancy problems in
certain, high stress conditions.

RESOLUTION
==========

The solution is to have the calling application serialize access to
DDEML using a critical section.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 4.00
KBCategory: kbui kbbuglist
KBSubcategory: UsrDde

BUG: Windows 95 Does Not Allow Send with MSG_PARTIAL Flag
PSS ID Number: Q139800

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SYMPTOMS
========

The Winsock API send() on Windows 95 does not allow the last parameter to
be set to MSG_PARTIAL. The call fails with Winsock error 10045 (Operation
not supported on socket).

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

MORE INFORMATION
================

Winsock applications on Windows NT that use message-oriented protocols like
SPX with SOCK_SEQPACKET may use the send() API with the last parameter
specified as MSG_PARTIAL to indicate that the message bit should be
respected by the transport.

Windows 95 does not allow this option.

Additional reference words: 4.00 Windows 95
KBCategory: kbnetwork kbbuglist
KBSubcategory: NtwkMisc

BUG: Windows 95 Doesn't Allow open_osfhandle on Socket Handles
PSS ID Number: Q139801

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SYMPTOMS
========

The Winsock API _open_osfhandle() on Windows 95 fails when called with a
socket handle as the argument. The call returns -1 with errno set to
EINVAL.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

MORE INFORMATION
================

Applications on Windows NT may use _open_osfhandle to get a C-runtime file
descriptor from a Windows NT socket handle. This enables the application to
use the descriptor in C-runtime I/O operations like _lread(), etc.

Windows 95 does not allow this operation.

Additional reference words: 4.00 Windows 95
KBCategory: kbnetwork kbbuglist
KBSubcategory: NtwkMisc

BUG: Windows 95 Limits Mailslot Names to 8.3 Naming Convention
PSS ID Number: Q139716

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SYMPTOMS
========

When you use Mailslots with Windows 95, the mailslot name is silently
limited to the MS-DOS 8.3 naming convention including subdirectories. For
example, if a mailslot is created in Windows 95 with this name:

 \\ComputerName\Mailslot\Test_slot

then although CreateMailslot returns success, the actual mailslot name is
set to this:

 \\ComputerName\Mailslot\Test_slo

The mailslot file name is truncated to eight characters and the file
extension is truncated to three characters. Therefore, when a client
running under Windows NT sends data to \\ComputerName\Mailslot\Test_slot,
the data is never recieved by the Windows 95 server. This is because the
names of the two mailslots do not match.

However, when a Windows 95 client sends data to
\\ComputerName\Mailslot\Test_slot, the data is recieved by the
server. This is because both computers are running Windows 95, so they both
truncate the mailslot name to store the name as:

 \\ComputerName\Mailslot\Test_slo

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are reasearching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

MORE INFORMATION
================

This problem also occurs if a server is running under Windows NT and the
client is running under Windows 95. Because the Windows 95 client truncates
the name of the mailslot, the Windows NT server is unable to receive the
data. Here are examples of names that will not work:

 \\ComputerName\mailslot\test_slot.slot
 \\ComputerName\mailslot\test_slo.slot
 \\ComputerName\mailslot\path1\path2\test_slot.slot

Here are examples of names that will work:

 \\ComputerName\mailslot\test_slo.slt
 \\ComputerName\mailslot\test_slo.slo
 \\ComputerName\mailslot\path1\path2\test_slt.slt

Additional reference words: 4.00 Windows 95 prefix suffix
KBCategory: kbnetwork kbbuglist
KBSubcategory:

BUG: Windows 95 SNMP System Description Is Incorrect
PSS ID Number: Q139461

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SYMPTOMS
========

The value of the system.sysDescription variable in the Windows 95 SNMP
agent (Internet-II MIB) is incorrectly set to "Microsoft Corp. Chicago
Beta."

RESOLUTION
==========

Please ignore this value. Windows 95 is a released product along with the
SNMP agent.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are reasearching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

REFERENCES
==========

Windows 95 Resource Kit
Win32 compact disc \Docs\Misc\Progref.rtf

Additional reference words: 4.00 Windows 95
KBCategory: kbnetwork kbbuglist
KBSubcategory: NtwkSnmp

BUG: Windows 95-Based Winsock App Can't Receive IPX Broadacast
PSS ID Number: Q137914

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SYMPTOMS
========

A winsock application is unable to receive IPX broadcasts when running
under Windows 95 even though it is able to receive UDP broadcasts.

RESOLUTION
==========

To enable a winsock application to recieve IPX broadcasts, use the
setsockopt() call with the SO_BROADCAST flag as in this example:

 int sock, optval;
 .
 .
 sock = socket(.....);
 err = setsockopt(sock, SOL_SOCKET, SO_BROADCAST, (char*)&optval,
 sizeof(optval));

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are reasearching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

MORE INFORMATION
================

Note that there is no need to use this option for the case of UDP and
specification for winsock 1.1 says that this is needed only for
sending broadcasts.

Additional reference words: 4.00 Windows 95
KBCategory: kbnetwork kbtshoot kbbuglist
KBSubcategory: NtwkWinsock

BUG: Windows NT Hangs When PolyBezier Gets Certain Coordinates
PSS ID Number: Q137762

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.51

SYMPTOMS
========

PolyBezier causes Windows NT version 3.51 to hang (stop responding to
input) when certain valid coordinates are passed to it. To get out of it,
you have to turn off the computer. For example, the following valid
coordinates cause the problem when they are passed to PolyBezier:

point[0].x =102;
point[0].y =532;
point[1].x =221;
point[1].y =180;
point[2].x =340;
point[2].y =-172;
point[3].x =459;
point[3].y =-524;

Other apparently unrelated coordinates can also cause the problem.

WORKAROUND
==========

To work around this bug, try using the PolyBezier32s() function, which is
described in the following article in the Microsoft Knowledge Base:

ARTICLE-ID: Q135058
TITLE : SAMPLE: How to Draw Cubic Bezier Curves in Windows and Win32s

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

NOTE: This bug will be fixed in a later release of Windows NT.

Additional reference words: Graphics Crash Hang Curves
KBCategory: kbprg kbbuglist
KBSubcategory: GdiMisc

BUG: WinHelp() Call Fails Using HELP_TCARD Option in Win32s
PSS ID Number: Q149967
--
The information in this article applies to:

 - Microsoft Win32 Application Programming Interface, included with
 Microsoft Win32s, 1.30c
--

SYMPTOMS
========

The WinHelp() call fails when using the HELP_TCARD option under Win32s.
For example, the following WinHelp call fails and WinHelp does not appear:

 WinHelp(hWnd, "GENERIC.HLP", HELP_TCARD | HELP_CONTEXT, 99)

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

MORE INFORMATION
================

The user is guided through the steps of a task when an application displays
a sequence of instructions using training card help. A training card
typically consists of text that explains a particular step and authorable
buttons associated with TCard macros that allow the user to tell the
application what to do next.

The training card instance of Windows Help is initiated by an application
calling the WinHelp function and specifying the HELP_TCARD command in
combination with another command such as HELP_CONTEXT. Subsequently, when
the user clicks an authorable button in the training card, clicks a hot
spot assigned to the TCard macro, or closes the training card, Windows Help
notifies the application by sending it a WM_TCARD message.

Additional reference words: 1.30c Win32s Winhlp32 TCARD WM_TCARD
KBCategory: kbtool kbbuglist
KBSubcategory: W32s

BUG: Winsock App Over IPX/SPX Over RAS Fails to Connect
PSS ID Number: Q140019
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.5 and 3.51
--

SYMPTOMS
========

A Windows NT client makes a PPP (point-to-point protocol) RAS (remote
access server) connection to a Windows NT RAS server with support for
IPX/SPX protocols enabled. A user on a Windows NT RAS client runs a Winsock
application that binds to the RAS adapter and listens for connections over
SPX or SPXII protocol sequences. Another user on the Windows NT RAS server
runs a Winsock application that binds to the RAS adapter on the server and
tries to call connect() to connect to the application on the RAS client. A
call to connect() in this scenario fails with SOCKET_ERROR and
WSAGetLastError() returns WSAENETUNREACH(10051).

RESOLUTION
==========

The RAS server administrator must configure the RAS server so that it
assigns different network numbers to all RAS clients. This can be done by
clearing the "Assign same network number to all IPX clients" check box. On
the Control menu, click Network. Then click RemoteAccessService, click
Network, and click IPX.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available

Additional reference words: 3.50 3.51
KBCategory: kbprg kbnetwork kbbuglist
KBSubcategory: NtwkWinsock

BUG: Winsock Sends IP Packets with TTL 0
PSS ID Number: Q138268

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)
 versions 3.5, 3.51, 4.0

SYMPTOMS
========

If an application is using IP multicasting on Windows NT version 3.5 or
version 3.51 or on Windows 95, then it is possible to send packets with
Time to Live (TTL) set to 0.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are reasearching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

MORE INFORMATION
================

Please see the following article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q131978
 TITLE : Receiving, Sending Multicasts in Windows NT Using WinSock

It is possible to change the TTL for an IP datagram. For example:

 int ttl = 0;
 int sock = socket(....);

 err = setsockopt(sock, IPPROTO_IP, IP_MULTICAST_TTL, (char *)&ttl,
 sizeof(ttl));

However, as per the requirements of RFC 1122, a host must not send an IP
datagram with TTL = 0. Here is a quote from the relavent section of RFC
1122:

 3.2.1.7 Time-to-Live: RFC-791 Section 3.2

 A host must not send a datagram with a Time-to-Live (TTL) value of zero.

 A host must not discard a datagram just because it was received with TTL
 less than 2.

REFERENCES
==========

For more information, please see the following references:

 - \Docs\Misc\Mcast.txt on the Win32 SDK Compact Disc

 - The following article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q131978
 TITLE : Receiving, Sending Multicasts in Windows NT Using WinSock

 - RFCs 791 and 1122

Additional reference words: 4.00 3.50 3.51 Windows 95
KBCategory: kbnetwork kbtshoot kbbuglist
KBSubcategory:

BUG: WNetGetUniversalName Fails Under Windows 95
PSS ID Number: Q131416

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SYMPTOMS
========

The WNetGetUniversalName function takes a drive-based path for a network
resource and obtains a data structure that contains a more universal form
of the name. This function always fails with error 1200 when called from a
32-bit application running under Windows 95.

WORKAROUND
==========

The functionality provided by WNetGetUniversalName can be implemented using
the Win32 network enumeration functions WNetOpenEnum and WNetEnumResource.
Here is an example of how to use these functions to implement similiar
functionality:

#include <windows.h>
#include <stdio.h>

// Function Name: GetUniversalName
//
// Parameters: szUniv - contains the UNC equivalent of szDrive
// upon completion
//
// szDrive - contains a drive based path
//
// Return value: TRUE if successful, otherwise FALSE
//
// Comments: This function assumes that szDrive contains a
// valid drive based path.
//
// For simplicity, this code assumes szUniv points
// to a buffer large enough to accomodate the UNC
// equivalent of szDrive.

BOOL GetUniversalName(char szUniv[], char szDrive[])
{
 // get the local drive letter
 char chLocal = toupper(szDrive[0]);

 // cursory validation
 if (chLocal < 'A' || chLocal > 'Z')
 return FALSE;

 if (szDrive[1] != ':' || szDrive[2] != '\\')
 return FALSE;

 HANDLE hEnum;
 DWORD dwResult = WNetOpenEnum(RESOURCE_CONNECTED, RESOURCETYPE_DISK,
 0, NULL, &hEnum);

 if (dwResult != NO_ERROR)
 return FALSE;

 // request all available entries
 const int c_cEntries = 0xFFFFFFFF;
 // start with a reasonable buffer size
 DWORD cbBuffer = 50 * sizeof(NETRESOURCE);
 NETRESOURCE *pNetResource = (NETRESOURCE*) malloc(cbBuffer);

 BOOL fResult = FALSE;

 while (TRUE)
 {
 DWORD dwSize = cbBuffer,
 cEntries = c_cEntries;

 dwResult = WNetEnumResource(hEnum, &cEntries, pNetResource,
 &dwSize);

 if (dwResult == ERROR_MORE_DATA)
 {
 // the buffer was too small, enlarge
 cbBuffer = dwSize;
 pNetResource = (NETRESOURCE*) realloc(pNetResource, cbBuffer);
 continue;
 }

 if (dwResult != NO_ERROR)
 goto done;

 // search for the specified drive letter
 for (int i = 0; i < (int) cEntries; i++)
 if (pNetResource[i].lpLocalName &&
 chLocal == toupper(pNetResource[i].lpLocalName[0]))
 {
 // match
 fResult = TRUE;

 // build a UNC name
 strcpy(szUniv, pNetResource[i].lpRemoteName);
 strcat(szUniv, szDrive + 2);
 _strupr(szUniv);
 goto done;
 }
 }

done:
 // cleanup
 WNetCloseEnum(hEnum);
 free(pNetResource);

 return fResult;

}

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are researching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 4.00 Win95
KBCategory: kbnetwork kbbuglist kbcode
KBSubcategory: NtwkWinnet

BUG: WSARecvEx Fails to Set MSG_PARTIAL Flag on Windows 95
PSS ID Number: Q139799

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SYMPTOMS
========

The Winsock API WSARecvEx() on Windows 95 does not set the Flags parameter
to MSG_PARTIAL even if the message was not completely received.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. We are reasearching this problem and will
post new information here in the Microsoft Knowledge Base as it becomes
available.

MORE INFORMATION
================

Winsock applications on Windows NT that use message-oriented protocols like
SPX with SOCK_SEQPACKET may use the WSARecvEx API instead of recv. The last
parameter of the API is set to MSG_PARTIAL if there was not enough buffer
space to receive the complete message. This enables an application to
detect partial messages.

Windows 95 does not set the flags to MSG_PARTIAL.

REFERENCES
==========

Win32 SDK Online Reference, WSARecvEx Function.

Additional reference words: 4.00 Windows 95
KBCategory: kbnetwork kbbuglist
KBSubcategory: NtwkMisc

BUG:Invalid Default Interface for IP Multicasting Causes Crash
PSS ID Number: Q132434
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.5 and 3.51
--

SYMPTOMS
========

Changing the default interface for IP multicasting if the interface
is not valid for the machine causes Windows NT to crash (stop responding)
on the Intel x86 platform.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products
listed at the beginning of this article. We are researching this bug
and will post new information here in the Microsoft Knowledge Base
as it becomes available.

A fix to this problem is in development, but has not been regression-tested
and may be destabilizing in production environments. Microsoft does not
recommend implementing this fix at this time. Contact Microsoft Product
Support Services for more information on the availability of this fix.

MORE INFORMATION
================

Each multicast transmission is sent from a single network interface,
even if the host has more than one multicast-capable interface. A socket
option is available to override the default for subsequent transmissions
from a given socket. For example

 unsigned long addr = inet_addr("12.13.14.15");
 setsockopt(sock, IPPROTO_IP, IP_MULTICAST_IF, (char *)&addr, sizeof(addr))

where "addr" is the local IP address of the desired outgoing interface.
An address of INADDR_ANY may be used to revert to the default interface.

NOTE: In the above case although the IP address is a "legal" address,
if it does not belong to the machine, the following behavior occurs
depending on what platform is being used:

 - Windows NT crashes (stops responding) on the Intel x86 platform.
 - Windows NT locks up on the MIPS platform.
 - No adverse effect occurs on the ALPHA platform.

There is no adverse effect (regardless of the platform) if the machine
actually "owns" the IP address.

REFERENCES

==========

For more information on IP multicasting, refer to the
\DOC\MISC\Multcast.txt file included with the Win32 SDK.

Additional reference words: 3.50
KBCategory: kbnetwork kbbuglist
KBSubcategory: NtwkWinsock

Button and Static Control Styles Are Not Inclusive
PSS ID Number: Q74297

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

The class-specific window styles for button controls (BS_*) are mutually
exclusive, as are the class-specific window styles for static controls
(SS_*). In other words, they cannot be OR'd together as can most styles for
edit controls, list boxes, and combo boxes.

For example, the following style is invalid:

 BS_OWNERDRAW | BS_AUTORADIOBUTTON

A button control is either owner-draw or it is not. In the same
manner, the following style is also invalid:

 SS_LEFT | SS_GRAYFRAME

WINDOWS.H defines button and static styles sequentially (1, 2, 3...),
instead of as individual bits (1, 2, 4...) as other control's styles are
defined. If sequential styles are OR'd together, the resulting style may be
completely different from that intended.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbui
KBSubcategory: UsrCtl

Byte-Ordering in a Data Packet Under NDIS
PSS ID Number: Q89374
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1, 3.5, and 3.51
--

SUMMARY
=======

There may be a difference in the byte order in which 16-bit words are
stored in memory versus the order in which the two bytes must be
transmitted onto the network as part of a data packet. This difference
will depend on the processor involved and which part of the data
packet the information falls under.

The information is this article is consistent with the Network Device
Interface Specification (NDIS) version 3.0.

MORE INFORMATION
================

Consider that the data will consist of header(s), the application
data, and a trailer(s).

 | | | | |------- Trailer

 | | |____ Application data
 | |
 | |____ Header
 |
 |____ Header

When a protocol driver or an NDIS driver sends information, it does
not modify the application data, nor does it modify the ordering of
bytes in integer fields.

The ordering of bytes in integer fields within the application data is
the responsibility of the Remote Procedure Call (RPC) facility or
another mechanism. However, the driver should be concerned with how
the information in the header(s)/trailer(s) is stored. For example,
the driver may be required to put a 16-bit checksum in a header. To
put that integer value into the header in the format required by the
network specification, the driver may need to know the type of
processor that it is running on and will in any case need to follow
the network standard for storing the information in the header.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory:

Calculating String Length in Registry
PSS ID Number: Q94920

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

When writing a string to the registry, you must specify the length of the
string, including the terminating null character (\0). A common error is to
use strlen() to determine the length of the string, but to forget that
strlen() returns only the number of characters in the string, not including
the null terminator.

Therefore, the length of the string should be calculated as:

 strlen(string) + 1

Note that a REG_MULTI_SZ string, which contains multiple null-terminated
strings, ends with two (2) null characters, which must be factored into the
length of the string. For example, a REG_MULTI_SZ string might resemble the
following in memory:

 string1\0string2\0string3\0laststring\0\0

When calculating the length of a REG_MULTI_SZ string, add the length of
each of the component strings, as above, and add one for the final
terminating null.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseMisc

Calculating Text Extents of Bold and Italic Text
PSS ID Number: Q74298

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

GetTextExtent() can be used to calculate the extent of a string. The value
returned may need to be adjusted, depending upon the style of the font.
When an italic or bold font is requested and none are available, the
graphics device interface (GDI) may simulate those styles using an existing
raster or vector font.

MORE INFORMATION
================

GDI-simulated bold and italic fonts both include overhangs. The
overhang is specified in a TEXTMETRIC structure obtained by calling
the GetTextMetrics function. The proper method for calculating the
extent of a line of italic or bold text is shown below:

 dwExtent = GetTextExtent(hDC, lpString, nCount);
 GetTextMetrics(hDC, &tm);
 xExtent = LOWORD(dwExtent) - tm.tmOverhang;

Listed below are examples of italic text alignment. If the next
character is not italic, the overhang should not be subtracted
from the extent returned from the GetTextExtent function. The
overhang needs to be subtracted only when the next character has the
same style.

 GetTextExtent yields
 this as the extent:

 ||
 / / \/
 / / / / / / / /| |
 /---/ / / / / / / | |
 / / /---/ /---/ /---/ |---|
 / / / / / / / / | |
 ----- / / / / / / | |
 ^ /\ /\
 Overhang || ||
 Because the next Start the nonitalic H

 character is italic, here because it does not
 start the next slant and would partially
 character within the overwrite the previous
 overhang of the italic character.
 current character

The overhang for bold characters synthesized by GDI is generally 1
because GDI synthesizes bold fonts by outputting the text twice,
offsetting the second output by one pixel, effectively increasing the
width of each character by one pixel. Calculating the extent of the
bold text is similar to the method for italic text. The
GetTextExtent function always returns the extent of the text plus 1
for bold text. Thus by subtracting the tmOverhang(1), the proper
extent is achieved.

 || ||
 || ||
 ||===||
 || ||
 || ||
 ---<= This line represents the "extra" overhang of 1.
 /\
 ||
 GetTextExtent yields
 this as the extent of the
 bold H.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbgraphic
KBSubcategory: GdiFnt

Calculating The Logical Height and Point Size of a Font
PSS ID Number: Q74299

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

To create a font in the Microsoft Windows graphical environment given only
the required point size, an application must calculate the logical height
of the font because the CreateFont() and CreateFontIndirect() functions use
logical units to specify height.

To describe a font to the user, an application can calculate a font's point
size, given its height. This article provides the formulas required to
perform these calculations for the MM_TEXT mapping mode. You will have to
derive a new equation to calculate the font size in another mapping mode.

MORE INFORMATION
================

To calculate the logical height, use the following formula:

 Point Size * LOGPIXELSY
 height = Internal Leading + -------------------------
 72

LOGPIXELSY is the number of pixels contained in a logical inch on the
device. This value is obtained by calling the GetDeviceCaps() function with
the LOGPIXELSY index. The value 72 is significant because one inch contains
72 points.

The problem with this calculation is that there is no method to determine
the internal leading for the font because it has not yet been created. To
work around this difficulty, use the following variation of the formula:

 -(Point Size * LOGPIXELSY)
 height = --------------------------
 72

This formula may also be written as follows:

 plf->lfHeight = -MulDiv (nPtSize, GetDeviceCaps (hdc, LOGPIXELSY), 72);

When an application calls the CreateFont() or CreateFontIndirect()

functions and specifies a negative value for the height parameter, the font
mapper provides the closest match for the character height rather than the
cell height. The difference between the cell height and the character
height is the internal leading, as demonstrated by the following diagram:

 ---------- <------------------------------
 | | |- Internal Leading |
 | | | | <--------- |
 | | | | | |- Cell Height
	---			- Character Height
 ---------- <------------------------------

The following formula computes the point size of a font:

 (Height - Internal Leading) * 72
 Point Size = --------------------------------
 LOGPIXELSY

The Height and Internal Leading values are obtained from the
TEXTMETRIC data structure. The LOGPIXELSY value is obtained from the
GetDeviceCaps function as outlined above.

Round the calculated point size to the nearest integer. The Windows
MulDiv() function rounds its result and is an excellent choice to
perform the above calculation.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbgraphic
KBSubcategory: GdiFnt

Calculating the Point Size of a Font
PSS ID Number: Q74300

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The generic formula listed below can be used to compute the point size of a
font in the MM_TEXT mapping mode. Any other mapping mode will require a
different equation, because the Height will be in a different unit.

MORE INFORMATION
================

 (Height - Internal Leading) * 72
 Point Size = ---------------------------------
 LOGPIXELSY

 Height - Cell height obtained from the TEXTMETRIC structure.

 Internal Leading - Internal leading obtained from TEXTMETRIC
 structure.

 72 - One point is 1/72 of an inch.

 LOGPIXELSY - Number of pixels contained in a logical inch on the
 device. This value can be obtained by calling the
 GetDeviceCaps() function and specifying the LOGPIXELSY
 index.

The value returned from this calculation should be rounded to the nearest
integer. The Windows MulDiv() function rounds its result and is an
excellent choice for performing the above calculation.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbgraphic
KBSubcategory: GdiFnt

Calculating the TrueType Checksum
PSS ID Number: Q102354

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

To calculate a TrueType checksum:

1. Sum all the ULONGS in the .TTF file, except the checkSumAdjust
 field (which contains the calculated checksum). Note that TrueType
 files are big-endian, while Windows and Windows NT are little-endian,
 so the bytes must be swapped before they are summed.

2. Subtract the result from the magic number 0xb1b0afba.

MORE INFORMATION
================

Example

1. Open the SYMBOL.TTF distributed with Windows NT. It is 64492 bytes
 long.

2. Step through the 16123 ULONGS, summing each one, except for the
 checkSumAdjust field for the file (which in this case is
 0xa7a81151).

3. Subtract the result from 0xb1b0afba. The result is 0xa7a81151.

The TrueType font file specification is available from several sources,
including the Microsoft Software Library (query on the word
TTSPEC1).

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbgraphic
KBSubcategory: GdiFnt

Call the Windows Help Search Dialog Box from Application
PSS ID Number: Q86268

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

In the Microsoft Windows environment, an application can invoke the Search
dialog box of the Windows Help application independent of the main help
window. For example, many applications have an item like "Search for Help
on" in their Help menus.

An application can invoke the Search dialog box via the WinHelp
function by specifying HELP_PARTIALKEY as the value for the fuCommand
parameter and by specifying a pointer to an empty string for the
dwData parameter. The following code demonstrates how to call the
Windows Help Search dialog box from an application:

LPSTR lpszDummy,
 lpszHelpFile;

// Allocate memory for strings
lpszDummy = malloc(5);
lpszHelpFile = malloc(MAX_PATH);

// Initialize an empty string
lstrcpy(lpszDummy, "");

// Initialize the help filename
lstrcpy(lpszHelpFile, "c:\\windows\\myhelp.hlp");

// Call WinHelp function
WinHelp(hWnd, lpszHelpFile, HELP_PARTIALKEY, (DWORD)lpszDummy);

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbui
KBSubcategory: UsrDlgs

Calling 16-bit Code from Win32-based Apps in Windows 95
PSS ID Number: Q125715

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

As a developer, you may need to access the functionality provided by a 16-
bit DLL from your Win32-based applications. This is true particularly when
you do not have the source code for the DLL so that you can port it to
Win32. This article discusses the mechanism by which Win32-based DLLs can
call Windows-based DLLs. The mechanism is called a thunk and the method
implemented under Windows 95 is called a flat thunk.

The three major steps in writing the thunk code are:

1. Creating the Thunk Script
2. Building the Win32-based DLL
3. Building the Windows-based DLL

MORE INFORMATION
================

The recommended way to design a thunk call is to isolate all thunk
specific code in DLLs (a 16-bit DLL and a 32-bit DLL, to provide both sides
of the thunk). That way, you can install certain DLLs on one platform and
replace them on another platform, for portability.

Designing a new flat thunk involves creating a thunk script (.THK file).
This script is compiled with the Thunk Compiler into an assembly file. This
file is assembled using two different flags: -DIS_32 and -DIS_16. This
allows you to create both the 16-bit and 32-bit object modules. These
object modules are linked in the Windows-based and Win32-based DLLs,
respectively. The following diagram summarizes the files involves in
building the DLLs.

 +------------+
 | 32to16.THK |
 +------------+
 |
 +------------+
 | 32to16.ASM |
 +------------+
 / \
 +-----------+ +-----------+
 | 32THK.OBJ | | 16THK.OBJ |
 +-----------+ +-----------+
 / \

 +-------+ +-------+ +-------+
 | APP32 | -> | DLL32 | -- THUNK -- | DLL16 |
 +-------+ +-------+ +-------+

Creating the Thunk Script

You need to create a script that will be used by the thunk compiler to
create a thunk. A thunk script contains the function prototype and a
specification for the input and output values. You need to include the
following statement to create a 32-bit to 16-bit thunk call:

 enablemapdirect3216 = true;

The following is an example of a simple thunk script for a function that
has no input and output:

 enablemapdirect3216 = true;

 void MyThunk16()
 {
 }

The following is an example of script that takes two parameters and
returns a value. The second parameter is an output parameter and
contains a pointer that is passed back to the Win32-based DLL.

 enablemapdirect3216 = true;

 typedef int BOOL;
 typedef char *LPSTR;

 BOOL MyThunk32(LPSTR lpstrInput, LPSTR lpstrOutput)
 {
 lpstrOutput = output;
 }

The following thunk script uses more complex parameter types, such as
structures. This example also shows how to specify input and output
parameters.

 enablemapdirect3216 = true;

 typedef int BOOL;
 typedef unsigned int UINT;
 typedef char *LPSTR;

 typedef struct tagPOINT {
 INT x;
 INT y;
 } POINT;
 typedef POINT *LPPOINT;

 typedef struct tagCIRCLE {

 POINT center;
 INT radius;
 } CIRCLE;
 typedef CIRCLE *LPCIRCLE

 void MyThunk32(LPCIRCLE lpCircleInOut)
 {
 lpCircleInOut = InOut;
 }

The statement "lpCircleInOut = InOut" tells the script compiler that
this pointer is going to be used for input and output.

The thunk compiler usage is as follows:

 thunk.exe /options <inputfile> -o <outputfile>

The following command line shows how to create a 16-bit thunk code.

 thunk -t thk 32to16.thk -o 32to16.asm

The "-t thk" option tells the thunk compiler to prefix the thunk
functions in the assembly language file with "thk_." This will create an
assembly language file.

Building the Win32-based DLL (DLL32)

1. In the DllEntryPoint function (DllMain if you're using the Microsoft
 C Run-time libraries) in your Win32-based DLL, you must make a call
 to the imported function thk_ThunkConnect32, as shown here:

 BOOL WINAPI DllMain(HINSTANCE hDLLInst,
 DWORD fdwReason,
 LPVOID lpvReserved)
 {
 if (!thk_ThunkConnect32("DLL16.DLL",
 "DLL32.DLL",
 hDLLInst,
 fdwReason))
 {
 return FALSE;
 }
 switch (fdwReason)
 {
 case DLL_PROCESS_ATTACH:
 break;

 case DLL_PROCESS_DETACH:
 break;

 case DLL_THREAD_ATTACH:
 break;

 case DLL_THREAD_DETACH:

 break;
 }
 return TRUE;
 }

2. Include the following lines in the EXPORT section of the module
 definition (DEF) file for DLL32.

 thk_ThunkData32

3. Export the function that you are thunking to.

4. Assemble the assembly language file produced by the thunk compiler as a
 32-bit object module. The following line shows an example:

 ml /DIS_32 /c /W3 /nologo /coff /Fo thk32.obj 32to16.asm

5. Link this object module as part of the Win32-based DLL (DLL32).

Building the Windows-based DLL (DLL16)

1. The Windows-based DLL must export a function named "DllEntryPoint". This
 function must make a call to an imported function thk__ThunkConnect16.

 BOOL FAR PASCAL __export DllEntryPoint(DWORD dwReason,
 WORD hInst,
 WORD wDS,
 WORD wHeapSize,
 DWORD dwReserved1,
 WORD wReserved 2)
 {
 if (!thk_ThunkConnect16("DLL16.DLL",
 "DLL32.DLL",
 hInst,
 dwReason))
 {
 return FALSE;
 }
 return TRUE;
 }

2. Include the following lines in the IMPORTS section of the module
 definition (DEF) file for DLL16:

 C16ThkSL01 = KERNEL.631
 ThunkConnect16 = KERNEL.651

3. Include the following lines in the EXPORTS section of the module
 definition (DEF) file for DLL16. The THK_THUNKDATA16 is defined in the
 object file that is assembled from the output of the thunk compiler.

 THK_THUNKDATA16 @1 RESIDENTNAME
 DllEntryPoint @2 RESIDENTNAME

4. Once you have done that you need to assemble the assembly language
 file produced by the thunk compiler as a 16-bit object module. The
 following line shows an example:

 ml /DIS_16 /c /W3 /nologo /Fo thk16.obj 16to32.asm

5. Link this object module as part of the 16-bit DLL (DLL16) object file.

6. Mark the Windows-based DLL as version 4.0. To do this you can use the
 resource compiler (RC.EXE). The following line shows the syntax:

 rc -40 <DLL file>

 This -40 option is available in the resource compiler that is provided
 with the Windows 95 SDK and later SDKs.

 NOTE: Be sure to use the RC.EXE in the BINW16 directory so that the
 application is marked with version 4.0. There is another RC.EXE, but it
 will not mark the application with version 4.0.

Additional reference words: 4.00 95 flat thunk win16
KBCategory: kbprg
KBSubcategory: SubSys BseMisc

Calling 32-bit Code from 16-bit Apps in Windows 95
PSS ID Number: Q125718

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

It is often desirable to port 16-bit Windows-based applications to Win32 a
little at a time, rather than all at once. For example, you may want to
port Windows-based DLLs to Win32, but still be able to call them from 16-
bit code. This article discusses the mechanism by which Windows-based DLLs
can call Win32-based DLLs. The mechanism is called a thunk and the method
implemented under Windows 95 is called a flat thunk.

The three major steps in writing the thunk code are:

1. Creating the Thunk Script
2. Building the Windows-based DLL
3. Building the Win32-based DLL

MORE INFORMATION
================

The recommended way to design a thunk call is to isolate all thunk
specific code in DLLs (a 16-bit DLL and a 32-bit DLL, to provide both sides
of the thunk). That way, you can install certain DLLs on one platform and
replace them on another platform, for portability.

Designing a new flat thunk involves creating a thunk script (.THK file).
This script is compiled with the Thunk Compiler into an assembly file. This
file is assembled using two different flags: -DIS_32 and -DIS_16. This
allows you to create both the 16-bit and 32-bit object modules. These
object modules are linked in the Windows-based and Win32-based DLLs,
respectively. The following diagram summarizes the files involves in
building the DLLs.

 +------------+
 | 16to32.THK |
 +------------+
 |
 +------------+
 | 16to32.ASM |
 +------------+
 / \
 +-----------+ +-----------+
 | 16THK.OBJ | | 32THK.OBJ |
 +-----------+ +-----------+
 / \

 +-------+ +-------+ +-------+
 | APP16 | -> | DLL16 | -- THUNK -- | DLL32 |
 +-------+ +-------+ +-------+

Creating the Thunk Script

You need to create a script that will be used by the thunk compiler to
create a thunk. A thunk script contains the function prototype and a
specification for the input and output values. You need to include the
following statement to create a 16-bit to 32-bit thunk call:

 enablemapdirect1632 = true

By default, the Win32-based DLL is loaded only on the first encounter of a
16->32 thunk. Because late binding is used, 16-bit code must not depend on
any action taken by the initialization of the Win32-based DLL. Also a
loading failure of the Win32-based DLL will not be detected until the first
16->32 thunk has been called. To disable late binding of the Win32-based
DLL add the following line in your thunk script:

 preload32=true;

The following is an example of a simple thunk script for a function that
has no input and output:

 enablemapdirect1632 = true

 void MyThunk32()
 {
 }

The following is an example of script that takes two parameters and
returns a value. The second parameter is an output parameter and
contains a pointer that is passed back to the Windows-based DLL.

 enablemapdirect1632 = true

 typedef int BOOL;
 typedef char *LPSTR;

 BOOL MyThunk32(LPSTR lpstrInput, LPSTR lpstrOutput)
 {
 lpstrOutput = output;
 }

The statement "lpstrOutput = output" tells the script compiler that
the 32-bit code will return an address that needs to be converted from
flat memory pointer to a selector:offset pointer.

The following thunk script uses more complex parameter types, such as
structures. This example also shows how to specify input and output
parameters.

 enablemapdirect1632 = true

 typedef int BOOL;
 typedef unsigned int UINT;
 typedef char *LPSTR;

 typedef struct tagPOINT {
 INT x;
 INT y;
 } POINT;
 typedef POINT *LPPOINT;

 typedef struct tagCIRCLE {
 POINT center;
 INT radius;
 } CIRCLE;
 typedef CIRCLE *LPCIRCLE

 void MyThunk32(LPCIRCLE lpCircleInOut)
 {
 lpCircleInOut = InOut;
 }

The statement "lpCircleInOut = InOut" tells the script compiler that
this pointer is going to be used for input and output. This means that
conversion from a 16-bit selector:offset to a flat memory pointer and
vice-versa needs to be accomplished.

The thunk compiler usage is as follows:

 thunk.exe /options <inputfile> -o <outputfile>

The following line shows how to create a 16-bit thunk code.

 thunk -t thk 16to32.thk -o 16to32.asm

The "-t thk" option tells the thunk compiler to prefix the thunk
functions in the assembly language file with "thk_". This will create
an assembly language file.

Building the Windows-based DLL (DLL16)

1. The Windows-based DLL must export a function named "DllEntryPoint". This
 function must make a call to an imported function thk__ThunkConnect16.

 BOOL FAR PASCAL __export DllEntryPoint(DWORD dwReason,
 WORD hInst,
 WORD wDS,
 WORD wHeapSize,
 DWORD dwReserved1,
 WORD wReserved 2)
 {
 if (!thk_ThunkConnect16("DLL16.DLL",
 "DLL32.DLL",
 hInst,

 dwReason))
 {
 return FALSE;
 }
 return TRUE;
 }

2. Include the following lines in the IMPORTS section of the module
 definition (DEF) file for DLL16.

 C16ThkSL01 = KERNEL.631
 ThunkConnect16 = KERNEL.651

3. Include the following lines in the EXPORTS section of the module
 definition (DEF) file for DLL16. The THK_THUNKDATA16 is defined in the
 object file that is assembled from the output of the thunk compiler.

 THK_THUNKDATA16 @1 RESIDENTNAME
 DllEntryPoint @2 RESIDENTNAME

4. Once you have done that you need to assemble the assembly language
 file produced by the thunk compiler as a 16-bit object module. The
 following line shows an example:

 ml /DIS_16 /c /W3 /nologo /Fo thk16.obj 16to32.asm

5. Link this object module as part of the 16-bit DLL (DLL16) object file.

6. Mark the Windows-based DLL as version 4.0. To do this you can use the
 resource compiler (RC.EXE). The following line shows the syntax:

 rc -40 <DLL file>

 This -40 option is available in the resource compiler that is provided
 with the Windows 95 SDK and later SDKs.

 NOTE: Be sure to use the RC.EXE in the BINW16 directory so that the
 application is marked with version 4.0. There is another RC.EXE, but it
 will not mark the application with version 4.0.

Building the Win32-based DLL (DLL32)

1. In the DllEntryPoint function (DllMain if you're using the Microsoft
 C Run-time libraries) in your Win32-based DLL, you must make a call
 to the imported function thk_ThunkConnect32, as shown here:

 BOOL WINAPI DllMain(HINSTANCE hDLLInst,
 DWORD fdwReason,
 LPVOID lpvReserved)
 {
 if (!thk_ThunkConnect32("DLL16.DLL",
 "DLL32.DLL",
 hDLLInst,
 fdwReason))

 {
 return FALSE;
 }
 switch (fdwReason)
 {
 case DLL_PROCESS_ATTACH:
 break;

 case DLL_PROCESS_DETACH:
 break;

 case DLL_THREAD_ATTACH:
 break;

 case DLL_THREAD_DETACH:
 break;
 }
 return TRUE;
 }

2. Include the following lines into the EXPORT section of the module
 definition (DEF) file for DLL32:

 thk_ThunkData32

3. Export the function that you are thunking to.

4. Assemble the assembly language file produced by the thunk compiler as a
 32-bit object module. The following line shows an example:

 ml /DIS_32 /c /W3 /nologo /coff /Fo thk32.obj 16to32.asm

5. Link this object module as part of the Win32-based DLL (Win32).

Additional reference words: 4.00 95 flat thunk win16
KBCategory: kbprg
KBSubcategory: SubSys BseMisc

Calling a New 32-bit API from a 16-bit Application
PSS ID Number: Q125674

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Windows 95 supports a new set of APIs for 32-bit applications. These APIs
are exported by USER32, GDI32, KERNEL32, and so on. In Windows 95, some of
these new APIs are also exported by the 16-bit counterpart DLLs in the
system such as USER16, GDI16, and so on. But 16-bit applications running on
Windows 95 should not call these new APIs from the 16-bit system DLLs
because these calls are not unsupported and might be removed from the
16-bit system DLLs in the future.

MORE INFORMATION
================

APIs such as WindowFromDC(), SetWindowRgn(), SetForeGroundWindow(), and so
on for 16-bit USER window management and PolyBezier(), PolyBezierTo(), and
so on for 16-bit GDI graphics management are exported from the 16-bit
system DLLs.

Even though these APIs are intended for 32-bit applications, the 16-bit
system DLLs export some of them. 16-bit Windows 95 Applications should not
call them. They are not supported and the APIs will not work as intended.

If Windows 95 Applications need to use these APIs, port the 16-bit
application to 32-bit. This is the best solution and is the one that
Microsoft recommends. One addtional solution is to write a 32-bit DLL that
actually calls the 32-bit API; then the 16-bit application can thunk into
this 32-bit DLL. However, Microsoft strongly discourages developers from
having applications thunk into sytem DLLs (16- or 32-bit).

Additional reference words: 4.00
KBCategory: kbui
KBSubcategory: UsrMisc

Calling a Win32 DLL from a Win16 App on Win32s
PSS ID Number: Q97785
--
The information in this article applies to:

 - Microsoft Win32s versions 1.1 and 1.2
--

SUMMARY
=======

A Windows version 3.1 application can call a Win32 dynamic-link library
(DLL) under Win32s using Universal Thunks.

The following are required components (in addition to the Windows 3.1
application and the Win32 DLL):

 - A 16-bit DLL that provides the same entry points as the Win32 DLL.
 This serves as the 16-bit end for the Universal Thunk. The
 programmer must also include code that will detect whether the
 32-bit side is loaded.

 - A Win32 DLL that sets up the Universal Thunk. This serves as the
 32-bit end of the Universal Thunk. This DLL is supported only under
 Win32s.

 - A Win32 EXE that loads the 32-bit DLL described above.

NOTE: Universal Thunks were designed to work with a Win32-based application
calling a 16-bit DLL. The method described here has limitations. Because
the application is 16-bit, no 32-bit context is created, so certain calls
will not work from the Win32 DLL. For example, the first time you call
malloc() or new() from a DLL entrypoint called by the 16-bit application,
the system will hang. This is because MSVCRT20.DLL is using TLS to store C
Run-time state information and there is no TLS set up.

MORE INFORMATION
================

The following diagram illustrates how the pieces fit together:

 ----------- ----------- ---------
 | Win32 EXE |-->| Win32 DLL |<->| Win32 |
 32-bit | (stub) | | (UT) | | DLL |
 ----------- ----------- ---------
 /|\ /|\
 -----------------|--------|-------------------------
 | \|/
 --------- ------------
 | Win 3.1 |<->| 16-bit DLL |
 16-bit | app. | | (UT) |
 --------- ------------

The load order is as follows: The Windows 3.1 application loads the 16-bit

DLL. The 16-bit DLL checks to see whether the 32-bit side has been
initialized. If it has not been initialized, then the DLL spawns the 32-bit
EXE (stub), which then loads the 32-bit DLL that sets up the Universal
Thunks with the 16-bit DLL. Once all of the components are loaded and
initialized, when the Windows 3.x application calls an entry point in the
16-bit DLL, the 16-bit DLL uses the 32-bit Universal Thunk callback to pass
the data over to the 32-bit side. Once the call has been received on the
32-bit side, the proper Win32 DLL entry point can be called.

Note that the components labeled Win32 DLL (UT) and Win32 DLL in the
diagram above can be contained in the same Win32 DLL. Remember that the
code in the Win32 DLL (UT) portion isn't supported under Windows NT, so
this code must be special-cased if the DLLs are combined.

For more information, please see the "Win32s Programmer's Reference."

Additional reference words: 1.10 1.20 reverse universal thunk
KBCategory: kbprg
KBSubcategory: W32s

Calling a Win32 DLL from a Win16 Application Under WOW
PSS ID Number: Q104009
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)
--

SUMMARY
=======

Under Windows NT and Windows 95, it is possible to call routines in a Win32
dynamic-link library (DLL) from a 16-bit Windows application using an
interface called Generic Thunking. This is not to be confused with Win32s
Universal Thunks, which provides this functionality under Windows 3.1.

The Generic Thunking interface consists of functions that allow you to load
the Win32 DLL, get the address of the DLL routine, call the routine
(passing it up to thirty-two 32-bit arguments), convert 16:16 (WOW)
addresses to 0:32 addresses (useful if you need to build up a 32-bit
structure that contains pointers and pass a pointer to it), call back into
the 16-bit application from the Win32 DLL, and free the Win32 DLL.

Generic Thunks are documented in the Win32 SDK documentation, under
"Programming Techniques."

NOTE: It is a good idea to test the Win32 DLL by calling it from a Win32-
based application before attempting to call it from a 16-bit Windows-based
application, because the debugging support is superior in the 32-bit
environment.

MORE INFORMATION
================

The basic steps for calling a function through generic thunking are:

 - Call LoadLibraryEx32W() to load the Win32 DLL.
 - Call GetProcAddress32W() to get the address of the DLL routine.
 - Call the DLL routine using CallProc32W() or CallProcEx32W.

CallProc32W() is a Pascal function which was designed to take a variable
number of arguments, a Proc address, a mask, and the number of parameters.
The mask is used to specify which arguments should be treated as being
passed by value and which parameters should be translated from 16:16
pointers to flat pointers. Note that the low-order bit of the mask
represents the last parameter, the next lowest bit represents the next to
the last parameter, and so forth.

The problem with CallProc32W() is that you cannot create a prototype for
it unless you restrict each file so that it only uses calls to functions
that contain the same number of parameters. This is a limitation of the
Pascal calling convention. Windows NT 3.5 and later supports
CallProcEx32W(), which uses the C calling convention to support variable
arguments. However, Windows 95 does not fully support CallProcEx32W().

For more information, see the documentation for CallProcEx32W().

Sample Code

The following code fragments can be used as a basis for Generic Thunks.

Assume that the 16-bit Windows-based application is named app16, the
Win32 DLL is named dll32, and the following are declared:

 typedef void (FAR PASCAL *MYPROC)(LPSTR, HANDLE);

 DWORD ghLib;
 MYPROC hProc;
 char FAR *TestString = "Hello there";

The DLL routine is defined in dll32.c as follows:

 void WINAPI MyPrint(LPTSTR lpString, HANDLE hWnd)
 {
 ...
 }

Attempt to load the library in the app16 WinMain():

 if(NULL == (ghLib = LoadLibraryEx32W("dll32.dll", NULL, 0))) {
 MessageBox(NULL, "Cannot load DLL32", "App16", MB_OK);
 return 0;
 }

Attempt to get the address of MyPrint():

 if(NULL == (hProc = (MYPROC)GetProcAddress32W(ghLib, "MyPrint"))) {
 MessageBox(hWnd, "Cannot call DLL function", "App16", MB_OK);
 ...
 }

Although some of the Generic Thunking functions are called in 16-bit code,
they need to be provided with 32-bit handles, and they return 32-bit
handles. Therefore, before calling CallProcEx32W() and passing it a handle,
you must convert the window handle, hWnd, to a 32-bit window handle,
hWnd32:

 hWnd32 = WOWHandle32(hWnd, WOW_TYPE_HWND);

Call MyPrint() and pass it TestString and hWnd32 as arguments:

 CallProcEx32W(2, 2, hProc, (DWORD) TestString, (DWORD) hWnd32);

Alternatively, you can use CallProc32W() as follows:

 CallProc32W((DWORD) TestString, (DWORD) hWnd32, hProc, 2, 2);

A mask of 2 (0x10) is given because we want to pass TestString by reference
(WOW translates the pointer) and we want to pass the handle by value.

Free the library right before exiting WinMain():

 FreeLibrary32W(ghLib);

NOTE: When linking the Windows-based application, you need to put the
following statements in the .DEF file, indicating that the functions will
be imported from the WOW kernel:

 IMPORTS
 kernel.LoadLibraryEx32W
 kernel.FreeLibrary32W
 kernel.GetProcAddress32W
 kernel.GetVDMPointer32W
 kernel.CallProcEx32W
 kernel.CallProc32W

The complete sample can be obtained by downloading GTHUNKS.EXE, a self-
extracting file, on these services:

 - Microsoft's World Wide Web site on the Internet
 On the www.microsoft.com home page, click the Support icon
 Click Knowledge Base, and select the product
 Enter kbfile GTHUNKS.EXE, and click GO!
 Open the article, and click the button to download the file

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the Softlib/Mslfiles folder
 Get GTHUNKS.EXE

 - The Microsoft Network
 On the Edit menu, click Go To, and then click Other Location
 Type "mssupport" (without the quotation marks)
 Double-click the MS Software Library icon
 Find the appropriate product area
 Locate and Download GTHUNKS.EXE

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download GTHUNKS.EXE

For additional information about downloading, please see the following
article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q119591
 TITLE : How to Obtain Microsoft Support Files from Online Services

Faults

On MIPS systems, an alignment fault will occur when a Win32-based
application deferences a pointer to unaligned data that was passed by a 16-
bit Windows application. As a workaround, declare the parameter with the
UNALIGNED keyword. For example,

 void func(DWORD *var);

becomes

 void func(DWORD unaligned *var);

An application can use SetErrorMode() to specify SEM_NOALIGMENTFAULTEXCEPT
flag. If this is done, the system will automatically fix up alignment
faults and make them invisible to the application.

The default value of this error mode is OFF for MIPS, and ON for ALPHA. So
on MIPS platforms, an application MUST call SetErrorMode() and specify
SEM_NOALIGMENTFAULTEXCEPT if it wants the system to automatically fix
alignment faults. This call does not have to be made on ALPHA platforms.
This flag has no effect on x86 systems. Note that the fix above is
preferable.

Additional reference words: 3.10 3.50 4.00 softlib GTHUNKS.EXE
KBCategory: kbprg kbfile
KBSubcategory: SubSys

Calling a Win32 DLL from an OS/2 Application
PSS ID Number: Q119217
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.5
--

SUMMARY
=======

The OS/2 subsystem provides a general mechanism that allows 16-bit OS/2 and
PM applications to load and call a Win32 DLL. This feature is useful if you
would like to call one of the Win32 APIs without having to spawn a Win32
application to do so; it is also useful if you are porting your OS/2
application to Win32 in stages. A small set of APIs (described in the "MORE
INFORMATION" section, below) provides this functionality to your
application.

To take full advantage of this feature, write a small Win32 DLL to provide
the thunk. The OS/2 application calls the thunk DLL, which in turn calls
the real Win32 API, using the parameters that were passed from the OS/2
application. You could call the Win32 DLL directly, but the OS/2 subsystem
thunking mechanism has only one generic pointer parameter. Most Win32 APIs
require different numbers or types of parameters, so the thunking layer is
required to retrieve the parameters from the parameter pointer. The
parameter pointer typically points to a structure that contains the actual
parameters.

You will also need to modify your OS/2 application to call the thunking
APIs described below.

MORE INFORMATION
================

The following are the header file, descriptions, and import statements for
the 16-bit APIs that are used by the OS/2 application to load and call the
thunk DLL. The APIs are defined in the same manner as the OS/2 APIs.

Header File

 extern USHORT pascal far
 Dos32LoadModule(PSZ DllName, PULONG pDllHandle);

 extern USHORT pascal far
 Dos32GetProcAddr(ULONG Handle, PSZ pszProcName, PULONG pWin32Thunk);

 extern USHORT pascal far
 Dos32Dispatch(ULONG Win32Thunk, PVOID pArguments, PULONG pRetCode);

 extern USHORT pascal far
 Dos32FreeModule(ULONG DllHandle);

 extern USHORT pascal far
 FarPtr2FlatPtr(ULONG FarPtr, PULONG pFlarPtr);

 extern USHORT pascal far
 FlatPtr2FarPtr(ULONG FlatPtr, PULONG pFarPtr);

API Descriptions

 Dos32LoadModule

 USHORT pascal far Dos32LoadModule (
 PSZ DLLName,
 PULONG pDllHandle);

 Purpose:

 Load the Win32 thunk DLL that will intermediate between the OS/2
 application and the Win32 APIs.

 Parameters:

 DLLName - Name of the thunk DLL.
 pDllHandle - Receives the module handle of the DLL. Used as an
 argument to Dos32GetProcAddr.

 Return:

 If NO_ERROR is returned, the value pointed to by pDllHandle is used for
 other WIN32 thunk APIs as described below. It is invalid for usage with
 regular OS/2 APIs.

 If ERROR_MOD_NOT_FOUND is returned, the value pointed to by pDLLHandle
 is undefined.

 Dos32GetProcAddr

 USHORT pascal far Dos32GetProcAddr (
 ULONG DllHandle,
 PSZ pszProcName,
 PULONG pWin32Thunk);

 Purpose:

 Get a flat pointer to a routine in the Win32 thunk DLL previously opened
 by Dos32LoadModule.

 Parameters:

 DllHandle - Handle obtained through Dos32LoadModule.
 pszProcName - Name of the API to be called.
 pWin32Thunk - Receives pointer to the thunk routine.

 Return:

 If NO_ERROR is returned, then pszProcName is exported by the thunk DLL.

 If ERROR_PROC_NOT_FOUND or ERROR_INVALID_HANDLE is returned, then the
 value pointed to by pWin32Thunk is undefined.

 NOTE: The thunking routine must be declared as _cdecl in order for the
 Dos32GetProcAddr to work. However, the thunking routine must exit as
 if it's using a _stdcall in order for Dos32Dispatch to return.

The following program illustrates how the thunking routine should return
using the _stdcall convention:

 #include <windows.h>
 #include <stdio.h>
 __declspec(dllexport) ULONG Thunk(PVOID pFlatArg);

 __declspec(dllexport) ULONG Thunk(PVOID pFlatArg)
 {
ULONG ulRC = 7;

printf("You have successfully called the Thunk function.\n");
/* put the ULONG return value into the EAX register */
__asm mov eax, ulRC
/* now return as this function were declared as _stdcall */
__asm pop edi
__asm pop esi
__asm pop ebx
__asm leave
__asm ret 0004

printf("This should be dead code!!!\n");
return (0);
}

 Dos32Dispatch

 USHORT pascal far Dos32Dispatch (
 ULONG Win32Thunk,
 PVOID pArguments,
 PULONG pRetCode);

 Purpose:

 Call the thunk routine through the pointer obtained through
 Dos32GetProcAddr.

 Parameters:

 Win32Thunk - Thunk routine obtained through Dos32GetProcAddr.

 pArguments - Argument for thunk routine.
 pRetCode - Error code returned from the thunk routine.

 The structure pointed to by pArguments is application specific and
 the value is not modified to the OS/2 subsystem.

 On the Win32 side (in the thunk DLL), the thunk looks like:

 ULONG MyFunc (
 PVOID pFlatArg);

 The OS/2 subsystem does translate pArguments from a 16:16 pointer to
 a flat pointer (pFlatArg). To translate pointers inside the structure,
 use FarPtr2FlatPtr.

 Return:

 If NO_ERROR is returned, then pFlatArg is a valid pointer.

 Dos32FreeModule

 USHORT pascal far Dos32FreeModule (
 ULONG DllHandle);

 Purpose:

 Unload the Win32 thunk DLL that is intermediating between the OS/2
 application and the Win32 APIs.

 Parameter:

 DllHandle - Handle obtained through Dos32LoadModule.

 Return:

 If NO_ERROR is returned, then DllHandle corresponds to a Win32 DLL
 previously loaded by Dos32LoadModule. After the call, DllHandle is no
 longer valid. Otherwise, ERROR_INVALID_HANDLE is returned.

 FarPtr2FlatPtr

 USHORT pascal far FarPtr2FlatPtr (
 ULONG FarPtr,
 PULONG pFlatPtr);

 Purpose:

 Translates a segmented far pointer to a flat pointer.

 Parameters:

 FarPtr - Segmented far pointer.
 pFlatPtr - Points to flat pointer.

 Return:

 If NO_ERROR is returned, FarPtr is a valid 16:16 pointer and pFlatPtr
 contains a valid flat pointer to be used by Win32 code. Otherwise,
 ERROR_INVALID_PARAMETER is returned and pFlatPtr is undefined.

 FlatPtr2FarPtr

 USHORT pascal far FlatPtr2FarPtr (
 ULONG FlatPtr,
 PULONG pFarPtr);

 Purpose:

 Translates a flat pointer to a segmented far pointer.

 Parameters:

 FlatPtr - Flat pointer.
 pFarPtr - Points to a segmented far pointer.

 Return:

 If NO_ERROR is returned, the flat pointer maps to a valid segmented
 pointer in the 16-bit application's context and pFarPtr contains a valid
 segmented pointer to be used by 16-bit OS/2 code. Otherwise,
 ERROR_INVALID_PARAMETER is returned and pFarPtr is undefined.

IMPORTS Section for the Module Definition File
--

 IMPORTS
 DOSCALLS.DOS32LOADMODULE
 DOSCALLS.DOS32GETPROCADDR
 DOSCALLS.DOS32DISPATCH
 DOSCALLS.DOS32FREEMODULE
 DOSCALLS.FARPTR2FLATPTR
 DOSCALLS.FLATPTR2FARPTR

Additional reference words: 3.50 OS2
KBCategory: kbprg
KBSubcategory: SubSys

Calling CRT Output Routines from a GUI Application
PSS ID Number: Q105305

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

To use C Run-time output routines, such as printf(), from a GUI
application, it is necessary to create a console. The Win32 application
programming interface (API) AllocConsole() creates the console. The CRT
routine setvbuf() removes buffering so that output is visible immediately.

This method works if the GUI application is run from the command line or
from File Manager. However, this method does not work if the application is
started from the Program Manager or via the "start" command. The following
code shows how to work around this problem:

 int hCrt;
 FILE *hf;

 AllocConsole();
 hCrt = _open_osfhandle(
 (long) GetStdHandle(STD_OUTPUT_HANDLE),
 _O_TEXT
);
 hf = _fdopen(hCrt, "w");
 *stdout = *hf;
 i = setvbuf(stdout, NULL, _IONBF, 0);

This code opens up a new low-level CRT handle to the correct console output
handle, associates a new stream with that low-level handle, and replaces
stdout with that new stream. This process takes care of functions that use
stdout, such as printf(), puts(), and so forth. Use the same procedure for
stdin and stderr.

Note that this code does not correct problems with handles 0, 1, and 2. In
fact, due to other complications, it is not possible to correct this, and
therefore it is necessary to use stream I/O instead of low-level I/O.

MORE INFORMATION
================

When a GUI application is started with the "start" command, the three
standard OS handles STD_INPUT_HANDLE, STD_OUTPUT_HANDLE, and
STD_ERROR_HANDLE are all "zeroed out" by the console initialization
routines. These three handles are replaced by valid values when the GUI
application calls AllocConsole(). Therefore, once this is done, calling

GetStdHandle() will always return valid handle values. The problem is that
the CRT has already completed initialization before your application gets a
chance to call AllocConsole(); the three low I/O handles 0, 1, and 2 have
already been set up to use the original zeroed out OS handles, so all CRT
I/O is sent to invalid OS handles and CRT output does not appear in the
console. Use the workaround described above to eliminate this problem.

In the case of starting the GUI application from the command line without
the "start" command, the standard OS handles are NOT correctly zeroed out,
but are incorrectly inherited from CMD.EXE. When the application's CRT
initializes, the three low I/O handles 0, 1, and 2 are initialized to use
the three handle numbers that the application inherits from CMD.EXE. When
the application calls AllocConsole(), the console initialization routines
attempt to replace what the console initialization believes to be invalid
standard OS handle values with valid handle values from the new console. By
coincidence, because the console initialization routines tend to give out
the same three values for the standard OS handles, the console
initilization will replace the standard OS handle values with the same
values that were there before--the ones inherited from CMD.EXE. Therefore,
CRT I/O works in this case.

It is important to realize that the ability to use CRT routines from a GUI
application run from the command line was not by design so this may not
work in future versions of Windows NT or Windows. In a future version, you
may need the workaround not just for applications started on the command
line with "start <application name>", but also for applications started on
the command line with "application name".

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseMisc

Calling DdePostAdvise() from XTYP_ADVREQ
PSS ID Number: Q102571

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The documentation for DdePostAdvise() in the Windows 3.1 Software
Development Kit "Programmer's Reference, Volume 2: Functions" states
the following in the Comments section:

 If a server calls DdePostAdvise() with a topic/item/format name set
 that includes the set currently being handled in an XTYP_ADVREQ
 callback, a stack overflow may result.

MORE INFORMATION
================

This is merely a warning against calling DdePostAdvise() from within a
DDE callback function's XTYP_ADVREQ transaction, because it may result
in a stack overflow.

Like window procedures, DDE callbacks must be coded with care to avoid
infinite recursion (eventually resulting in a stack overflow). Because
DdePostAdvise() causes DDEML to send an XTYP_ADVREQ transaction to the
calling application's DDE callback function, calling DdePostAdvise()
on the same topic/item/format name set as the one currently being
handled results in an infinite loop.

An analogous piece of code that has become a classic problem in
Windows programming involves calling UpdateWindow() in a WM_PAINT
case:

 case WM_PAINT:
 InvalidateRect (hWnd, NULL, TRUE);
 UpdateWindow (hWnd);

Calling UpdateWindow() as in the code above causes a WM_PAINT message
to be sent to a window procedure, and thus results in the same type of
infinite recursion that occurs when calling DdePostAdvise() from an
XTYP_ADVREQ transaction.

An example of a situation that would lend itself to this scenario
would be one where data needs to be updated as a result of a previous
data change. There are two ways to work around the stack overflow

problem in this case:

 - Post a user-defined message and handle the data change
 asynchronously. For example,

 // in DdeCallback:
 case XTYP_ADVREQ:
 if ((!DdeCmpStringHandles (hsz1, ghszTopic)) &&
 (!DdeCmpStringHandles (hsz2, ghszItem)) &&
 (fmt == CF_SOMEFORMAT))
 {
 HDDEDATA hData;

 hData = DdeCreateDataHandle ();
 PostMessage (hWnd, WM_DATACHANGED,hData,);
 return (hData);
 }
 break;

 // in MainWndProc():
 case WM_DATACHANGED:
 DdePostAdvise (idInst, ghszTopic, ghszItem);
 :

 - Return CBR_BLOCK from the XTYP_ADVREQ and let DDEML suspend further
 transactions on that conversation, while the server prepares data
 asynchronously.

More information on how returning CBR_BLOCK allows an application to
process data "asynchronously" may be derived from Section 5.8.6 of the
Windows 3.1 Software Development Kit (SDK) "Programmer's Reference,
Volume 1: Overview," or by querying on the following words in the
Microsoft Knowledge Base:

 DDEML and CBR_BLOCK

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrDde

Calling LoadLibrary() on a 16-bit DLL
PSS ID Number: Q123731

The information in this article applies to:

 - Microsoft Win32s versions 1.15a and 1.2

SUMMARY
=======

In Win32-based applications, LoadLibrary() returns an HINSTANCE and
GetLastError() is used to determine the error. If HINSTANCE is NULL, the
DLL was not successfully loaded. If the HINSTANCE is not null, the DLL was
loaded and the usage count was incremented; however, you may still see that
the last error was set if the DLL is a 16-bit DLL.

NOTE: At this point, the DLL is loaded and the usage count is incremented.
Call FreeLibrary() to unload the DLL.

MORE INFORMATION
================

In order to see all possible error returns, you'll need to call
SetLastError(0) before calling LoadLibrary(). If HINSTANCE is not NULL and
GetLastError() is ERROR_BAD_EXE_FORMAT, the DLL is a 16-bit DLL. You can
access the DLL resources and/or printer APIs from your Win32-based
application.

To call routines in the 16-bit DLL, you should load and call the DLL via
the Universal Thunk. This increments the usage count again. Later, you can
use FreeLibrary() to free the DLL from the 16-bit code, but this won't
unload the DLL from memory unless you already called FreeLibrary() from the
32-bit code. This is because the usage count is not zero. We recommend you
call FreeLibrary() from the 32-bit code after the DLL is loaded by the
16-bit code, so the DLL isn't unloaded and then reloaded.

REFERENCES
==========

For more information on how to get resources from a 16-bit DLL, please see
the following article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q105761
 TITLE : Getting Resources from 16-bit DLLs Under Win32s

For more information on Universal Thunk, please see Chapter 4 of the Win32s
Programmer's Reference.

Additional reference words: 1.20
KBCategory: kbprg
KBSubcategory: W32s

Cancelling Overlapped I/O
PSS ID Number: Q90368

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

There is no routine in the Win32 API to cancel an asynchronous request once
it has been issued. When a thread does an overlapped I/O (that is, a
write), the system starts up another thread to do the I/O and leaves your
thread free to do other work. Once it is started, there is no way to stop
it.

If it necessary to interrupt the I/O, you can either

 - Split the writes into batches and check for interruptions. For example,
 you could break a 20 megabyte (MB) write into 20, 1 MB writes.

 -or-

 - Create another thread yourself to handle the I/O. Terminating the thread
 will cancel the I/O. You should have a thread in the process explicitly
 close the handle to the device.

 -or-

 - Close the handle to the device with the pending I/O. The close has the
 net effect of cancelling the I/O.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseFileio

Cancelling WaitCommEvent() with SetCommMask()
PSS ID Number: Q105302

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

If a serial port is in nonoverlapped mode (without FILE_FLAG_OVERLAPPED)
and SetCommMask() is called, the call does not return until any pending
WaitCommEvent() calls return. This apparently contradicts the following
statement from the SetCommMask() Help

 If SetCommMask() is called for a communications resource while a wait
 is pending for that resource, WaitCommEvent() returns an error.

and the following statement from the WaitCommEvent() Help:

 If a process attempts to change the device handle's event mask by
 using the SetCommMask() function while a WaitCommEvent() operation
 is in progress, WaitCommEvent() returns immediately.

However, this is the expected behavior. If you open a serial port in the
nonoverlapped mode, then you can do only one thing at a time with the
serial port. SetCommMask() must block while the WaitCommEvent() call is
blocking.

If the serial port was opened with FILE_FLAG_OVERLAPPED, WaitCommEvent()
will return after SetCommEvent() has been called.

The SDK 3.51 docs have been corrected.

Additional reference words: 3.10 3.50 com1 com2
KBCategory: kbprg
KBSubcategory: BseCommapi

Cannot Load <exe> Because NTVDM Is Already Running
PSS ID Number: Q103863
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5
--

WinDbg can debug 16-bit Windows-based applications running on Windows NT,
under the Win16 VDM (virtual MS-DOS machine), NTVDM. By default, each
16-bit Windows-based application run as a thread in NTVDM. On Windows NT
3.5, each application can be run in a separate address space.

If NTVDM is running when the debugger tries to start the application, you
get the following error message:

 Cannot load <exe> because NTVDM is already running

Under Windows NT 3.5, to work around this problem, go to the WinDbg Options
menu, choose Debug, and check Separate WOW VDM, to allow the debuggee to be
run in a different address space.

Alternatively, you could terminate NTVDM. On Windows NT 3.1, your only
choice is to terminate NTVDM, because separate address spaces for 16-bit
Windows-based application are not supported.

To terminate NTVDM, run PView, select NTVDM, and choose "Kill Process."
Note that there may be two NTVDM processes. The one that you want to
terminate has one thread for each Windows-based application (plus a few
more).

The Windows NT WinLogon is set up to automatically start WoWExec, which
automatically starts the Win16 VDM. This behavior can be changed by
removing WoWExec from:

 HKEY_LOCAL_MACHINE\
 Software\
 Microsoft\
 Windows NT\
 CurrentVersion\
 Winlogon\
 Shell

Additional reference words: 3.10 3.50
KBCategory: kbtool
KBSubcategory: TlsWindbg

Captions for Dialog List Boxes
PSS ID Number: Q24646

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

To place text into the caption bar specified for a list box, use the
SetWindowText() function. First, use GetDlgItem() to get the handle of
the list box, then call SetWindowText() to set the list box caption.

MORE INFORMATION
================

The following code fragment illustrates the necessary steps. Note: The
list box includes the WS_CAPTION window style.

 ...
 BOOL FAR PASCAL TemplateDlg(hWndDlg, message, wParam, lParam)
 ...
 switch (message)
 {
 case WM_INITDIALOG:
 ...
 /* The following line sets the Listbox caption */
 SetWindowText(GetDlgItem(hWndDlg, IDDLISTBOX),
 (LPSTR)"Caption");
 for (i = 0; i < CSTR; i++) {
 LoadString(hInstTemplate, IDSSTR1+i, (LPSTR)szWaters, 12);
 SendDlgItemMessage(hWndDlg, IDDLISTBOX, LB_ADDSTRING, 0,
 (LONG)(LPSTR)szWaters);
 }
 SendDlgItemMessage(hWndDlg, IDDLISTBOX, LB_SETCURSEL, iSel, 0L);
 ...
 return TRUE;

 case WM_COMMAND:
 ...

Additional reference words: 3.00 3.10 3.50 4.00 95 listbox
KBCategory: kbui
KBSubcategory: UsrCtl

Caret Position & Line Numbers in Multiline Edit Controls
PSS ID Number: Q68572

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

This article explains how to determine the position (row and column) of the
caret and the line number of the first visible line of text in a multiline
edit control.

MORE INFORMATION
================

Edit controls process several messages that return information relevant to
the position of the caret within the control. These messages help an
application determine the line number of the caret relative to the number
of lines of text in the control.

Once the line number is known, the application can compute the caret's
character position within that line and the line number of the first
visible line of text in the control.

An edit control must be subclassed in order to track the caret position
because the position changes with mouse clicks and keystrokes. The subclass
procedure must process the WM_KEYDOWN and WM_LBUTTONDOWN messages, and
compute the caret position upon receipt of each message.

The remainder of this article describes three procedures:

 - Finding the line number of the caret position
 - Finding the column number of the caret position
 - Finding the line number of the first visible line

Note that you may replace any mention of the SendMessage API in this
article with the SendDlgItemMessage function. Also note that the term
return value refers to the value returned by the SendMessage or the
SendDlgItemMessage function.

Finding the Line Number of the Caret Position

Perform the following two steps:

1. Send the EM_GETSEL message to the edit control. The high-order word

 of the return value is the character position of the caret relative
 to the first character in the control.

2. Send the EM_LINEFROMCHAR message to the edit control and specify the
 value returned from step 1 as wParam. Add 1 to the return value to
 get the line number of the caret position because Windows numbers
 the lines starting at zero.

Finding the Column Number of the Caret Position

Perform the following three steps:

1. Send the EM_GETSEL message to the edit control. The high-order word
 of the return value is the character position of the caret relative
 to the first character in the control.

2. Send the EM_LINEINDEX message with wParam set to -1. The value
 returned is the count of characters that precede the first
 character in the line containing the caret.

3. Subtract the value returned in step 2 from the value in step 1 and
 add 1 because Windows numbers the columns starting at zero. This
 result is the column number of the caret position.

Finding the Line Number of the First Visible Line

Windows 3.1 and later define the EM_GETFIRSTVISIBLELINE message, which an
application can send to a single line or a multiline edit control. For
single line edit controls, this value returned for the message is the
offset of the first visible character. For multiline edit controls,
the value returned is the number of the first visible line.

Under Windows 95, it would be more efficient to use a combination of
GetCaretPos() and EM_CHARFROMPOS.

If an application must be compatible with Windows 3.0, it can perform
the following 10-step procedure:

1. Follow steps 1 and 2 of "Finding the Line Number of the Caret
 Position," presented above, and save the line number.

2. Call the GetCaretPos function to fill a POINT structure with the
 caret's coordinates relative to the client area of the edit
 control. (The client area is inside the border.)

3. Call the GetDC function using the handle to the edit control to
 retrieve a handle to a device context for the edit control. Store
 this handle in a variable named hDC.

4. Send the WM_GETFONT message to the edit control. The return value
 is a handle to the font used by the edit control. If the value
 returned is NULL, proceed to step 6 because the control is using
 the system default font.

5. Call the SelectObject function to select the font used by the edit
 control into hDC. Do not call the SelectObject function if
 WM_GETFONT returned NULL in step 4. Save the value returned by
 SelectObject in the hOldFont variable.

6. Call the GetTextMetrics function with hDC to fill a TEXTMETRIC
 data structure with information about the font used by the edit
 control (the font which is selected into hDC). The field of
 interest is tmHeight.

7. While the vertical coordinate of the caret is greater than the
 value of tmHeight, subtract tmHeight from the vertical coordinate
 and subtract 1 from the line number of the caret from step 1.

8. Repeat step 7 until the vertical coordinate of the caret is less
 than or equal to tmHeight.

9. Call SelectObject to select hOldFont back into hDC. Then call
 ReleaseDC to return the display context to the system.

10. The value remaining in the line number variable is the line number
 of the first visible line in the edit control.

Additional reference words: 3.00 3.10 3.50 4.00 95 caretpos
KBCategory: kbui
KBSubcategory: UsrCrt

Case Sensitivity in Atoms
PSS ID Number: Q38901

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

If the same string is added to an atom table twice, but a different case is
used, the string is only stored once; only the first one is present.

The "Microsoft Windows 2.0 Software Development Kit Update" for versions
2.03 and 2.1 states that atoms are case insensitive.

This means that when the AddAtom() function is used, the case is ignored
when atoms are compared. Therefore, if AddAtom("DIR") is called, and then
AddAtom("dir"), the single atom "DIR" (with a reference count of 2) will
result. If AddAtom("dir") is called first, the single atom "dir" will
result.

Similarly, the other atom-handling functions are case insensitive. For
example, calling FindAtom("dIr") will find the atom "dir", "DIR", or "Dir",
and so on.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrDde

Cases Where "Normal" Window Position, Size Not Available
PSS ID Number: Q68583

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In Windows version 3.0, the "normal" size and position of a window is
not available when that window is maximized (zoomed) or minimized
(represented as an icon). In Windows version 3.1, two new functions
named GeWindowPlacement and SetWindowPlacement have been added
which provide access to normal position information.

MORE INFORMATION
================

The remainder of this article provides two possible ways to work
around this limitation in Windows version 3.0:

1. If the normal size is needed only as the application is shut down,
 restore the window and retrieve its position before closing the
 application. The following call can be used to restore the window
 whose window handle is hWnd:

 SendMessage(hWnd, WM_SYSCOMMAND, SC_RESTORE, 0L);

 The GetWindowRect or GetClientRect functions can then be used
 to obtain the window's position.

2. If the normal size is needed at all times, keep track of the
 position every time the window receives a WM_MOVE message. If the
 IsIconic and IsZoomed functions both return FALSE, assume the
 window is normal and update the position values. Otherwise, do not
 change the saved position information.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrWndw

Centering a Dialog Box on the Screen
PSS ID Number: Q74798

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51

When an application developed for the Microsoft Windows graphical
environment displays a dialog box, centering the dialog box on the
screen is sometimes desirable. However, on systems with high-
resolution displays, the application displaying the dialog box may be
nowhere near the center of the screen. In these cases, it is
preferable to place the dialog near the application requesting input.

To center a dialog box on the screen before it is visible, add the
following lines to the processing of the WM_INITDIALOG message:

 {
 RECT rc;

 GetWindowRect(hDlg, &rc);

 SetWindowPos(hDlg, NULL,
 ((GetSystemMetrics(SM_CXSCREEN) - (rc.right - rc.left)) / 2),
 ((GetSystemMetrics(SM_CYSCREEN) - (rc.bottom - rc.top)) / 2),
 0, 0, SWP_NOSIZE | SWP_NOACTIVATE);
 }

This code centers the dialog horizontally and vertically.

Under Windows 95, you should use the new style DS_CENTER to get the same
effect.

Additional reference words: 3.00 3.10 3.50
KBCategory: kbui
KBSubcategory: UsrDlgs

Chaining Parent PSP Environment Variables
PSS ID Number: Q96209

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

Some MS-DOS-based applications change the environment variables of their
parent application by chaining through the program segment prefix (PSP).
With Windows NT, this functionality doesn't work if the parent is a
Win32-based application.

MORE INFORMATION
================

When an MS-DOS-based application is started from a single command shell
(SCS), the application inherits a new copy of the environment variables.
Any attempts by the MS-DOS-based application to modify its parent's
environment variables will not work. When the MS-DOS-based application
exits, the SCS will be "restored" to its original state. If another
MS-DOS-based application is started, the second application will receive
the same environment that the first MS-DOS-based application received.

If an MS-DOS-based application (B) is spawned by another MS-DOS-based
application (A), any modifications to application A's environment variables
will be reflected when application B exits.

For more information on how environment variables are set, please see the
following article(s) in the Microsoft Knowledge Base:

 ARTICLE-ID: Q100843
 TITLE : Environment Variables in Windows NT

Additional reference words: 3.10
KBCategory: kbprg
KBSubcategory: BseMisc

Changes to the MSTest WFndWndC()
PSS ID Number: Q108227
--
The information in this article applies to:

 - Microsoft Win32 SDK, versions 3.1 and 3.5
--

A change made to MS-TEST WFndWnd() and WFndWndC() may cause them not to
work as they did previously. Specifically, treatment of the first parameter
of WFndWnd() and WFndWndC() has changed.

Previously, "" and NULL resulted in the caption of the window being
ignored. Now, "" means the window must have an empty caption and NULL means
to ignore the caption altogether.

Additional reference words: 3.10 3.50
KBCategory: kbtool
KBSubcategory: TlsMisc

Changing a List Box from Single-Column to Multicolumn
PSS ID Number: Q68580

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

A list box cannot be changed from single column to multicolumn by
altering the list box's style bits "on the fly."

The effect of switching a single-column list box to multicolumn can be
achieved by creating one single column and one multicolumn list box.
Initially, hide the multicolumn list box. To switch the list boxes,
hide the single-column list box and show the multicolumn list box.

MORE INFORMATION
================

In general, programmatically changing the style bits of a window
usually leads to unstable results. The method of switching between two
windows (hiding one and showing the other) can safely switch window
styles.

Additional reference words: 3.00 3.10 3.50 4.00 95 listbox
KBCategory: kbui
KBSubcategory: UsrCtl

Changing How Pop-Up Menus Respond to Mouse Actions
PSS ID Number: Q65256

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The TrackPopupMenu function allows an application to receive input
from a menu that is displayed anywhere within the application's client
area. This article demonstrates how to change the menu's default
behavior for mouse selections.

MORE INFORMATION
================

The default action for floating pop-up menus maintained with
TrackPopupMenu is as follows:

1. If the menu is displayed in response to a keystroke, the pop-up
 menu is visible until the user selects a menu item or presses ESC.

2. If the menu is displayed in response to a WM_*BUTTONUP message, it
 acts as if it were displayed in response to a keystroke.

NOTE: In the context of this article, the * in the WM_*BUTTONUP and
WM_*BUTTONDOWN messages can be L (left mouse button), M (middle mouse
button), or R (right mouse button).

An application can change the behavior of a floating pop-up menu
displayed in response to a WM_*BUTTONDOWN message to keep it visible
after the mouse button is released. However, when an application uses
the techniques described below, it changes the menu's user interface.
Specifically, to change menu selections with the mouse, the user must
first release the mouse button and then press it again. Dragging the
mouse between items with the button down, without releasing the button
at least once, will not change the selection.

To cause a floating pop-up menu to remain visible after it is
displayed in response to a WM_*BUTTONDOWN message, follow these four
steps:

1. In the application, allocate a 256 byte buffer to hold the key
 state.

2. Call the GetKeyboardState function with a far pointer to the buffer

 to retrieve the keyboard state.

3. Set the keyboard state for the VK_*BUTTON index in the keyboard
 state array to 0.

4. Call SetKeyboardState with a far pointer to the buffer to register
 the change with Windows.

The keyboard state array is 256 bytes. Each byte represents the state
of a particular virtual key. The value 0 indicates that the key is up,
and the value 1 indicates that the key is down. The array is indexed
by the VK_ values listed in Appendix A of the "Microsoft Windows
Software Development Kit Reference Volume 2" for version 3.0.

The code fragment below changes the state of the VK_LBUTTON to 0 (up)
during the processing of a WM_LBUTTONDOWN message. This causes
TrackPopupMenu to act as if the menu were displayed as the result of a
WM_LBUTTONUP message or of a keystroke. Therefore, the menu remains
visible even after the mouse button is released and the WM_LBUTTONUP
message is received. Items on this menu can be selected with the mouse
or the keyboard.

 switch (iMessage)
 {
 case WM_LBUTTONDOWN:
 static BYTE rgbKeyState[256];

 GetKeyboardState(rgbKeyState);
 rgbKeyState[VK_LBUTTON] = 0; // 0==UP, 1==DOWN
 SetKeyboardState(rgbKeyState);

 // Create the pop-up menu and call TrackPopupMenu.
 break;
 }

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrMen

Changing Hypertext Jump Color in Windows Help
PSS ID Number: Q75111
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
--

SUMMARY
=======

The author of a file to be used with Windows Help can alter the
default color of hypertext jump strings. This specification overrides
both the default behavior of showing these strings as underlined green
text and any color preference listed in the WIN.INI file. This article
explains the steps required to make this type of modification.

MORE INFORMATION
================

This feature must be used with care. There are situations when the
user may require a jump color other than the default. The profile
strings in the WIN.INI file provide an opportunity to specify a color
value appropriate for the particular situation. For more information
on these settings, query on the following words:

 prod(winsdk) and jumpcolor

To specify the color of a context jump when the RTF Help text is
created using Microsoft Word for Windows, follow the six steps listed
below. This procedure is a modification of the steps listed on page
17-11 of the "Microsoft Windows Software Development Kit Tools"
manual.

1. Place the cursor at the point in the text where the jump term will
 be entered.

2. Choose Character from the Format menu and specify the double-
 underline attribute and the desired text color. Word for Windows
 provides 6 colors, along with auto, black, and white.

3. Type the jump word or words.

4. Choose Character from the Format menu. Turn off the double-
 underline attribute and choose the default text color and hidden
 text.

5. Type a percent sign (%), followed by the context string assigned to
 the topic. For example, JumpText%ContextString, where JumpText is
 given the desired color and %ContextString is hidden text.

6. Choose Character from the Format menu. Turn off hidden text.

After all topics have been created, save the file as RTF (rich text
format) and build the .HLP file. For more information on this process,
refer to Chapters 15 through 19 of the "Windows Software Development
Kit (SDK) Tools" manual.

It is also possible to modify the six color values that Word for
Windows provides as defaults. This can be done by modifying the color
table in the RTF header. To do this, load the RTF file into Word for
Windows, however, do not convert the file from RTF. For more
information on the RTF color table, refer to page 389 of the
"Microsoft Word for Windows Technical Reference" (Microsoft Press).

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsHlp

Changing Print Settings Mid-Job
PSS ID Number: Q85679

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In Windows 3.1 and later, print settings can be changed on a page-by-page
basis through the ResetDC() API.

MORE INFORMATION
================

An application can pass a new DEVMODE structure (containing new print
settings) to ResetDC() between pages to change the print settings. For
example, this function makes it possible to change the paper bin or paper
orientation for each page in a print job. Note that ResetDC() cannot be
used to change the driver name, device name, or the output port.

Before calling ResetDC(), the application must ensure that all objects
(other than stock objects) that were previously selected into the
printer device context are selected out.

Additional reference words: 3.10 3.50 4.00 95 dmOrientation
dmDefaultSource dmPaperSize hDC WM_DEVMODECHANGE ExtDeviceMode
KBCategory: kbprint
KBSubcategory: GdiPrn

Changing the Controls in a Common Dialog Box
PSS ID Number: Q82299

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.5

One reason to incorporate the common dialogs library routines into an
application is the ability to use the basic functionality of one or more of
the common dialogs and tailor it to the needs of a particular application.

All of the predefined controls must be present for the Common Dialogs
DLL (COMMDLG.DLL) to properly interact with a dialog box. Each predefined
control in the dialog box must retain its control ID value. For these
reasons, an application cannot delete unnecessary controls from a dialog
box.

To prevent the user from interacting with a given control, move the control
off screen by specifying very large coordinate values [for example, (4000,
4000)]. The application must also disable the control to prevent it from
receiving the focus when the user uses the TAB key to cycle through the
controls. Failing to disable the control can create "mystery" tab stops
where the input focus disappears.

Additional reference words: 3.10 3.50
KBCategory: kbui
KBSubcategory: UsrCmnDlg

Changing the Font Used by Dialog Controls in Windows
PSS ID Number: Q74737

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

In Windows 3.x, there are two ways to specify the font used by dialog
controls:

1. The FONT statement can be used in the dialog template to specify
 the font used by ALL the controls in the dialog box.

 -or-

2. The WM_SETFONT message can be sent to one or more dialog controls
 during the processing of the WM_INITDIALOG message.

If a font is specified in the dialog template, the controls will use a
bold version of that font. The following code demonstrates how to
change the font used by dialog box controls to a nonbold font using
WM_SETFONT. The font should be deleted with DeleteObject() when the
dialog box is closed.

HWND hDlg;
HFONT hDlgFont;
LOGFONT lFont;

case WM_INITDIALOG:
 /* Get dialog font and create non-bold version */
 hDlgFont = NULL;
 if ((hDlgFont = (HFONT)SendMessage(hDlg, WM_GETFONT, 0, 0L))
 != NULL)
 {
 if (GetObject(hDlgFont, sizeof(LOGFONT), (LPSTR)&lFont)
 != NULL)
 {
 lFont.lfWeight = FW_NORMAL;
 if ((hDlgFont = CreateFontIndirect(&lFont)) != NULL)
 {
 SendDlgItemMessage(hDlg, CTR1, WM_SETFONT, hDlgFont, 0L);
 // Send WM_SETFONT message to desired controls
 }
 }
 }
 else // user did not specify a font in the dialog template
 { // must simulate system font
 lFont.lfHeight = 13;

 lFont.lfWidth = 0;
 lFont.lfEscapement = 0;
 lFont.lfOrientation = 0;
 lFont.lfWeight = 200; // non-bold font weight
 lFont.lfItalic = 0;
 lFont.lfUnderline = 0;
 lFont.lfStrikeOut = 0;
 lFont.lfCharSet = ANSI_CHARSET;
 lFont.lfOutPrecision = OUT_DEFAULT_PRECIS;
 lFont.lfClipPrecision = CLIP_DEFAULT_PRECIS;
 lFont.lfQuality = DEFAULT_QUALITY;
 lFont.lfPitchAndFamily = VARIABLE_PITCH | FF_SWISS;
 lFont.lfFaceName[0] = NULL;
 hDlgFont = CreateFontIndirect(&lFont);

 SendDlgItemMessage(hDlg, CTR1, WM_SETFONT, hDlgFont,
 (DWORD)TRUE);
 // Send WM_SETFONT message to desired controls
 }

 return TRUE;
 break;

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbui
KBSubcategory: UsrDlgs

Changing/Setting the Default Push Button in a Dialog Box
PSS ID Number: Q67655

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The default push button in a dialog box is defined to be the button that is
pressed when the user chooses the ENTER key, provided that the input focus
is not on another button in the dialog box. The default push button is
visually distinguished from other buttons by a thick dark border. This
article describes how to change the default push button.

MORE INFORMATION
================

To change the default push button, perform the following three steps:

1. Send the BM_SETSTYLE message to the current default push button to
 change its border to that of a regular push button.

2. Send a DM_SETDEFID message to the dialog box to change the ID of the
 default push button.

3. Send the BM_SETSTYLE message to the new default push button to
 change its border to that of a default push button.

The following is sample code that performs the three steps:

Sample Code

 // Reset the current default push button to a regular button.
 SendDlgItemMessage(hDlg, <ID of current default push button>,
 BM_SETSTYLE, BS_PUSHBUTTON, (LONG)TRUE);

 // Update the default push button's control ID.
 SendMessage(hDlg, DM_SETDEFID, <ID of new default push button>,
 0L);

 // Set the new style.
 SendDlgItemMessage(hDlg, <ID of new default push button>,
 BM_SETSTYLE, BS_DEFPUSHBUTTON, (LONG)TRUE);

NOTE: For Win32, the (LONG) casts should be changed to (LPARAM).

Note, however, that ANY push button that has the input focus will have a
dark border. A default push button will retain this dark border even when
the input focus is transferred to another control in the dialog box,
provided the new control is not another push button.

For example, if the input focus is on an edit control, check box, radio
button, or any control other than a push button, and the ENTER key is
pressed, Windows sends a WM_COMMAND message to the dialog box procedure
with the wParam set to the control ID of the default push button.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrCtl

Character Sets Supported by Hangeul (Korean) Windows Versions
PSS ID Number: Q130055
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 4.0
 - Microsoft Win32 Software Development Kit (SDK) version 3.5
 - Microsoft Win32s version 1.2
--

SUMMARY
=======

Hangeul (Korean) Windows version 3.1 supports the Wansung code set only.
However Hangeul Windows 95 will support the XWansung code set.

MORE INFORMATION
================

Two different Hangeul character standards exist in Korea. One is Wansung,
and the other is Johap. The Korean government issued a Korean standard code
set (KSC5601-1987), which is Wansung code set. Hangeul Windows version 3.1
supports this character set only.

Later, the Korean government amended and added to the standard and issued a
new one (KSC5601-1992), which contains both Wansung and Johap code sets.

Hangeul Windows version 3.1 and Hangeul Windows 95 will not support the
KSC5601-1992 standard. Instead, Hangeul Windows 95 will support the
XWansung (Microsoft Extended Wansung) standard, which is an extended
version of the KSC5601-1987 standard.

The XWansung Code system contains some Johab characters (not all the Johap
codes). Johab characters were added into the vacant Range of old Wansung
Code of Hangeul Windows version 3.1. Here are the details on the XWansung
code set:

Number of characters:

 Exisitng Wansung = 8,836
 Additional Assigned = 8,822 (Johab)
 Additional Reserved = 4,770

 Total characters = 22,428

Leading byte range: 0x81-0xFE
Trailing byte range: 0x41-5A,0x61-0x7A,0x81-0xFE

Additional reference words: 1.20 3.10 4.00 3.50 Hangul Chohap kbinf
KBCategory: kbother
KBSubcategory: wintldev

Choosing the Debugger That the System Will Spawn
PSS ID Number: Q103861
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5,
 3.51, and 4.0
--

SUMMARY
=======

It is possible to have the system spawn a debugger whenever an application
faults. The capability is controlled by the following Registry key on
Windows NT:

 HKEY_LOCAL_MACHINE\
 SOFTWARE\
 Microsoft\
 Windows NT\
 CurrentVersion\
 AeDebug

This key contains the following entries:

 Auto
 Debugger

These entries are also available on Windows 95. However, on Windows 95,
they are contained in the win.ini file instead of the registry. The
section [aedebug] has entries that correspond to the registry.

If the value of Auto is set to "0" (zero), then the system will
generate a pop-up window, and if the user chooses Cancel, spawn the
debugger that is specified in the Debugger value. If the value of Auto
is set to "1", then the system will automatically spawn the debugger
that is specified in the Debugger value.

After installing Windows NT, the Debugger value is set to

 DRWTSN32 -p %ld -e %ld -g

and the Auto value is set to 1. If the Win32 SDK is installed, then the
Debugger value is changed to

 <MSTOOLS>\BIN\WINDBG -p %ld -e %ld

and the Auto value is set to 0.

MORE INFORMATION
================

The DRWTSN32 debugger is a post-mortem debugger similar in functionality to
the Windows 3.1 Dr. Watson program. DRWTSN32 generates a log file

containing fault information about the offending application. The following
data is generated in the DRWTSN32.LOG file:

 - Exception information (exception number and name)
 - System information (machine name, user name, OS version, and so forth
 - Task list
 - State dump for each thread (register dump, disassembly, stack walk,
 symbol table)

A record of each application error is recorded in the application event
log. The application error data for each crash is stored in a log file
named DRWTSN32.LOG, which by default is placed in your Windows directory.

Additional reference words: 3.10 3.50 4.00
KBCategory: kbtool
KBSubcategory: TlsMisc

Clarification of COMMPROP dwMax?xQueue Members
PSS ID Number: Q94950

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The entry for the COMMPROP structure in the Win32 Programmer's Reference
states that for the dwMaxTxQueue and dwMaxRxQueue members, "a value of 0
means that this field is not used".

MORE INFORMATION
================

This statement means that the provider does not restrict you to maximum Rx
and Tx queue values, and these members [returned by GetCommProperties()]
should not be used to determine the size of your transmit and receive
buffers when calling SetupComm().

Based on the memory present in the system, the Windows NT serial driver
determines a default Rx queue size (currently 128 bytes on low memory
systems and 4K on high memory systems). The current Rx and Tx queue sizes
are located in the dwCurrentTxQueue and dwCurrentRxQueue members.

SetupComm() allows you to change these default queue sizes. However, you
should not assume that the given serial driver will allocate any memory.
The queue size allocated is stored in the dwCurrentRxQueue member of the
COMMPROP structure. You may use this information to set the XonLim and
XoffLim members of the device control block (DCB) structure.

The Microsoft-supplied serial driver attempts to allocate at least the
amount requested for the RXQUEUE and, failing this, the request will also
fail. The driver never attempts to allocate memory for the TXQUEUE.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseCommapi

Clarification of the "Country" Setting
PSS ID Number: Q102765

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5
 - Microsoft Windows 95 version 4.0

Under Windows NT, the "Country" choice affects currency, date/time and
number format, and so forth. The "Language" choice affects sorting, names
of the days of the weeks and months, and so forth. These settings allow the
user to choose the appropriate language and country format. For example, if
you are British and living in the U.S., you can pick a locale of English
(British) at setup time, then use Control Panel later to change your
country to U.S. so that currency is in dollars instead of pounds.

In Windows 95, there is not both a Country and a Language choice. You are
asked for a single Regional Setting.

Additional reference words: 3.10 3.50 4.00
KBCategory: kbui
KBSubcategory: UsrNls WintlDev

Clearing a Message Box
PSS ID Number: Q74444

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

During the processing of the MessageBox() function, Windows creates a
bitmap to save the part of the screen covered by the message box. Normally,
before the MessageBox() function returns, Windows repaints the portion of
the screen covered by the message box using the bitmap. In this scenario,
when the user clicks on a button to dismiss the message box, the message
box disappears immediately.

It is important to note that under low memory conditions, Windows will
discard the bitmap. If the bitmap is discarded and a significant amount of
processing takes place between the MessageBox() call and painting the
application's window, the vestigial image of the message box will remain on
the screen during the processing. If the user clicks on this image with the
mouse, the underlying window will receive the mouse messages. This can
cause unexpected (and possibly undesirable) effects.

To address this problem, call UpdateWindow() immediately after
MessageBox(). The parameter to UpdateWindow() should be the parent window
of the message box (or of the application's main window if the message box
has no parent). This will cause the application to paint the affected
window if the bitmap has been discarded. The message box will disappear
immediately under all circumstances.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrDlgs

Client Service For Novell Netware Doesn't Support Named Pipes
PSS ID Number: Q129317

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

The Windows NT Client Service for Novell NetWare does not support named
pipes. Consequently, 16-bit Novell NetWare client applications running on
Windows NT cannot connect to Novell NetWare named pipe server applications.
There are currently no plans to add named pipe support to the Windows NT
Client Service for Novell NetWare.

For more information on Novell NetWare named pipes, consult the following
Novell documentation:

 - NetWare Client for OS/2 User's Guide
 - NetWare Client for MS-DOS and Microsoft Windows User's Guide

Additional reference words: 3.10 3.50
KBCategory: kbnetwork
KBSubcategory: NtwkMisc

Clipboard Memory Sharing in Windows
PSS ID Number: Q11654

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

The following are questions and answers on the topic of Clipboard memory
sharing:

Q. Does the Clipboard UNLOCK before freeing the handle when I tell it to
 SetClipboardData()?

A. Yes, the Clipboard UNLOCKs before freeing the handle when you
 SetClipboardData().

Q. Does the Clipboard actually copy my global storage to another
 block, or does it just retain the value of my handle for
 referencing my block?

A. The Clipboard is sharable; it retains the value of the handle.

Q. Does GetClipboardData() remove the data from the Clipboard, or
 does it allow me to reference the data without removing it from
 the Clipboard?

A. The data handle returned by GetClipboardData() is controlled by
 the Clipboard, not by the application. The application should
 copy the data immediately, instead of relying on the data handle
 for long-term use. The application should not free the data
 handle or leave it locked. To remove data from the Clipboard,
 call SetClipboardData().

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrClp

Combo Box w/Edit Control & Owner-Draw Style Incompatible
PSS ID Number: Q82078

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The owner-draw combo box styles (CBS_OWNERDRAWFIXED and
CBS_OWNERDRAWVARIABLE) are incompatible with the combo box styles that
contain an edit control (combo box styles CBS_SIMPLE and
CBS_DROPDOWN). A combo box with either the CBS_SIMPLE or CBS_DROPDOWN
style displays the currently selected item in its associated edit
control. When an owner-draw style is specified for the combo box style
CBS_SIMPLE or CBS_DROPDOWN, the current selection may not be
displayed. Using the SetWindowText function to display the current
selection in response to a CBN_SELCHANGE message may not be effective.

MORE INFORMATION
================

An owner-draw combo box can contain bitmaps or other graphic elements
in its list box. Therefore, to correctly display the current
selection, it is necessary to display a bitmap or other graphic
element in the edit control. Because edit controls are not designed to
display graphics, there is no natural method to display the current
selection in an owner-draw combo box with an edit control.

The combo box style CBS_DROPDOWNLIST, which has a static text area
instead of an edit control, can display any item, including graphics.
Use this style combo box with the owner-draw styles.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbui
KBSubcategory: UsrCtl

COMCTL32 APIs Unsupported in the Win32 SDK
PSS ID Number: Q105300

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Win32s version 1.2

The library COMCTL32.LIB was included in the Win32 SDK because the PERFMON
sample makes use of it. The library is part of the Windows for Workgroups
(WFW) COMMCTRL.LIB. However, Microsoft does not officially support
COMCTL32.LIB or recommend the use of these application programming
interfaces (APIs), and therefore they have not been documented in the SDK.

Microsoft does not recommend using these APIs, because Microsoft is
providing the new controls in Windows 95, Windows NT 3.51, and Win32s 1.3.

If you must absolutely use COMCTL32 with earlier versions, the
documentation can be found in the WFW SDK. Be aware that these APIs are
unsupported, and code that you write will not work on Windows 95 and
Windows NT 3.51.

Additional reference words: 1.20 3.10 3.50
KBCategory: kbui
KBSubcategory: UsrCtl W32s

Common Dialog Boxes and the WM_INITDIALOG Message
PSS ID Number: Q74610

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.5

SUMMARY
=======

An application using the common dialog box library (COMMDLG.DLL) can
override any information initialized in the DLL by handling the
WM_INITDIALOG message in its dialog hook function. If the application is
using a private dialog template, it should also initialize all private
dialog items while handling this message.

After processing the WM_INITDIALOG message, the hook function should
return FALSE if it has set the focus to a dialog control, and return
TRUE if Windows should set the focus.

MORE INFORMATION
================

For example, consider an application that is using the Open File common
dialog box (via GetOpenFileName()) but does not want the Drives combo box
to appear in the dialog box. Since all dialog items in the standard dialog
template must be included in the application's private dialog template, the
application will need to include code to disable and hide the Drives combo
box and the corresponding "Drives:" static text control. This code would be
implemented in the WM_INITDIALOG case of the dialog hook function, as
follows:

 case WM_INITDIALOG:
 hWnd = GetDlgItem(hDlg, cmb2); // Get Drives combo box handle
 EnableWindow(hWnd, FALSE); // No longer receives input,
 // no longer a tabstop
 SetWindowPos(hWnd, NULL, 0, 0, 0, 0, SWP_HIDEWINDOW);

 hWnd = GetDlgItem(hDlg, stc4); // Get "Drives:" static control
 EnableWindow(hWnd, FALSE); // no longer an accelerator
 SetWindowPos(hWnd, NULL, 0, 0, 0, 0, SWP_HIDEWINDOW);

 // Initialize private dialog items here...

 return(TRUE); // Let Windows set the focus

Additional reference words: 3.10 3.50
KBCategory: kbui
KBSubcategory: UsrCmnDlg

Common File Mapping Problems and Platform Differences
PSS ID Number: Q125713

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s version 1.3

SUMMARY
=======

This article addresses some common problems encountered when using file
mapping. It also points out some platform differences in the file mapping
implementation.

This article does not describe the procedures for performing file mapping.
For information on using file mapping, please see the File Mapping
overview in the Microsoft Win32 Programmer's Reference. Also see the
descriptions for CreateFileMapping(), OpenFileMapping(), MapViewOfFile(),
MapViewOfFileEx(), UnmapViewOfFile(), and FlushViewOfFile().

MORE INFORMATION
================

Name Space Conflicts

The names of event, semaphore, mutex, and file-mapping objects share
the same name space, so it is not possible to have two different object
types with the same name. It is an error to attempt to create or open an
object of one type using a name that is already being used by an object of
another type.

CreateFileMapping() and OpenFileMapping() will fail if they specify an
object name that is in use by an object of another type. In both cases,
GetLastError() will return ERROR_INVALID_HANDLE (6).

To avoid conflicts between object types, one solution is to include
the object type in the name. For example, use "EV_myapp_block_ready" for an
event object name and "FM_myapp_missile_data" for a file mapping object
name.

Necessity of Unmapping All Views of a Mapped File

Windows maintains an internal handle to a file mapping object for each
view of that object, whether created by MapViewOfFile() or
MapViewOfFileEx(). This internal handle is kept in addition to the handle
returned by CreateFileMapping(). The internal handle is not closed until
the view associated with the handle is unmapped by calling

UnmapViewOfFile(). To completely close a file mapping object requires that
all handles for the object, including internal handles, be closed. Thus, to
close a file mapping object, all views of that object must be unmapped, and
the handle returned by CreateFileMapping() must be closed.

Extant unmapped views of a file mapping object will NOT cause a
CloseHandle() on the object's handle to fail. In other words, when your
handle to the object is closed successfully, it is not necessarily true
that all views have been unmapped, so the file mapping object has not
necessarily been freed.

Failure to properly unmap all views of the object and to close the handle
to the object will cause leaks in the application's paged pool,
nonpaged pool, virtual bytes, and also in the system wide committed bytes.

Restrictions on the Size of File Mapping Objects
--

The size of a file mapping object backed by the system paging file is
limited to available system virtual memory (meaning the amount of memory
that could be committed with a call to VirtualAlloc()).

On Windows NT, the size of a file mapping object backed by a named disk
file is limited by available disk space. The size of a mapped view of
an object is limited to the largest contiguous block of unreserved
virtual memory in the process performing the mapping (at most, 2GB minus
the virtual memory already reserved by the process).

On Win32s, the size of a file mapping object backed by a named disk
file is limited to available system virtual memory, due to the virtual
memory management implementation of Win32s. Win32s allocates regular
virtual memory for the memory mapped section even though it does not
need swap space, and the amount of VM set by Windows is too small to use
for mapping large files. As with Windows NT, available disk space will
also impose a limitation.

On Windows 95, the size of a file mapping object backed by a named disk
file is limited to available disk space. The size of a mapped view of
an object is limited to the largest contiguous block of unreserved
virtual memory in the shared virtual arena. This block will be at most
1GB, minus any memory in use by other components of Windows 95 which use
the shared virtual arena (such as 16-bit Windows-based applications). Each
mapped view will use memory from this arena, so this limit applies to the
total size of all non-overlapping mapped views for all applications running
on the system.

Mapped File May Not be Automatically Grown
--

If the size specified for a file mapping object backed by a named disk
file in a call to CreateFileMapping() is larger than the size of the
file used to back the mapping, the file will normally be grown to the
specified size by the CreateFileMapping() call.

On Windows NT only, if PAGE_WRITECOPY is specified for the fdwProtect

parameter, the file will not automatically be grown. This will cause
CreateFileMapping() to fail, and GetLastError() will return
ERROR_NOT_ENOUGH_MEMORY (8). To set the size of the file before calling
CreateFileMapping(), use SetFilePointer() and SetEndOfFile().

MapViewOfFileEx() and Valid Range of lpvBase
--

On Windows NT, views of file mapping objects are mapped in the address
range of 0-2 GB. Passing an address outside of this range as the
lpvBase parameter to MapViewOfFileEx() will cause it to fail, and
GetLastError() will return ERROR_INVALID_PARAMETER (87).

On Windows 95, views of file mapping objects are mapped in the address
range of 2-3 GB (the shared virtual arena). Passing an address outside of
this range will cause MapViewOfFileEx() to fail, and GetLastError() will
return ERROR_INVALID_ADDRESS (487). Note that future updates to Windows 95
may change the mapping range to 0-2 GB, as on Windows NT.

MapViewOfFileEx() and Allocation Status of lpvBase
--

If an address is specified for the lpvBase parameter of MapViewOfFileEx(),
and there is not a block of unreserved virtual address space at that
address large enough to satisfy the number of bytes specified in the
cbMap parameter, then MapViewOfFileEx() will fail, and GetLastError() will
return ERROR_NOT_ENOUGH_MEMORY (8). This does not mean that the system is
low on memory or that the process cannot allocate more memory. It simply
means that the virtual address range requested has already been reserved
in that process.

Prior to calling MapViewOfFileEx(), VirtualQuery() can be used to determine
an appropriate range of unreserved virtual address space.

MapViewOfFileEx() and Granularity of lpvBase
--

For the lpvBase parameter specified in a call to MapViewOfFileEx(), you
should use an integral multiple of the system's allocation granularity. On
Windows NT, not specifying such a value will cause MapViewOfFileEx() to
fail, and GetLastError() to return ERROR_MAPPED_ALIGNMENT (1132). On
Windows 95, the address is rounded down to the nearest integral multiple of
the system's allocation granularity.

To determine the system's allocation granularity, call GetSystemInfo().

Addresses of Mapped Views

When mapping a view of a file (or shared memory), it is possible to either
let the operating system determine the address of the view, or to specify
an address as the lpvBase parameter of the MapViewOfFileEx() function. If
the file mapping is going to be shared among multiple processes, then
the recommended method is to use MapViewOfFile() and let the operating
system select the mapping address for you. There are good reasons for doing

so:

 - On Windows NT, views are mapped independently into each process's
 address space. While it may be convenient to try to map the view at
 the same address in each process, the specified virtual address range
 may not be free in all of the processes involved. Therefore, the mapping
 could fail in one (or more) of the processes trying to share the
 file mapping.

 - On Windows 95, file mapping objects exist in the 2-3 GB address range
 (the shared virtual arena). Therefore, once the initial address for the
 view is determined, additional views of the mapping will be mapped to
 the same address in each process anyway, and there is no benefit in
 trying to force the initial mapping to a specific address. For the
 second and subsequent views of a mapping object, if the address
 specified for lpvBase does not match the actual address where Windows 95
 has mapped the view, then MapViewOfFileEx() fails, and GetLastError()
 returns ERROR_INVALID_ADDRESS (487). Additionally, when attempting to
 map the first view at a pre-determined address, that address may already
 be in use by other components of Windows 95 which use the shared virtual
 arena. Note that future updates to Windows 95 may change the mapping
 range to 0-2 GB, as on Windows NT.

If it is absolutely necessary to create the mappings at the same address
in multiple processes under Windows NT, here are two possible approaches:

1. Pick an appropriate address and manage the virtual address space so that
 this address is left available. This means basing your DLLs, allocating
 memory at specific locations, and using a tool such as Process Walker to
 observe the virtual address space pattern. As soon as possible in the
 execution of the application, either reserve the desired address space
 or perform the mapping. One good place to do this is in the
 PROCESS_ATTACH handling in a DLL, because it is called before the
 executable itself is started. NOTE: There is still no guarantee that
 some DLL will not have already loaded at the address in question. If not
 all involved processes can map at the predetermined address, they can
 either fail or try a new address.

 -or-

2. Have all processes involved negotiate an appropriate address. The
 processes can all use the VirtualQuery() function to scan their
 address spaces until a common address is found in each process
 that has a large enough unreserved block. This requires that all
 processes involved map the address at the same time. A process that
 starts after the address has been determined must map at that address,
 and fail if it cannot do so. Alternatively, the negotiation process
 could be repeated, with each process remapping at the new address. Then,
 all pointers into the mapping must be readjusted.

The second method is far more likely to succeed. It can also be combined
with the first to make it more likely that an appropriate address will be
found quickly.

When views are mapped to different addresses under Windows NT, the

difficulty that arises is storing pointers to the mapping within the
mapping itself. This is because a pointer in one process does not point
to the same location within the mapping in another process. To overcome
this problem, store offsets rather than pointers in the mapping, and
calculate actual addresses in each process by adding the base address of
the mapping to the offset. It is also possible to used based pointers and
thus perform the base + offset conversion implicitly. A short SDK sample
called BPOINTER demonstrates this technique.

Additional Platform Differences

Additional limitations when performing file mapping under Windows 95:

1. The dwOffsetHigh parameters of MapViewOfFile() and MapViewOfFileEx() are
 not used, and should be zero. Windows 95 uses a 32-bit file system.

2. The dwMaximumSizeHigh parameter of CreateFileMapping() is not used,
 and should be zero. Again, this is due to the 32-bit file system.

3. The SEC_IMAGE and SEC_NOCACHE flags for the fdwProtect parameter of
 CreateFileMapping() are not supported.

4. If the FILE_MAP_COPY flag is used to map a view of a file mapping
 object, the object must have been created using PAGE_WRITECOPY
 protection. Additionally, the object must be backed by a named
 file rather than the system paging file (in other words, a valid file
 handle, not (HANDLE)0xFFFFFFFF, must be specified for the hFile
 parameter of CreateFileMapping()). Failure to do either of these
 causes MapViewOfFile() to fail, and GetLastError() to return
 ERROR_INVALID_PARAMETER (87).

5. If two or more processes map a PAGE_WRITECOPY view of the same file
 mapping object (by using a named object, for example), they are able
 to see changes made to the view by the other process(es). The actual
 disk file is not modified, however. Under Windows NT, if one process
 writes to the view, it receives its own copy of the modified pages and
 will not affect the pages in the other process(es) or the disk file.

Additional reference words: 1.30 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseMm

Complete Enumeration of System Fonts
PSS ID Number: Q99672

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Complete enumeration of system fonts is a two-phase process.
Applications should first call EnumFontfamilies with NULL as the
family name to enumerate all the font face names in the system.
Applications should then take each face name and call EnumFontFamilies
again to obtain the style names (for TrueType fonts only) or the
supported point sizes (for raster fonts only). The style names are not
supported for the raster and vector fonts. Because TrueType and vector
fonts are continuously scalable, their point sizes are not enumerated.

MORE INFORMATION
================

The following steps detail the enumeration:

1. Call EnumFontFamilies with NULL as the family name (lpszFamily) to list
 one font from each available font family.

2. In the EnumFontFamProc callback function, look at the nFontType
 parameter.

3. If nFontType has the TRUETYPE_FONTTYPE flag set, then call
 EnumFontFamilies with the family name set to the font's type face
 name (lfFaceName of the ENUMLOGFONT structure). The callback
 function is called once for each style name. This enumeration is
 useful if the application is interested in finding a TrueType font
 with a specific style name (such as "Outline"). Because a TrueType
 font is continuously scalable, it is not necessary to enumerate a
 given font for point sizes. An application may use any desired
 point size. If the application is listing the enumerated TrueType
 fonts, it can simply choose some representative point sizes in a
 given range. The point sizes recommended by "The Windows Interface:
 An Application Design Guide" (page 159, Section 8.4.1.4) are 8, 9,
 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 36, 48, and 72. All
 TrueType fonts are available on both displays and printers, so an
 application can be sure that the font appears the same on the
 display and the printer.

4. If nFontType has the RASTER_FONTTYPE flag set, then call
 EnumFontFamilies with the family name set to the font's type face
 name. The callback function is called once for each available point
 size. Raster fonts can be scaled only in multiples of the available
 point sizes. Because scaled raster fonts are usually not appealing
 to the user, applications may choose to limit themselves to the
 available sizes. Because Microsoft Windows version 3.1 does not
 define style names for raster fonts, there is no need to enumerate
 for style names.

 If the nFontType also has the DEVICE_FONTTYPE flag set, then the
 current font is a raster font available to the printer driver for
 use with the printer. The printer may have these fonts in hardware
 or be capable of downloading them when necessary. Applications that
 use such fonts should be aware that similar raster fonts may not be
 available on the display device. The converse is also true. If the
 DEVICE_FONTTYPE flag is not set, then applications should be aware
 that a similar font may not be available on the printer. Fonts
 generated by font packages such as Adobe Type Manager (ATM) are
 listed as device fonts.

5. If nFontType has neither the TRUETYPE_FONTTYPE nor the
 RASTER_FONTTYPE flags set, then the enumerated font is a vector
 font. Vector fonts are also continuously scalable so they do not
 have to be enumerated for point sizes. Because Windows 3.1 does not
 support style names for vector fonts, there is no need to enumerate
 them for style names. Vector fonts are generally used by devices
 such as plotters that cannot support raster fonts. These fonts
 generally have a poor appearance on raster devices, so many
 applications avoid them.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbgraphic
KBSubcategory: GdiFnt

Computing the Size of a New ACL
PSS ID Number: Q102103

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

When adding an access-allowed access control entry (ACE) to a discretionary
access control list (DACL), it is useful to know the exact size needed for
the new DACL. This is particularly useful when creating a new DACL and
copying over the existing ACEs. The below code computes the size needed for
a DACL if an access-allowed ACE is added:

 ACL_SIZE_INFORMATION AclInfo;

 GetAclInformation(pACL,&AclInfo,sizeof(ACL_SIZE_INFORMATION),
 AclSizeInformation))

 dwNewACLSize = AclInfo.AclBytesInUse +
 sizeof(ACCESS_ALLOWED_ACE) +
 GetLengthSid(UserSID) - sizeof(DWORD);

MORE INFORMATION
================

The call to GetAclInformation() takes a pointer to an ACL. This point is
supplied by your program and should point to the DACL you want to add an
access-allowed ACE to. The GetAclInformation() call fills out a
ACL_SIZE_INFORMATION structure, which provides size information on the ACL.

The second statement computes what the new size of the ACL will be if an
access-allowed ACE is added. This is accomplished by adding the current
bytes being used to the size of an ACCESS_ALLOWED_ACE. We then add the size
of the security identifier (SID) (provided by your application) that is to
used in the AddAccessAllowedAce() API call. Subtracting out the size of a
DWORD is the final adjustment needed to obtain the exact size. This adjust
is to compensate for a place holder member in the ACCESS_ALLOWED_ACE
structure which is used in variable length ACEs.

When adding an ACE to an existing ACL, often there is not enough free space
in the ACL to accommodate the additional ACE. In this situation, it is
necessary to allocate a new ACL and copy over the existing ACEs and then
add the access-allowed ACE. The above code can be used to determine the
amount of memory to allocate for the new ACL.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

Conditionally Activating a Button in Windows Help
PSS ID Number: Q76534
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
--

SUMMARY
=======

An application can add buttons to the Windows Help engine button
bar. There may be times when the button should be activated or
deactivated based on an external condition.

For example, if an application adds a tutorial button to the bar and
the user has not chosen to install the tutorial, the button should be
dimmed to indicate that the tutorial is not available.

MORE INFORMATION
================

The following code fragment demonstrates activating and deactivating
buttons using the macro facility:

char szMacro[255];
 .
 .
 .
/* Bring up the Help engine with the HLP file */
/* This code fragment assumes that a button has */
/* been defined with an ID of TUTORIAL_BUTTON */
WinHelp (hWnd, lpHelpFile, HELP_CONTENTS, 0L)

if (fTutorial)
/* If the tutorial is installed, the macro should enable the button */
 lstrcpy(szMacro,"EnableButton(`TUTORIAL_BUTTON')");
else
/* If the tutorial is not installed, the macro should disable the
 button */
 lstrcpy(szMacro,"DisableButton(`TUTORIAL_BUTTON')");

/* Note that the single quote character before TUTORIAL must be a backquote
/* (`) for the function to work correctly.

/* Run the appropriate macro */
WinHelp (hWnd, lpHelpFile, HELP_COMMAND, (LONG)szMacro);

Additional reference words: 3.10 3.50 4.00 95 grayed out disabled
unavailable
KBCategory: kbtool
KBSubcategory: TlsHlp

Configuration Needed to Run RPC Apps Using IPX Protocol
PSS ID Number: Q139559

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.5,
 3.51, and 4.0

SUMMARY
=======

This article describes certain conmponents that need to be installed when
running RPC applications using the IPX/SPX protocol.

MORE INFORMATION
================

All the information below assumes that the IPX/SPX protocol is installed
and the 16-bit runtimes are installed where needed.

Platform Application Protocol Sequence Component needed
--
Windows NT Server ncadg_ipx Client Services
 for Netware(WKS) or
 Gateway Services
 for Netware(SVR)

Windows NT Server ncacn_spx Client Services
 for Netware(WKS) or
 Gateway Services
 for Netware(SVR)

Windows 95 Server ncacn_spx no additional component

Windows NT Client(32-bit) ncadg_ipx SAP agent; else
 use IPX addresses
 (see note (2)
 below) else Server
 must have Gateway
 Services for
 Netware

Windows NT Client(32-bit) ncacn_spx as above

Windows 95 Client(32-bit) ncacn_spx Client for Novell
 Netware else use
 IPX addresses
 (see note (2) below)

Windows NT Client(16-bit) ncadg_ipx SAP agent; else
 use IPX addresses
 (see note (2)
 below) else Server

 must have Gateway
 Services for
 Netware

Windows NT Client(16-bit) ncacn_spx as above

Windows 95 Client(16-bit) ncacn_spx Only way to
 connect to server is
 by using IPX
 addresses (see note
 (2) below)
NOTES:

1. Windows 95 does not support ncadg_ipx.

2. IPX addresses : The IPX address of the computer must be of the form
 ~XXXXXXXXYYYYYYYYYYYY. For example, if a computer's network address is
 00006112 and its node address is 00AA0060DA28, you should use
 ~0000611200AA0060DA28.

Additional reference words: 3.10 3.50 4.00 win16sdk Windows 95
KBCategory: kbnetwork kbtshoot
KBSubcategory: NtwkRpc

Consequences of Using CreateDIBSection() With DIB_PAL_COLORS
PSS ID Number: Q137371

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)
 versions 3.5, 3.51, 4.0

When using CreateDIBSection() with DIB_PAL_COLORS, the GDI will use the
color indices in the bmiColors to populate the color table of the DIB
section by resolving the indices to the RGB values from the palette
selected into the device context passed into CreateDIBSection().
Consequently, after a program calls CreateDIBSection(), the color table
will contain RGB values rather than palette indices. Specifying
DIB_PAL_COLORS affects only how the color table is initialized, not how it
is subsequently used.

Additional reference words: 4.00 3.50 hbitmap
KBCategory: kbgraphic
KBSubcategory: W32

Considerations for CreateCursor() and CreateIcon()
PSS ID Number: Q73667

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

An application can use the CreateCursor() and CreateIcon() APIs
to create icons and cursors on the fly. The application determines
the shape at run time.

When the shape of the icons and the cursors is known in advance, an
application should use LoadIcon() and LoadCursor().

An application that uses CreateIcon() must call DestroyIcon() to free the
memory used by the icon when it is no longer needed. An application that
uses CreateCursor() must call DestroyCursor() to release the memory used by
the cursor when it is no longer needed.

An application can call DestroyIcon() and DestroyCursor() only when the
icon or the cursor is not in use. For example, if the cursor created by
CreateCursor() has been specified in a SetCursor call, it must not be
destroyed until it has been released by another SetCursor() call.

An application can only use DestroyIcon() and DestroyCursor() to destroy
icons and cursors created by CreateIcon() and CreateCursor(). It should not
try to destroy icons and cursors loaded with LoadIcon() and LoadCursor().

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbgraphic
KBSubcategory: GdiCurico

Console App Launched from a Service Exits When User Logs Off
PSS ID Number: Q149901
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), for Windows NT,
 versions 3.5, 3.51, 4.0
--

SUMMARY
=======

Console applications contain a default console control handler. The console
control handler function is called by the system when a process receives a
CTRL_C, CTRL_BREAK, CTRL_CLOSE, CTRL_LOGOFF, or CTRL_SHUTDOWN signal. By
default, when the console control handler receives any one of these
signals, it calls ExitProcess().

When a console application is launched from a service, the application
receives a modified default console control handler. The modified handler
does not call ExitProcess() for the CTRL_LOGOFF signal. This allows a
console application to continue running when a user logs off the system.
This corresponds with Windows NT services that run when no user is logged
onto the system.

If the console application being launched from a service installs its
own console control handler, this handler is called before the default
handler. If the installed handler calls ExitProcess() as a result of a
CTRL_LOGOFF signal, the console application exits when the user logs off
the system.

Using any third party libraries or DLLs could cause a console control
handler to be installed for an application. If installed, this handler
overrides the default handler, causing the application to exit when
receiving a CTRL_LOGOFF signal.

For example, if you install a SIGBREAK handler via the C run-time function
signal(), the function installs a handler which overrides the default
handler. This causes the application to exit when receiving a CTRL_LOGOFF
event even though it was launched from a service. This problem can be
resolved by either not installing the SIGBREAK handler or by installing
another console control handler after the call to signal(). The new console
control handler must intercept the CTRL_LOGOFF event and just return TRUE
for the application not to exit.

REFERENCES
==========

For more information on console control handlers, please see the
Console Overview in the Win32 SDK documentation.

Additional reference words: 3.50 3.51 4.00
KBCategory: kbprg
KBSubcategory: BseService BseCon

Consoles Do Not Support ANSI Escape Sequences
PSS ID Number: Q84240

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

Windows NT does not support ANSI escape sequences. There is some
functionality that this affects (for example, changing the color of the
prompt). This also affects a very limited number TTY-type programs that
rely on the console for escape support to be provided.

This feature is is under review and is being considered for future
releases.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseCon

Controlling the Caret Color
PSS ID Number: Q84054

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

When an application creates a custom caret using a bitmap, it is
possible to specify white or black for the caret color. In the case of
Windows running on a monochrome display, the application can cause the
caret to be the color of the display (white, green, amber, and so
forth, as appropriate). However, because the caret color is determined
by Windows at run time based on the hardware installed, the
application cannot guarantee what color will be used under all
circumstances. This article provides information about using color in
a custom caret.

MORE INFORMATION
================

To create a caret, first create a bitmap with the desired pattern. To
display the caret, Windows exclusive-ORs (XORs) and takes the opposite
of the result (the NOT of the result) of the bitmap with the
background of the client window. Therefore, to create a white caret,
create a bitmap that when XOR'd with the window background will have
an opposite value that will create a white color. It is when the caret
blinks that Windows uses the reverse of the bitmap XOR'd with the
background to draw the caret; this creates the white blink seen on the
screen.

The bitmap for the caret cannot use a color palette. Windows does not
use the color values from the palette in its calculations but the
indices into the palette. While it is possible to use palette indices
successfully, perfect symmetry of the colors in the palette is
required. This is unlikely. For each color in the palette, its exact
opposite color must be in the palette, in the exactly opposite index
position.

However, when the application creates bitmaps itself, it has complete
control over the bits. Therefore, the application can create the
perfect counterpart that corresponds to the window background color.
If the application uses this information to create the caret bitmap,
when Windows creates the caret, it can choose the closest color
available in the system palette.

Therefore, to create a white caret (or a black one, if the screen has
too many light elements), the task is straightforward. Windows always
reserves a few colors in the system palette and makes them available
to all applications. On a color display, these colors include black
and white. On a monochrome display, these colors are whatever the
monochrome color elements are.

Because black and white (or the monochrome screen colors) are always
available, the application simply creates a bitmap that, when XOR'd
with the screen background color, produces black or white.
The technique involves one main principle: background XOR background =
FALSE. Anything XOR'd with itself returns FALSE, which in bitmap terms
maps to the color black.

The process of creating a caret from the background color involves the
four steps discussed below:

1. Create a pattern brush the same as the window background

2. Select the pattern brush into a memory display context (DC)

3. Use the PATCOPY option of the PatBlt function to copy the brush
 pattern into the caret bitmap.

4. Specify the caret bitmap in a call to the CreateCaret function.

When this caret is XOR'd with the background, black will result. When
the caret blinks, and is therefore displayed, Windows computes the
opposite of the caret and XOR's this value into the background. This
yields NOT(background XOR background) = NOT(FALSE) = TRUE which
corresponds to WHITE. The first background represents the caret
bitmap and the second is the current background color of the window.

Note that half the time the custom bitmap is displayed (when the caret
"blinks") the other half of the time the background is displayed,
(between "blinks").

If the background color is light gray or lighter [RGB values
(128, 128, 128) through (255, 255, 255)], then a black caret is
usually desired. The process of creating a black caret is just as
straightforward. Modify step 1 of the process given above to
substitute the inverse of the background for the background bitmap.
When the caret blinks, it will show black. The equation that
corresponds to this case is NOT(inverse of background XOR background)
= NOT(TRUE) = FALSE which corresponds to BLACK.

To change the caret color to something other than black or white
requires considerably more work, with much less reliable results
because the application must solve the following equation:

 NOT(caret XOR background) = desired_color on the
 "blink" of the caret.

where the value for the caret color must be determined given the
desired color. A series of raster operations is required to solve this

type of equation. (For more information on raster operations, see
chapter 11 of the "Microsoft Windows [3.0] Software Development Kit
Reference, Volume 2" or pages 573-585 of the "Microsoft Windows [3.1]
Software Development Kit Programmer's Reference, Volume 3: Messages,
Structures, and Macros.")

Even after solving this equation, the color actually displayed is
controlled by Windows and the colors in the current system palette.
With colors other than black or white, an exact match for the desired
color may not be available. In that case, Windows will provide the
closest match possible. Because the palette is a dynamic entity and
can be modified at will, it is impossible to guarantee a particular
result color in all cases. The colors black and white should be safe
most of the time because it is quite unusual for an application to
modify the reserved system colors. Even when an application does
change the system palette, it most likely retains a true black and a
true white.

As long as a black and white remain in the palette (which is usually
the case), this algorithm will provide a white or black caret.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrCrt

Converting a Linear Address to a Flat Offset on Win32s
PSS ID Number: Q115080
--
The information in this article applies to:

 - Microsoft Win32s, versions 1.1, 1.15, and 1.2
--

SUMMARY
=======

Win32s flat code and data selectors are not zero-based. Linear addresses
retrieved through a VxD can be used in a Win32-based application running
under Win32s, after one small change is made.

In addition, there are two Universal Thunk APIs that are used to convert
segmented addresses to flat addresses and vice versa.

MORE INFORMATION
================

Linear Address to Flat Address

Win32s does not base linear addresses at 0, so that exceptions will be
generated when null pointers are dereferenced. Therefore, an access
violation occurs when:

1. a 16-bit DLL calls a VxD to retrieve a linear address (the VxD got
 the address by translating a physical address to a linear address)
 through DPMI function 0800h (map physical to linear).

2. the 16-bit DLL returns the address to a Win32-based application through
 the Universal Thunk.

3. the Win32-based application uses this linear address.

In order to convert a linear address (based at 0) to a flat offset, add
the base to the linear address. To do this, get the offset through
GetThreadSelectorEntry() with the DS or CS and then subtract that base from
the linear address that was returned by the VxD.

Segmented Address to Flat Address

The following Win32s Universal Thunk APIs are used for address
translation:

 - UTSelectorOffsetToLinear (segmented address to flat address)

 - UTLinearToSelectorOffset (flat address to segmented address)

NOTE: In the nested function call

 UTLinearToSelectorOffset(UTSelectorOffsetToLinear(x));

where x is a segmented address, you may not necessarily get the original
value of x back. It is by design that the sel:off pair may be different.
If the memory was allocated by a 16-bit application, Win32s does not
have x in its LinearAddress->selector translation tables. Therefore,
when UTLinearToSelectorOffset() is called, new selectors are created.

Additional reference words: 1.10 1.20 gpf gp-fault
KBCategory: kbprg
KBSubcategory: W32s

Converting Colors Between RGB and HLS (HBS)
PSS ID Number: Q29240

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The code fragment below converts colors between RGB (Red, Green,
Blue) and HLS/HBS (Hue, Lightness, Saturation/Hue, Brightness,
Saturation).

MORE INFORMATION
================

/* Color Conversion Routines --

RGBtoHLS() takes a DWORD RGB value, translates it to HLS, and
stores the results in the global vars H, L, and S. HLStoRGB takes the
current values of H, L, and S and returns the equivalent value in an
RGB DWORD. The vars H, L, and S are only written to by:

 1. RGBtoHLS (initialization)
 2. The scroll bar handlers

A point of reference for the algorithms is Foley and Van Dam,
"Fundamentals of Interactive Computer Graphics," Pages 618-19. Their
algorithm is in floating point. CHART implements a less general
(hardwired ranges) integral algorithm.

There are potential round-off errors throughout this sample.
((0.5 + x)/y) without floating point is phrased ((x + (y/2))/y),
yielding a very small round-off error. This makes many of the
following divisions look strange.
*/

#define HLSMAX RANGE /* H,L, and S vary over 0-HLSMAX */
#define RGBMAX 255 /* R,G, and B vary over 0-RGBMAX */
 /* HLSMAX BEST IF DIVISIBLE BY 6 */
 /* RGBMAX, HLSMAX must each fit in a byte. */

/* Hue is undefined if Saturation is 0 (grey-scale) */
/* This value determines where the Hue scrollbar is */
/* initially set for achromatic colors */
#define UNDEFINED (HLSMAX*2/3)

void RGBtoHLS(lRGBColor)
DWORD lRGBColor;
{
 WORD R,G,B; /* input RGB values */
 BYTE cMax,cMin; /* max and min RGB values */
 WORD Rdelta,Gdelta,Bdelta; /* intermediate value: % of spread from max
*/

 /* get R, G, and B out of DWORD */
 R = GetRValue(lRGBColor);
 G = GetGValue(lRGBColor);
 B = GetBValue(lRGBColor);

 /* calculate lightness */
 cMax = max(max(R,G), B);
 cMin = min(min(R,G), B);
 L = (((cMax+cMin)*HLSMAX) + RGBMAX)/(2*RGBMAX);

 if (cMax == cMin) { /* r=g=b --> achromatic case */
 S = 0; /* saturation */
 H = UNDEFINED; /* hue */
 }
 else { /* chromatic case */
 /* saturation */
 if (L <= (HLSMAX/2))
 S = (((cMax-cMin)*HLSMAX) + ((cMax+cMin)/2)) / (cMax+cMin);
 else
 S = (((cMax-cMin)*HLSMAX) + ((2*RGBMAX-cMax-cMin)/2))
 / (2*RGBMAX-cMax-cMin);

 /* hue */
 Rdelta = (((cMax-R)*(HLSMAX/6)) + ((cMax-cMin)/2)) / (cMax-cMin);
 Gdelta = (((cMax-G)*(HLSMAX/6)) + ((cMax-cMin)/2)) / (cMax-cMin);
 Bdelta = (((cMax-B)*(HLSMAX/6)) + ((cMax-cMin)/2)) / (cMax-cMin);

 if (R == cMax)
 H = Bdelta - Gdelta;
 else if (G == cMax)
 H = (HLSMAX/3) + Rdelta - Bdelta;
 else /* B == cMax */
 H = ((2*HLSMAX)/3) + Gdelta - Rdelta;

 if (H < 0)
 H += HLSMAX;
 if (H > HLSMAX)
 H -= HLSMAX;
 }
}

/* utility routine for HLStoRGB */
WORD HueToRGB(n1,n2,hue)
WORD n1;
WORD n2;
WORD hue;

{

 /* range check: note values passed add/subtract thirds of range */
 if (hue < 0)
 hue += HLSMAX;

 if (hue > HLSMAX)
 hue -= HLSMAX;

 /* return r,g, or b value from this tridrant */
 if (hue < (HLSMAX/6))
 return (n1 + (((n2-n1)*hue+(HLSMAX/12))/(HLSMAX/6)));
 if (hue < (HLSMAX/2))
 return (n2);
 if (hue < ((HLSMAX*2)/3))
 return (n1 + (((n2-n1)*(((HLSMAX*2)/3)-hue)+(HLSMAX/12))/(HLSMAX/6))
);
 else
 return (n1);
}

DWORD HLStoRGB(hue,lum,sat)
WORD hue;
WORD lum;
WORD sat;
{
 WORD R,G,B; /* RGB component values */
 WORD Magic1,Magic2; /* calculated magic numbers (really!) */

 if (sat == 0) { /* achromatic case */
 R=G=B=(lum*RGBMAX)/HLSMAX;
 if (hue != UNDEFINED) {
 /* ERROR */
 }
 }
 else { /* chromatic case */
 /* set up magic numbers */
 if (lum <= (HLSMAX/2))
 Magic2 = (lum*(HLSMAX + sat) + (HLSMAX/2))/HLSMAX;
 else
 Magic2 = lum + sat - ((lum*sat) + (HLSMAX/2))/HLSMAX;
 Magic1 = 2*lum-Magic2;

 /* get RGB, change units from HLSMAX to RGBMAX */
 R = (HueToRGB(Magic1,Magic2,hue+(HLSMAX/3))*RGBMAX +
(HLSMAX/2))/HLSMAX;
 G = (HueToRGB(Magic1,Magic2,hue)*RGBMAX + (HLSMAX/2)) / HLSMAX;
 B = (HueToRGB(Magic1,Magic2,hue-(HLSMAX/3))*RGBMAX +
(HLSMAX/2))/HLSMAX;
 }

 return(RGB(R,G,B));
}

Additional reference words: 3.00 3.10 3.50 4.00 95 color RGB HLS HBS
KBCategory: kbgraphic
KBSubcategory: GdiPal

Copy on Write Page Protection for Windows NT
PSS ID Number: Q103858

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51

SUMMARY
=======

The Windows NT's Copy on Write page protection is a concept that allows
multiple applications to map their virtual address spaces to share the same
physical pages, until an application needs to modify the page and have its
own instance copy. This is part of a technique called Lazy Evaluation,
which allows the system to not waste time by committing resources, time, or
execution until/unless absolutely necessary. Copy on Write allows the
virtual memory manager to save memory and execution time.

MORE INFORMATION
================

Copy on Write works as follows: In generic terms, an application can load
something into its virtual memory (for example, a code section or DLL
code). Virtual memory is mapped to physical memory. Another process may
want to load the same thing into its virtual memory. As long as neither
process writes to this memory, they can map to, and share, the same
physical pages.

If either process needs to write to this memory, because the memory is
marked as Copy on Write, the physical page frame will be copied somewhere
else in physical memory. Fixups are made for the virtual memory mapping of
the writing process. Both applications now have their own instance of the
memory contents. In short, applications can share the same physical memory
with Copy on Write, until one of the applications has to modify the
contents. At that point, a new copy of the contents is made, and the
writing process has its own copy.

It should be emphasized that this is not to say that applications are
sharing memory in the sense that one application can write to it and
another can read what the first one wrote; as long as applications are only
going to read a piece of memory (for example, a code section), then the
physical pages supporting that memory for the applications can be shared.
Once the application needs to write to the memory (for example, in the form
of a fixup), then that application must have a new physical page so that
the modifications are not seen by other processes. The processes are no
longer sharing the same physical pages.

Applications

When multiple instances of the same Windows-based application load, you may

notice that most, if not all, of their instance handles (hInstance) have
the same value. In fact, almost all of the windows on the desktop have this
value, which represents the base address where the application loaded in
virtual memory.

Each of the instances of the same application running has its own protected
virtual address space to run in. If each of these applications can load
into its default base address, each will map to, and be able to share, the
same physical pages in memory. Using Copy on Write, the system will allow
these applications to share the same physical pages until one of the
applications modifies a page. Then a copy is made in physical memory, and
that process's virtual memory is fixed up to use the new physical page. If
for some reason one of these instances cannot load in the desired base
address, it will get its own physical pages. See the section on DLLs below
for more explanation.

DLLs

Dynamic-link libraries (DLLs) are created with a default base address to
load at. Assuming that multiple applications call the DLL, they will all
try to load it within their own address space at that default virtual
address. If they are all successful, they can all map that virtual address
space to share the same physical pages.

However, if for some reason the DLL cannot be loaded within the process's
address space at the default address, it will load the DLL elsewhere. The
DLL must be copied into another physical address frame. The reason is that
fixups for jump instructions in a DLL are written as specific locations
within the DLL's pages. If the DLL can be loaded at the same base address
for each process, the second to the nth process does not have to write that
memory location for the jump. If a process cannot load the DLL at the
specified base address, the locations written in the DLL's jumps will be
different for this process. This forces the fixup to write a new location
into the jump, and the Copy on Write will automatically force a new
physical page.

Note that all references to data must be fixed up too. If this causes
virtual memory of the code section to be updated, then the process will
again go through the Copy on Write process. For example, if there are a
great many places in the code section that make reference into data in a
DLL, if the DLL cannot be loaded at its default location, the locations in
the code section data in the DLL are referenced will have to be modified.
If this is one of multiple instances of a process, these fixups must go
through the copy on write process, and the virtual memory pages of the
process's code section will not be able to map and share the same physical
pages as the other instances. If there are a lot of references to the data
in the DLL by the code section, this can essentially cause the entire code
section to be copied to new physical pages.

POSIX

In POSIX, there is a fork() instruction that basically creates two copies
of the same program. It is an expensive process for the system to copy the

address space of one process into another. Instead, under Windows NT, the
system simply marks the parent's pages with Copy on Write. This way new
physical frames are copied only if and when they are needed (have been
modified). The system does not waste time or memory if all of the address
space doesn't need to be copied. (For more information, see "Inside Windows
NT" by Microsoft Press).

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseMm

Copying Compressed Files
PSS ID Number: Q130331

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51

SUMMARY
=======

It is not possible to copy NTFS compressed files without uncompressing
them. This functionality is not available in Windows NT versions 3.5 and
3.51; however, this feature may be included in a future version of Windows
NT.

Compressed files are expanded via memory-mapped files. This minimizes the
performance hit of expanding the file.

MORE INFORMATION
================

One of the new features found in Windows NT 3.51 is file compression.
Files or directories can be compressed or decompressed by calling
DeviceIoControl() with one of the following compression flags:

 FSCTL_SET_COMPRESSION : Sets the compression state of a file or
 directory.

 FSCTL_GET_COMPRESSION : Obtains the compression state of a file
 or directory.

Two additional FSCTL codes are documented in the Win32 SDK as "not
implemented in this release." They are FSCTL_READ_COMPRESSION and
FSCTL_WRITE_COMPRESSION. These additional FSCTL codes will be part of
the functionality that will allow you to read and write files on an
NTFS compressed drive without having to decompress them first. Again,
this functionality may be included in a future release of Windows NT.

Additional reference words: 3.50 NTFS File Compression
KBCategory: kbprg kbusage
KBSubcategory: BseFileIo

Correct Use of Try/Finally
PSS ID Number: Q83670

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Try/finally, used correctly, helps to provide a robust application.
However, if used incorrectly it can cause unnecessary overhead. any
flow of control out of the try body of try/finally is an abnormal
termination that can cause hundreds of instructions to be executed on
an x86 system, and thousands on a MIPS machine, even if control leaves
the try body via a control statement on the very last statement of the
try body. The language definition states that control must leave the
try body sequentially for normal termination to occur (that is,
execution falls through the bottom of the try body).

The following sample demonstrates an incorrect use of try/finally:

/* Incorrect use of try/finally */

VOID
function (
 DWORD ... P1,
 .
 DWORD ... Pn
)

{

 try {
 if (...) {
 .
 .
 return;
 }
 .
 .
 } finally {
 .
 .
 }
 return;
}

The overhead can be avoided in the above example by moving the return
AFTER the end of the finally clause. The following provides more

detail on the correct use of try/finally.

MORE INFORMATION
================

Execution of a termination handler due to abnormal termination of a
try body is expensive. Abnormal termination occurs when control leaves
a try body in any way other than by falling through the bottom.
Intentionally branching out of a try body is still an abnormal
termination.

In the above example, abnormal termination of the try body occurs if
the return in the middle of the try body is executed. If the predicate
of the if is false, then extremely efficient execution of the finally
clause occurs because this is not abnormal termination and the finally
clause is called directly by inline code.

When abnormal termination occurs hundreds to thousands of instructions
are executed because an unwind must be executed, which must search
backward through frames to determine if any termination handlers
should be called. On an x86 system, this executes the C run-time
handler and examines the handler list. On a MIPS machine, this also
causes the function table to be searched and the prologue of each
intervening function to be executed backwards interpretively.

You should always avoid the execution of a termination handler as a
result of the abnormal termination of a try body by a return, or other
direct flow of control out of the try body. Abnormal termination
occurs whenever control leaves the try body other than by falling
through the bottom. This can occur because of a return, goto,
continue, or break. It can also occur because of an exception, which
presumably cannot be avoided.

In the above example, abnormal termination in the nonexception case
can be eliminated easily as follows:

/* Correct use of try/finally */

VOID
function (
 DWORD ... P1,
 .
 .
 DWORD ... Pn
)

{

 try {
 if (...) {
 .
 .
 } else {
 .
 .

 }
 } finally {
 .
 .
 }
 return;
}

Now both clauses of the if fall through to the termination handler in
all but exceptional cases and execute the termination handler in the
most efficient way. This also has the same logical execution as the
previous sample.

In summary, the correct use of try/finally is a powerful method to
help you write robust applications. Care should be taken to ensure the
correct use of try/finally.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseExcept

CPU Quota Limits Not Enforced
PSS ID Number: Q100329

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51

SUMMARY
=======

On page 88 of "Inside Windows NT," Table 4-1 indicates that a process
object contains a quota limit for the maximum amount of processor time that
the process can use.

This limit is not enforced in Windows NT versions 3.1 or 3.5x.

MORE INFORMATION
================

The key to understanding Windows NT thread scheduling and resultant
application behavior is knowing the central algorithm used. This algorithm
is very simple, and is the same one a number of other operating systems
use. It is "run the highest priority thread ready." A list of ready
threads or processes exists; it is often called the "dispatch queue" or
"eligible queue." The queue entries are in order based on their individual
priority. A hardware-driven real-time clock or interval timer will
periodically interrupt, passing control to a device driver that calls the
process or thread scheduler. The thread scheduler will take the highest
priority entry from the queue and dispatch it to run.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseProcThrd

CreateFile() Using CONOUT$ or CONIN$
PSS ID Number: Q90088

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

If you attempt to open a console input or output handle by calling the
CreateFile() function with the special CONIN$ or CONOUT$ filenames, this
call will return INVALID_HANDLE_VALUE if you do not use the proper sharing
attributes for the fdwShareMode parameter in your CreateFile() call. Be
sure to use FILE_SHARE_READ when opening "CONIN$" and FILE_SHARE_WRITE when
opening "CONOUT$".

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseFileio

CreateFileMapping() SEC_* Flags
PSS ID Number: Q108231

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The definition of CreateFileMapping() is as follows:

 HANDLE CreateFileMapping(hFile, lpsa, fdwProtect, dwMaximumSizeHigh,
 dwMaximumSizeLow, lpszMapName)

 HANDLE hFile;
 LPSECURITY_ATTRIBUTES lpsa;
 DWORD fdwProtect;
 DWORD dwMaximumSizeHigh;
 DWORD dwMaximumSizeLow;
 LPCTSTR lpszMapName;

The following flags are four possible values for the parameter fdwProtect:

 SEC_COMMIT
 All pages of a section are to be set to the commit state.
 SEC_IMAGE
 The file specified for a section's file mapping is an executable
 image file.
 SEC_NOCACHE
 All pages of a section are to be set as noncacheable.
 SEC_RESERVE
 All pages of a section are to be set to the reserved state.

If none of these flags are specified, SEC_COMMIT is the default. This
behaves the same way as MEM_COMMIT in VirtualAlloc().

MORE INFORMATION
================

Windows NT

The SEC_RESERVE flag is intended for file mappings that are backed by the
paging file, and therefore use SEC_RESERVE only when hFile is -1. The pages
are reserved just as they are when the MEM_RESERVE flag is used in
VirtualAlloc(). The pages can be committed by subsequently using the
VirtualAlloc() application programming interface (API), specifying
MEM_COMMIT. Once committed, these pages cannot be decommitted.

The SEC_NOCACHE flag is intended for architectures that require various
locking structures to be located in memory that is not ever fetched into
the CPU cache. On x86 and MIPS machines, use of this flag just slows down
the performance because the hardware keeps the cache coherent. Certain
device drivers may require noncached data so that programs can write
through to the physical memory. SEC_NOCACHE requires that either
SEC_RESERVE or SEC_COMMIT be used in addition to SEC_NOCACHE.

The SEC_IMAGE flag indicates that the file handle points to an executable
file, and it should be loaded as such. The mapping information and file
protection are taken from the image file, and therefore no other options
are allowed when SEC_IMAGE is used.

Windows 95

Under Windows NT, the Win32 loader simply sits on top of the memory mapped
file subsystem, and so when the loader needs to load a PE executable, it
simply calls down into the existing memory mapped file code. Therefore, it
is extremely easy for to support SEC_IMAGE in CreateFileMapping() under
Windows NT.

In Windows 95, the loader is more complex and the memory mapped files are
simple and only support the bare minimum of functionality to make the
existing MapViewOfFile() work. Therefore, Windows 95 does not support
SEC_IMAGE. There is support for SEC_NOCACHE, SEC_RESERVE and SEC_COMMIT.

Additional reference words: 3.10 3.50 4.00
KBCategory: kbprg
KBSubcategory: BseMm

Creating a Font for Use with the Console
PSS ID Number: Q105299

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

It is possible to use FontEdit to create a font that can be used by the
console. The following must be true:

 - The face name must be System, Terminal, or Courier
 - The font size must be different from any of the other console fonts
 - The font must be fixed pitch
 - The font must not be italic

In addition, in the U.S. market, the font should support codepage 437.

Install the font from the Control Panel. After rebooting, the font will be
available to the console.

An EnumFonts() call is made by the console during its initialization to
determine what fonts are available. The console saves a set of one-to-one
mappings between the font sizes listed and a set of LOGFONTs. The console
never has direct knowledge of what file is used.

Additional reference words: 3.10 3.50
KBCategory: kbgraphic
KBSubcategory: GdiFnt

Creating a Hidden MDI Child Window
PSS ID Number: Q70080

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Whenever Windows creates a new multiple-document interface (MDI) child
window in response to a WM_MDICREATE message, it makes that child window
visible.

The information below describes how to create a hidden MDI child window
without causing an unattractive "flash" on the screen as the window is
created visible and then hidden.

MORE INFORMATION
================

A code fragment such as the following can be used to create an
invisible MDI child:

MDICREATESTRUCT mcs; // structure to pass with WM_MDICREATE
HWND hWndMDIClient; // the MDI client window
HWND hwnd; // temporary window handle

 ...

// assume that we have already filled out the MDICREATESTRUCT...

// turn off redrawing in the MDI client window
SendMessage(hwndMDIClient, WM_SETREDRAW, FALSE, 0L);

/*
 * Create the MDI child. It will be created visible, but will not
 * be seen because redrawing to the MDI client has been disabled
*/
hwnd = (WORD)SendMessage(hwndMDIClient,
 WM_MDICREATE,
 0,
 (LONG)(LPMDICREATESTRUCT)&mcs);

// hide the child
ShowWindow(hwnd, SW_HIDE);

// turn redrawing in the MDI client back on,

// and force an immediate update
SendMessage(hwndMDIClient, WM_SETREDRAW, TRUE, 0L);
InvalidateRect(hwndMDIClient, NULL, TRUE);
UpdateWindow(hwndMDIClient);
 ...

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrMdi

Creating a List Box That Does Not Sort
PSS ID Number: Q68116

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

A Windows list box with the LBS_STANDARD style will sort the list of items
into alphabetical order before displaying them in the control.

To create a list box that will not sort, you must remove the LBS_SORT bit
from the window style. The following style specification removes this bit:

 (LBS_STANDARD | LBS_HASSTRINGS) & ~LBS_SORT

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbui
KBSubcategory: UsrCtl

Creating a List Box with No Vertical Scroll Bar
PSS ID Number: Q68115

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

A Windows list box with the LBS_STANDARD style will display a vertical
scroll bar if there are more items in the list than can be displayed in the
client area of the list box.

To create a list box that will not use a vertical scroll bar, you must
remove the WS_VSCROLL bit from the window style. The following style
specification removes this bit:

 (LBS_STANDARD | LBS_HASSTRINGS) & ~WS_VSCROLL

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbui
KBSubcategory: UsrCtl

Creating a List Box Without a Scroll Bar
PSS ID Number: Q11365

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

When LBS_STANDARD is used as follows

 LBS_NOTIFY | LBS_SORT | WS_BORDER | LBS_STANDARD

the following results (as defined in WINDOWS.H):

 LBS_STANDARD = #00A00003;
 /* LBS_NOTIFY | LBS_SORT | WS_VSCROLL | WS_BORDER */

To create a dialog box that contains a list box without the vertical scroll
bar, use NOT WS_VSCROLL as the style for creating a list box control
without a vertical scroll bar, as follows:

 (LBS_STANDARD & ~WS_VSCROLL) // NOT WS_VSCROLL

Additional reference words: 3.00 3.10 3.50 4.00 95 listbox
KBCategory: kbui
KBSubcategory: UsrCtl

Creating a Logical Font with a Nonzero lfOrientation
PSS ID Number: Q104010

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51

SUMMARY
=======

To create a font that writes in a direction other than left to right, an
application should specify a nonzero lfEscapement in the LOGFONT structure
that is passed to CreateFontIndirect(). This method works under Windows NT
regardless of the graphics mode of the device context.

To create a font where the characters themselves are rotated, the
application should specify a nonzero lfOrientation in the LOGFONT structure
that is passed to CreateFontIndirect(). However, this setting is ignored in
Windows NT unless the graphics mode is set to GM_ADVANCED.

Therefore, to successfully create a logical font with a nonzero
lfOrientation, use

 SetGraphicsMode(hDC, GM_ADVANCED)

to set the graphics mode of the device context to GM_ADVANCED.

MORE INFORMATION
================

The TTFONTS sample program is a good way to quickly and easily see the
effects of the lfEscapement and lfOrientation fields. However, TTFONTS does
not set the graphics mode of its test window HDC to GM_ADVANCED. As a
result, the lfOrientation field apparently is ignored. It is easy to modify
the DISPLAY.C module of TTFONTS in order to set the graphics mode of the
window HDC to GM_ADVANCED.

Additional reference words: 3.10 3.50
KBCategory: kbgraphic
KBSubcategory: GdiFnt

Creating a Multiple Line Message Box
PSS ID Number: Q67210

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Message boxes are used to provide information to the user of an
application. Error messages and warnings are also provided through message
boxes. This article provides details on using message boxes in
applications.

MORE INFORMATION
================

Message boxes are modal windows. When an application displays an
application modal message box, which is the default message box type, the
user cannot interact with any part of that application until the message
box has been dismissed. However, the user may use the mouse or keyboard to
activate another application and interact with it while the message box is
displayed. Certain critical errors that may affect all of Windows are
displayed in system modal message boxes. Windows will not perform any
operations until the error condition is acknowledged and the system modal
message box is dismissed.

There are times where it is necessary to display a long message in a
message box. Windows does this when you start an MS-DOS-based application
that uses graphics from inside an MS-DOS window. To break a message into
many lines, insert a newline character into the message text. Here is a
sample MessageBox() call:

 MessageBox(hWnd, "This is line 1.\nThis is line 2.", "App",
 MB_OK | MB_ICONQUESTION);

If the text of a message is too long for a single line, Windows will
break the text into multiple lines.

System modal message boxes treat the newline character as any other. A
newline character is displayed as a black block in the text. Because system
modal message boxes are designed to work at all times, even under extremely
low memory conditions, it does not provide the ability to display more than
one line of text.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui

KBSubcategory: UsrDlgs

Creating a Nonblinking Caret
PSS ID Number: Q74607

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The Microsoft Windows graphical environment is designed to provide a
blinking caret. However, using a timer and the SetCaretBlinkTime()
function, an application can "trick" the caret into not blinking.

MORE INFORMATION
================

Although Windows is designed to blink the caret at a specified interval, a
timer function and SetCaretBlinkTime() can be used to prevent Windows from
turning the caret off by following these three steps:

1. Call SetCaretBlinkTime(10000), which instructs Windows to blink the
 caret every 10,000 milliseconds (10 seconds). This results in a
 "round-trip" time of 20 seconds to go from OFF to ON and back to
 OFF (or vice versa).

2. Create a timer, using SetTimer(), specifying a timer procedure and a
 5,000 millisecond interval between timer ticks.

3. In the timer procedure, call SetCaretBlinkTime(10000). This resets
 the timer in Windows that controls the caret blink.

When an application implements this procedure, Windows never removes the
caret from the screen, and the caret does not blink.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrCrt

Creating a World SID
PSS ID Number: Q111543

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

The sample code below demonstrates how to create a World Security
Identifier (SID). The World SID (S-1-1-0) is a group that includes all
users. To determine if a SID (perhaps in an Access Control Entry) is the
World SID, you must first create a World SID to compare it to. Once you
have created a World SID, you can use the EqualSid() API (application
programming interface) to determine equality.

Sample Code

PSID psidWorldSid;
SID_IDENTIFIER_AUTHORITY siaWorldSidAuthority =
 SECURITY_WORLD_SID_AUTHORITY;

psidWorldSid = (PSID)LocalAlloc(LPTR,GetSidLengthRequired(1));

InitializeSid(psidWorldSid, &siaWorldSidAuthority, 1);
*(GetSidSubAuthority(psidWorldSid, 0)) = SECURITY_WORLD_RID;

Additional reference words: 3.10 and 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

Creating Access Control Lists for Directories
PSS ID Number: Q115948

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

The discretionary access control list (DACL) for a directory usually
differs from that of a file. When assigning security to a directory, you
are often specifying both the security for the directory and the security
for any contained files and directories.

A directory's ACL will normally contain at least two access control
entries (ACE):

 - An ACE for the directory itself and any subdirectories.

 - An ACE for any files in the directory.

If an ACE is to apply to object in the directory (subdirectories and
files), the ACE is marked as an OBJECT_INHERIT_ACE and/or a
CONTAINER_INHERIT_ACE. (In this article, a container means a directory.)

For example, when you use File Manager to set the security on a directory
to "Change (RWXD)(RWXD)," the directory's DACL contains the following two
ACEs:

 ACE1 (applies to files in the directory)
 ACE flags: INHERIT_ONLY_ACE | OBJECT_INHERIT_ACE
 Access Mask: DELETE | GENERIC_READ | GENERIC_WRITE |
 GENERIC_EXECUTE

 ACE2 (applies to the directory and subdirectories)
 ACE flags: CONTAINER_INHERIT_ACE
 Access Mask: DELETE | FILE_GENERIC_READ | FILE_GENERIC_WRITE |
 FILE_GENERIC_EXECUTE

MORE INFORMATION
================

The ACE flags are part of the ACE header. The structure of an ACE header
can be found in the online help by searching on "ACE_HEADER".

In the above example, ACE1 applies only to contained files through the
INHERIT_ONLY_ACE flag. If INHERIT_ONLY_ACE is not specified in an ACE, the
ACE applies only to the current container.

NOTE: Adding one of these ACEs to a directory does not change the security

for any contained files or directories. The ACEs are only copied to files
and directories created after the ACEs have been added to the directory.

When adding your own security to files, it is easy to create a
combination that File Manager does not recognize as a "standard"
setting. This is shown in file manager as "special" security.

If you want to match the DACLs you create to those used by File Manager,
you can set the security of a file or directory in File Manager and then
check the DACLs and ACEs. A tool for this is provided as a sample called
"Check_SD" in the Win32 SDK. Check_SD can be found in the
Q_A\SAMPLES\CHECK_SD directory on the Win32 SDK CD.

REFERENCES
==========

 - "Microsoft Win32 Programmer's Reference," Microsoft Corporation.

 - "Microsoft Win32 SDK API Reference help file," Microsoft Corporation.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

Creating and Using a Custom Caret
PSS ID Number: Q74514

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In the Microsoft Windows graphical environment, creating a custom
caret is simple. Windows has a series of caret control, creation, and
deletion functions specifically designed to make manipulating the
caret easy.

MORE INFORMATION
================

The caret is a shared system resource. Unlike brushes, pens, device
contexts and such, but like the cursor, only one caret is available
under Windows. Also, like the cursor, an application can define a
custom shape for the caret.

The CreateCaret() function creates a custom caret. Its syntax is as
follows:

 void CreateCaret(HWND hWnd, HBITMAP hBitmap,
 int nWidth, int nHeight);

The caret shape can be a line, a block, or a bitmap specified as the
hBitmap parameter. If the hBitmap parameter contains a valid handle [a
bitmap handle returned from the CreateBitmap(), CreateDIBitmap(), or
LoadBitmap() function], CreateCaret() ignores the values of its nWidth
and nHeight parameters and uses the dimensions of the bitmap. If
hBitmap is NULL, the caret is a solid block; if hBitmap is one, the
caret is a gray block. The nWidth and nHeight parameters specify the
caret size in logical units. If either nWidth or nHeight is zero, the
caret width or height is set to the window-border width or height.

If an application uses a bitmap for the caret shape, the caret can be
in color; unlike the cursor, the caret is not restricted to
monochrome.

CreateCaret() automatically destroys the previous caret shape, if any,
regardless of which window owns the caret. The new caret is initially
hidden; call the ShowCaret() function to display the caret.

Because the caret is a shared resource, a window should create a caret

only when it has the input focus or is active. It should destroy the
caret before it loses the input focus or becomes inactive. Only the
window that owns the caret should move it, show it, hide it, or modify
it in any way.

Other functions related to the caret are the following:

 - SetCaretPos()
 This function moves the caret to the specified position (in logical
 coordinates).

 - GetCaretPos()
 This function retrieves the caret's current position (in screen
 coordinates).

 - ShowCaret()
 This function shows the caret on the display at the caret's current
 position. When shown, the caret flashes automatically. If the caret
 is not owned by the window specified in the call, the caret is not
 shown.

 - HideCaret()
 This function hides the caret by removing it from the display
 screen. HideCaret() hides the caret only if the window handle
 specified in the call is the window that owns the caret. Hiding the
 caret does not destroy it.

 NOTE: Hiding the caret is cumulative; ShowCaret() must be called once
 for every call to HideCaret(). For example, if HideCaret() is called
 five times, ShowCaret() must be called five times for the caret
 to be shown.

 - DestroyCaret()
 This function removes the caret from the screen, frees the caret
 from the current owner-window, and destroys the current shape of
 the caret. It destroys the caret only if the current task owns the
 caret. This call should be used in conjunction with CreateCaret().
 DestroyCaret() does not free or destroy a bitmap used to define the
 caret shape.

 - SetCaretBlinkTime()
 This function sets the caret blink rate. After the blink rate is
 set, it remains the same until the same window changes it again,
 another window changes it, another application changes it, or
 Windows is rebooted.

 - GetCaretBlinkTime()
 This function returns the current caret blink rate.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrCrt

Creating Autosized Tables with Windows Help
PSS ID Number: Q81233
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK, versions 3.5 and 3.51
--

SUMMARY
=======

A Windows Help file can contain a table to present information in a
consistent manner. Help 3.1 supports "autosized" tables where the
relative widths of the columns remain the same, even as the absolute
size of the table changes. The absolute size is determined by the size
of the Windows Help window.

MORE INFORMATION
================

To create an autosized table in the RTF file, create a centered table.
Create the text for the table using the minimum possible width for
each column. If the Help window is larger, the columns will be wider
and Help will compute where the text wraps based on the available
width. If the user sizes the Help window smaller than the table's
authored size, Help will display a horizontal scroll bar.

In Word for Windows version 1.1, use the Table command on the Format
menu to create a centered table. In Word for Windows 2.0, create a
table, then choose Row Height from the Table menu and choose the
Center button in the Alignment group.

Additional reference words: 3.10 3.50
KBCategory: kbtool
KBSubcategory: TlsHlp

Creating Instance Data in a Win32s DLL
PSS ID Number: Q109620
--
The information in this article applies to:

 - Microsoft Win32s versions 1.0, 1.1, and 1.2
--

SUMMARY
=======

The Win32 dynamic-link libraries (DLLs) that are running on Win32s use
shared data by default. This means that any global data in the DLL is
shared by all processes that use the DLL. Thread local storage (TLS) can be
used to create instance data; that is, data in the DLL that is specific to
each process.

The Win32s "Programmer’s Reference" mentions that TLS can be used to create
instance data, but provides no details. The sample code below shows the
source for a DLL that uses instance data on both Win32 and Win32s. The
sample code was built using Microsoft Visual C++, 32-bit edition.

If you use a development environment that does not have similar support for
TLS, you should still be able to use the API (application programming
interface) calls. The API calls for TLS are TlsAlloc, TlsGetValue,
TlsSetValue, and TlsFree.

MORE INFORMATION
================

One reason for wanting to create instance data on Win32s is to create a DLL
that behaves identically on Win32s and Win32 (although it introduces extra
overhead on Windows NT and Windows 95). Another way to create a DLL that
behaves identically on Win32s and Win32 is to share all of the data in
the Win32-based DLL. For additional information, please see the following
article(s) in the Microsoft Knowledge Base:

 ARTICLE-ID: Q109619
 TITLE : Sharing All Data in a DLL

Sample Code

/* Compile options used: /LD /MD
*/

int __declspec(thread) nVar = 0; // Variables should be initialized

int __declspec(dllexport) GetVar()
{
 return nVar;
}

void __declspec(dllexport) SetVar(int nNew)

{
 nVar = nNew;
}

Additional reference words: 1.00 1.10 1.20
KBCategory: kbprg
KBSubcategory: W32s

Creating Lines with a Nonstandard Pattern
PSS ID Number: Q34614

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The Microsoft Windows graphical environment provides six predefined
pens for drawing dotted, dashed, and solid lines. However, an
application cannot draw fine gray lines, such as those on a Microsoft
Excel spreadsheet, with these pens. This article describes how to
create such lines.

MORE INFORMATION
================

An application can use the LineDDA function to produce any type of
patterned line. Based on the endpoints of a line, LineDDA calculates
each point on the line and calls an application-defined callback
function for each point. The callback function is free to use the
calculated points in any manner desired. An application can draw a
gray line similar to those used in Excel by calling the the SetPixel
function in the callback function to draw every other point.

For example, the following code calculates all points on the line from
coordinates (30, 40) to (100, 100). Then it calls the function pointed
to by the lpfnLineProc variable with the points and the handle to a
device context (hDC) as parameters:

 LineDDA(30, 40, 100, 100, lpfnLineProc, (LPSTR)hDC);

For more information on this function, see pages 4-272 and 4-273 of
the "Microsoft Windows Software Development Kit Reference, Volume 1"
for Windows 3.0 or pages 568 and 569 of the "Microsoft Windows
Software Development Kit: Programmer's Reference, Volume 2: Functions"
for Windows 3.1. Charles Petzold's book "Programming Windows 3"
(Microsoft Press, 1990) demonstrates using the LineDDA function in a
programming example on pages 593 through 598.

The following code fragment draws 50 random Excel-style lines. Note
that the LineProc function must be listed as an EXPORT in the module
definition (DEF) file:

 case WM_PAINT:

 {
 HDC hDC;
 int nIndex;
 PAINTSTRUCT ps;

 hDC = BeginPaint(hWnd, &ps);

 for (nIndex = 0; nIndex < 50; nIndex++)
 LineDDA(rand() / 110, rand() / 110, rand() / 110,
 rand() / 110, lpfnLineProc, (LPSTR)hDC);

 EndPaint(hWnd, &ps);
 break;
 }

void FAR PASCAL LineProc(x, y, lpData)
short x, y;
LPSTR lpData;
{
 static short nTemp = 0;

 if (nTemp == 1)
 SetPixel((HDC)lpData, x, y, 0L);

 nTemp = (nTemp + 1) % 2;
}

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbgraphic
KBSubcategory: GdiDrw

Creating Windows in a Multithreaded Application
PSS ID Number: Q90975

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In a multithreaded application, any thread can call the CreateWindow() API
to create a window. There are no restrictions on which thread(s) can create
windows.

It is important to note that the message loop and window procedure for the
window must be in the thread that created the window. If a different thread
creates the window, the window won't get messages from DispatchMessage(),
but will get messages from other sources. Therefore, the window will appear
but won't show activation or repaint, cannot be moved, won't receive mouse
messages, and so on.

MORE INFORMATION
================

Normally, windows created in different threads process input independently
of each other. The windows have their own input states and the threads are
not synchronized with eachother in regards to input processing.

In order to have threads to share input state, have one thread call
AttachThreadInput() to have its input processing attached to another
thread. What this means is that these two threads will use a Windows 3.1
style system queue. The threads will still have separate input, but they
will take turns reading out of the same queue.

Creating a window can force an implicit AttachThreadInput(), when a parent
window is created in one thread and the child window is being created in
another thread. When windows are created (or set) in separate threads with
a parent-child relationship, the input queues are attached.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrWndw

Creating/Managing User Accounts Programmatically
PSS ID Number: Q119671
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5
--

SUMMARY
=======

Windows NT and the Windows NT Advanced Server use the same APIs that
Microsoft LAN Manager uses to create and maintain user- and group-account
information. For example, to create a new global group, use NetGroupAdd().
To create a new user, use NetUserAdd(). To add the user to the global
group, use NetGroupAddUser(). Local groups are created by using
NetLocalGroupAdd() and members are added to local groups by using
NetLocalGroupAddMember().

MORE INFORMATION
================

The APIs NetGroupAdd(), NetUserAdd(), NetGroupAddUser(),
NetLocalGroupAdd(), and NetLocalGroupAddMember() require access at the
administrator or accounts-operator level to run successfully. Windows NT
includes the following built-in groups:

 - Administrators

 - Power Users

 - Users

 - Guests

Members of the Administrators group can fully administer user accounts;
only Administrators can assign user rights and access privileges for
resources. Members of the Power Users group can create accounts only in the
Power Users, Users, and Guests groups; they can also maintain and delete
the accounts they create. However, a Power User can neither change nor
delete an account in these groups if the account was created by someone
else. A member of the Users group can create, maintain, and delete accounts
in local groups that he or she has created. Guests can neither create nor
delete accounts.

REFERENCES
==========

In the Win32 SDK, version 3.1, the documentation for the ported LAN Manager
APIs is available in the file LMAPI.HLP on the SDK CD. In the installed
Win32 SDK, version 3.5, the ported LAN Manager APIs are documented in the
Help file "Win32 API Reference".

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: NtwkLmapi

Critical Sections Versus Mutexes
PSS ID Number: Q105678

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

Critical sections and mutexes provide synchronization that is very similar,
except that critical sections can be used only by the threads of a single
process. There are two areas to consider when choosing which method to use
within a single process:

1. Speed. The Synchronization overview says the following about
 critical sections:

 ... critical section objects provide a slightly faster, more
 efficient mechanism for mutual-exclusion synchronization.

 Critical sections use a processor-specific test and set instruction
 to determine mutual exclusion.

2. Deadlock. The Synchronization overview says the following about
 mutexes:

 If a thread terminates without releasing its ownership of a
 mutex object, the mutex is considered to be abandoned. A waiting
 thread can acquire ownership of an abandoned mutex, but the wait
 function's return value indicates that the mutex is abandoned.

 WaitForSingleObject() will return WAIT_ABANDONED for a mutex that
 has been abandoned. However, the resource that the mutex is
 protecting is left in an unknown state.

 There is no way to tell whether a critical section has been
 abandoned.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseSync

CS_SAVEBITS Class Style Bit
PSS ID Number: Q31073

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

If the CS_SAVEBITS style is included when registering a pop-up window, a
bitmap copy of the screen image that the window will obscure is saved in
memory when the window is displayed.

The bitmap is redisplayed at its original location and no WM_PAINT messages
are sent to the obscured windows if the following is true when the window
is removed from the display:

 - The memory used by the saved bitmap has not been discarded.

 - Other screen actions have not invalidated the image that has been
 stored.

As a general rule, this bit should not be set if the window will cover
more than half the screen; a lot of memory is required to store color
bitmaps.

The window will take longer to be displayed because memory needs to be
allocated. The bitmap also needs to be copied over each time the
window is shown.

Use should be restricted to small windows that come up and are then
removed before much other screen activity takes place. Any memory
calls that will discard all discardable memory, and any actions that
take place "under" the window, will invalidate the bitmap.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrPnt

CTRL+C Exception Handling Under WinDbg
PSS ID Number: Q97858
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5,
 3.51, and 4.0
--

SUMMARY
=======

An exception is raised for CTRL+C only if the process is being debugged.
The purpose is to make it convenient for the debugger to catch CTRL+C in
console applications. For the purposes of this article, the debugger is
assumed to be WinDbg.

MORE INFORMATION
================

When the console server detects a CTRL+C, it uses CreateRemoteThread() to
create a thread in the client process to handle the event. This new thread
then raises an exception IF AND ONLY IF the process is being debugged. At
this point, the debugger either handles the exception or it continues the
exception unhandled.

The "gh" command marks the exception as having been handled and continues
the execution. The application does not notice the CTRL+C, with one
exception: CTRL+C causes alertable waits to terminate. This is most
noticable when executing:

 while((c = getchar()) != EOF) - or - while(gets(s))

It is not possible to get the debugger to stop the wait from terminating.

The "gn" command marks an exception as unhandled and continues the
execution. The handler list for the application is searched, as documented
for SetConsoleCtrlHandler(). The handler is executed in the thread created
by the console server.

After the exception is handled, the thread created to handle the event
terminates. The debugger will not continue to execute the application if Go
On Thread Termination is not enabled (from the Options menu, choose Debug,
and select the Go On Thread Termination check box). The thread and process
status indicate that the application is stopped at a debug event. As soon
as the debugger is given a go command, the dead thread disappears and the
application continues execution.

There are three cases where CTRL+C doesn't cause the program to stop
executing (instead it causes a "page down"):

1. When CTRL+C is already being handled.

2. When the debugger is in the foreground and a source window has the

 focus (both must be true).

3. When the CTRL+C exception is disabled (through the Debugger
 Exceptions dialog box).

This follows the convention of the WordStar/Turbo C/Turbo Pascal editor
commands.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsWindbg

CTYPE Macros Function Incorrectly
PSS ID Number: Q94323
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0
--

When an application that is linked to CRTDLL.LIB is compiled without
defining _MT and _DLL, the CTYPE.H family of macros will not operate
correctly.

To define _MT and _DLL on the CL command line, just add the following to
the command line:

 -D_MT -D_DLL

By adding these defines, the CTYPE macros will be properly initialized.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsMisc

Custom Controls Must Use CS_DBLCLKS with Dialog Editor
PSS ID Number: Q71223

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

For a custom control to function properly with the Dialog Editor, the
custom control window class must include the CS_DBLCLKS style.

If the custom control does not have the CS_DBLCLKS style, double-
clicking the control in the Dialog Editor does not cause the custom
control function to display its style dialog box. However, the
control's style dialog box is still accessible from the Styles command
on the Edit menu.

MORE INFORMATION
================

The Dialog Editor subclasses each control it creates and processes
WM_LBUTTONDBLCLK messages. In response to this message, the custom
control is asked to display its style dialog box.

If the custom control window class does not have the CS_DBLCLKS style,
Windows does not send any WM_LBUTTONDBLCLK messages to the control. As
a result, the Dialog Editor does not call the style dialog box
function for the custom control and no dialog box appears.

NOTE: This article does not apply to the resource editor included with the
Visual C++ development environment.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbui
KBSubcategory: UsrCtl

Customizing a Pop-Up Menu
PSS ID Number: Q12118

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

The following are three methods to customize a pop-up menu:

1. Use the word SEPARATOR in a pop-up menu, to produce a horizontal
 bar.

2. Use the word MENUBREAK, to start the menus on another column.

3. Place the vertical bar symbol in the menu string to display a
 vertical bar on the menu.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrMen

Customizing the FileOpen Common Dialog in Windows 95
PSS ID Number: Q125706

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In Windows version 3.x, customizing the FileOpen common dialog meant
providing a special hook function, and in most cases, a custom dialog box
template. This custom dialog box template is created by modifying the
standard FileOpen dialog box template used by COMMDLG, which was actually
made available as part of the Windows versopm 3.1 SDK.

In Windows 95, the new dialog box templates will no longer be made
available for modification. Instead, an application should provide a dialog
template that includes only the items to be added to the standard dialog
box. COMMDLG will then create this dialog as a child of the standard dialog
box. Because it is a child, it must have the WS_CHILD style set.

Note that the Windows version 3.1 method of customizing common dialogs by
modifying the dialog templates will still work for 16-bit applications.

MORE INFORMATION
================

Follow these steps to customize the FileOpen common dialog in Windows 95:

1. Create a dialog box template that will have all the controls you
 want to add to the FileOpen common dialog. Be sure to specify the
 styles:

 WS_CHILD | WS_VISIBLE | DS_3DLOOK | DS_CONTROL | WS_CLIPSIBLINGS

 WS_CHILD is specified because without it, the call to GetOpenFileName()
 fails. COMMDLG creates the dialog specified as a child of the standard
 FileOpen common dialog box. As a result, the hDlg passed to the
 application's hook function will be the child of the standard
 FileOpen dialog box. To get a handle to the standard dialog box from
 the hook function, call GetParent (hDlg).

 WS_CLIPSIBLINGS is specified so that overlapping controls paint
 properly.

 DS_3DLOOK is a new style for Windows 95 that gives the dialog box
 a nonbold font, and gives all the controls the 3D look.

 DS_CONTROL is another new style that among other things allows the
 user to tab between the controls of a dialog box to the controls

 of a child dialog box. As mentioned above, the dialog template will
 be created as a child of the standard FileOpen common dialog box,
 so specifying this style will allow tabbing from the application-defined
 controls to the standard controls.

2. Include a static control in your dialog template, specifying a control
 ID of stc32. This control will serve as a placeholder for the standard
 controls.

 If there is no stc32 control specified, COMMDLG places all the new
 controls defined in your dialog template below the standard controls and
 looks at the size of the static control to attempt to fit all the
 standard controls in it. If it is not big enough, COMMDLG resizes this
 stc32 control to make room for the standard controls, and then
 repositions the new controls with respect to the resized stc32 control.

 Be sure to use the #include directive to include DLGS.H in your .RC
 file, as stc32 is defined in <dlgs.h>.

3. Initialize the Flags member of the OPENFILENAME structure to include the
 following flags:

 OFN_EXPLORER | OFN_ENABLETEMPLATE | OFN_ENABLEHOOK

 OFN_ENABLETEMPLATEHANDLE may be used instead of OFN_ENABLETEMPLATE if
 you want to specify a handle to a memory block containing a preloaded
 dialog box template.

4. If the OFN_ENABLETEMPLATE flag is set, specify the name of your
 application-defined template in the lpTemplateName field of the
 OPENFILENAME structure, and specify your application's instance handle
 in the hInstance field.

 If the OFN_ENABLETEMPLATEHANDLE flag is set, specify the handle to the
 memory block containing your dialog box template in the hInstance field
 of the OPENFILENAME structure.

5. Specify the address of a dialog box procedure associated with your
 dialog box in the lpfnHook field of the OPENFILENAME structure.

6. Process appropriate notifications and messages as a result of adding
 new controls.

REFERENCES
==========

Much of the information contained in this article is derived from the
MSDN Technical Article entitled "Using the Common Dialogs Under Windows
95." Please refer to that article for more information.

Additional reference words: 4.00
KBCategory: kbui
KBSubcategory: UsrCmnDlg

Dangers of Uninitialized Data Structures
PSS ID Number: Q74277

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

In general, all fields in structures passed to functions in the
Microsoft Windows graphical environment should be initialized. If a
field is not initialized, it may contain random data, which can cause
unexpected behavior.

For example, before an application registers a window class, it must
initialize the cbClsExtra and cbWndExtra fields of the WNDCLASS data
structure. Windows allocates cbClsExtra bytes for the class, and
cbWndExtra bytes for each window created using the class. If these
fields contain large random values, the application may run out of
memory quickly.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbui
KBSubcategory: UsrWndw

DDE Error Message: Application Using DDE Did Not Respond
PSS ID Number: Q94955

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

DDEML displays a dialog box with the following error message when a
terminate deadlock occurs, often caused by a DDE application not
terminating correctly:

 Application using DDE did not respond to the System's Exit command

MORE INFORMATION
================

A terminate deadlock situation occurs when DDEML times out while
waiting for a responding terminate.

This message box appears when a DDEML application calls
DdeUninitialize() with conversations still active. DdeUninitialize()
posts WM_DDE_TERMINATE messages for each open conversation, and waits
for a corresponding WM_DDE_TERMINATE for a set period of time. This
time is actually set in the [DDEML] section of the WIN.INI file

 [DDEML]
 ShutdownTimeout= ?
 ShutdownRetryTimeout=?

where both are defined as integers defaulting to 30000 milliseconds.
These WIN.INI entries were purposely not documented to discourage
people from setting them to some other value.

If DDEML does not receive a response within the set period of time, it
brings up the message box to allow the user to choose to either quit,
wait longer, or wait indefinitely. This was done to work around a
problem in Windows 3.0 where the system locks up if an application
attempts to post a message to a non-existent window, and to allow the
user to save his work.

Additional reference words: 3.10 3.00 4.00 95
KBCategory: kbui
KBSubcategory: UsrDde

DdeInitialize(), DdeNameService(), APPCMD_FILTERINITS
PSS ID Number: Q108925

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

DdeInitialize() and DdeNameService() work as complimentary functions during
initialization of a server application. When called for the first time to
initialize a server application, DdeInitialize() will cause DDEML to append
the APPCMD_FILTERINITS flag to the third parameter of the function call by
default. Once this flag is set, client applications will not be able to
connect to the server until it is reset. This flag is reset when the
function DdeNameService() is called to register the service name with
DDEML. Also, if the server wishes to remain anonymous, then DdeInitialize()
must be called the second time to specifically turn off the
APPCMD_FILTERINITS flag.

MORE INFORMATION
================

The DdeInitialize() function registers an application with DDEML. This
function must be called by both the client and the server applications
before calling any other DDEML function.

When the server application calls DdeInitialize() for the first time, DDEML
appends the APPCMD_FILTERINITS flag to the third parameter of the function
call, regardless of whether the application specifies this flag. This flag
when used, will prevent DDEML from sending the XTYP_CONNECT and
XTYP_WILDCONNECT transactions to the server application until the server
has created its string handles and performed other application-specific
initialization. The server application then calls DdeNameService() to
register its service name with DDEML so that other client or server
applications are notified of its existence. Calling DdeNameService() after
the server has gone through the process of initialization turns off the
APPCMD_FILTERINITS flag.

Some DDEML server applications might not want to register their names with
DDEML because of various reasons (for example, the server application is a
custom server application that wants to service particular clients, and
thus wishes to remain anonymous to the rest of the system).

In special cases like this, an application may choose not to call the
DdeNameService() function, because this function broadcasts the name of the
server to all DDEML applications on the system. Not calling the

DdeNameService() function, however, causes the APPCMD_FILTERINIT flag not
to be reset properly, thus keeping the server from getting any XTYP_CONNECT
or XTYP_WILDCONNECT transactions even from its clients.

One other way to reset this flag is to call DdeInitialize() a second time,
without specifying the APPCMD_FILTERINITS flag.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrDde

DDEML Application-Instance IDs Are Thread Local
PSS ID Number: Q94091

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

When using the DDEML (Dynamic Data Exchange Management Library) libraries
from a spawned thread, the application-instance ID that is returned in the
lpidInst parameter of DdeInitialize is thread local.

Therefore, the application-instance ID cannot be used by any other thread
that is spawned by the process, nor can it be inherited from the parent.

To use the DDEML libraries within a thread, it is necessary to make both
the DdeInitialize call and to use the DdeUninitialize call from within the
thread; otherwise, there is no way to terminate the DDEML session.

Additional reference words: 3.10 3.50
KBCategory: kbui
KBSubcategory: UsrDde

Dealing w/ Lengthy Processing in Service Control Handler
PSS ID Number: Q120557

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51

The service control handler function must return within 30 seconds. If it
does not, the Service Control Manager will return the following error:
"Error 2186 - The service is not responding to the control function".

If a service needs to do lengthy processing when the service is in the
service control handler, it should create a secondary thread to perform the
lengthy processing and then return. This prevents the service from tying up
the service control handler thread.

If you are processing a SERVICE_CONTROL_STOP, you may wish to register a
status of SERVICE_STOP_PENDING. The dwWaitHint should be at least 30
seconds. You can make the control panel applet wait for a long time if you
send multiple SERVICE_STOP_PENDING states which update the dwCheckPoint and
use a long dwWaitHint.

The system shutting down is another event that limits the service control
handler. The dwCtrlCode parameter for the service control handler returns
SERVICE_CONTROL_SHUTDOWN. A service then has approximately 20 seconds to
perform cleanup tasks. If the tasks are not done, the system shuts down
regardless if the service shutdown is complete. If the user has selected
"restart", all processes will halt quickly. If instead the system is left
in the "shutdown" state, the service processes continue to run.

If you need a longer time to shut down or earlier notification, consider
using SetConsoleCtrlHandler() or SetProcessShutdownParameters() instead of
using SERVICE_CONTROL_SHUTDOWN. This is the same mechanism that the Service
Controller uses to get its notification.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseService

Debugging a Service
PSS ID Number: Q98890
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5,
 3.51
--

SUMMARY
=======

The steps in this article illustrate how to debug a service under Windows
NT using WinDbg, MSVC 2.1+, and NTSD. WinDbg and NTSD both ship with the
Win32 Software Development Kit (SDK). For illustration purposes, these
procedures use the SERVICE sample, which is built with debugging
information by default. This sample is located in:

 Win32 SDK 3.5:
 Mstools\Samples\Win32\Service

 Win32 SDK 3.51 and 4.0:
 Mstools\Samples\Win32\Winnt\Service

To debug a service, you no longer need to log in your service on the
LocalSystem account. Your service can be logged on as LocalSystem, or you
can also debug a service that logs on a domain\account as long as you are
also interactively logged onto that account. For example, if you're logged
on as domain\user, the service must be set to log onto the domain\user
account in the startup info. The domain\user account should have admin
privileges to the machine and set for "log on as a service" policy rights.

MORE INFORMATION
================

Preparation

1. Build the sample.

2. Install the Simple service with the following command:

 Win32 SDK 3.5 and later:
 simple - install

 You will receive a message indicating whether you were successful.

3. Use the Control Panel's Services application to start the Simple
 service. With the Win32 SDK 3.5+, you can also use:

 sc start simpleservice

 The SC.EXE is located in Mstools\Bin.

4. Use PView to get the process ID (PID) for the Simple service. For
 example, if PView shows the process as simple(0xD5), the PID is 0xD5.

5. If you're using SDK versions 3.1 or 3.5, convert the PID from
 hexadecimal to decimal. For example, 0xD5 is 213 in decimal. Later
 versions of nDbg use hexadecimal PIDs. Both MSVC 2.0+ and NTSD use
 hexadecimal PIDs.

Debugging a Service with WinDBG

1. At a command prompt, go to the directory containing the sample
 executable and type:

 start windbg

 to start WinDbg in its own command shell.

2. In WinDbg, on the File menu, click Open, and open the source file
 (Simple.c).

3. Set breakpoints at lines 223, 245, 256, and 271. The lines will change
 color at this point.

4. Open a command window in WinDbg and type

 .attach <PID>

 Note that the lines where breakpoints are set will have changed colors.

5. Type "g" (a go command) in the WinDbg command window or press F5 to
 restart after the thread that WinDbg uses to do the .attach terminates.

6. At the command prompt, start the client by typing:

 Win32 SDK 3.5 and later:
 client [-pipe <pipename>] [-string <string>]

 For example: client -pipe \\.\pipe\simple -string "Apollo13"

7. Press F5 (a go command) to debug the service. The breakpoint hit
 will be on line 245. Press F5 again to go to the next breakpoint.
 Keep pressing F5 until line 223 waits again for a client to
 connect. Try connecting another client and repeat the same steps.

Exiting WinDbg will kill the service, which must be restarted manually
with the Control Panel.

Debugging a Service with MSVC 2.1+

1. Follow steps 1-5 in the "Preparation" section of this article.

2. At a command prompt, go to the directory containing the sample and type:

 MSVC /P <PID>

 where <PID> is the Process ID value you retrieved in step 4.

3. Set breakpoints at lines 223, 245, 256, and 271. The lines will change
 color at this point.

4. At the command prompt, start the client by typing

 Win32 SDK 3.5 and later:
 client [-pipe <pipename>] [-string <string>]

 For example: client -pipe \\.\pipe\simple -string "Apollo13"

5. Press F5 (a go command) to debug the service. The breakpoint hit
 will be on line 245. Press F5 again to go to the next breakpoint.
 Keep pressing F5 until line 223 waits again for a client to
 connect. Try connecting another client and repeat the same steps.

Debugging a Service with NTSD

1. Compile using -Zi and -Od.

2. Link using debug:full and debugtype:coff.

3. Load the program into the debugger.

 ntsd simple -install

4. Use s+ to change to source mode.

5. Set breakpoints on the main and "service_main".

 bp servive_main

6. Type "v .<number>" to list source lines starting at <number>. For
 example, type the following:

 v .240

A running service may be debugged by invoking the debugger from a command
line. After obtaining the PID from PVIEWER you can invoke NTSD from a
command line. For example:

NTSD -p <PID>

before using NTSD make sure you have it installed properly and an NTSD
section in your Tools.ini file. An example of a NTSD section is:

[NTSD]
sxe: 3c
sxe: cc
sxe: av
sxe: et

sxe: ep
sxe: ld
$u0: VeryLongName
VerboseOutput:true
DebugChildren=TRUE
LazyLoad=TRUE
StopFirst=TRUE
StopOnProcessExit=TRUE

Piping Output

When a service is started under a debugger, it is not possible to send
debug output directly to a window on the User's desktop. The output can
either be sent to a kernel debugger or piped through remote.exe which can
be found in the \Mstools\Samples\Sdktools\Remote directory.

NOTE: The "System Account" and the "LocalSystem Account" are the same
account.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool kbhowto
KBSubcategory: TlsWindbg

Debugging a System-Wide Hook
PSS ID Number: Q102428

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Debugging a system-wide hook such as a journal hook must be done with the
extreme caution. When an application installs such a hook, it effectively
takes control of user input. In effect, this disables the interface with
the debugger. For example, after installing a journal record hook, you must
unhook the record hook when you want to allow the debugger to regain
control.

It is not possible to use an interactive debugger to debug an actively
installed journal hook using a single machine. It is possible to use a
remote debugger, because one interface can be blocked (or recording) while
the other one does the debugging.

MORE INFORMATION
================

System-wide input hook procedures can be thought of as being in three
possible states:

 unhooked (not installed)
 suspended
 hooked (installed)

In the unhooked state, the procedure imposes no control over user input. In
the hooked state, all user input specifically defined to be handled by this
hook passes through this procedure. In the suspended state, all user input
specifically defined to be handled by this hook is completely blocked.

In the case of a journal record hook, the suspended state can be achieved
when a breakpoint is reached within the hook procedure. When this happens,
all user input (system wide, that is) in the form of mouse and keyboard
input is blocked, and thus you cannot interact with the debugger or any
other application as you normally would. Fortunately, when the user presses
the CTRL+ESC or the CTRL+ALT+DEL key combinations, all system-wide hooks
are automatically unhooked, returning the system to the unhooked state.

Once this has occurred, it is likely that the application with the journal
hook is now in a undefined state (because it had the hook pulled out from
underneath it, so to speak). Fortunately, the system will send all
applications the WM_CANCELJOURNAL message to indicate that it has removed
the hook. A well behaved application can intercept this message and adjust

its state accordingly.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrHks

Debugging Applications Under Win32s
PSS ID Number: Q102430
--
The information in this article applies to:

 - Microsoft Win32s versions 1.0, 1.1, and 1.2
--

SUMMARY
=======

To start debugging a Win32-based application, make sure that it runs
correctly under Windows NT. Use either WinDbg or NTSD to track down any
problems.

Then, install the debugging libraries for Windows 3.1 and the debug version
of Win32s. Hook the machine to another machine running a terminal emulator
and watch for any warnings that are issued. Be sure to select the
Win32sDebug flags carefully--selecting too many will generate more
information than you may care to see; selecting too few may cause you to
miss important information and warnings.

If you need to debug on Win32s, there are currently two options:

 - Use wdeb386 (note that this method is very tricky).

 - Use remote WinDbg (WDBG32S.EXE) if you are not familiar with using a
 kernel debugger. This method requires two machines: a Win32s
 machine to run the application and the remote debugger and a Windows NT
 machine to run WinDbg.

If you have Microsoft Visual C++ 32-bit Edition version 1.0, CodeView for
Win32s is an additional option. CodeView for Win32s is a user-level
debugger; remote debugging is not necessary, and therefore CodeView for
Win32s does not require a second machine. CVW32S does not come with Visual
C++ 2.0 and later. You can still use CVW32S.EXE with later versions of
Visual C++, if you link with /PDB:none and /INCREMENTAL:no and if you do
not use new features such as templates or C++ exception handling.

MORE INFORMATION
================

When performing remote debugging, make sure that the cable is set up
exactly as specified in the Win32s Programmer's Reference. The remote
WinDbg does not support software flow control, so it is very important that
the hardware flow control is set up properly. If it is not set up
correctly, you will have problems as the buffers overflow.

WinDbg supports XON/XOFF (software) flow control, which means that the
standard 3-wire cable can now be used, although the default is still
hardware handshaking (5-wire cable). To enable XON/XOFF, you must specify
the XON flag in the serial transport parameters on both WinDbg and
remote WinDbg.

To enable XON/XOFF in the remote WinDbg:

1. Select Options to bring up the Transport dynamic-link library (DLL)
 dialog box.

2. Select the serial transport and make any needed modifications to
 the communications port or baud rate parameters.

3. Place the XON flag at the end of the Parameters box. For example,
 "COM1:19200 XON". Note that the space is needed.

To enable XON/XOFF on WinDbg:

1. Select Options/Debug DLLs.

2. Select the proper serial transport layer.

3. Choose the Change button.

4. Add XON to the end of the Parameters line: "COM1:19200 XON".

It is very important that both sides of the debugger use the same protocol.
If they do not, both debuggers will probably hang. Also, the remote
debugging environment requires that binaries be located on the same
drive/directory on both the development and target systems. For example, if
WIN32APP.EXE is built from sources in a C:\DEV\WIN32APP directory, the
binary should be located in this directory on both systems. If you build
your source files by specifying fully qualified paths for the compiler, the
compiler will place this information with the debug records which will
allow WinDbg to automatically locate the appropriate source files.

For additional information on remote debugging, please see the "Win32s
Programmer's Reference" which is included with the Win32 SDK.

Additional reference words: 1.00 1.10 1.20
KBCategory: kbprg
KBSubcategory: W32s

Debugging Console Apps Using Redirection
PSS ID Number: Q102351
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0
--

SUMMARY
=======

To redirect the standard input (STDIN) for a console application named
APP.EXE from a file named INPUT.TXT, the following syntax is used:

 app < input.txt

However, the following syntax will not work when attempting to debug
this application using WinDbg with STDIN redirected:

 windbg app < input.txt

To debug the application as desired, use

 windbg cmd /c "app < input.txt"

MORE INFORMATION
================

This will allow WinDbg to debug whatever goes on in the cmd window. A
dialog box will be displayed that says "No symbolic Info for Debuggee."
This message refers to CMD.EXE; dismiss this dialog box. When the child
process (APP.EXE) is started, the command window will read "Stopped at
program entry point." To continue, type "g" at the command window. Note
that APP.EXE will begin executing, then you can open the source file and
set breakpoints.

This technique is also useful when debugging an application that behaves
differently when run with a debugger than it does when it is run in the
command window.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsWindbg

Debugging DLLs Using WinDbg
PSS ID Number: Q97908
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0
--

SUMMARY
=======

This article describes the process of debugging dynamic-link libraries
(DLLs) under WinDbg. As a further example, debugging File Manager
extensions under Windows NT is discussed in the "More Information" section
in this article.

MORE INFORMATION
================

The application and the DLL must be built with certain compiler and linker
switches so that debugging information is included. These switches can be
found in the $(cdebug) and $(ldebug) macros, respectively, which are
defined in NTWIN32.MAK.

NOTE: It is important to disable optimization with -Od or locals will not
be available in the locals window and line numbers may not match the
source.

The application is loaded into WinDbg either by specifying "windbg
<filename>" on the command prompt or by starting WinDbg from the program
group and specifying <filename> in the Program Open dialog box (from the
Program menu, choose Open). Note that <filename> is the name of the
application, not the DLL. It is not necessary to specify the name of the
DLL to be debugged.

The DLL is loaded either when execution of the application begins or
dynamically through a call to LoadLibrary(). In the first case, simply
press F8 to begin execution. All DLLs and symbolic information are loaded.
To trace through the DLL code, breakpoints can be set in the DLL using a
variety of methods:

 - From the Debug menu, choose Breakpoints. The dialog box is Program Open.

 -or-

 - Open the source file and use F9 or the "hand" button on the toolbar.

 -or-

 - Go to the Command window and type:

 bp[#] <Options>

 <Options>:

 addr break at address
 @line break at line

In the case that the DLL is dynamically loaded, pressing F8 causes all
other DLLs and symbolic information to load. The same methods described
above can be used to set breakpoints; however, the user will get a dialog
box indicating that the breakpoint was not instantiated. After the call to
LoadLibrary() has been executed, all breakpoints are instantiated (it is
possible to note the color change if the DLL source window is open) and
will behave as expected.

To set a breakpoint in a DLL that is not loaded, specify the context when
setting the breakpoint. The syntax for a context specifier is:

 {proc, module, exe}addr

 -or-

 {proc, module, exe}@line

Example: {func, module.c, app.exe}0x50987. The first two parameters are
optional, so {,,app.exe}0x50987 or {,,app.exe}func could be used instead.

For example, assume that we are trying to debug a File Manager extension
under Windows NT that has been built with full debugging information. The
procedure to debug the extension is as follows:

1. Open a Command window.
2. Start WinDbg WINFILE.
3. Set a breakpoint on FmExtensionProc().
4. At the Command window, type "g" and press ENTER. The debugger will
 continue executing the program form the point where it stopped
 (which could be from the beginning, at the breakpoint, and so on).

WinDbg will start WINFILE and when FmExtensionProc() is executed, WinDbg
will break into the WINFILE process.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsWindbg

Debugging OLE 2.0 Applications Under Win32s
PSS ID Number: Q123812

The information in this article applies to:

 - Microsoft Win32s version 1.2

SUMMARY
=======

The following are available to help you debug your OLE 2.0 applications
under Win32s:

 - Debug versions of the OLE DLLs, included with Win32s. (See the Win32s
 Programmer's Reference for more information on the debug DLLs.)

 - Failure/trace messages.

 - The OLE SDK for Win32s, version 1.2, included on the Microsoft Developer
 Network (MSDN) CD.

For information on a utility that will convert OLE error codes into
error message, please see the following article in the Microsoft Knowledge
Base:

 ARTICLE-ID: Q122957
 TITLE : SAMPLE: DECODE32: OLE Error Code Decoder Tool

MORE INFORMATION
================

The debug version of OLE can send diagnostic information to the debug
terminal. To enable this feature, include the following lines in the
SYSTEM.INI:

 [Win32sDbg]
 ole20str=xxxxx
 ole20str16=yyy

Use ole20str for 32-bit OLE and ole20str16 for 16-bit OLE. Set them to a
combination of the following letters (case sensitive):

 f - Failure message, kind of asserts.
 v - Verbose. General purpose messages.
 1 - Trace special translation activity for 32/16 interoperability.
 i - Trace initialization of OLE.
 t - Trace termination and cleanup of OLE.

The following tools are contained in the OLE SDK for Win32s, version 1.2:

 - DFVIEW - Show the content of storage files.

 - LRPCSPY - Monitor LRPC messages sent by 16-bit OLE applications (does

 not require Win32s).

 - RPCSPY32 - Monitor LRPC messages from both 16-bit and 32-bit OLE
 applications.

 - DOBJVIEW and DOBJVW32 - View objects placed on the clipboard as well as
 objects transferred by drag and drop.

 - IROTVIEW and IROTVW32 - Display the contents of the OLE running object
 table (ROT).

 - OLE2VIEW and OLE2VW32 - Identify objects, interfaces, inproc and local
 servers, registration database entries, and so on.

Additional reference words: 1.20
KBCategory: kbole kbprg
KBSubcategory: W32s

Debugging the Win32 Subsystem
PSS ID Number: Q105677
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5
--

The instructions on page 1-18 of Part II of the Win32 "Programmer's Guide"
included with the Win32 Device Driver Kit (DDK) says to use NTSD -d -p -1
to attach to the Win32 subsystem process and enable debugging of its user-
mode drivers. This results in the error:

 NTSD: cannot debug PID -1
 error = 5

To enable this procedure to work properly, change the GlobalFlag value
under:

 HKEY_LOCAL_MACHINE\
 SYSTEM\
 CurrentControlSet\
 Control\
 Session Manager

Remove the flag 0x00080000 from 0x211a0000 to make it 0x21120000. The
0x00080000 flag disables the ability to debug CSRSS.EXE (the client
server run time subsystem), which is specified by the "-p -1"
parameter.

It is also possible to debug CSRSS using "WinDbgRm -c -p-1" instead of
NTSD. Make sure that WinDbgRm defaults to debugging using TLPIPE.DLL
as its transport layer, then run "windbgrm -c -p-1" on the debuggee.

On the debugger machine, make sure that CSRSS.EXE and any dynamic-link
libraries (DLLs) that you are debugging in association with it are in
the same directory, and run WinDbg. To set the transport DLL, choose
Debug from the Options menu, choose Transport DLLs, and set the
transport DLL to TLPIPE. Set the host name entries to be the machine
name of the debuggee.

Additional reference words: 3.10 3.50
KBCategory: kbtool
KBSubcategory: TlsMisc

Debugging Universal Thunks
PSS ID Number: Q105756
--
The information in this article applies to:

 - Microsoft Win32s versions 1.0, 1.1, and 1.2
--

The general recommendation for an application targeted for Win32s is to
debug it under Windows NT, then make sure that the application works under
Win32s. However, Universal Thunks are not supported on Windows NT, so it is
not possible to debug Win32-based applications that use the Universal Thunk
in this manner.

To debug across the Universal Thunk, you can use WDEB386, which is
available with the Windows 3.1 Software Development Kit (SDK). If you are
not familiar with WDEB386, you may find it simpler to use other methods. In
that case, be sure to install the debug version of Windows 3.1 and the
debug version of Win32s and enable suitable notifications for Win32s
(unimplemented functions and messages, verbose, and so forth). You may find
OutputDebugString() useful for displaying extra information.

For more information on WDEB386, please see the Knowledge Base article
"Tips On Installing WDEB386." For information on installing the debug
version of Windows, please see your Windows SDK documentation.

Additional reference words: 1.00 1.10 1.20
KBCategory: kbprg
KBSubcategory: W32s

Default Attributes for Console Windows
PSS ID Number: Q90837

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

Console attributes (screen fonts, screen colors, insert/overstrike, etc.)
are stored by console title within each user's profile. When a profile for
a new window is not found, the .DEFAULT configuration is used.

MORE INFORMATION
================

You can change the start font, screen colors, pop up colors, and
insert/overstrike defaults using REGEDT32. Under the key HKEY_USERS, there
is a .DEFAULT along with an entry for each user who has an account on that
machine. Select DEFAULT\Console\Configuration. Use Edit.AddValue to add
FontSize as a REG_DWORD to change the default font, Add ScreenColors and
PopupColors as REG_DWORDs to change those defaults. To reset the console to
be in insert mode rather than overstrike mode, add InsertMode as REG_SZ and
set it to ON.

To get the right settings for the font size and colors you should first set
your MS-DOS Prompt window font size and colors. Look up Console\MS-DOS
Prompt\Configuration under your account and write down the values for the
keys you need to add. Then go back to DEFAULT\Console\Configuration and add
those values.

The DEFAULT configuration is read when the user chooses the Command
prompt. However, if the user chooses to run a command shell via the
File Manager (selecting CMD.EXE and choosing Run from the File menu),
the DEFAULT configuration will not be read out of the registry.

WARNING:

RegEdit is a very powerful utility that facilitates directly changing
the Registry Database. Using RegEdit incorrectly can cause serious
problems, including hard disk corruption. It may be necessary to
reinstall the software to correct some problems. Microsoft does not
support changes made with RegEdit. Use this tool at your own risk.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseCon

Default Edit Control Entry Validation Done by Windows
PSS ID Number: Q74266

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

Under the Microsoft Windows graphical environment, multiline and
single-line edit controls do not accept characters with virtual key
code values less than 0x20. The two exceptions are the TAB and ENTER
keys; users can enter these characters only in a multiline edit
control.

If an application creates an edit control with the ES_LOWERCASE or
ES_UPPERCASE style, text entry is converted into the specified case.

If an application creates an edit control with the ES_OEMCONVERT
style, the text is converted from the ANSI character set to the OEM
character set and then back to ANSI for display in the control.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbui
KBSubcategory: UsrCtl

Default Stack in Win32-Based Applications
PSS ID Number: Q97786

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

By default, space is reserved for applications in the following manner:

 1 megabyte (MB) reserved (total virtual address space for the stack)

 1 page committed (total physical memory allocated when stack is
 created)

 Note: The -stack linker option can be used to modify both of these
 values.

The default stack size is taken from the process default reserve stack
size.

The operating system will grow the stack as needed by committing 1 page
blocks (4K on an x86 machine) out of the reserved stack memory. Once all of
the reserved memory has been committed, Windows NT will attempt to continue
to grow the stack into the memory adjacent to the memory reserved for the
stack, as shown in the following example on an x86 machine:

 |<--- Total 1 MB for stack --->|<--- Adjacent memory --->|
 --
4K	1020K
 --

However, once the stack grows to the point that the adjacent area is not
free (and this may happen as soon as the reserved 1 MB has been committed),
the stack cannot grow any farther. Therefore, it is very risky to rely on
this memory being free. Applications should take care to reserve all the
memory that will be needed by increasing the amount of memory reserved for
the stack.

In other cases, it may be desirable to reduce the amount of memory reserved
for the stack.

The /STACK option in the linker and the STACKSIZE statement in the DEF file
can be used to change both the amount of reserved memory and the amount of
committed memory. The syntax for each method is shown below:

 /STACK:[reserve][,commit]

 STACKSIZE [reserve][,commit]

MORE INFORMATION
================

Each new thread gets its own stack space of committed and reserved memory.
CreateThread() has a stacksize parameter, which is the commit size. If a
new size is not specified in the CreateThread() call, the new thread
takes on the same stack size as the thread that created it, whether that be
the default value, a value defined in the DEF file, or by the linker
switch. If the commit size specified is larger than the default process
stack size, the stack size is set to the commit size. When specifying a
stack size of 0, the commit size is taken from the process default commit.

The system handles committing more reserved stack space when needed, but
cannot reserve or commit more than the total amount initially reserved (or
committed if no additional is reserved). Remember that the only resource
consumed by reserving space is addresses in your process. No memory or
pagefile space is allocated. When the memory is actually committed, both
memory and pagefile resources are allocated. There is no harm in reserving
a large area if it might be needed.

As always, automatic variables are placed on the stack. All other static
data is located in the process address space. Because they are static, they
do not need to be managed like heap memory.

Note that under Win32s 1.2 and earlier, stacks are limited to a maximum of
128K (this limit has been increased with Win32s 1.25a). The same stack is
used on the 16-bit side of a Universal Thunk (UT). A 16:16 pointer is
created and it points to the top of the 32-bit stack. The selector base is
set in such a way that the 16-bit code is allocated at least an 8K stack.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseMm

Default/Private Dialog Classes, Procedures, DefDlgProc
PSS ID Number: Q68566

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The information below explains the differences between default and
private dialog classes, their associated dialog procedures, and using
the DefDlgProc() function.

This information is organized as a comparison between private and
default dialog classes, covering class registration, dialog templates,
dialog creation, and message processing.

Note that the source to the DefDlgProc() function is provided with the
Windows Software Development Kit (SDK) version 3.0. The code is
supplied on the Sample Source 2 disk in the DEFDLG.C file. By default,
DEFDLG.C is placed into the \SAMPLES\DEFPROCS directory if the SDK
installation program copies the sample source code.

There are many functions and macros used in DefDlgProc() that are
internal to Windows and cannot be used by applications. No additional
information is available on these functions and macros.

MORE INFORMATION
================

All dialog classes are window classes, just as all dialog boxes are
windows. All dialog classes must declare at least DLGWINDOWEXTRA in
the cbWndExtra field of the WNDCLASS structure before the dialog class
is registered. The Windows Dialog Manager uses this area to store
special information for dialog boxes.

The default dialog class is registered by Windows at startup. The
window procedure for this class is known as DefDlgProc(), which is
located in Windows's USER module. DefDlgProc() calls the application-
provided dialog function, which returns TRUE if it processes a message
completely or FALSE if DefDlgProc should process the message further.

If an application registers a private dialog class, it provides a
window procedure for the dialog box. The window procedure is the same
as that for any other application window and returns a LONG value.
Messages that are not processed by this window function are passed to
DefDlgProc().

Dialog Class Registration

Windows registers the default dialog class, which is represented by
the value 0x8002. Windows uses this class when an application creates
a dialog box using the DialogBox() or CreateDialog() functions, but
specifies no class in the dialog resource template.

To use a private dialog class, the application must specify the fields
of a WNDCLASS structure and call RegisterClass(). This is the same
procedure that Windows uses to register the default dialog class.

In either case, the value in the cbWndExtra field of the WNDCLASS
structure must contain a value of at least DLGWINDOWEXTRA. These bytes
are used as storage space for dialog-box specific information, such as
which control has the focus and which button is the default.

When a dialog class is registered, the lpfnWndProc field of the
WNDCLASS structure must contain a function pointer. For the default
dialog class, this field points to DefDlgProc(). For a private class,
the field points to application-supplied procedure that returns a LONG
(as does a normal window procedure) and passes all unprocessed
messages to DefDlgProc().

Dialog Templates

Resource scripts are almost identical whether used with a default or a
private dialog class. Dialog boxes using a private class must use the
CLASS statement in the dialog template. The name given in the CLASS
statement must match the name of class that exists (is registered)
when the dialog box is created.

Dialog Creation and the lpfnDlgFunc Parameter

Applications create dialog boxes using the function DialogBox(),
CreateDialog(), or one of the variant functions such as
DialogBoxIndirect(). The complete list of functions is found on page 1-
43 of the "Microsoft Windows Software Development Kit Reference Volume
1."

All dialog box creation calls take a parameter called lpfnDlgFunc,
which can either be NULL or the procedure instance address of the
dialog box function returned from MakeProcInstance(). When the
application specifies a private dialog class and sets lpfnDlgFunc to a
procedure instance address, the application processes each message for
the dialog box twice. The message processing proceeds as follows:

1. Windows calls the dialog class procedure to process the message. To
 process a message in the default manner, this procedure calls

 DefDlgProc().

2. DefDlgProc() calls the procedure specified in the dialog box creation
 call.

The procedure specified in lpfnDlgFunc must be designed very
carefully. When it processes a message, it returns TRUE or FALSE and
does not call DefDlgProc(). These requirements are the same as for any
other dialog procedure.

Using a dialog procedure in conjunction with a private dialog class
can be very useful. Processing for the private dialog class can be
generic and apply to a number of dialog boxes. Code in the dialog
procedure is specific to the particular instance of the private dialog
class.

Dialog Message Processing

In dialog boxes with the default class, the application provides a
callback dialog function that returns TRUE or FALSE, depending on
whether or not the message was processed. As mentioned above,
DefDlgProc(), which is the window procedure for the default dialog
class, calls the application's dialog function and uses the return
value to determine whether it should continue processing the message.

In dialog boxes of a private class, Windows sends all messages to the
application-provided window procedure. The procedure either processes
the message like any other window procedure or passes it to
DefDlgProc(). DefDlgProc() processes dialog-specific functions and passes
any other messages to DefWindowProc() for processing.

Some messages are sent only to the application-supplied procedure
specified in the call to CreateDialog() or DialogBox(). Two examples of
functions that Windows does not send to the private dialog class
function are WM_INITDIALOG and WM_SETFONT.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrDlgs

Defining Private Messages for Application Use
PSS ID Number: Q86835

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In the Microsoft Windows environment, an application can define a private
message for its own use without calling the RegisterWindowMessage API.
Message numbers between 0x8000 and 0xBFFF are reserved for this purpose.

For Windows NT and Windows 95, the system defines a new message WM_APP
(value 0x8000). Applications can make use of the range WM_APP through
0xBFFF for private messages without conflict. The only requirement is that
the .EXE file must be marked version 4.0 (use the linker switch
/subsystem:windows,4.0). Windows NT 3.5 and 3.51 and Windows 95 will run
applications marked version 4.0.

MORE INFORMATION
================

The documentation for the WM_USER message lists four ranges of message
numbers as follows:

 Message Number Description
 -------------- -----------

 0 through WM_USER-1 Messages reserved for use by Windows.

 WM_USER through 0x7FFF Integer messages for use by private window
 classes.

 0x8000 through 0xBFFF Messages reserved for use by Windows.

 0xC000 through 0xFFFF String messages for use by applications.

 Greater than 0xFFFF Reserved by Windows for future use.

When an application subclasses a predefined Windows control or
provides a special message in its dialog box procedure, it cannot use
a WM_USER+x message to define a new message because the predefined
controls use some WM_USER+x messages internally. It was necessary to
use the RegisterWindowMessage function to retrieve a unique message
number between 0xC000 and 0xFFFF.

To avoid this inconvenience, messages between 0x8000 and 0xBFFF were
redefined to make them available to an application. Messages in this
range do not conflict with any other messages in the system.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbui
KBSubcategory: UsrMsg

Definition of a Protected Server
PSS ID Number: Q102447

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

The Win32 application programming interface (API) reference briefly
discusses creating a "protected server" that assigns security to private
objects. This article explains the concept of a protected server" and its
relationship to private objects.

MORE INFORMATION
================

A protected server is an application that provides services to clients.
These services could be as simple as saving and retrieving information from
a database while issuing security checks to verify that the client has
proper access.

A private object is an application-defined data structure that both the
client and server recognize. Private objects are not registered with nor
recognized by the Windows NT operating system; they are entirely
application-defined.

It is not uncommon for security to be assigned to private objects in a
protected server's database. For example, when a client asks the server to
create a new object in the database, the server could use the
CreatePrivateObjectSecurity() Win32 API to create a security descriptor
(SD) for the new private object. The server would then store the SD with
the private object in the database. It is important to note that there is
nothing in the SD that associates it with the private object. Instead, it
is up to the protected server to maintain that association in the private
object or in the database. It is likely that the private object and the
associated SD would be stored together in a single database record.

A protected server application is responsible for checking a client's
access before providing information. For example, when a client asks the
server to retrieve some data, the server would go out and locate the record
(which would contain the private object and SD) and bring a copy of the SD
into memory. It would then call the AccessCheck() Win32 API passing the SD,
the clients access token, and the desired access mask. AccessCheck() will
check the client's access against the object's SD to determine if access is
permitted. Depending on the result of AccessCheck(), the protected server
would either provide the requested information or deny access.

In conclusion, a protected server is a application that performs operations
on private objects that are entirely user defined. The protected server is

responsible for associating security descriptors to those objects and must
take the steps necessary to verify a client's access.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

Definitions for LDLLHandler and Other Advanced Help Features
PSS ID Number: Q150999
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit for
 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0

 - Microsoft Win16 Software Development Kit for
 - Microsoft Windows version 3.1
--

SUMMARY
=======

This article provides the definitions necessary to use advanced Windows
Help features such as embedded windows, LDLLHandler, and the internal
functions exposed by Windows Help. This information is currently not
documented in any of the shipping SDK documentation.

MORE INFORMATION
================

 /* Macro error structure and error code definitions */

 #define wMACRO_ERROR 128 /* Maximum error msg length */

 typedef struct {
 WORD fwFlags; /* indicates how error will be handled */
 WORD wError; /* Macro error code */
 /* Error message (if wError == wMERR_MESSAGE) */
 char rgchError[wMACRO_ERROR];
 } ME, NEAR *PME, FAR *QME;

 /* Macro error codes */
 #define wMERR_NONE 0 /* No error */
 #define wMERR_MEMORY 1 /* Out of memory (local) */
 #define wMERR_PARAM 2 /* Invalid parameter passed */
 #define wMERR_FILE 3 /* Invalid file parameter */
 #define wMERR_ERROR 4 /* General macro error */
 #define wMERR_MESSAGE 5 /* Macro error with message */

 /* Flags constants indicating how error may be handled */
 #define fwMERR_ABORT 0x0001 /* Allow the "abort" option */
 #define fwMERR_CONTINUE 0x0002 /* Allow the "continue" option */
 #define fwMERR_RETRY 0x0004 /* Allow the "retry" option */

 /* Classes of messages that may be sent to DLLs */
 #define DC_NOMSG 0x00
 #define DC_MINMAX 0x01
 #define DC_INITTERM 0x02
 #define DC_JUMP 0x04
 #define DC_ACTIVATE 0x08

 #define DC_CALLBACKS 0x10

 /* Messages sent to DLLs */
 #define DW_NOTUSED 0
 #define DW_WHATMSG 1
 #define DW_MINMAX 2
 #define DW_SIZE 3
 #define DW_INIT 4
 #define DW_TERM 5
 #define DW_STARTJUMP 6
 #define DW_ENDJUMP 7
 #define DW_CHGFILE 8
 #define DW_ACTIVATE 9
 #define DW_CALLBACKS 10

 /* Embedded Window messages */
 #define EWM_RENDER 0x706A
 #define EWM_QUERYSIZE 0x706B
 #define EWM_ASKPALETTE 0x706C
 #define EWM_FINDNEWPALETTE 0x706D

 /* Embedded Window structure */
 typedef struct tagCreateInfo {
 short idMajVersion;
 short idMinVersion;
 LPSTR szFileName; /* Current Help file */
 LPSTR szAuthorData; /* Text passed by the author */
 HANDLE hfs; /* Handle to the current file system */
 DWORD coFore; /* Foreground color for this topic */
 DWORD coBack; /* Background color for this topic */
 } EWDATA, FAR *QCI;

 /* Embedded window rendering info */
 typedef struct tagRenderInfo {
 RECT rc;
 HDC hdc;
 } RENDERINFO, FAR * QRI;

 /* file mode flags */

 #define fFSReadOnly (BYTE)0x01
 #define fFSOpenReadOnly (BYTE)0x02

 #define fFSReadWrite (BYTE)0x00
 #define fFSOpenReadWrite (BYTE)0x00

 /* seek origins */
 #define wFSSeekSet 0
 #define wFSSeekCur 1
 #define wFSSeekEnd 2

 /* low level info options */
 #define wLLSameFid 0
 #define wLLDupFid 1
 #define wLLNewFid 2

 /* Return codes (help file system) */
 #define rcSuccess 0
 #define rcFailure 1
 #define rcExists 2
 #define rcNoExists 3
 #define rcInvalid 4
 #define rcBadHandle 5
 #define rcBadArg 6
 #define rcUnimplemented 7
 #define rcOutOfMemory 8
 #define rcNoPermission 9
 #define rcBadVersion 10
 #define rcDiskFull 11
 #define rcInternal 12
 #define rcNoFileHandles 13
 #define rcFileChange 14
 #define rcTooBig 15

 /* following not from core engine: */
 #define rcReadError 101

 /* Errors for Error() */
 #define wERRS_OOM 2 /* Out of memory */
 #define wERRS_NOHELPPS 3 /* No help in print setup */
 #define wERRS_NOHELPPR 4 /* No help while printing */
 #define wERRS_FNF 1001 /* Cannot find file */
 #define wERRS_NOTOPIC 1002 /* Topic does not exist */
 #define wERRS_NOPRINTER 1003 /* Cannot print */
 #define wERRS_PRINT 1004 /* Print error */
 #define wERRS_EXPORT 1005 /* Can't copy to clipboard */
 #define wERRS_BADFILE 1006 /* Not a Windows Help file */
 #define wERRS_OLDFILE 1007 /* Cannot read help file */
 #define wERRS_VIRUS 1011 /* Bad .EXE */
 #define wERRS_BADDRIVE 1012 /* Invalid drive */
 #define wERRS_WINCLASS 1014 /* Bad window class */
 #define wERRS_BADKEYWORD 3012 /* Invalid keyword */
 #define wERRS_BADPATHSPEC 3015 /* Invalid path */
 #define wERRS_PATHNOTFOUND 3017 /* Path not found */
 #define wERRS_DIALOGBOXOOM 3018 /* No memory for dialog */
 #define wERRS_DISKFULL 5001 /* Disk is full */
 #define wERRS_FSREADWRITE 5002 /* File I/O error */

 /* Actions for LGetInfo() */
 #define GI_NOTHING 0 /* Not used */
 #define GI_INSTANCE 1 /* Application instance handle */
 #define GI_MAINHWND 2 /* Main window handle */
 #define GI_CURRHWND 3 /* Current window handle */
 #define GI_HFS 4 /* Handle to file system in use */
 #define GI_FGCOLOR 5 /* Foreground color used by app */
 #define GI_BKCOLOR 6 /* Background color used by app */
 #define GI_TOPICNO 7 /* Topic number */
 #define GI_HPATH 8 /* Handle containing path */

 /* Callback Function Table offsets: */

 #define HE_NotUsed 0
 #define HE_HfsOpenSz 1
 #define HE_RcCloseHfs 2
 #define HE_HfOpenHfs 3
 #define HE_RcCloseHf 4
 #define HE_LcbReadHf 5
 #define HE_LTellHf 6
 #define HE_LSeekHf 7
 #define HE_FEofHf 8
 #define HE_LcbSizeHf 9
 #define HE_FAccessHfs 10
 #define HE_RcLLInfoFromHf 11
 #define HE_RcLLInfoFromHfs 12
 #define HE_ErrorW 13
 #define HE_ErrorSz 14
 #define HE_GetInfo 15
 #define HE_API 16

Additional reference words: 3.10 3.51 4.00 LDLLHandler
KBCategory: kbtool
KBSubcategory: TlsHlp

Detecting Closure of Command Window from a Console App
PSS ID Number: Q102429

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

Win32 console applications run in a command window. For the console
application to detect when the console is closing, register a console
control handler and look for the following values in your case statement:

 CTRL_CLOSE_EVENT User closes the console
 CTRL_LOGOFF_EVENT User logs off
 CTRL_SHUTDOWN_EVENT User shuts down the system

For an example, see the CONSOLE sample. For more information, see the entry
for SetConsoleCtrlhandler() in the Win32 application programming interface
(API) reference.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseCon

Detecting Data on the Communications Port
PSS ID Number: Q118625

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

To detect whether there is any data available on the communications (COM)
port without calling ReadFile(), use the ClearCommError() API. The field
COMSTAT.CbInQue contains the number of bytes not yet read by a call to
ReadFile().

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseCommapi

Detecting Keystrokes While a Menu Is Pulled Down
PSS ID Number: Q35930

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

In the Windows environment, there are two methods that an application
can use to receive notification that a key is pressed while a menu is
dropped down:

 - The easier method is to process the WM_MENUCHAR message that is sent
 to an application when the user presses a key that does not correspond
 to any of the accelerator keys defined for the current menu.

 - The other method is to use a message filter hook specified with the
 SetWindowsHook function. The hook function can process a message
 before it is dispatched to a dialog box, message box, or menu.

The hook functions and the WM_MENUCHAR message are documented in the
Microsoft Windows SDK "Reference: Volume 1" for version 3.0 and in
"Programmer's Reference, Volume 3: Messages, Structures, and Macros" for
version 3.1.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrInp

Detecting Logoff from a Service
PSS ID Number: Q151424
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), for Windows NT,
 versions 3.5, 3.51, 4.0
--

SUMMARY
=======

Sometimes it is handy for a service to determine whether or not a user is
logged on the system. For example, there are circumstances under which the
service displays a dialog box and waits for a user to respond. If this is
done when no user is logged on, the service is blocked until a user logs
on.

Services can be notified when a user logs off a system but not when a
user logs on. A service receives a notification from the system by
installing a Console Control handler. The handler receives a
CTRL_LOGOFF_EVENT when the interactive user logs off the system. For more
information on Console Control handlers, please refer to the Win32 SDK
Online Reference.

A service can determine whether an interactive user is logged on by
determining whether the process specified in the following key is running:

 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion
 \Winlogon

In this key, the process specified by the value shell is launched when an
interactive user logs onto a system. If this process is running, it
indicates that there is an interactive user logged on. To enumerate the
processes on a Windows NT system, the service needs to examine the Windows
NT performance counters. For more information, please refer to either the
TLIST sample on the Win32 SDK or the Win32 SDK Online References.

Additional reference words: 3.50 3.51 4.00
KBCategory: kbprg
KBSubcategory: BseService

Detecting Logoff from a Service
PSS ID Number: Q104122

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

Sometimes it is handy for a service to know whether or not a user is logged
on to the system. For example, suppose that there are circumstances under
which the service displays a dialog box and waits for the user to respond.
If this is done while the user is logged off, the service is blocked until
the user logs on again.

Unfortunately, there is no direct way for a service to detect whether or
not a user is logged on. There is, however, an indirect method. If you
supply MB_DEFAULT_DESKTOP_ONLY as one of the flags in the fuStyle parameter
of MessageBox(), the function will fail if no one is logged on or if a
screen saver is running.

SetConsoleCtrlHandler can be used to install a function that will get
called when the user logs off.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseService

Detecting the Presence of NetBIOS in Win32s
PSS ID Number: Q110844
--
The information in this article applies to:

 - Microsoft Win32s versions 1.1 and 1.2
--

The way to determine whether NetBIOS is present from a Win32 application
running on Win32s is to issue an invalid NetBIOS command (such as 0xB2) and
check that the return code is 0x3 (Illegal command).

Additional reference words: 1.10 1.20
KBCategory: kbprg
KBSubcategory: W32s

Detecting Windows NT from an MS-DOS-Based Application
PSS ID Number: Q100290

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1 and 3.5

SUMMARY
=======

There are calls that MS-DOS-based applications can make that are not
supported under Windows NT. For example, calling Interrupt 25h to read the
disk is not supported under Windows NT. Therefore, in some cases MS-DOS-
based applications will need to know whether or not they are running under
Windows NT.

Interrupt 21h, function 3306h can be used by MS-DOS-based applications to
detect whether or not they are running under Windows NT. On return,
registers BL and BH will contain the operating system major and minor
numbers, respectively. If your application is running under Windows NT, the
return will be:

 BL = 5
 BH = 50

MORE INFORMATION
================

Note that it is important to check both BL and BH, because MS-DOS 5.0 will
also return a 5 in BL.

The following code demonstrates how to detect the operating system version
from an MS-DOS-based application:

Sample Code

#include <stdio.h>
#include <stdlib.h>
#include <io.h>

void main()
{
 unsigned char cbh = 0;
 unsigned char cbl = 0;

 _asm {
 mov ax, 3306h
 int 21h
 mov cbh, bh
 mov cbl, bl
 }
 printf("After int 21h\n");

 printf("%u, %u (bh, bl)\n", cbh, cbl);
}

Additional reference words: 3.10 3.50 determine
KBCategory: kbprg
KBSubcategory: SubSys

Detecting x86 Floating Point Coprocessor in Win32
PSS ID Number: Q124207

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In Windows NT (x86) and Windows 95, floating point is emulated by the
operating system, in the event that a numeric coprocessor is not present.
This allows Win32-based applications to be compiled with floating point
instructions present, which will be trapped by the operating system at
runtime in the event that a coprocessor is not present. This behavior is
transparent to the application, so it is difficult to detect.

In some cases, it is useful to execute code based on the presence of a
numeric coprocessor, so this article explains how to do it.

MORE INFORMATION
================

One approach you can use to detect whether a coprocessor is present is to
read the CR0 (System Control Register). This is not possible from Ring 3
application code under Windows NT, so a different approach is outlined
below.

To determine whether a coprocessor is present on a computer using the x86
platform running Windows NT, you need to determine if the registry entry
HKEY_LOCAL_MACHINE\\HARDWARE\\DESCRIPTION\\System\\FloatingPointProcessor
is present. If this key is present, a numeric coprocessor is present.

On the MIPS and Alpha platforms, this registry key is not present because
floating point support is built-in. The following function indicates
whether a numeric coprocessor is present on Windows NT. If the function
returns TRUE, a coprocessor is present. If the function returns FALSE, and
GetLastError() indicates ERROR_RESOURCE_DATA_NOT_FOUND, a coprocessor is
not present. Otherwise, an error occured while attempting to detect for a
coprocessor. Some error checking is omitted, for brevity.

BOOL IsCoProcessorPresent(void)
{
 #define MY_ERROR_WRONG_OS 0x20000000
 HKEY hKey;
 SYSTEM_INFO SystemInfo;

 // return FALSE if we are not running under Windows NT
 // this should be expanded to cover alternative Win32 platforms

 if(!(GetVersion() & 0x7FFFFFFF))
 {
 SetLastError(MY_ERROR_WRONG_OS);
 return(FALSE);
 }

 // we return TRUE if we're not running on x86
 // other CPUs have built in floating-point, with no registry entry

 GetSystemInfo(&SystemInfo);

 if((SystemInfo.dwProcessorType != PROCESSOR_INTEL_386) &&
 (SystemInfo.dwProcessorType != PROCESSOR_INTEL_486) &&
 (SystemInfo.dwProcessorType != PROCESSOR_INTEL_PENTIUM))
 {
 return(TRUE);
 }

 if(RegOpenKeyEx(HKEY_LOCAL_MACHINE,

"HARDWARE\\DESCRIPTION\\System\\FloatingPointProcessor",

 0,
 KEY_EXECUTE,
 &hKey) != ERROR_SUCCESS)
 {
 // GetLastError() will indicate ERROR_RESOURCE_DATA_NOT_FOUND
 // if we can't find the key. This indicates no coprocessor present
 return(FALSE);
 }

 RegCloseKey(hKey);
 return(TRUE);
}

Additional reference words: 3.10 3.50 4.00
KBCategory: kbprg kbcode
KBSubcategory: BseFltpt

Determining Available RGB Values of an Output Device
PSS ID Number: Q27225

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The best way to determine the colors supported by a device is to
enumerate the solid pens from a device context (DC) associated with
that device. The EnumObjects function enumerates the pens supported by
a specified device and calls a callback function for each pen. To do
so, EnumObjects requires three parameters: a device context associated
with the desired device as the hDC parameter, OBJ_PEN as the value of
the nOjbectType parameter, and the procedure-instance address of a
callback function as the lpObjectFunc parameter.

MORE INFORMATION
================

The first parameter for the callback function, lpLogObject, points to
a LOGPEN data structure that describes each enumerated pen. When the
lopnStyle field of the LOGPEN structure contains the PS_SOLID value,
the application can retrieve and store the value of the lopnColor
field.

NOTE: For true color devices (devices that support more than 8 bits-
per-pixel of color resolution), Windows enumerates only a subset of
the supported pens. These devices support almost any color.

The following code demonstrates the process described above:

int cMaxRGB, nCnt, nSolid; // Global variables for system RGB colors

void GetColorList(HWND hWnd)
{
 HDC hdc;
 FARPROC lpProcCallback;
 HANDLE hmem;
 BYTE FAR *lpmem;

 nCnt = nSolid = 0;
 hdc = GetDC(hWnd);
 cMaxRGB = GetDeviceCaps(hdc, NUMCOLORS);
 if (cMaxRGB >= 0x7FFF)

 return; // All colors available. Enumeration not required.

 lpProcCallback = MakeProcInstance(Callback, hInst);

 // Allocate space for color table
 hmem = GlobalAlloc(GHND, sizeof(COLORREF) * cMaxRGB);
 lpmem = GlobalLock(hmem);

 EnumObjects(hdc, OBJ_PEN, lpProcCallback, lpmem);

 FreeProcInstance(lpProcCallback);

 // Use the color table stored in the first nSolid entries of a
 // COLORREF array stored in lpmem.

 GlobalUnlock(hmem);
 GlobalFree(hmem);
 ReleaseDC(hWnd, hdc);
 return;
}

The source for the enumeration callback function is below. The
callback function must be listed in the EXPORTS section of the module
definition (DEF) file.

int FAR PASCAL Callback(LPLOGPEN lpLogPen, LPSTR lpData)
{
 nCnt++;
 if (lpLogPen->lopnStyle == PS_SOLID) // solid pen
 {
 COLORREF FAR *lpDest = (COLORREF FAR *)lpData + nSolid++;

 *lpDest = lpLogPen->lopnColor; // remember the solid color
 }

 if (nCnt >= cMaxRGB)
 return 0;
 return 1;
}

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbgraphic
KBSubcategory: GdiPal

Determining Connected Joysticks Under Windows 95
PSS ID Number: Q133065
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)
--

SUMMARY
=======

The joystick API joyGetNumDevs() behaves differently on Windows 95 than it
does in other implementations, so a different technique, involving
joyGetPosEx(), is required to determine the number of joysticks available
during game play.

This article provides the code for a function called JoysticksConnected()
that demonstrates how to determine the number of connected joysticks.

MORE INFORMATION
================

Under Windows 95, the joyGetNumDevs() API returns: 0 if no joystick drivers
have been installed or 16 (the highest possible number of connected
joysticks) in all other cases. This behavior is by design. To determine the
actual number of joysticks installed, use the joyGetPosEx() API.

The design for Windows 95 joystick drivers calls for the driver to
support two independent joystick input devices. Therefore, during driver
installation, two registry keys are created, and initialized. The keys
correspond to joystick 0 and joystick 1, respectively.

If no joystick support is available (no drivers), joyGetNumDevs() returns
0.

When joyGetNumDevs() returns a non-zero value, joyGetPosEx() returns
JOYERR_NOERRROR or JOYERR_PARMS (defined in the file MMSYSTEM.H). You can
examine the return values and determine the number of joysticks connected
as shown below. NOTE: when linking, WINMM.LIB must be from the Win32 SDK:

 int JoysticksConnected()
 {
 // determine number of joysticks installed in Windows 95

 JOYINFOEX info; // extended information

 int njoyId = 0; // first joystick

 int nConnected = 0; // goal - number of joysticks connected

 MMRESULT dwResult; // examine return values

 // Loop through all possible joystick IDs until we get the error
 // JOYERR_PARMS. Count the number of times we get JOYERR_NOERROR

 // indicating an installed joystick driver with a joystick currently
 // attached to the port.

 while ((dwResult = joyGetPosEx(njoyId++,&info)) != JOYERR_PARMS)

 if (dwResult == JOYERR_NOERROR)
 ++nConnected; // the count of connected joysticks

 return nConnected; // return the count of joysticks found

 } // JoysticksConnected

Additional reference words: 4.00 JOYERR connect kbinf
KBCategory: kbmm
KBSubcategory: MMJoy

Determining Selected Items in a Multiselection List Box
PSS ID Number: Q71759

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

To obtain the indexes of all the selected items in a multiselection list
box, the LB_GETSELITEMS message should be sent to the list box.

The message LB_GETCURSEL cannot be used for this purpose because it is
designed for use in single-selection list boxes.

Another approach is to send one LB_GETSEL message for every item of the
multiselection list box to get its selection state. If the item is
selected, LB_GETSEL returns a positive number. The indexes can be built
into an array of selected items.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbui
KBSubcategory: UsrCtl

Determining System Version from a Win32-based Application
PSS ID Number: Q92395

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s versions 1.2, 1.25a, and 1.3

SUMMARY
=======

In order to create a Win32-based application that takes advantage of the
features of each platform, it is necessary to determine the operating
system on which the application is currently running.

You can use GetVersion() or GetVersionEx() to determine what operating
system and version your application is running under. NOTE: GetVersion() is
supported on Windows 3.1, but GetVersionEx() is new to the Win32 API. A
Win32-based application might be running under MS-DOS/Windows using the
Win32s extension, Windows NT Workstation, Windows NT Server, or Windows 95.

MORE INFORMATION
================

According to the documentation, the return value of GetVersion() is a DWORD
that specifies the major and minor version numbers. GetVersionEx() uses
members of the OSVERSIONINFO structure (dwMajorVersion and dwMinorVersion).

The following table shows the return values from GetVersion() under various
environments:

+--+
| Environment | LOWORD | HIWORD |
+==+
| Win32s on | Windows version 3.1 | RESERVED * |
| Windows 3.1 | | |
+--+
| Windows NT | Windows version | RESERVED ** |
| | | |
+--+
| Windows 95 | Windows version 4.0 | RESERVED *** |
| | | |
+--+

 * The highest bit is 1. The remaining bits specify build number.
 Note that the version of MS-DOS cannot be determined as it can under
 Windows 3.x.
 ** The highest bit is 0. The remaining bits specify build number.
*** The highest bit is 1. The remaining bits are reserved.

The following sample code can be used to test the values returned by
GetVersion().

Sample Code 1

#include <windows.h>

void main()
{

 DWORD dwVersion;
 char szVersion[80];

 dwVersion = GetVersion();

 if (dwVersion < 0x80000000) {
 // Windows NT
 wsprintf (szVersion, "Microsoft Windows NT %u.%u (Build: %u)",
 (DWORD)(LOBYTE(LOWORD(dwVersion))),
 (DWORD)(HIBYTE(LOWORD(dwVersion))),
 (DWORD)(HIWORD(dwVersion)));
 }
 else if (LOBYTE(LOWORD(dwVersion))<4) {
 // Win32s
 wsprintf (szVersion, "Microsoft Win32s %u.%u (Build: %u)",
 (DWORD)(LOBYTE(LOWORD(dwVersion))),
 (DWORD)(HIBYTE(LOWORD(dwVersion))),
 (DWORD)(HIWORD(dwVersion) & ~0x8000));
 } else {
 // Windows 95
 wsprintf (szVersion, "Microsoft Windows 95 %u.%u (Build: %u)",
 (DWORD)(LOBYTE(LOWORD(dwVersion))),
 (DWORD)(HIBYTE(LOWORD(dwVersion))),
 (DWORD)(HIWORD(dwVersion) & ~0x8000));
 }

 MessageBox(NULL, szVersion, "Version Check", MB_OK);
}

The following sample code can be used to test the values returned by
GetVersionEx(). NOTE: The actual build number is derived by masking
dwBuildNumber with 0xFFFF.

Sample Code 2

{
 OSVERSIONINFO osvi;
 char szVersion [80];

 memset(&osvi, 0, sizeof(OSVERSIONINFO));
 osvi.dwOSVersionInfoSize = sizeof (OSVERSIONINFO);
 GetVersionEx (&osvi);

 if (osvi.dwPlatformId == VER_PLATFORM_WIN32s)
 wsprintf (szVersion, "Microsoft Win32s %d.%d (Build %d)",
 osvi.dwMajorVersion,
 osvi.dwMinorVersion,
 osvi.dwBuildNumber & 0xFFFF);

 else if (osvi.dwPlatformId == VER_PLATFORM_WIN32_WINDOWS)
 wsprintf (szVersion, "Microsoft Windows 95 %d.%d (Build %d)",
 osvi.dwMajorVersion,
 osvi.dwMinorVersion,
 osvi.dwBuildNumber & 0xFFFF);

 else if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT)
 wsprintf (szVersion, "Microsoft Windows NT %d.%d (Build %d)",
 osvi.dwMajorVersion,
 osvi.dwMinorVersion,
 osvi.dwBuildNumber & 0xFFFF);

 MessageBox(NULL, szVersion, "Version Check", MB_OK);
}

In order to distinguish between Windows NT Workstation and Windows NT
Server, use the registry API to query the following:

 \HKEY_LOCAL_MACHINE\SYSTEM
 \CurrentControlSet
 \Control
 \ProductOptions

The result will be one of the following:

 WINNT Windows NT Workstation is running.
 SERVERNT Windows NT Server (3.5 or later) is running.
 LANMANNT Windows NT Advanced Server (3.1) is running.

Additional reference words: 1.20 1.30 3.10 3.50 4.00 detect
KBCategory: kbprg
KBSubcategory: BseMisc

Determining the Maximum Allowed Access for an Object
PSS ID Number: Q115945

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

The AccessCheck() API call can be used to determine the maximum access to
an object allowed for a subject. (In this article, a subject means a
program running in a specific user's security context.) When using
AccessCheck() for this purpose, perform the following steps:

1. Obtain a security descriptor that has owner, group, and DACL
 information.

2. If you are not impersonating a client, obtain an impersonation token by
 calling ImpersonateSelf. This token is passed as the client token in the
 AccessCheck() call.

3. Create a generic mapping structure. The contents of this structure will
 vary depending on the object being used.

4. Call AccessCheck() and request "MAXIMUM_ALLOWED" as the desired access.

If the AccessCheck() call succeeds after the above steps have been
completed, the dwGrantedAccess parameter to AccessCheck() contains a
mask of the object-specific rights that are granted by the security
descriptor.

MORE INFORMATION
================

In most situations, you should not use this method of access determination.
If you need access to an object to perform a task, simply try to open the
object using the required access.

The AccessCheck() API is mainly intended for use with private objects
created by an application. However, it can be used with predefined objects.
The generic mapping values and specific rights for many of the predefined
objects (files and so forth) may be found in WINNT.H.

REFERENCES
==========

Please see the Security Overview in the "Win32 Programmer's Reference" and
the "Win32 SDK API Reference" for more information.

Additional reference words: 3.10 3.50

KBCategory: kbprg
KBSubcategory: BseSecurity

Determining the Network Protocol Used By Named Pipes
PSS ID Number: Q126766

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.5

This article discusses how to determine or set the network protocol used by
named pipes.

Named pipes are implemented using the server message block (SMB) redirector
and server. As such, they can use whatever protocols are bound into the
server and the client.

Both the redirector and the server maintain independent lists of transports
that they are active on. The redirector contacts the remote server. The
redirector will use the highest priority transport that both the client and
the server support.

The priority for the transports is set using the Network control panel
applet. Go into the Bindings button, select Workstation, and use the up and
down buttons to rearrange the order that the redirector will use while
trying to connect to the remote server.

Additional reference words: 3.50
KBCategory: kbprg
KBSubcategory: BseIpc

Determining the Number of Visible Items in a List Box
PSS ID Number: Q78952

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

To determine the number of items that are currently visible in a list
box, an application must consider the following cases:

1. There are many items in the list box (some items are not visible).

2. There are few items in the list box (the bottom area of the list
 box is empty).

3. The heights of the items may vary (an owner-draw list box or use of
 a font other than the system default).

MORE INFORMATION
================

The following code segment can be used to determine the number of
items visible in a list box:

Sample Code

int ntop, nCount, nRectheight, nVisibleItems;
RECT rc;

ntop = SendMessage(hwndList, LB_GETTOPINDEX, 0, 0);
 // Top item index.

nCount = SendMessage(hwndList, LB_GETCOUNT, 0, 0);
 // Number of total items.

GetClientRect(hwndList, &rc);
 // Get list box rectangle.

nRectheight = rc.bottom - rc.top;
 // Compute list box height.

nVisibleItems = 0; // Initialize counter.

while ((nRectheight > 0) && (ntop < nCount))

 // Loop until the bottom of the list box
 // or the last item has been reached.
 {
 SendMessage(hwndList, LB_GETITEMRECT, ntop, (DWORD)(&itemrect));
 // Get current line's rectangle.

 nRectheight = nRectheight - (itemrect.bottom - itemrect.top);
 // Subtract current line height.

 nVisibleItems++; // Increase item count.
 ntop++; // Move to the next line.
 }

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbui
KBSubcategory: UsrCtl

Determining the Topmost Pop-Up Window
PSS ID Number: Q66943

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

When an application has many pop-up child windows (with a common parent
window), the GetNextWindow() function can be used when one pop-up window is
closed to determine the next topmost pop-up window that remains.

The following code fragment shows a window procedure for simple pop-up
windows (modified from the PARTY program in Petzold's "Programming
Windows"). In the WM_CLOSE case, the handle received by the pop-up window
procedure is the handle of the pop-up to be closed. This sample activates
the topmost pop-up window that remains by giving it the focus.

long FAR PASCAL PopupWndProc (hWnd, iMessage, wParam, lParam)
 HWND hWnd;
 unsigned iMessage;
 WORD wParam;
 LONG lParam;
 {
 HWND hWndPopup;

 switch (iMessage)
 {
 case WM_CLOSE:
 hWndPopup = GetNextWindow(hWnd, GW_HWNDNEXT);
 if (hWndPopup)
 SetFocus(hWndPopup);
 break;
 }

 return DefWindowProc (hWnd, iMessage, wParam, lParam) ;
 }

NOTE: In Windows 3.1, two messages are sent to an application when its Z-
order is changing: WM_WINDOWPOSCHANGING and WM_WINDOWPOSCHANGED. When a
window is closed (as in the example shown above) these two message will be
sent to all window procedures.

For additional information on changing the Z-order of an MDI window, query
on the following words in the Microsoft Knowledge Base:

 WM_WINDOWPOSCHANGED and MDICREATESTRUCT and WS_EX_TOPMOST

Additional reference word: 3.00 3.10 3.50 3.51 4.00 95

KBCategory: kbui
KBSubcategory: UsrWndw

Determining the Visible Area of a Multiline Edit Control
PSS ID Number: Q88387

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The multiline edit control provided with Microsoft Windows versions
3.0 and 3.1 does not provide a mechanism that allows an application to
determine the currently visible lines of text. This article outlines
an algorithm to provide that functionality.

MORE INFORMATION
================

The general idea is to determine the first and last visible lines and
obtain the text of those lines from the edit control. The following
steps detail this process:

1. A Windows-3.1-based application can use the newly available
 message, EM_GETFIRSTVISIBLELINE, to determine the topmost visible
 line.

 A Windows-3.0-based application can use a technique described in the
 following Microsoft Knowledge Base article to determine the line
 number of the first visible line:

 ARTICLE-ID: Q68572
 TITLE : Caret Position & Line Numbers in Multiline Edit Controls

2. Obtain the edit control's formatting rectangle using EM_GETRECT.
 Determine the rectangle's height using this formula:

 nFmtRectHeight = rect.bottom - rect.top;

3. Obtain the line spacing of the font used by the edit control to
 display the text. Use the WM_GETFONT message to determine the font
 used by the edit control. Select this font into a display context
 and use the GetTextMetrics function. The tmHeight field of the
 resulting TEXTMETRIC structure is the line spacing.

4. Divide the formatting rectangle's height (step 2) with the line
 spacing (step 3) to determine the number of lines. Compute the line
 number of the last visible line based on the first visible line
 (step 1) and the number of visible lines.

5. Use EM_GETLINE for each line number from the first visible line to
 the last visible line to determine the visible lines of text.
 Remember that the last visible line may not necessarily be at the
 bottom of the edit control (the control may only be half full). To
 detect this case, use EM_GETLINECOUNT to know the last line and
 compare its number with the last visible line. If the last line
 number is less than the last visible line, your application should
 use EM_GETLINE only on lines between the first and the last line.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbui
KBSubcategory: UsrCtl

Determining Visible Window Area When Windows Overlap
PSS ID Number: Q75236

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

There is no Windows API that reports the portion of an application's
window that is not obscured by other windows. To determine which areas
of the window are covered, it is necessary to walk through the window
list managed by Windows.

Each window that precedes the application's window is "above" that
window on the screen. Using the IntersectRect() function, check the
rectangle of the window with any windows above to see if they
intersect. Any window that is above the application's window and
intersects its window rectangle obscures part of the application's
window. By accumulating the positions of all windows that overlap the
application's window, it is possible to determine which areas of the
window are covered and which are not.

MORE INFORMATION
================

The following sample code demonstrates this procedure:

 GetWindowRect(hWnd, &rMyRect); /* Get the window dimensions
 * for the current window.
 */
 /* Start from the current window and use the GetWindow()
 * function to move through the previous window handles.
 */
 for (hPrevWnd = hWnd;
 (hNextWnd = GetWindow(hPrevWnd, GW_HWNDPREV)) != NULL;
 hPrevWnd = hNextWnd)
 {
 /* Get the window rectangle dimensions of the window that
 * is higher Z-Order than the application's window.
 */
 GetWindowRect(hNextWnd, &rOtherRect);

 /* Check to see if this window is visible and if intersects
 * with the rectangle of the application's window. If it does,
 * call MessageBeep(). This intersection is an area of this
 * application's window that is not visible.

 */
 if (IsWindowVisible(hNextWnd) &&
 IntersectRect(&rDestRect, &rMyRect, &rOtherRect))
 {
 MessageBeep(0);
 }
 }

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrWndw

Determining Whether a WOW App is Running in Enhanced Mode
PSS ID Number: Q101893
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5
--

SUMMARY
=======

Windows NT and Windows NT Advanced Server will run a Windows 3.1
application in 386 enhanced mode on X86 machines (standard mode on RISC
machines). The proper way to determine whether a Windows 3.1 application is
in enhanced mode is to call GetWinFlags() and do a bit test for
WF_ENHANCED. This method is described on pages 486-487 in the Windows 3.1
Software Development Kit (SDK) "Programmer's Reference, Volume 2:
Functions."

MORE INFORMATION
================

Calling Interrupt 2F with AX=1600h

This method, which is described in the Windows 3.1 Device Development Kit
(DDK) checks to see whether a 386 memory manager is running. If Windows 3.1
is running in enhanced mode, it returns AL = 3 and 2 for standard mode.
Windows NT's WOW (Windows 16 on Windows NT) returns AL=0, which means
enhanced mode Windows is not running.

DWORD GetWinFlags()

The GetWinFlags() function retrieves the current Windows system and
memory configuration.

The configuration returned by GetWinFlags() can be a combination of the
following values:

 Value Meaning
 --
 WF_80x87 System contains an Intel math coprocessor.
 WF_CPU286 System CPU is an 80286.
 WF_CPU386 System CPU is an 80386.
 WF_CPU486 System CPU is an i486.
 WF_ENHANCED Windows is running in 386-enhanced mode. The WF_PMODE
 flag is always set when WF_ENHANCED is set.
 WF_PAGING Windows is running on a system with paged memory.
 WF_PMODE Windows is running in protected mode. In Windows 3.1,
 this flag is always set.
 WF_STANDARD Windows is running in standard mode. The WF_PMODE
 flag is always set when WF_STANDARD is set.

 WF_WIN286 Same as WF_STANDARD.
 WF_WIN386 Same as WF_ENHANCED.

NOTE: When running in Windows NT, WF_WINNT will also be returned to tell
the 16-bit Windows-based application that you are running in Windows NT.

Example:

The following example uses the GetWinFlags() function to display
information about the current Windows system configuration:

Sample Code

int len;
char szBuf[80];
DWORD dwFlags;

dwFlags = GetWinFlags();

len = sprintf(szBuf, "system %s a coprocessor",
 (dwFlags & WF_80x87) ? "contains" : "does not contain");
TextOut(hdc, 10, 15, szBuf, len);

len = sprintf(szBuf, "processor is an %s",
 (dwFlags & WF_CPU286) ? "80286" :
 (dwFlags & WF_CPU386) ? "80386" :
 (dwFlags & WF_CPU486) ? "i486" : "unknown");
TextOut(hdc, 10, 30, szBuf, len);

len = sprintf(szBuf, "running in %s mode",
 (dwFlags & WF_ENHANCED) ? "enhanced" : "standard");
TextOut(hdc, 10, 45, szBuf, len);

len = sprintf(szBuf, "%s WLO",
 (dwFlags & WF_WLO) ? "using" : "not using");
TextOut(hdc, 10, 60, szBuf, len);

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: SubSys

Determining Whether an Application is Console or GUI
PSS ID Number: Q90493

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In order to determine whether an application is console or GUI, you must
parse the EXEheader. The header contains a field called 'Subsystem'. This
field determines both the subsystem the application is to run under and the
type of interface it requires. The values consist of:

 IMAGE_SUBSYSTEM_NATIVE 1
 IMAGE_SUBSYSTEM_WINDOWS_GUI 2
 IMAGE_SUBSYSTEM_WINDOWS_CUI 3
 IMAGE_SUBSYSTEM_OS2_CUI 5
 IMAGE_SUBSYSTEM_POSIX_CUI 7

MORE INFORMATION
================

Sample Code

#include <windows.h>
#include <winnt.h>

VOID main(int, char **);
DWORD AbsoluteSeek(HANDLE, DWORD);
VOID ReadBytes(HANDLE, LPVOID, DWORD);
VOID WriteBytes(HANDLE, LPVOID, DWORD);
VOID CopySection(HANDLE, HANDLE, DWORD);

#define XFER_BUFFER_SIZE 2048

VOID
main(int argc, char *argv[])
{
 HANDLE hImage;

 DWORD bytes;
 DWORD iSection;
 DWORD SectionOffset;
 DWORD CoffHeaderOffset;
 DWORD MoreDosHeader[16];

 ULONG ntSignature;

 IMAGE_DOS_HEADER image_dos_header;
 IMAGE_FILE_HEADER image_file_header;
 IMAGE_OPTIONAL_HEADER image_optional_header;
 IMAGE_SECTION_HEADER image_section_header;

 if (argc != 2)
 {
 printf("USAGE: %s program_file_name\n", argv[1]);
 exit(1);
 }

 /*
 * Open the reference file.
 */
 hImage = CreateFile(argv[1],
 GENERIC_READ,
 FILE_SHARE_READ,
 NULL,
 OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL,
 NULL);

 if (INVALID_HANDLE_VALUE == hImage)
 {
 printf("Could not open %s, error %lu\n", argv[1], GetLastError());
 exit(1);
 }

 /*
 * Read the MS-DOS image header.
 */
 ReadBytes(hImage,
 &image_dos_header,
 sizeof(IMAGE_DOS_HEADER));

 if (IMAGE_DOS_SIGNATURE != image_dos_header.e_magic)
 {
 printf("Sorry, I do not understand this file.\n");
 exit(1);
 }

 /*
 * Read more MS-DOS header. */
 ReadBytes(hImage,
 MoreDosHeader,
 sizeof(MoreDosHeader));

 /*
 * Get actual COFF header.
 */
 CoffHeaderOffset = AbsoluteSeek(hImage, image_dos_header.e_lfanew) +
 sizeof(ULONG);

 ReadBytes (hImage, &ntSignature, sizeof(ULONG));

 if (IMAGE_NT_SIGNATURE != ntSignature)
 {
 printf("Missing NT signature. Unknown file type.\n");
 exit(1);
 }

 SectionOffset = CoffHeaderOffset + IMAGE_SIZEOF_FILE_HEADER +
 IMAGE_SIZEOF_NT_OPTIONAL_HEADER;

 ReadBytes(hImage,
 &image_file_header,
 IMAGE_SIZEOF_FILE_HEADER);

 /*
 * Read optional header.
 */
 ReadBytes(hImage,
 &image_optional_header,
 IMAGE_SIZEOF_NT_OPTIONAL_HEADER);

 switch (image_optional_header.Subsystem)
 {
 case IMAGE_SUBSYSTEM_UNKNOWN:
 printf("Type is unknown.\n");
 break;

 case IMAGE_SUBSYSTEM_NATIVE:
 printf("Type is native.\n");
 break;

 case IMAGE_SUBSYSTEM_WINDOWS_GUI:
 printf("Type is Windows GUI.\n");
 break;

 case IMAGE_SUBSYSTEM_WINDOWS_CUI:
 printf("Type is Windows CUI.\n");
 break;

 case IMAGE_SUBSYSTEM_OS2_CUI:
 printf("Type is OS/2 CUI.\n");
 break;

 case IMAGE_SUBSYSTEM_POSIX_CUI:
 printf("Type is POSIX CUI.\n");
 break;

 default:
 printf("Unknown type %u.\n", image_optional_header.Subsystem);
 break;
 }
}

DWORD
AbsoluteSeek(HANDLE hFile,

 DWORD offset)
{
 DWORD newOffset;

 if ((newOffset = SetFilePointer(hFile,
 offset,
 NULL,
 FILE_BEGIN)) == 0xFFFFFFFF)
 {
 printf("SetFilePointer failed, error %lu.\n", GetLastError());
 exit(1);
 }

 return newOffset;
}

VOID
ReadBytes(HANDLE hFile,
 LPVOID buffer,
 DWORD size)
{
 DWORD bytes;

 if (!ReadFile(hFile,
 buffer,
 size,
 &bytes,
 NULL))
 {
 printf("ReadFile failed, error %lu.\n", GetLastError());
 exit(1);
 }
 else if (size != bytes)
 {
 printf("Read the wrong number of bytes, expected %lu, got %lu.\n",
 size, bytes);
 exit(1);
 }
}

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseMisc

Determining Whether the User is an Administrator
PSS ID Number: Q118626

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

To determine whether or not a user is an administrator, you need to examine
the user's access token with GetTokenInformation(). The access token
represents the user's privileges and the groups to which the user belongs.

When a user starts an application, the access token associated with that
process is the user's access token. To get the process token (and therefore
the user's token), use OpenProcessToken().

The sample code below uses the APIs mentioned in the previous paragraph to
test whether or not the current user is an administrator on the local
machine:

Sample code

 /* BOOL IsAdmin(void)

 returns TRUE if user is an admin
 FALSE if user is not an admin
 */

 BOOL IsAdmin(void)
 {
 HANDLE hAccessToken;
 UCHAR InfoBuffer[1024];
 PTOKEN_GROUPS ptgGroups = (PTOKEN_GROUPS)InfoBuffer;
 DWORD dwInfoBufferSize;
 PSID psidAdministrators;
 SID_IDENTIFIER_AUTHORITY siaNtAuthority = SECURITY_NT_AUTHORITY;
 UINT x;
 BOOL bSuccess;

 if(!OpenProcessToken(GetCurrentProcess(),TOKEN_READ,&hAccessToken))
 return(FALSE);

 bSuccess = GetTokenInformation(hAccessToken,TokenGroups,InfoBuffer,
 1024, &dwInfoBufferSize);

 CloseHandle(hAccessToken);

 if(!bSucess)
 return FALSE;

 if(!AllocateAndInitializeSid(&siaNtAuthority, 2,

 SECURITY_BUILTIN_DOMAIN_RID,
 DOMAIN_ALIAS_RID_ADMINS,
 0, 0, 0, 0, 0, 0,
 &psidAdministrators))
 return FALSE;

 // assume that we don't find the admin SID.
 bSuccess = FALSE;

 for(x=0;x<ptgGroups->GroupCount;x++)
 {
 if(EqualSid(psidAdministrators, ptgGroups->Groups[x].Sid))
 {
 bSuccess = TRUE;
 break;
 }

 }
 FreeSid(psidAdministrators);
 return bSuccess;
 }

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

Developing Win32-Based GDI Apps for Windows 95 and Windows NT
PSS ID Number: Q136989

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.51, 4.0

SUMMARY
=======

When developing a Win32 application, you need to take certain programming
aspects into consideration if the application is expected to be run under
both Windows 95 and Windows NT.

For example, Windows 95, like Windows 3.x, still uses a 16-bit world
coordinate system, while Windows NT uses a 32-bit coordinate system. In
addition, Windows 95 does not support the GM_ADVANCED graphics mode option
that Windows NT supports. The GetVersionEx() function can be used to
determine the platform under which your application is running.

MORE INFORMATION
================

Because the SetGraphicsMode() mode function only accepts GM_COMPATIBLE in
Windows 95, functions like SetWorldTransform() or ModifyWorldTransform()
cannot be called to set or modify the world transformation for the
specified device context. Windows NT supports this functionality. However,
Windows 95 ensures that enhanced metafiles look the same in Windows 95 as
they do in Windows NT. This means that enhanced metafiles are assumed to
be played in GM_ADVANCED mode. If you want your GDI graphical output to
look the same in both Windows 95 and Windows NT, it is recommended that
you use GM_COMPATIBLE on both platforms. If you use GM_ADVANCED in Windows
NT and GM_COMPATIBLE in Windows 95, for example, your rectangles would look
different because a GM_COMPATIBLE system excludes bottom and rightmost
edges when it draws rectangles, while a GM_ADVANCED system includes them.
Also, the way rotated TrueType fonts are drawn differs.

If you pass 32-bit coordinates to GDI functions in Windows 95, the system
truncates the upper 16 bits of the coordinates before actually performing
the function. If you want to run under both Windows NT and Windows 95, then
you need to keep this in mind. When using the Chord(), Pie(), Arc(), and
RoundRect() functions under Windows 95, the sum of the coordinates sent to
the functions cannot exceed 32K. Also, the sum of the left and right or top
and bottom fields can not exceed 32K.

No matter what platform you are running, whether it is Windows 95 or
Windows NT, a win32-based application must still delete all GDI objects
when they're not needed. Logical objects should be created and deleted as
they are needed. This will ensure that adequate space is always available
for logical GDI objects because Windows 95 places them in the local 16-bit
GDI heap, which is limited to 64K. All regions should be deleted with
DeleteObject(). In addition, all bitmaps, brushes, extended pens, fonts,
regular pens, and palettes should be deleted with DeleteObject(). A

metafile DC should be deleted with CloseMetaFile(), and a metafile should
be deleted with DeleteMetaFile(). An enhanced metafile DC should be deleted
with CloseEnhMetaFile() and an enhanced metafile should be deleted with
DeleteEnhMetaFile(). A memory DC created with CreateCompatibleDC() should
always be deleted with the DeleteDC() function, a DC created with
CreateDC() should be deleted with DeleteDC(), and a DC obtained by GetDC()
should be released with ReleaseDC(). Physical GDI objects exist in global
memory, so they are not limited to the GDI 16-bit local heap.

Both Windows 95 and Windows NT free all GDI resources owned by a 32-bit
process when that process terminates. Windows 95 also cleans up any GDI
resources of 16-bit processes if it is marked as a 4.0 application. Windows
95 doesn't immediately clean up GDI resources for 16-bit applications
marked with a version less than 4.0. The system waits until all 16-bit
applications have finished running. Then all GDI resources allocated by
previous 16-bit applications are cleaned up. In Windows 95, regions are
allocated from the 32-bit heap, so they can be as large as available
memory. This is a great step forward from Windows 3.x where regions were
limited to 64K. However, the number of region handles cannot exceed 16K.

In Windows 95, if you try to delete a GDI drawing object while it is
selected into a DC with DeleteObject(), the call to DeleteObject()
succeeds, but the result of the call is a non-functioning GDI object. In
Windows NT, a call to DeleteObject() on a GDI object selected into a DC
will fail. You should always clear the selection of a GDI object before
calling DeleteObject() on it.

The Windows NT operating system automatically tracks the origin of all
window-managed DC's and adjusts their brushes to maintain an alignment of
patterns on the surface. Windows 95 doesn't support automatic tracking of
the brush origin, so an application must call the following three functions
to align a brush each time it paints using a patterned brush:

 UnrealizeObject()
 SetBrushOrgEx()
 SelectObject()

When creating patterned brushes with either CreatePatternBrush() or
CreateDIBPatternBrush(), Windows 95 doesn't support bitmaps or DIBs greater
than 8 by 8 pixels. Windows NT does not have this limitation. When writing
an application that must be run under both platforms, you need to use a
bitmap or DIB that is 8 by 8 pixels or less.

Windows NT provides a wide variety of pens. There are some limitations on
pens in Windows 95:

 - The ExtCreatePen() function only supports the PS_SOLID style for
 geometric lines.
 - The PS_USERSTYLE and PS_ALTERNATE styles are not supported.
 - Dashed or dotted pen styles like PS_DASH, for example, are not
 supported in wide lines.

The following pen styles for geometric lines are supported in paths only in
Windows 95:

 PS_ENDCAP_ROUND, PS_ENDCAP_SQUARE, PS_ENDCAP_FLAT, PS_JOIN_BEVEL,
 PS_JOIN_MITER, and PS_JOIN_ROUND

The ExtCreateRegion() function fails in Windows 95 if the transformation
matrix is anything other than a scaling or translation of the region. This
is because world transforms that involve either shearing or rotations are
not supported in Windows 95.

The return value to GetDIBits() is also different in Windows 95 from
Windows NT when the "lpvBits" parameter is NULL. In Windows 95, if the
lpvBits parameter is NULL and GetDIBits successfully fills the BITMAPINFO
structure, the return value is the total number of scan lines in the
bitmap. In Windows NT, If the lpvBits parameter is NULL and GetDIBits
successfully fills the BITMAPINFO structure, the return value is non-zero.

Windows 95 only records the following functions in a path:

 ExtTextOut LineTo MoveToEx PolyBezier
 PolyBezierTo Polygon Polyline PolylineTo
 PolyPolygon PolyPolyline TextOut

To find a complete list of functions supported in Windows 95 and Windows
NT, view the WIN32API.CSV file in the Lib directory of the Microsoft Visual
C++ compiler or Win32 SDK.

REFERENCES
==========

For more information, please see:

 - The Win32api.csv file in the Lib directory of the Microsoft Visual C++
 compiler or Win32 SDK.

 - "Programmer's Guide to Microsoft Windows 95," Microsoft Press.

Additional reference words: kbinf 4.00
KBCategory: kbgraphic
KBSubcategory: GdiMisc

Development Tools Do Not Accept Unicode Text
PSS ID Number: Q106065
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1 and 3.5
--

SUMMARY
=======

Neither the Win32 SDK tools or Visual C++ (VC++) 32-bit Edition tools
support Unicode text. In fact, the C/C++ Language specification says that
the source files are to be written in 7-bit ANSI.

MORE INFORMATION
================

For example, language-specific resources cannot be specified in Unicode in
the .RC file because RC does not accept the Unicode text. Although the
message compiler has flags for Unicode, the flags are not implemented.

To convert to and from Unicode text, use the UCONVERT utility included in
your MSTOOLS\BIN directory. The source for UCONVERT in the 3.1 SDK is in
MSTOOLS\SAMPLES\SDKTOOLS\UCONVERT. The source for UCONVERT in the 3.5 SDK
is in MSTOOLS\SAMPLES\SDKTOOLS\WINNT\UCONVERT.

The long term solution that Microsoft is working on are Resource
Localization Tools and other methods that will allow the user to localize
the strings in a GUI editor, running on the target machine.

Note that it is possible to specify Unicode escapes in L-quoted strings.
The following is quoted from "Common Statement Parameters" in RC.HLP:

 By default, the characters listed between the double quotation
 marks are ANSI characters and escape sequences are interpreted as
 byte escape sequences. If the string is preceded by the L prefix,
 the string is a wide-character string and escape sequences are
 interpreted as two-byte escape sequences that specify Unicode
 characters. If a double quotation mark is required in the text, you
 must include the double quotation mark twice or use the \" escape
 sequence.

Another alternative is to use user-defined resources and include a binary
(Unicode) file.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: WIntlDev

DEVMODE and dmSpecVersion
PSS ID Number: Q96282

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The dmSpecVersion field of the DEVMODE structure is intended for printer
driver use only; no application programs should test this field. The
purpose of this field is for new printer drivers to be able to recognize
and handle DEVMODE structures created according to previous DEVMODE
structure specification.

MORE INFORMATION
================

The DEVMODE structure is used for printer and (occasionally) display
drivers when initializing. This structure is tied to the driver--not the
operating system. The dmSpecVersion field does not allow an application to
determine which platform (Windows version 3.1, Windows on Windows, Win32)
the application is running in.

When an application fills a DEVMODE structure, it should set the
dmSpecVersion field to DM_SPECVERSION. This identifies the version of the
DEVMODE structure the application is generating.

If the application is querying to understand an unknown device, then
special attention should be paid to the dmFields, dmSize, and dmDriverExtra
fields. These fields are a reliable means of understanding what fields in
the DEVMODE structure are readable.

The DEVMODE structure consists of public and private parts. The
dmSpecVersion field applies to the public part. Any previously defined
fields are not altered when the DEVMODE specification is updated--more
fields are merely added to the end of the structure. This can mean fields
used in the previous specification are ignored in a later specification.
This functionality is managed by one bitfield describing what fields a
driver actually uses. The new drivers just switch off the obsolete fields.

Applications using DEVMODE should always use the dmSize and dmDriverExtra
fields for allocating/storing/manipulating the structure. These fields
define the sizes of the public and private parts of the structure,
respectively.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprint
KBSubcategory: GdiPrn

Dialog Box Frame Styles
PSS ID Number: Q74334

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

Dialog boxes can have either the WS_DLGFRAME or the WS_BORDER style. If a
dialog box is created with both of these styles, it will have a caption bar
instead of the expected frame and border. This is because WS_BORDER |
WS_DLGFRAME is equal to WS_CAPTION.

To create a dialog box with a modal dialog frame and a caption, use
DS_MODALFRAME combined with WS_CAPTION.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrDlgs

DIALOGEX Resource Template Differences from DIALOG Template
PSS ID Number: Q141201

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95

SUMMARY
=======

When you create or modify a dialog template in memory, it is necessary to
know the form of the DLGTEMPLATE and DLGITEMTEMPLATE structures. While
these structures are well documented for DIALOG resources, they take a
different form for DIALOGEX resources, and are not well documented in the
SDK.

MORE INFORMATION
================

The extended DLGTEMPLATE structure, call it DLGTEMPLATEEX, has this form:

typedef struct tagDLGTEMPLATEEX{
 WORD wDlgVer; // use 1
 WORD wSignature; // use 0xFFFF
 DWORD dwHelpID; // Dialog's context help ID
 DWORD dwExStyle; // Extended style
 DWORD dwStyle; // Style
 WORD cDlgItems; // Number of controls in dialog
 short x; // Initial position, horizontal
 short y; // Initial position, vertical
 short cx; // Width
 short cy; // Height
} DLGTEMPLATEEX;

This is followed by menu name, class name, title, and font info if style
includes DS_SETFONT, which have the same form as documented in the SDK for
DLGTEMPLATE.

The extended DLGITEMTEMPLATE structure, call it DLGITEMTEMPLATEEX, has this
form:

typedef struct tagDLGITEMTEMPLATEEX{
 DWORD dwHelpID; // Context help ID for control
 DWORD dwExStyle; // Control extended styles
 DWORD dwStyle; // Style
 short x; // Initial position, horizontal
 short y; // Initial position, vertical
 short cx; // Width
 short cy; // Height
 DWORD dwID; // Window ID

} DLGITEMTEMPLATEEX;

This is followed by class name, title, and creation data for the control,
which have the same form as documented in the SDK for DLGITEMTEMPLATE.

Code Sample

The following code creates a DIALOGEX resource in memory with a button and
a custom control to which it passes creation data:

/* allocate some memory */
pdlgtemplate = p = (PWORD) LocalAlloc (LPTR, 1000);

/* start to fill in the dlgtemplate information, addressing by WORDs */
lStyle = DS_MODALFRAME | WS_POPUP | WS_VISIBLE | WS_CAPTION |
WS_SYSMENU| DS_SETFONT;
*p++ = 1; // DlgVer
*p++ = 0xFFFF; // Signature
*p++ = 0; // LOWORD HelpID
*p++ = 0; // HIWORD HelpID
*p++ = 0; // LOWORD (lExtendedStyle)
*p++ = 0; // HIWORD (lExtendedStyle)
*p++ = LOWORD (lStyle);
*p++ = HIWORD (lStyle);
*p++ = 2; // NumberOfItems
*p++ = 210; // x
*p++ = 10; // y
*p++ = 100; // cx
*p++ = 100; // cy
*p++ = 0; // Menu
*p++ = 0; // Class

/* copy the title of the dialog */
nchar = nCopyAnsiToWideChar (p, TEXT("Dialog"));
p += nchar;

/* Font information because of DS_SETFONT */
*p++ = 18; // point size
nchar = nCopyAnsiToWideChar (p, TEXT("Times New Roman")); // Face name
p += nchar;

/* make sure the first item starts on a DWORD boundary */
p = lpwAlign (p);

/* now start with the first item */
lStyle = BS_PUSHBUTTON | WS_VISIBLE | WS_CHILD | WS_TABSTOP;
*p++ = 0; // LOWORD (lHelpID)
*p++ = 0; // HIWORD (lHelpID)
*p++ = 0; // LOWORD (lExtendedStyle)
*p++ = 0; // HIWORD (lExtendedStyle)
*p++ = LOWORD (lStyle);
*p++ = HIWORD (lStyle);
*p++ = 10; // x
*p++ = 60; // y

*p++ = 80; // cx
*p++ = 20; // cy
*p++ = IDOK; // LOWORD (Control ID)
*p++ = 0; // HOWORD (Control ID)

/* fill in class i.d., this time by name */
char = nCopyAnsiToWideChar (p, TEXT("BUTTON"));
p += nchar;

/* copy the text of the first item */
nchar = nCopyAnsiToWideChar (p, TEXT("OK"));
p += nchar;

*p++ = 0; // advance pointer over nExtraStuff WORD

/* make sure the second item starts on a DWORD boundary */
p = lpwAlign (p);

lStyle = WS_VISIBLE | WS_CHILD;
*p++ = 0; // LOWORD (lHelpID)
*p++ = 0; // HIWORD (lHelpID)
*p++ = 0; // LOWORD (lExtendedStyle)
*p++ = 0; // HIWORD (lExtendedStyle)
*p++ = LOWORD (lStyle);
*p++ = HIWORD (lStyle);
*p++ = 20; // x
*p++ = 5; // y
*p++ = 65; // cx
*p++ = 45; // cy
*p++ = 57; // LOWORD (Control ID)
*p++ = 0; // HOWORD (Control ID)

// The class name of the custom control
nchar = nCopyAnsiToWideChar (p, TEXT("ACustomControl"));
p += nchar;

/* copy the text of the second item, null terminate the string. */
nchar = nCopyAnsiToWideChar (p, TEXT(""));
p += nchar;

*p++ = 8; // number of bytes of extra data

*p++ = 0xA1; //extra data
*p++ = 0xA2;
*p++ = 0xA3;
*p++ = 0xA4;

DialogBoxIndirect (ghInst, (LPDLGTEMPLATE) pdlgtemplate, hwnd,
(DLGPROC) About);
LocalFree (LocalHandle (pdlgtemplate));

///
//
//

Helper routines taken from the WIN32SDK DYNDLG sample
///
//
//
LPWORD lpwAlign (LPWORD lpIn)
{
 ULONG ul;

 ul = (ULONG) lpIn;
 ul +=3;
 ul >>=2;
 ul <<=2;
 return (LPWORD) ul;
}

int nCopyAnsiToWideChar (LPWORD lpWCStr, LPSTR lpAnsiIn)
{
 int nChar = 0;

 do {
 *lpWCStr++ = (WORD) *lpAnsiIn;
 nChar++;
 } while (*lpAnsiIn++);

 return nChar;
}

REFERENCE
=========

For further information on using Dialog templates, please see the SDK
documentation for the DLGTEMPLATE and DLGITEMTEMPLATE structures.

Additional reference words: 4.00 kbinf
KBCategory: kbprg kbcode
KBSubcategory:

DIB_PAL_INDICES and CBM_CREATEDIB Not Supported in Win32s
PSS ID Number: Q108497

The information in this article applies to:

 - Microsoft Win32s versions 1.0, 1.1, and 1.2
 - Microsoft Win32 SDK (Windows 95 only)

The Windows NT implementation of the Win32 application programming
interface (API) includes two new flags, DIB_PAL_INDICES and CBM_CREATEDIB,
that can be used with various device-independent bitmap (DIB) APIs. These
flags are not supported by Windows 3.1, Win32s, or Windows 95.

DIB_PAL_INDICES

In Windows NT, the DIB_PAL_INDICES flag can be used with the following
APIs:

 CreateDIBitmap()
 CreateDIBPatternBrush()
 CreateDIBPatternBrushPt()
 SetDIBits()
 GetDIBits()
 SetDIBitsToDevice()
 StretchDIBits()

When the dwUsage parameter is DIB_PAL_INDICES, the associated DIB does not
have a color table. In this case, the bitmap bits are indices into the
device palette.

Applications written to run on Windows 3.1 or Win32s should use
DIB_PAL_COLORS or DIB_RGB_COLORS instead of DIB_PAL_INDICES.

Windows 95 does not support DIB_PAL_INDICES.

CBM_CREATEDIB

In Windows 3.1, CreateDIBitmap() creates a device-dependent bitmap (DDB)
from a DIB definition and optionally initializes the DDB. In Windows NT,
the CBM_CREATEDIB flag can be used with CreateDIBitmap() to create a new
DIB instead of a DDB.

This functionality is not present in Windows 3.1 or Win32s.

Windows 95 does not support CBM_CREATEDIB. Equivalent functionality is
provided in Windows 95 by CreateDIBSection().

Additional reference words: 1.00 1.10 1.20 4.00
KBCategory: kbprg
KBSubcategory: GdiBmp W32s

Differences Between hInstance on Win 3.1 and Windows NT
PSS ID Number: Q103644

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In Microsoft Windows version 3.1, an instance handle can be used to
uniquely identify the instance of an application because instance handles
are unique within the scope of an address space. Because each instance of
an application runs in its own address space on Windows NT, instance
handles cannot be used to uniquely identify an instance of an application
running on the system. This article explains why, and some alternative
calls that might assist in uniquely identifying an application instance on
Windows NT.

MORE INFORMATION
================

Although the concepts for an instance handle are similar on Windows NT and
Windows 3.1, the results you see regarding them might be very different
from what you expect.

With Windows 3.1, when you start several instances of the same application,
they all share the same address space. You have multiple instances of the
same code segment; however, each of these instances has a unique data
segment associated with it. Using an instance handle (hInstance) is a way
to uniquely identify these different instances and data segments in the
address space.

Instance handles are unique to the address space. On Windows NT, when
looking at the value of the instance handle, or the value returned from
GetWindowLong(hWnd, GWL_HINSTANCE), a developer coming from a Windows 3.1
background might be surprised to see that most of the windows on the
desktop return the same value. This is because the return value is the
hInstance for the instance of the application, which is running it its own
address space. (An interesting side note: The hInstance value is the base
address where the application's module was able to load; either the default
address or the fixed up address.)

On Windows NT, running several instances of the same application causes the
instances to start and run in their own separate address space. To
emphasize the difference: multiple instances of the same application on
Windows 3.1 run in the same address space; in Windows NT, each instance has
its own, separate address space. Using an instance handle to uniquely
identify an application instance, as is possible on Windows 3.1, does not
apply in Windows NT. (Another interesting side note: Remember that even if

there are multiple instances of an application, if they are able to load at
their default virtual address spaces, the virtual address pages of the
different applications' executable code will map to the same physical
memory pages.)

In Windows NT, instance handles are not unique in the global scope of the
system; however, window handles, thread IDs, and process IDs are. Here are
some calls that may assist in alternative methods to uniquely identify
instance of applications on Windows NT:

 - GetWindowThreadProcessID() retrieves the identifier of the thread
 that created the given window and, optionally, the identifier of
 the process that created the window.

 - OpenProcess() returns a handle to a process specified by a process
 ID.

 - GetCurrentProcessID() returns the calling process's ID.

 - EnumThreadWindows() returns all of the windows associated with a
 thread.

 - The FindWindow() function retrieves the handle of the top-level
 window specified by class name and window name.

 - To enumerate all of the processes on the system, you can query the
 Registry using RegQueryValueEx() with key HKEY_PERFORMANCE_DATA,
 and the Registry database index associated with the database string
 "Process".

For further details on using these calls, please see the Win32 SDK help
file.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrMisc

Differences Between the Win32 3.5 SDK and Visual C++ 2.0
PSS ID Number: Q125474

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), version 3.5
 - Microsoft Visual C++ 32-bit Edition, version 2.0

SUMMARY
=======

Microsoft Visual C++ version 2.0 contains the compiler tools, headers, and
libraries necessary to develop Win32-based applications. In addition, it
has an integrated development environment (Microsoft Foundation Classes
(MFC) version 3.0) and Wizards to make programming easier. However, there
is still a separate Win32 SDK available through MSDN Level II.

This article lists the things that are included in the Win32 SDK that
are not included in Visual C++ version 2.0.

MORE INFORMATION
================

The following is a list of items included in the retail Win32 SDK that are
not included in Visual C++ version 2.0 (Intel only):

Tools

WinDbg/WinDbgRM
Process Walker
Working Set Tuner
Software Compatibility Test
Microsoft Test
API Profilers
POSIX headers and libraries
Help Indexing
masm386

Toolkits

RPC Toolkit (and samples)
Setup Toolkit

Documentation

SNMP Programmer's Reference (PROGREF.RTF)
Generic Thunks (GENTHUNK.TXT)
Multicast Extensions to Windows Sockets for Win32
Windows Sockets for Appletalk
File Formats (CUSTCNTL.TXT, ENHMETA.HLP, PE.TXT, RESFMT.TXT)

Writing Great 32-bit Applications for Windows
POSIX Conformance Document
Microsoft Windows NT Version 3.5 Hardware Compatibility List

Additional Samples

Win32: Multimedia:

 BNDBUF NTSD AVIEDI32 MIXAPP
 CDTEST RASBERRY AVIVIEW MOVPLAY
 CPL REBOOT CAPTEST MPLAY
 DYNDLG RNR DSEQFILE PALMAP
 GLOBCHAT SD_FLPPY ICMAPP REVERSE
 INTEROP SERVENUM ICMWALK TEXTOUT
 IOCOMP SIMPLEX LANGPLAY WAVEFILE
 IPXCHAT SNMP MCIPLAY WRITEAVI
 LARGEINT SOCKETS MCIPUZZL
 MANDEL SPINCUBE
 MSGTABLE WDBGEXTS
 NETDDE

SDK Tools:

 ANIEDIT RSHELL
 FONTEDIT TLIST
 IMAGE UCONVERT
 IMAGEDIT WALKER
 NETWATCH WINAT
 REMOTE

Additional reference words: 2.00 3.50
KBCategory: kbtool
KBSubcategory: TlsMisc

Differences Between Windows 95 and Windows NT SNMP
PSS ID Number: Q139462
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1, 3.5, 3.51 and Windows 95
--

SUMMARY
=======

Windows 95 and Windows NT differ in their support for SNMP. This article
describes these differences.

MORE INFORMATION
================

The Win32 SDK supports two sets of APIs for developing SNMP applications.
One API set is for developing extension agents, and the other is for
writing SNMP manager applications (Management API). Windows NT supports
both sets. Under Windows 95, you can write SNMP extension agents but not
SNMP manager applications.

Windows NT supports the Internet-II MIB (MIB_II.MIB) as well as the
LanManager MIB (LMMIB2.MIB). Windows 95 supports only the Internet-II MIB.

Windows NT allows configuration of the SNMP agent through the User
Interface in the Control Panel by using the Networks icon. Windows 95 does
not allow this configuration. To configure the Windows 95 agent, users must
modify the registry directly.

REFERENCES
==========

Win32 SDK Compact Disc \Docs\Misc\Progref.rtf
Windows 95 Resource Kit

Additional reference words: 4.00 3.10 3.50 3.51
KBCategory: kbnetwork
KBSubcategory:

Differentiating Between the Two ENTER Keys
PSS ID Number: Q77550

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

An application may find it useful to differentiate between the user
pressing the ENTER key on the standard keyboard and the ENTER key on
the numeric keypad. Either action creates a WM_KEYDOWN message and a
WM_KEYUP message with wParam set to the virtual key code VK_RETURN.
When the application passes these messages to TranslateMessage, the
application receives a WM_CHAR message with wParam set to the
corresponding ASCII code 13.

To differentiate between the two ENTER keys, test bit 24 of lParam
sent with the three messages listed above. Bit 24 is set to 1 if the
key is an extended key; otherwise, bit 24 is set to 0 (zero). The
contents of lParam for these messages is documented in the "Microsoft
Windows Software Development Kit Reference Volume 1" for version 3.0
of the SDK and in the SDK Reference Volume 3, "Messages, Structures,
and Macros."

Because the keys in the numeric keypad (along with the function keys)
are extended keys, pressing ENTER on the numeric keypad results in bit
24 of lParam being set, while pressing the ENTER key on the standard
keyboard results in bit 24 clear.

The following code sample demonstrates differentiating between these
two ENTER keys:

 case WM_KEYDOWN:
 if (wParam == VK_RETURN) // ENTER pressed
 if (lParam & 0x1000000L) // Test bit 24 of lParam
 {
 // ENTER on numeric keypad
 }
 else
 {
 // ENTER on the standard keyboard
 }
 break;

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui kbcode

KBSubcategory: UsrInp

Direct Drive Access Under Win32
PSS ID Number: Q100027

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

To open a physical hard drive for direct disk access (raw I/O) in a
Win32-based application, use a device name of the form

 \\.\PhysicalDriveN

where N is 0, 1, 2, and so forth, representing each of the physical drives
in the system.

To open a logical drive, direct access is of the form

 \\.\X:

where X: is a hard-drive partition letter, floppy disk drive, or CD-ROM
drive.

MORE INFORMATION
================

You can open a physical or logical drive using the CreateFile() application
programming interface (API) with these device names provided that you have
the appropriate access rights to the drive (that is, you must be an
administrator). You must use both the CreateFile() FILE_SHARE_READ and
FILE_SHARE_WRITE flags to gain access to the drive.

Once the logical or physical drive has been opened, you can then perform
direct I/O to the data on the entire drive. When performing direct disk
I/O, you must seek, read, and write in multiples of sector sizes of the
device and on sector boundaries. Call DeviceIoControl() using
IOCTL_DISK_GET_DRIVE_GEOMETRY to get the bytes per sector, number of
sectors, sectors per track, and so forth, so that you can compute the size
of the buffer that you will need.

Note that a Win32-based application cannot open a file by using internal
Windows NT object names; for example, attempting to open a CD-ROM drive by
opening

 \Device\CdRom0

does not work because this is not a valid Win32 device name. An application
can use the QueryDosDevice() API to get a list of all valid Win32 device
names and see the mapping between a particular Win32 device name and an

internal Windows NT object name. An application running at a sufficient
privilege level can define, redefine, or delete Win32 device mappings by
calling the DefineDosDevice() API.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseFileio

Disabling the Mnemonic on a Disabled Static Text Control
PSS ID Number: Q66946

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Disabling a static text control that contains a mnemonic does not prevent
the control from responding to that key. For more information on static
text controls with mnemonics, query in this Knowledge Base on the word
"mnemonic".

To keep a static text control from processing mnemonics, it must be
subclassed. When the control is disabled, WM_GETTEXT messages must be
intercepted and the subclass procedure should return an empty string in
response to the message.

MORE INFORMATION
================

When a static text control with a mnemonic is disabled using
EnableWindow(), it turns gray but it does not stop responding to the
mnemonic. This can cause problems because Windows processes the
mnemonic by setting the focus to the next nonstatic, enabled control.

It is necessary to resort to subclassing to prevent the static control
from processing the mnemonic. The subclass procedure should process
the WM_GETTEXT message as follows:

 ...
 // Windows asks the control, hChild, for its text.
 case WM_GETTEXT:
 if (!IsWindowEnabled(hChild))
 {
 *(LPSTR)(lParam) = 0; // A null terminated empty string
 return 0L;
 }
 break;

When the ALT key is held down and a key is pressed, Windows scans the text
of each control to see if the key corresponds to a mnemonic. A WM_GETTEXT
message is sent to each control. Normally, the control processes this
message by returning its text. By returning an empty string in response to
this message, Windows does not find the mnemonic.

Because the mnemonic must work when the control is enabled, the
IsWindowEnabled() function is used to determine the state of the control.
If it is enabled, default processing occurs. Otherwise, the control is
disabled and no text is returned, effectively disabling the mnemonic.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrCtl

Displaying on the Screen What Will Print
PSS ID Number: Q22553

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

It is possible for an application to closely simulate on the screen
how an block of text will appear when printed. This article provides
some references and techniques to accomplish this goal.

NOTE: WYSIWYG functionality can be attained in Windows 3.1 by using
TrueType fonts. The following information should be used with non-TrueType
fonts.

MORE INFORMATION
================

To create a what-you-see-is-what-you-get (WYSIWYG) screen image, the
application must combine the services of the Windows graphics device
interface (GDI), the printer, the display, and fonts. The following
three references provide information that may be helpful:

1. "Pocket Pal -- A Graphic Arts Production Handbook" from
 International Paper Company; discusses issues related to type and
 typesetting.

2. "Bookmaking" by Marsha Lee; discusses issues related specifically
 to making books.

3. "Phototypesetting, A Design Manual" by James Craig.

These books contain information about type, fonts, and stringing
characters together to make text. The following are three points to
remember:

1. Printer manufacturers produce excellent fonts on their printers.
 Use printer fonts as much as possible.

2. GDI must provide some fonts for use with font-deficient display
 drivers.

3. Displays (even high-end ones) have much lower resolution than

 printers.

The best displays attached to microcomputers are approximately 120
dots-per-inch (dpi), while the typical laser printer is 300 dpi. To
produce the same size image (for example, a 9-point capital A), the
printer will illuminate/paint more of its pixels than will the screen.
In particular, the printer will more closely match the requested size
than the display. This leads to integer round-off errors.

Most graphics output devices are raster devices. Due to integer
round-off errors associated with sampling the ideal "A" for different
device resolutions, the origin of characters and words and the ends of
lines on the display will seldom be the same as on a printer. For
example, using a 75-dpi display and 300-dpi printer, the display might
choose a 6 pixel-width for the character "A", while the printer might
choose a 25 or 23 pixel-width for that same character. This mismatch
necessitates adjusting the text on the display to match the output on
the printer.

GDI provides various approaches to find the information needed to
perform the adjustments. The following applications perform this task
with increasing sophistication:

1. Windows Notepad application (does a less-than-ideal job)

2. Windows Write application (does better; however, the point at which
 various screen lines word wrap with different fonts is jagged)

3. Word for Windows (does an excellent job of handling text)

The first two applications are included with the Windows operating
environment.

When Windows starts up, GDI asks each device whether it can support
any fonts. For devices that provide some intrinsic (driver-based)
fonts, GDI enumerates the available fonts and creates a table that
describes them. When an application requests a font from GDI (using
the CreateFont and SelectObject functions), GDI selects the font in
its table that most closely matches the requested font. If no device
font matches well, GDI will attempt to use one of its own fonts.

Ideally, the requested font will be available for all devices. More
realistically, GDI provides a similar font, within the limits of the
device capabilities.

The best way to imitate the appearance of printer fonts on a display
is to assume that the printer has more fonts and greater resolution
than the display. The following nine steps describe one way to
implement a WYSIWYG display:

1. Open a device context (DC) and enumerate the fonts available on the
 printer. Use information from the GetDeviceCaps function with the
 TEXTCAPS parameter to determine how the device can alter the
 appearance of the fonts it provides. Together, the EnumFonts and
 GetDeviceCaps functions will allow the application to determine

 which fonts the device and GDI can provide. The text capabilities
 of the device serve as a filter in the enumeration process.

2. Provide a user interface in the application to allow the user to
 choose one of the fonts (this will result in "printer-centered
 WYSIWYG"). If appropriate, provide a method to choose between sizes
 and other attributes (bold, italic, and so forth). Fonts are most
 commonly selected by point size. One point equals 1/72 of an inch.
 Enumerating fonts returns LOGFONT and TEXTMETRIC structures. The
 quantities in these structures are in logical units that depend on
 the current mapping mode. Assuming that MM_TEXT (the default
 mapping mode) is selected, one logical unit equals one device unit
 (pixel, or pel). Font height and internal leading define the point
 size of the font as follows:

 72 * (tmHeight - tmInternalLeading)
 point_size = -----------------------------------
 GetDeviceCaps(hDC, LOGPIXELSY)

3. Create a LOGFONT structure for the selected font. To ensure
 successful selection of that font into the printer DC, the
 lfHeight, lfWeight, and lfFacename fields must be specified. Weight
 and face name can be copied directly from the LOGFONT structure
 that was returned during the enumeration. The height should be
 computed using the following formula:

 lfHeight = -(point_size * GetDeviceCaps(hDC, LOGPIXELSY) / 72)

 In normal situations, set lfWidth to zero.

4. Once a font has been chosen, select it into the printer DC. Use
 GetTextMetrics and GetTextFace to verify the selection. If the
 steps above are followed, the process should fail only when very
 little memory is available in the system.

5. Create a device context for the display. Use the equation listed in
 step 2 above to compute the logical height for the font to be
 selected into the screen DC. Use CreateFont and SelectObject to
 select this logical font into the display DC, and use
 GetTextMetrics and GetTextFace to retrieve a TEXTMETRIC data
 structure and the face name for the selected font.

6. The font selected for the display is generally not the same as the
 font selected for the printer. To achieve WYSIWYG and the highest
 possible quality of the printed output, it is best to perform all
 page layout computations based on the metrics obtained from the
 printer DC, and force the output on the screen to match the printer
 output as closely as possible. This process generally causes some
 degradation of quality. It is assumed in the remainder of this
 discussion that text quality is most important.

7. Check whether either device supports the GDI escape codes that
 enhance the usability of fonts. One escape code, for example,
 returns the width table for proportionally spaced fonts. These
 escapes are listed in chapter 12 of the "Microsoft Windows Software

 Development Kit Reference, Volume 2." Use the escape code
 QUERYESCSUPPORT to discover whether a device supports a particular
 escape code. The width tables provide data to determine the
 physical extent of character strings to be sent to the printer and
 how to match that extent on the display.

8. If the devices do not support those GDI escapes, select the desired
 font into a printer DC and use the GetTextExtent function to get
 the extent a string will occupy when printed.

9. With the methods outlined in steps 7 and 8, the dimensions of any
 string can be computed for the printer device. This information is
 used to compute page breaks and line breaks. Once the placement and
 extent of a string of text have been determined on the printed
 page, it is possible to create a scaled image on the screen. There
 are three methods of forcing a match between printer and screen:

 a. Take no special action. Put the text on the screen based on
 screen DC text metrics. With this method, only minimal matching
 is obtained.

 b. Use either the GetTextExtent function or the combination of the
 GetCharWidths, SetTextJustification, and SetTextCharacterExtra
 functions to create the same line breaks and justification on
 the screen as on the printed page. This method uses white space
 (usually the space character) to stretch or shrink a string of
 text (action of SetTextJustification) and adds a constant value
 to the width of every character in the font (action of
 SetTextCharExtra). This method achieves reasonable WYSIWYG.

 c. Use the ExtTextOut function and pass a width array to achieve
 the exact placement of each and every character in the string.
 This method provides the highest degree of WYSIWYG; however, it
 also requires character placement algorithms that do not degrade
 the speed of text output too much.

The following functions related to this article are documented in
chapter 4 of the "Microsoft Windows Software Development Kit
Reference, Volume 1:"

 CreateFont
 CreateFontIndirect
 EnumFonts
 Escape
 GetCharWidths
 GetDeviceCaps
 GetTextExtent
 GetTextFace
 GetTextMetrics
 SelectObject
 SetMappingMode
 SetViewportExtent
 SetViewportOrigin
 SetWindowExtent
 SetWindowOrigin

The LOGFONT and TEXTMETRIC data structures are documented in Chapter 7
of the SDK reference, volume 2.

The following device escape functions are documented in Chapter 12 of
the SDK reference, volume 2:

 ENABLEPAIRKERNING
 ENABLERELATIVEWIDTHS
 EXTTEXTOUT
 GETEXTENDEDTEXTMETRICS
 GETEXTENTTABLE
 GETPAIRKERNTABLE
 GETTRACKKERNTABLE
 QUERYESCSUPPORT
 SETKERNTRACK

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprint
KBSubcategory: GdiPrn

Distinguishing Between Keyboard ENTER and Keypad ENTER
PSS ID Number: Q96242

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

It is possible using ReadConsoleInput() or PeekConsole() to distinguish
between the ENTER key on the main keyboard and the ENTER key on the numeric
keypad. The KEY_EVENT_RECORD structure in the INPUT_RECORD structure must
be used to distinguish between the two keys.

MORE INFORMATION
================

The following illustrates what the KEY_EVENT_RECORD structure is filled
with after a keyboard ENTER key versus a numeric keypad ENTER key is
pressed.

Keyboard ENTER Key

 KeyEvent.wRepeatCount = 1
 KeyEvent.wVirtualKeyCode = 13
 KeyEvent.wVirtualScanCode = 28
 KeyEvent.dwControlKeyState= 00000000

Numeric Keypad ENTER Key

 KeyEvent.wRepeatCount = 1
 KeyEvent.wVirtualKeyCode = 13
 KeyEvent.wVirtualScanCode = 28
 KeyEvent.dwControlKeyState= 00000100

In the case of the numeric keypad ENTER key, in dwControlKeyState, the
ENHANCED_KEY bit is set.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseCon

DLC Information on LLC_DIR_SET_MULTICAST_ADDRESS Command
PSS ID Number: Q129022

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5

SUMMARY
=======

The DLC programming interface for Windows NT supports Ethernet multicast
addressing via the LLC_DIR_SET_MULTICAST_ADDRESS command. This command must
be successfully issued before Ethernet multicasts can be received. This
article shows by example how to use the command.

MORE INFORMATION
================

The following function demonstrates the command.

Sample Code

BOOL DlcSetMulticastAddress(BYTE bAdapter, BYTE *pbResult, BYTE *pbAddress
)

{
 LLC_CCB Ccb;

 Ccb.uchAdapterNumber = bAdapter;
 Ccb.uchDlcCommand = LLC_DIR_SET_MULTICAST_ADDRESS;

 // note: Dlc expects Ethernet addresses to be specified in the
 // non-canonical form. In other words, reverse the bits
 // before passing an Ethernet address.
 //
 // Also, the first byte of the canonical form of an
 // Ethernet multicast address must be 0x01.

 Ccb.u.pParameterTable = (PLLC_PARMS) pbAddress;

 if(!DlcSyncCall(&Ccb))
 return FALSE;
 else
 {
 *pbResult = Ccb.uchDlcStatus;
 return TRUE;
 }
}

// AcsLan wrapper function used by DlcSetMulticastAddress

BOOL DlcSyncCall(PLLC_CCB pCcb)
{
 BOOL fResult = FALSE;
 DWORD dwResult;

 pCcb->hCompletionEvent = CreateEvent(NULL, TRUE, FALSE, NULL);

 if (!pCcb->hCompletionEvent)
 return FALSE;

 int iStatus = (int) AcsLan(pCcb, NULL);
 if (iStatus != ACSLAN_STATUS_COMMAND_ACCEPTED)
 goto done;

 dwResult = WaitForSingleObject(pCcb->hCompletionEvent, INFINITE);

 if (dwResult == WAIT_OBJECT_0)
 fResult = TRUE;

done:
 CloseHandle(pCcb->hCompletionEvent);

 return fResult;
}

Additional reference words: 3.10 3.50
KBCategory: kbnetwork kbnetwork kbcode
KBSubcategory: NtwkMisc

DlgDirList on Novell Drive Doesn't Show Double Dots [..]
PSS ID Number: Q99339

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The Microsoft Windows application programming interface (API) function
DlgDirList() can be used to add directories, drives, and/or files to a
list box. On a Novell network with the default login script, the
Windows API may not add the string "[..]" used to represent the parent
directory to the list box. This is due to Novell implementation, and
is not a bug in the Windows API. To make the entry appear, add the
following line to the Novell login script (usually called SHELL.CFG
located in the root directory of the boot drive)

 SHOW DOTS = ON

MORE INFORMATION
================

A Novell NetWare file server does not include the directory entries
dot (.) and double dot (..) as MS-DOS does. However, the NetWare shell
(version 3.01 or later) can emulate these entries when applications
attempt to list the files in a directory. Turning on Show Dots causes
problems with earlier versions of some 286-based NetWare utilities,
such as BINDFIX.EXE and MAKEUSER.EXE. Make sure you upgrade these
utilities if you upgrade your NetWare shell. For more information,
contact your Novell dealer.

NOTE: With Novell NetWare version 3.1.1, the line SHOW DOTS=ON/OFF can
be added to the NET.CFG file for the same effect.

The same behavior is shown with the API DlgDirListComboBox, and the
messages LB_DIR and CB_DIR.

Additional reference words: 3.10 3.50 3.51 4.00 95 listbox
KBCategory: kbui
KBSubcategory: UsrCtl

Do Not Call the Display Driver Directly
PSS ID Number: Q77402

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In general, a Windows-based application cannot call the Windows display
driver directly to perform graphics primitives. This article details
the reasons this restriction is in place.

MORE INFORMATION
================

The Windows display driver communicates with the Graphics Device
Interface (GDI) to perform primitive graphics operations. The
parameters of the entry points (or exported functions) in the display
driver are set up according to the standard interface between GDI and
the display driver. The parameters passed by GDI to the display driver
are only meaningful to GDI and to the display driver. A Windows-based
application has no way to obtain these parameters. For example, the
parameter most-commonly passed by GDI to the display driver is a
pointer to a structure called PDEVICE. Memory for this structure is
allocated by GDI, and its contents are specified by the display driver
during the driver's initialization. The pointer to the PDEVICE
structure is private to GDI; furthermore, the structure of PDEVICE
varies among display drivers.

To give another example, when a primitive is to be done to a memory
bitmap, instead of passing a pointer to PDEVICE, GDI passes to the
display driver a pointer to a structure; the structure is usually
referred to as a physical bitmap. Note that this physical bitmap
structure is also called "BITMAP"; do not confuse it with the BITMAP
structure defined in the Windows Software Development Kit. Again, this
physical bitmap structure is not designed to be used by a Windows-based
application. Although the information described in this structure is
somewhat related to the bitmap that the application uses, the pointer
to the physical bitmap structure is private to GDI and cannot be
obtained by the application.

Additional reference words: 3.00 3.10
KBCategory: kbgraphic
KBSubcategory: GdiMisc

Do Not Forward DDEML Messages from a Hook Procedure
PSS ID Number: Q89828

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

If an application for Windows uses the Dynamic Data Exchange
Management Library (DDEML) in addition to a message hook [for example,
by calling SetWindowsHook() or SetWindowsHookEx()], it is possible
that your hook procedure will receive messages that are intended for
the DDEML libraries.

For the DDEML libraries to work properly, you must make sure that your
hook function does not forward on any messages that are intended for
the DDEML libraries.

MORE INFORMATION
================

If your hook procedure receives a code of type MSGF_DDEMGR, you should
return FALSE instead of calling the CallNextHookEx() function.

The way to handle this situation is to use the following code:

 if (MSGF_DDEMGR == code)
 return FALSE;
 else
 {
 ...
 }

In cases where the callback function processes the message, it should
return TRUE.

Note, however, how the message filter function is called from within
DDEML:

 while (TimeOutHasntExpired) {
 GetMesage (&msg, (HWND)NULL, 0, 0);
 if (!CallMsgFilter (&msg, MSGF_DDEMGR))
 DispatchMessage (&msg);
 }

Given this, a callback function that just returns would cause the

CallMsgFilter() call above to return TRUE, and never dispatch the
message. This inevitably causes an infinite loop in the application,
because GetMessage() ends up retrieving the same message over and
over, without dispatching it to the appropriate window for processing.

Therefore, a callback function that processes the message may not just
return TRUE, but should also translate and dispatch messages
appropriately.

The Windows 3.1 SDK's DDEMLCL sample demonstrates how to do this
correctly in its MessageFilterProc() found in DDEMLCL.C:

 if (nCode == MSGF_DDEMGR) {

 /*
 * If a keyboard message is for MDI, let MDI client take care of it.
 * Otherwise, check to see if it is a normal accelerator key.
 * Otherwise, just handle the message as usual.
 */

 if (!TranslateMDISysAccel (hWndMDIClient, lpmsg) &&
 !TranslateAccelerator (hWndFrame, hAccel, lpmsg)) {
 TranslateMessage (lpmsg);
 DispatchMessage (lpmsg);
 }
 return 1;
 }

For more information about message hooks and DDEML, please see the
above mentioned functions in the Windows SDK manual or the online help
facility.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrDde

DOCERR: AddPort, ConfigurePort, DeletePort Fail Remotely
PSS ID Number: Q131223

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

Using AddPort, ConfigurePort, or DeletePort with the Universal Naming
Convention (UNC) name of a remote server as the first parameter results in
a return value of FALSE. This indicates that a failure has occurred. The
error returned by GetLastError is ERROR_NOT_SUPPORTED. If the first
parameter is the UNC name of the local machine or NULL, the functions
succeed.

CAUSE
=====

Calls to remote servers via AddPort, ConfigurePort and DeletePort are not
supported. The documentation gives the impression that the UNC name for a
remote server is permissible as the first parameter.

RESOLUTION
==========

Use the UNC name to the local server or NULL as the first parameter.

MORE INFORMATION
================

These functions display a dialog associated with the hWnd that is supplied
in the second parameter. Because the call displays a dialog box and
requires a handle to a window in the second parameter, it is only supported
locally.

Additional reference words: 3.50 4.00 95
KBCategory: kbprint kbdocerr
KBSubcategory: GdiPrn

DOCERR: BUFFER.CREATE Command Not Documented
PSS ID Number: Q123462

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), version 3.5

SUMMARY
=======

This article documents the BUFFER.CREATE command. This is a command that
Microsoft added, so it is not documented in IBM LAN Technical Reference.

MORE INFORMATION
================

The AcsLan function topic in the Win32 Help file indicates that there are
some differences between Windows NT DLC and the CCB2 interface documented
in the IBM LAN Technical Reference. The most notable is that the buffer
pool must be specified on an open adapter instance basis, not per SAP.
After an adapter has been opened by using the DIR.OPEN.ADAPTER command, a
buffer pool must be given to the DLC driver by using BUFFER.CREATE.

The IBM LAN Technical Reference manual has no reference to BUFFER.CREATE.
However, the DLCAPI.H file contains the following structure with no other
information explaining how to use it:

typedef struct {
 HANDLE hBufferPool; // handle of new buffer pool
 PVOID pBuffer; // any buffer in memory
 ULONG cbBufferSize; // buffer size in bytes
 ULONG cbMinimumSizeThreshold; // minimum locked size
} LLC_BUFFER_CREATE_PARMS, *PLLC_BUFFER_CREATE_PARMS;

Unlike DLC as described in IBM LAN Technical Reference, Windows NT DLC does
not support a buffer pool per SAP, but rather a buffer pool per process.
All buffers given to the application are allocated from the same pool. (You
can also allocate send buffers from the buffer pool, but this is not the
case in general.)

The application gives the buffer pool to DLC by using the BUFFER.CREATE
request. The parameters are:

 - hBufferPool: the returned handle of the buffer pool. Supposedly, DLC can
 share buffer pools between processes but it doesn't, so it's useless.

 - pBuffer: the pointer to application allocated buffer pool. This can be
 allocated by any scheme you wish and can be any size.

 - cbBufferSize: the size of pBuffer.

 - cbMinimumSizeThreshold: the minimum locked size.

Because the buffer is passed on kernel mode, it must be mapped into system
space. It is divided into pages and further subdivided into 256-byte
segments (unknown to the application). DLC tries to return as many
contiguous segments as it can, but you may end up with a fragmented buffer,
containing a relatively long chain of small segments. To your advantage,
the largest DLC receive frame is usually around 4K.

DLC aligns the buffer to a page boundary, discarding any partial page
buffer after the last page. This is not a problem unless you allocate a
buffer less than a page, or one that is not page-aligned. In these cases,
you are in danger of not having a buffer.

Because the buffer must be mapped to system space, DLC needs to lock the
buffers into memory when receiving or sending from the buffers. To increase
performance, DLC tries to keep a certain amount of buffer locked at all
times. It will lock successive pages as the need arises. (In Windows NT,
the smallest lockable region is a page.) You can control the initial locked
area by setting the cbMinimumSizeThreshold value. If DLC does indeed lock
your pages in excess of cbMinimumSizeThreshold, it will try to unlock them
as they are freed up.

Additional reference words: 3.50
KBCategory: kbnetwork kbdocerr
KBSubcategory: NtwkMisc

DOCERR: CreateFile() and Mailslots
PSS ID Number: Q131493

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.5

SUMMARY
=======

The documentation for CreateFile() API gives incorrect possible return
values while opening a client end of a mailslot. The documentation states:

 If CreateFile opens the client end of a mailslot, the function always
 returns a valid handle, even if the mailslot does not exist.
 In other words, there is no relationship between opening the client
 end and opening the server end of the mailslot.

Actually, CreateFile() returns INVALID_HANDLE_VALUE for a mailslot if the
mailslot client is being created using the "\\." notation to communicate
with a mailslot server on the local system when the server is not up and
running.

MORE INFORMATION
================

The following code always returns INVALID_HANDLE_VALUE for a handle value
from CreateFile() while opening the client end of the mailslot if the
mailslot server is not up and running to read mailslot messages:

 CreateFile("\\\\.\\mailslot\\testslot",
 GENERIC_WRITE,
 FILE_SHARE_READ,
 NULL,
 OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL,
 NULL);

GetLastError() in this case returns Error 2: "The system cannot find the
specified file."

This is an expected behavior. Windows NT implementation of local mailslots
does not allow you to open the mailslot if the receiver has not created the
server end with CreateMailslot() API.

Additional reference words: 3.50
KBCategory: kbprg kbnetwork kbdocerr
KBSubcategory: BseIpc

DOCERR: CS_PARENTDC Class Style Description Incorrect
PSS ID Number: Q111005

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The documentation relating to the CS_PARENTDC window class style in the
Windows SDK versions 3.0 and 3.1 states that CS_PARENTDC "Gives the display
context of the parent window to the window class." The documentation for
the Win32 SDK contains a similar statement. These statements are incorrect.

MORE INFORMATION
================

A window with the CS_PARENTDC style bit will receive a regular device
context (DC) from the system's cache of device contexts. CS_PARENTDC merely
sets the clipping rectangle of the child to that of the parent so that the
child can draw on the parent. It does not give the child the parent's DC or
DC settings.

CS_PARENTDC is used with all of Windows's standard controls such as edit
controls and list boxes because it can help improve performance when
drawing, especially in a dialog box. For example, dialog box units are not
exact and if a child is drawing in a very small space it might accidentally
draw outside its own border. This style provides a little room for error
and prevents the child from being clipped unexpectedly.

Additional reference words: 3.00 3.10 3.50 4.00 95 WNDCLASS RegisterClass
KBCategory: kbui kbdocerr
KBSubcategory: UsrCls

DOCERR: Custom Input/Output Procedure for Compound Files
PSS ID Number: Q140429

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 Software Development Kit (SDK) versions 3.5, 4.0

SUMMARY
=======

The first paragraph of the "Using Custom Input/Output Procedures" topic in
the Win32 SDK "Overviews, Multimedia Services, Multimedia File
Input/Output" section refers to a predefined I/O procedure for accessing
compound files. This reference has nothing to do with OLE compound files
and should be disregarded. It refers to a completely different and
completely obsolete file format. There is no predefined I/O procedure
for OLE compound files. Please see the documentation for the products
listed at the beginning of this article for information about writing a
custom I/O procedure.

MORE INFORMATION
================

The incorrect paragraph from the Win32 SDK appears below. The "Multimedia
Programmer's Guide" from the Windows 3.1 SDK contains a similar paragraph
under the "Using Custom I/O Procedures" topic.

Multimedia file I/O services use I/O procedures to handle the physical
input and output associated with reading and writing to different types of
storage systems, such as file-archival systems and database-storage
systems. There are predefined I/O procedures for standard Microsoft Windows
files and for memory files. In the future, there will be a predefined I/O
procedure for accessing elements of compound files. Compound files consist
of a number of individual files, called file elements, bound together in
one physical file.

Additional reference words: 3.10 3.51 4.00 mmioInstallIOProc
mmioSendMessage mmioOpen IOProc docerr
KBCategory: kbmm kbprg kbdocerr
KBSubcategory: MMIO

DOCERR: DdeCreateStringHandle() lpszString param
PSS ID Number: Q102570

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The documentation for the DdeCreateStringHandle() function in the
Windows 3.1 Software Development Kit (SDK) "Programmer's Reference,
Volume 2: Functions" incorrectly states that the lpszString parameter
may point to a buffer of a null-terminated string of any length, when
the string is actually limited to 255 characters.

DDEML string-management functions are internally implemented using
global atom functions. DdeCreateStringHandle() in particular,
internally calls GlobalAddAtom(), and therefore inherits the same
limitation as atoms to a maximum of 255 characters in length.

MORE INFORMATION
================

DDEML applications use string handles extensively to carry out DDE
tasks. To obtain a string handle for a string, an application calls
DdeCreateStringHandle(). This function registers the string with the
system by adding the string to the global atom table, and returns a
unique value identifying the string.

The global atom table table in Windows can maintain strings that are
less than or equal to 255 characters in length. Any attempt to add a
string of greater length to this global atom table will fail. Hence, a
call to DdeCreateStringHandle() fails for strings over 255 characters
long.

This limitation is by design. DDEML applications that use the
DdeCreateStringHandle() function should conform to the 255-character
limit.

This limitation has been preserved on the Windows NT version of DDEML
for compatibility reasons.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui kbdocerr
KBSubcategory: UsrDde

DOCERR: DeviceIoControl Requires OVERLAPPED Struct w/ Async.
PSS ID Number: Q126282

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

The documentation for DeviceIoControl is incomplete. It should warn you
that unexpected behavior may occur when both the following are true:

 - A DeviceIoControl request is followed by another DeviceIoControl request
 on the same handle.

 - There was no OVERLAPPED structure passed into DeviceIoControl after the
 handle to the device or file was opened with FILE_FLAG_OVERLAPPED.

The following is a list of some of the unexpected behavior that may occur:

 - Requests complete before expected.

 - There's undefined data in the returned buffers.

 - Unknown error codes are returned.

 - IRPs are held in a driver while the DeviceIoControl call has already
 returned.

When a handle is requested to a driver or file with FILE_FLAG_OVERLAPPED
specified, the executive prepares itself for all requests on that handle to
be asynchronous. Usually, when the request is sent down with an OVERLAPPED
structure, an event is placed in that OVERLAPPED structure. This event is
then stored in the FILE_OBJECT in kernel mode to use later to signal the
user-mode application when that IRP has been completed. If an event is not
specified, the value will be 0 in the FILE_OBJECT, when a second request is
sent down before the first request completes (and completes), the IO
manager will not have separate signals for the completion of the requests.
Therefore, the request will appear to be completed, while in reality the
IRP has not been completed by the underlying driver.

Please see the current documentation of GetOverlappedResult for more
information on the behavior of the executive when no OVERLAPPED structure
is specified when the handle to the driver or file was opened with
FILE_FLAG_OVERLAPPED.

Additional reference words: 3.10 3.50 FILE_FLAG_OVERLAPPED DDK EVENT
KBCategory: kbprg kbdocerr
KBSubcategory: BseFileio

DOCERR: DEVMODE dmPaperSize Member Documentation Error
PSS ID Number: Q108924

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

The dmPaperSize member of the DEVMODE structure is documented incorrectly.
The documentation states that the dmPaperSize member may be set to zero if
the length and width of the paper are specified by the dmPaperLength and
dmPaperWidth members, respectively. However, the correct value to use for
user-defined paper sizes is DMPAPER_USER.

DMPAPER_USER is correctly listed in the Microsoft Windows 3.1 SDK
documentation as meaning a user-defined paper size, but is completely
omitted from the Microsoft Windows 3.0 SDK documentation.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprint kbdocerr
KBSubcategory: GdiPrn

DOCERR: EM_POSFROMCHAR & EM_CHARFROMPOS Documented Incorrectly
PSS ID Number: Q137805
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.51, 4.0
 - Microsoft Win32s version 1.3
--

SUMMARY
=======

The Win32 SDK documentation for EM_POSFROMCHAR and EM_CHARFROMPOS is
incorrect.

MORE INFORMATION
================

The definitions for EM_POSFROMCHAR and EM_CHARFROMPOS should be documented
as follows:

EM_POSFROMCHAR

wParam = (WPARAM)pPoint; // address of POINT structure
lParam = (LPARAM)wCharIndex; // zero-based index of character

An application sends the EM_POSFROMCHAR message to retrieve the coordinates
of the specified character in an edit control.

Parameters:

 pPoint - Value of wParam. Specifies a pointer to a POINT structure that
 will receive the coordinates.

 wCharIndex - Value of lParam. Specifies the zero-based index of the
 character.

 Return Value - not used.

Remarks: For a single-line edit control, the y-coordinate is always zero. A
returned coordinate can be negative if the character has been scrolled
outside the edit control's client area. The coordinates are truncated to
integer values and are in screen units relative to the upper-left corner of
the client area of the control.

EM_CHARFROMPOS

wParam = 0; // not used
lParam = (LPARAM)&pPoint; // address of a POINT structure

An application sends an EM_CHARFROMPOS message to retrieve the zero-based
character index and zero-based line index of the character nearest the

specified point in an edit control.

Parameters:

 pPoint - Value of lParam. Specifies a pointer to a POINT structure that
 contains the coordinates for the character position wanted. The
 coordinates are in screen units relative to the upper-left corner of the
 client area of the control.

 Return Value - The return value specifies the character index.

Additional reference words: 4.00
KBCategory: kbprg kbui kbdocerr
KBSubcategory: UsrMsg

DOCERR: EofChar Field of DCB Structure Is Not Supported
PSS ID Number: Q115083

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SYMPTOMS
========

The documentation for the device control block (DCB) structure says that
the EofChar field specifies the value of the character used to signal
the end of the data over the communications resource. However, this
setting seems to have no effect.

RESOLUTION
==========

DCB.EofChar is not currently supported in Windows NT.

MORE INFORMATION
================

When DCB.EofChar is supported, you should call ClearCommError() after
every read to see whether COMSTAT.fEof is set. When COMSTAT.fEof is set,
this means that DCB.EofChar has been received.

Additional reference words: 3.10 3.50
KBCategory: kbref kbdocerr
KBSubcategory: BseCommapi

DOCERR: GetQueuedCompletionStatus() Error Code
PSS ID Number: Q139460

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.5, 3.51

SYMPTOMS
========

Windows NT provide a powerful mechanism for performing file I/O
asynchronously by using I/O Completion Ports. For more details, please see
the Win32 SDK Help file and the Pop3srv sample.

An application may post aynchronous ReadFile and WriteFile messages and
then carry on further processing. After some time it may call
GetQueuedCompletionStatus() to find out the status of the ReadFile and
WriteFile operations. It is possible that the pending file operation may
still not have completed. In such a case, if there is a timeout associated
with GetQueuedCompletionStatus(), the function will return FALSE and
GetLastError() will return 258.

Typing "net helpmsg 258" returns this message:

 258 is not a valid Windows NT network message number.

RESOLUTION
==========

258 (0x102) is a WAIT_TIMEOUT. For more information, please refer to the
Win32 SDK Winbase.h and Winnt.h files. Please note that this API is not
available under Windows 95.

STATUS
======

This behavior is not documented as well as it should be.

Additional reference words: 3.50 3.51
KBCategory: kbnetwork kbdocerr kbtshoot
KBSubcategory: BseErrdebug BseFileio

DOCERR: GetWindowPlacement Function Always Returns an Error
PSS ID Number: Q89569

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

When an application developed for the Microsoft Windows graphical
environment uses the GetWindowPlacement() function to retrieve the
show state and position information for a window, the function
always returns FALSE, indicating an error.

CAUSE
=====

The length member of the specified WINDOWPLACEMENT data structure
is not initialized.

RESOLUTION
==========

Initialize the length member and call the GetWindowPlacement()
function as follows:

 BOOL bResult;
 WINDOWPLACEMENT lpWndPl;

 lpWndPl.length = sizeof(WINDOWPLACEMENT);
 bResult = GetWindowPlacement(hWnd, &lpWndPl);

MORE INFORMATION
================

The need to initialize the length member of the WINDOWPLACEMENT
structure is documented on page 422 of the Microsoft Windows Software
Development Kit (SDK) "Programmer's Reference, Volume 3: Messages,
Structures, and Macros" manual for version 3.1. This information is
not listed in the documentation for the GetWindowPlacement() function on
page 479 of the "Programmer's Reference, Volume 2: Functions" manual.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui kbdocerr
KBSubcategory: UsrWndw

DOCERR: Important Information on RPC 2.0 Missing from the Docs
PSS ID Number: Q129143
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows for
 Workgroups version 3.11
 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.5
--

SUMMARY
=======

This article contains important information not included in the Microsoft
RPC programming documentation or in Help about Microsoft RPC version 2.0.
This information is identical to the information provided in the RPCREAD.ME
file in the Win32 SDK (MSTOOLS\SAMPLES\RPC\) for Windows NT version 3.5.

Microsoft RPC is a toolkit for developing distributed applications in
C/C++. The toolkit includes:

 - MIDL compiler for Microsoft Windows NT.

 - C/C++ language header files and run-time libraries for Windows NT,
 Microsoft Windows versions 3.x, and MS-DOS.

 - Sample programs for Windows NT, Windows versions 3.x, and MS-DOS.

MORE INFORMATION
================

This article is organized into the following sections:

 - Installation
 - Documentation
 - Before Using RPC
 - MIDL Issues
 - Run-Time API Issues

Installation

The Windows NT SDK provides the components of the RPC toolkit as part of
its standard installation. No additional installation is required. To
produce MS-DOS and Windows 3.x RPC clients, install version 1.50 of the
Microsoft Visual C/C++ development environment, and then install the MS-
DOS/Win16 RPC tookit from disk. To install the MS-DOS/Windows 3.x version
of the RPC toolkit, use the Setup program in the MSTOOLS\RPC_DOS\DISK1
directory.

Because the 16-bit MIDL compiler is no longer supported, you must develop
applications using the 32-bit MIDL compiler. However, to write MS-DOS or
Windows 3.x applications without a 32-bit C/C++ compiler capable of

targeting MS-DOS, you must compile the IDL file with a 32-bit MIDL compiler
on Windows NT. Then, compile the application and stubs using your C/C++
compiler. To write MS-DOS or Windows 3.x applications using a 32-bit C/C++
compiler that is capable of targeting MS-DOS, compile both the IDL file and
C/C++ files on Windows NT.

Documentation

The RPC Programmer's Guide and Reference is available in Help and includes
conceptual material, MIDL language and command-line references, and
run-time API references.

Because many new features have been included in this version of Microsoft
RPC, see the New in this Version of RPC help topic.

RPC sample program source files are available in the directory
MSTOOLS\SAMPLES\RPC. The MSTOOLS\SAMPLES\RPC\README.TXT file describes each
sample.

Before Using RPC

Read the following section on MIDL and run-time API issues before
attempting to use this version of RPC. These sections contain important
information that is not documented in Help.

MIDL Issues

The 16-bit MIDL compiler for MS-DOS or Windows 3.x is no longer supported.
Use the 32-bit MIDL compiler switch /env with either the DOS or WIN16
option.

Note the following when using this version of the MIDL compiler:

 - When compiling the generated stubs, warnings about different levels of
 pointer indirection or different const specifications are benign.

 - When using the DOS or WIN option of the -env switch, the compiler will
 not set the correct packing level to 2. In this case, you must
 explicitly specify the correct packing level by using the /Zp or /pack
 switch.

 - For Alpha platforms, procedure serialization stubs must be compiled on
 the C compiler by using the -Od switch. The procedure encoding/decoding
 stubs on the Alpha platform should not be compiled as optimized (for
 example, using the -Ox switch). This affects the stubs on the Alpha
 platform only if the serializing procedure uses one of the following
 attributes on top-level parameters:

 - array or ptr attributes, such as size_is or length_is.
 - The switch_is union attribute.

 - A structure whose only member is a conformant string results in an MIDL

 compiler assert.

 - In the osf mode of the compiler, the default allocate and free routines
 map to NdrRpcSmClientAllocate and NdrRpcSmClientFree. The signatures for
 these routines are in RPCNDR.H

Run-Time API Issues

When using the ncacn_spx and ncadg_ipx transports, the server name is
exactly the same as the Windows NT server name. However, because the names
are distributed using Novell protocols, they must conform to the Novell
naming conventions. If a server name is not a valid Novell name, servers
will not be able to create endpoints with the ncacn_spx or ncadg_ipx
transports. The following is a partial list of characters prohibited in
Novell server names:

 " * + . / : ; < = > ? [] \ |

When using ncadg_ipx on Windows 3.x or MS-DOS platforms, use the Windows NT
3.1 model of server naming. That is, a tilde, followed by the servers eight-
digit network number, followed by its twelve-digit Ethernet address.

The ncacn_spx transport is not supported by the version of NWLink supplied
with MS Client 3.0; however, ncadg_ipx is supported.

Backslashes are now optional in the host name for ncacn_np, for consistency
with the other transports.

The datagram protocols (ncadg_ipx, ncadg_ip_udp) have the following
limitations:

 - They do not support callbacks. Any functions using the callback
 attribute will fail.

 - They do not support the RPC security API (RpcBindingSetAuthInfo,
 RpcImpersonateClient, and so on).

Only the ncacn_spx and ncacn_ip_tcp protocols support cancels. For all
other protocols, the cancel routines will return RPC_S_OK, but there will
be no effect. Specifically:

 - RpcCancelThread will alert the specified thread, but will not interrupt
 a pending RPC.

 - RpcTestCancel will return RPC_S_OK if the current thread has been
 alerted.

 - RpcMgmtSetCancelTimeout has no visible effect.

RpcTestCancel, RpcMgmtSetCancelTimeout, and RpcCancelThread are only
supported on Windows NT platforms; all other platforms return
RPC_S_CANNOT_SUPPORT.

The function RpcBindingSetAuthInfo does not accept the value

RPC_C_AUTHN_DEFAULT.

To use the RpcBindingSetAuthInfo routine and, in particular, when using
MS-DOS authentication in this version of RPC, note this information:

 - The constant RPC_C_AUTHN_WINNT has been defined in the header RPCDCE.H.
 This constant should be passed as the AuthnSvc parameter to use the
 Windows NT LAN Manager Security Support Provider (NTLMSSP) service.

 - When using the RPC_C_AUTHN_WINNT authentication service, the
 AuthIdentity parameter should be a pointer to a SEC_WINNT_AUTH_IDENTITY
 structure, defined in RPCDCE.H. This structure contains strings for the
 user's domain, username, and password. You can pass a NULL pointer to
 use the information for the currently logged-in user.

For MS-DOS, you cannot pass NULL because there is no way for RPC to
determine the current user's logon information. However, either a structure
or NULL is acceptable for Windows versions 3.x and Windows NT.

When using authenticated RPC on a system composed of Novell NetWare and
Windows version 3.x (not Windows for Workgroups), you must run the optional
NETBIOS.EXE program before starting Windows.

The 16-bit SDK cannot be installed on a Windows NT computer unless the
current user is an administrator.

Supported Platforms for Runtime APIs

The following function is supported only by 16-bit Windows 3.x platforms:

RpcWinSetYieldInfo

The following functions are supported only by 32-bit Windows NT platforms:

DceErrorInqTest
RpcBindingInqAuthClient
RpcBindingServerFromClient
RpcCancelThread
RpcEpRegister
RpcEpUnregister
RpcIfIdVectorFree
RpcImpersonateClient
RpcNetworkInqProtseqs
RpcObjectInqType
RpcObjectSetInqFn
RpcObjectSetType
RpcProtseqVectorFree
RpcRevertToSelf
RpcServerInqBindings
RpcServerInqIf
RpcServerListen
RpcServerRegisterAuthInfo
RpcServerRegisterIf
RpcServerUnregisterIf

RpcServerUse*Protseq*
RpcMgmtInqIfIds
RpcMgmtInqStats
RpcMgmtIsServerListening
RpcMgmtInqServerPrincName
RpcMgmtSetAuthorizationFn
RpcMgmtSetCancelTimeout
RpcMgmtSetServerStackSize
RpcMgmtStatsVectorFree
RpcMgmtStopServerListening
RpcMgmtWaitServerListen
RpcMgmtEnableIdleCleanup
RpcMgmtEpElt*
RpcMgmtEpUnregister
RpcNsBindingExport
RpcNsBindingUnexport
RpcTestCancel

All other runtime functions are supported on Windows NT, Windows 3.x, and
MS-DOS platforms.

REFERENCES
==========

RPCREAD.ME in \MSTOOLS\SAMPLES\RPC in Win32SDK for Windows NT 3.5 on MSDN.

Additional reference words: 6.20 3.50
KBCategory: kbnetwork kbtshoot kbref kbdocerr
KBSubcategory: NtwkRpc

DOCERR: Incorrect DialogBoxIndirect() Code in Win32 SDK Docs
PSS ID Number: Q140725

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for:

 - Window 95
 - Windows NT version 3.51

Note: This docerr is fixed in Windows NT version 4.0 beta documents.

SUMMARY
=======

The Win32 SDK documentation demonstrates how to create a template in memory
for a modal dialog box by using DialogBoxIndirect() in a section called
"Creating a Template in Memory." The code included in this section of the
documentation has problems in Windows 95 and Windows NT version 3.51, which
may cause the dialog box to come up with only one control or may cause
DialogBoxIndirect() to return -1, indicating failure.

The same problems occur if the call to DialogBoxIndirect() is replaced with
CreateDialogIndirect().

MORE INFORMATION
================

There are four problems with the DialogBoxIndirect() code. The corrected
code appears at the end of this article.

1. The code was intended to bring up a modal dialog box that contains a
 static control (an OK button) and a Help button. However, because of two
 conflicting lines of code that were supposed to set the DLGTEMPLATE
 struct's cdit member to the number of controls in the dialog box, the
 system is made to think there is only one control in the dialog.

 lpdt->cdit = 3; // number of controls
 lpdt->cdit = 1;

 As is, the code works when pasted into an application, although the
 dialog box comes up with only the OK button and the other two controls
 are not shown. The second line should be removed because the dialog box
 actually contains three controls, not one. However, doing this while
 leaving the rest of the code as is causes no dialog box to come up and
 DialogBoxIndirect() returns -1 as a result of two other problems
 described in this article.

2. The DLGTEMPLATE structure passed to the DialogBoxIndirect or
 CreateDialogIndirect() functions is followed by one or more
 DLGITEMTEMPLATE structures. These DLGITEMTEMPLATE structures need to
 be DWORD aligned. Calling the following lpwAlign() function will do just
 that:

 /*
 Helper routine. Take an input pointer, return closest
 pointer that is aligned on a DWORD (4 byte) boundary.
 */
 LPWORD lpwAlign (LPWORD lpIn)
 {
 ULONG ul;

 ul = (ULONG) lpIn;
 ul +=3;
 ul >>=2;
 ul <<=2;
 return (LPWORD) ul;
 }

3. The help button and the static control have identical (x,y) coordinates
 as well as width and height (cx,cy):

 lpdit->x = 55; lpdit->y = 10;
 lpdit->cx = 40; lpdit->cy = 20;

 This causes the static control to overlap the help button. You need to
 adjust these values accordingly so that they both show up in the dialog
 box. The following code shows how the modified code looks like so far.
 Note the calls to the lpwAlign function each time a DLGITEMTEMPLATE
 structure is added. This works fine in Windows NT version 3.51.

 #define ID_HELP 150
 #define ID_TEXT 200
 LRESULT DisplayMyMessage(HINSTANCE hinst, HWND hwndOwner,
 LPSTR lpszMessage)
 {

 HGLOBAL hgbl;
 LPDLGTEMPLATE lpdt;
 LPDLGITEMTEMPLATE lpdit;
 LPWORD lpw;
 LPWSTR lpwsz;
 LRESULT ret;

 hgbl = GlobalAlloc(GMEM_ZEROINIT, 1024);
 if (!hgbl)
 return -1;

 lpdt = (LPDLGTEMPLATE)GlobalLock(hgbl);

 // Define a dialog box.

 lpdt->style = WS_POPUP | WS_BORDER | WS_SYSMENU
 | DS_MODALFRAME | WS_CAPTION;
 lpdt->cdit = 3; // number of controls
// lpdt->cdit = 1; // COMMENTED OUT -- unnecessary code

 lpdt->x = 10; lpdt->y = 10;
 lpdt->cx = 100; lpdt->cy = 100;

 lpw = (LPWORD) (lpdt + 1);
 *lpw++ = 0; // no menu
 *lpw++ = 0; // predefined dialog box class (by default)

 lpwsz = (LPWSTR) lpw;
 lstrcpyW(lpwsz, L"My Message"); // dialog title (Unicode)
 lpw = (LPWORD) (lpwsz + lstrlenW(lpwsz) + 1);

 //-----------------------
 // Define an OK button.
 //-----------------------
 lpw = lpwAlign (lpw);
 lpdit = (LPDLGITEMTEMPLATE) lpw;
 lpdit->x = 10; lpdit->y = 70;
 lpdit->cx = 80; lpdit->cy = 20;
 lpdit->id = IDOK; // OK button identifier
 lpdit->style = WS_CHILD | WS_VISIBLE | BS_DEFPUSHBUTTON;

 lpw = (LPWORD) (lpdit + 1);
 *lpw++ = 0xFFFF;
 *lpw++ = 0x0080; // button class

 lpwsz = (LPWSTR) lpw;
 lstrcpyW(lpwsz, L"OK"); // button label (Unicode)
 lpw = (LPWORD) (lpwsz + lstrlenW(lpwsz) + 1);
 *lpw++ = 0; // no creation data

 //-----------------------
 // Define a Help button.
 //-----------------------
 lpw = lpwAlign (lpw);

 lpdit = (LPDLGITEMTEMPLATE) lpw;
 lpdit->x = 55; lpdit->y = 10;
 lpdit->cx = 40; lpdit->cy = 20;
 lpdit->id = ID_HELP; // Help button identifier
 lpdit->style = WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON;

 lpw = (LPWORD) (lpdit + 1);
 *lpw++ = 0xFFFF;
 *lpw++ = 0x0080; // button class atom
 lpwsz = (LPWSTR) lpw;
 lstrcpyW(lpwsz, L"Help"); // button label (Unicode)
 lpw = (LPWORD) (lpwsz + lstrlenW(lpwsz) + 1);
 *lpw++ = 0; // no creation data

 //-----------------------
 // Define a static text control.
 //-----------------------
 lpw = lpwAlign (lpw);

 lpdit = (LPDLGITEMTEMPLATE) lpw;

 lpdit->x = 10; lpdit->y = 10; // Changed this from (55,10)
 lpdit->cx = 40; lpdit->cy = 20;
 lpdit->id = ID_TEXT; // text identifier
 lpdit->style = WS_CHILD | WS_VISIBLE | SS_LEFT;

 lpw = (LPWORD) (lpdit + 1);
 *lpw++ = 0xFFFF;
 *lpw++ = 0x0082; // static class

 for (lpwsz = (LPWSTR)lpw;
 *lpwsz++ = (WCHAR) *lpszMessage++;
);
 lpw = (LPWORD)lpwsz;
 *lpw++ = 0; // no creation data

 GlobalUnlock(hgbl);
 ret = DialogBoxIndirect(hinst,
 (LPDLGTEMPLATE) hgbl,
 hwndOwner, (DLGPROC) DialogProc);
 GlobalFree(hgbl);

 return ret;
 }

4. As previously stated, this modified code works fine in Windows NT 3.51.
 In Windows 95, however, the dialog box and the controls come up, but
 with no text for the help and OK buttons or for the dialog box.

 Notice how the text in the code copies the text onto the memory block
 using lstrcpyW(), which is not implemented in Windows 95, so it returns
 ERROR_NOT_IMPLEMENTED. To generate Unicode strings in Windows 95, the
 application must use MultiByteToWideChar().

 Following is the modified code that works in Windows 95:

 #define ID_HELP 150
 #define ID_TEXT 200
 LRESULT DisplayMyMessage(HINSTANCE hinst, HWND hwndOwner,
 LPSTR lpszMessage)
 {

 HGLOBAL hgbl;
 LPDLGTEMPLATE lpdt;
 LPDLGITEMTEMPLATE lpdit;
 LPWORD lpw;
 LPWSTR lpwsz;
 LRESULT ret;
 hgbl = GlobalAlloc(GMEM_ZEROINIT, 1024);
 if (!hgbl)
 return -1;

 lpdt = (LPDLGTEMPLATE)GlobalLock(hgbl);

 // Define a dialog box.

 lpdt->style = WS_POPUP | WS_BORDER | WS_SYSMENU
 | DS_MODALFRAME | WS_CAPTION;
 lpdt->cdit = 3; // number of controls
 lpdt->x = 10; lpdt->y = 10;
 lpdt->cx = 100; lpdt->cy = 100;

 lpw = (LPWORD) (lpdt + 1);
 *lpw++ = 0; // no menu
 *lpw++ = 0; // predefined dialog box class (by default)

 lpwsz = (LPWSTR) lpw;
 nchar = 1+ MultiByteToWideChar (CP_ACP, 0, "My Dialog", -1, lpwsz, 50);
 lpw += nchar;

 //-----------------------
 // Define an OK button.
 //-----------------------
 lpw = lpwAlign (lpw);

 lpdit = (LPDLGITEMTEMPLATE) lpw;
 lpdit->x = 10; lpdit->y = 70;
 lpdit->cx = 80; lpdit->cy = 20;
 lpdit->id = IDOK; // OK button identifier
 lpdit->style = WS_CHILD | WS_VISIBLE | BS_DEFPUSHBUTTON;

 lpw = (LPWORD) (lpdit + 1);
 *lpw++ = 0xFFFF;
 *lpw++ = 0x0080; // button class

 lpwsz = (LPWSTR) lpw;
 nchar = 1+MultiByteToWideChar (CP_ACP, 0, "OK", -1, lpwsz, 50);
 lpw += nchar;
 *lpw++ = 0; // no creation data

 //-----------------------
 // Define a Help button.
 //-----------------------
 lpw = lpwAlign (lpw);

 lpdit = (LPDLGITEMTEMPLATE) lpw;
 lpdit->x = 55; lpdit->y = 10;
 lpdit->cx = 40; lpdit->cy = 20;
 lpdit->id = 101; //ID_HELP; // Help button identifier
 lpdit->style = WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON;

 lpw = (LPWORD) (lpdit + 1);
 *lpw++ = 0xFFFF;
 *lpw++ = 0x0080; // button class atom

 lpwsz = (LPWSTR) lpw;
 nchar = 1+MultiByteToWideChar (CP_ACP, 0, "Help", -1, lpwsz, 50);
 lpw += nchar;
 *lpw++ = 0; // no creation data

 //-----------------------
 // Define a static text control.
 //-----------------------
 lpw = lpwAlign (lpw);

 lpdit = (LPDLGITEMTEMPLATE) lpw;
 lpdit->x = 10; lpdit->y = 10;
 lpdit->cx = 40; lpdit->cy = 20;
 lpdit->id = 200; //ID_TEXT; // text identifier
 lpdit->style = WS_CHILD | WS_VISIBLE | SS_LEFT;

 lpw = (LPWORD) (lpdit + 1);
 *lpw++ = 0xFFFF;
 *lpw++ = 0x0082; // static class

 for (lpwsz = (LPWSTR)lpw;
 *lpwsz++ = (WCHAR) *lpszMessage++;
);

 lpw = (LPWORD)lpwsz;
 *lpw++ = 0; // no creation data

 GlobalUnlock(hgbl);
 ret = DialogBoxIndirect(hinst,
 (LPDLGTEMPLATE) hgbl,
 hwndOwner,
 (DLGPROC) DialogProc);
 GlobalFree(hgbl);

 return ret;
 }

Additional reference words: 4.00
KBCategory: kbprg kbdocerr kbcode
KBSubcategory: UsrDlg

DOCERR: MarkMIDI Utility Not Provided in Win32 SDK
PSS ID Number: Q141087

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.5

SUMMARY
=======

The Win32 SDK multimedia documentation refers to the MarkMIDI utility
in the following topics:

 Using the MARKMIDI Utility
 Using the MCI MIDI Sequencer with High-Level Audio
 Authoring Guidelines for MIDI Files

However, this utility is not provided in the Win32 SDK.

MORE INFORMATION
================

Due to advances in the MIDI capabilities of PC sound cards and MIDI
synthesizers and in particular support for the General MIDI Level 1
specification, the authoring of MIDI files according to the old Microsoft
Windows 3.1 SDK Authoring Guidelines for MIDI Files is no longer
recommended. Thus, the purpose for which MarkMIDI was designed (to set a
flag in the header of such files) is no longer required. Also, the
incorrect use of this utility can degrade the playback quality of MIDI
files authored according to the General MIDI (GM) specification. Therefore
it was decided to no longer include this utility in the Win32 SDK.

The information in the Win32 SDK topics regarding authoring MIDI files is
obsolete information from the Windows 3.1 SDK documentation. It should be
followed only if there is some special reason to author a file according to
the old Windows 3.1 guidelines. In general, however, only GM files (or
extensions to GM such as Roland's GS or Yamaha's XG specification) should
be authored, and for these files the MarkMIDI utility must not be used.

MIDI files authored according to the old Windows 3.1 guidelines have MIDI
data on channels 1 through 10, with channel 10 being percussion, and
important MIDI data is duplicated on Channels 11 through 16, with 16 being
percussion. For such files, the MarkMIDI utility from the Windows 3.1 SDK
absolutely must be used to mark the files. The MCI sequencer (Mciseq.drv)
checks for the flag set by MarkMIDI so that it knows to play back only MIDI
channels 1 through 10. Without the flag, all 16 channels are played back as
GM, and track 16 plays back incorrectly.

Most synthesizers and PC sound cards now support GM, which provides better
sound quality than is derived from files authored according to the old
Windows 3.1 guidelines. In general, there should be no reason to author
MIDI files with MarkMIDI according to the old Windows 3.1 guidelines.

If a MIDI file authored according to the old Windows 3.1 guidelines is not
marked, it will sound bad when played with the MCI sequencer on Windows 95.
For example, if such a file included percussion on channel 16, all of that
channel's data would probably be played with some instrumental sound other
than percussion, and the result would be non-musical. Also, if a GM file
has been marked, the MCI sequencer will only play channels 1 through 10. In
that case, any MIDI data sent to channels 11 through 16 will not be heard.

REFERENCES
==========

The General MIDI specification referred to in this article is not available
from Microsoft. It is published by and is copyrighted material of the MIDI
Manufacturers Association (MMA). For information on obtaining this and
other MIDI specifications from the MMA, please see the following article in
the Microsoft Knowledge Base:

 ARTICLE-ID: Q140203
 TITLE : How to Obtain MIDI Specifications

Additional reference words: 4.00 3.50
KBCategory: kbmm kbprg kbdocerr
KBSubcategory: MMMidi

DOCERR: Printing an OpenGL Image
PSS ID Number: Q132866

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The documentation relating to printing an OpenGL image in the Win32 SDK
versions 3.5, 3.51, and 4.0 is incorrect. The current version of
Microsoft's implementation of OpenGL in Windows NT does not provide
support for printing. More specifically, an application cannot call
wglCreateContext or wglMakeCurrent on a printer device context.

To work around this limitation, draw the OpenGL image into a memory bitmap,
and then print the bitmap.

MORE INFORMATION
================

Here are the correct steps to print an OpenGL image:

1. Create a printer device context.

2. Create a memory device context.

3. Create a bitmap that can be either a DIB section or a screen
 compatible bitmap, and select it into the memory device context.
 This bitmap must have four or more bits of color information per pixel.

4. Set the pixel format of the memory device context.

5. Create a rendering context, passing the wglCreateContext function
 the handle to the memory device context, and make that rendering context
 a thread's current rendering context.

6. Make OpenGL calls, which will draw into that rendering context.

7. Disconnect and delete the rendering context.

8. Use StretchDIBits, SetDIBitsToDevice, StretchBlt, or BitBlt from the
 memory device context to the printer device context.

9. Delete the bitmap, the memory device context, and the printer device
 context.

Additional reference words: 3.50 4.00 Windows 95
KBCategory: kbgraphic kbdocerr

KBSubcategory: GdiOpenGL

DOCERR: Resource Compiler Maximum String Length Incorrect
PSS ID Number: Q150448
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0
--

The Tools User's Guide included with the Microsoft Win32 SDK specifies that
string resources definined in a resource script "must be no longer than 255
characters and must occupy a single line in the source file."

This information is incorrect. The actual maximum length of a string
resource for the resource compiler included with the Win32 SDK is 4097
characters.

Additional reference words: 4.00
KBCategory: kbtool kbdocerr
KBSubcategory: TlsRc

DOCERR: Return Values for EditStreamCallback Incorrect
PSS ID Number: Q136810

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s version 1.3

The Win32 SDK documents the return values for the EditStreamCallback
incorrectly when the RichEdit control is streaming text in and out.
Currently the documentation states that the return value is dependant on
whether the control is reading text in or writing text out.

The correct return value for both reading and writing is zero if the read
or write was successful, or an error code otherwise. The number of bytes
read or written should be returned in the *pcb parameter. The return
value from the EditStreamCallback is interpreted as an SCODE and zero is a
successful SCODE. Whatever error code is returned by the
EditStreamCallback is copied to the EDITSTREAM.dwError field so the caller
can get an error status.

Additional reference words: 1.30 4.00 EM_STREAMIN EM_STREAMOUT
RichEdit
KBCategory: kbui kbdocerr
KBSubcategory: UsrCtl

DOCERR: Setting of SO_DEBUG Option Is Ignored by Winsock Apps
PSS ID Number: Q138965
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1, 3.11
 - Microsoft Win32 Software Development Kit (SDK) versions 3.1,
 3.5, 3.51, 4.0
--

The Windows Sockets specification (Winsock) version 1.1 provides for an
application to set the SO_DEBUG option by calling the setsockopt() API.

Although a call to set this option succeeds (doesn't return SOCKET_ERROR),
the setting is ignored by all Microsoft Windows Sockets implementations.
This includes the Winsock implementations for:

 - Windows for Workgroups 3.11 (MS TCP/IP-32)
 - Windows NT 3.1, 3.5, 3.51
 - Windows 95
 - LAN Manager 2.2c

Additional reference words: 3.11 4.00 3.10 3.51 2.20c 3.50
KBCategory: kbnetwork kbdocerr
KBSubcategory: NtwkWinsock

DOCERR: SHFILEOPSTRUCT pFrom and pTo Fields Incorrect
PSS ID Number: Q133326

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The documentation for the SHFILEOPSTRUCT structure in the Win32 SDK
describes the pFrom and pTo fields incorrectly as:

 pFrom
 Pointer to a string that contains the names of the source files.
 pTo
 Pointer to a string that specifies the destination for the moved,
 copied, or renamed file.

This is only partially correct. The pFrom and pTo fields are actually
pointers to a list of strings containing the desired source files. The
strings should be separated by NULL characters with an extra NULL
terminator after the last file name. For example, if pFrom should contain
FILE1.ABC, FILE2.ABC, and FILE3.ABC, the memory pointed to by pFrom should
be:

 "FILE1.ABC\0FILE2.ABC\0FILE3.ABC\0\0"

If only one file is being passed in pFrom, it should still be double-NULL
terminated.

Additional reference words: Win95 Shell SHFileOperation Windows 95 4.00
KBCategory: kbui kbdocerr
KBSubcategory: UsrShell

DOCERR: TabbedTextOut Tab Positions Really in Logical Units
PSS ID Number: Q113253

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

Both the printed and electronic documentation from the Windows 3.0 and 3.1
SDKs, as well as the Win32 SDK, state that the tab positions parameter of
TabbedTextOut() is in device units. This is incorrect. The tab position
array is in logical units. The Windows 3.0 and 3.1 SDKs refer to the tab
position array as lpnTabPositions, while the Win32 SDK calls it
lpnTabStopPositions.

The use of logical units can be seen by using a mapping mode other than the
default MM_TEXT. The output of tabs using TabbedTextOut() reflects the
mapping mode.

Additional reference words: 3.00 3.10 3.50 docerr
KBCategory: kbgraphic kbdocerr
KBSubcategory: GdiDrw

DOCERR: TranslateMessage() Always Returns True
PSS ID Number: Q137231

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

The Win32.Hlp online help documentation states that the TranslateMessage()
function returns TRUE only if it posts a WM_CHAR message in the thread's
message queue. However, it returns TRUE on all WM_KEYDOWN and WM_KEYUP
messages, regardless of translation.

This is the same behavior that Microsoft Windows 3.1 exhibits. For
compatibility with Microsoft Windows 3.1, the behavior of this API call
was not changed to match the documentation.

REFERENCES
==========

Win32 Software Development Kit Help file (Win32.Hlp), version 3.51; Search
on: "TranslateMessage"

Additional reference words: 3.50 4.00
KBCategory: kbui kbdocerr
KBSubcategory: UsrDlgs

DOCERR: Use a Thread ID for CALLBACK_THREAD in WaveInOpen
PSS ID Number: Q134336

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5

Note: This docerr has been fixed in the Windows NT 4.0 beta docs.

The Microsoft Win32 Software Development Kit (SDK) Multimedia online Help
documentation incorrectly states that a thread handle should be used for
the dwCallback parameter of the WaveInOpen() function when its fdwOpen
parameter is CALLBACK_THREAD. Instead, the dwCallback parameter should be a
thread ID. The address of the thread ID is returned as the last parameter
of the CreateThread()function, which is used when the thread is created.

This documentation error occurs in the following online Help files:

Microsoft Win32 SDK Multimedia online Help included on July 1995 Microsoft
Developer Network compact disc; Search on "Advanced Audio Techniques,"
"Waveform Audio," and "Waveform Audio Reference," Topic: "WaveInOpen."

Microsoft Win32 SDK Multimedia Reference online Help file included in
Microsoft Windows 95 online documentation; Search on "WaveInOpen CALLBACK,"
Topic: "WaveInOpen."

Additional reference words: 3.10 3.50
KBCategory: kbmm kbsound kbdocerr
KBSubcategory: MMWave

DOCERR: Windows Sockets Enhancements Available in Windows 95
PSS ID Number: Q137484
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.5, 4.0
--

The August 1995 version of the Win32 SDK incorrectly indicates that
the Windows Sockets Service Registration and Resolution functions are
not supported i Windows 95. These functions are supported in Windows 95.
These functions include:

 EnumProtocols
 GetAddressByName
 GetNameByType
 GetService
 GetTypeByName
 SetService

Additional reference words: RNR
KBCategory: kbnetwork kbdocerr
KBSubcategory: NtwkWinsock Winsock

DOCERR: Winhlp32.exe Topics per Keyword is 800
PSS ID Number: Q141955

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The online documentation that ships with Help Workshop 4.0 incorrectly
states that the limit for the number of topics per keyword is 64,000. The
correct limit is approximately 800 topics per keyword -- although this will
vary somewhat depending on the size of the keyword.

REFERENCES
==========

In Hcw.hlp, search for the "Limits" topic.

Additional reference words: 4.00
KBCategory: kbtool kbdocerr
KBSubcategory: tlshlp

Drawing a Rubber Rectangle
PSS ID Number: Q114471

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Most drawing software uses what is termed a "rubber rectangle". This term
is used to describe the situation where

1. the left mouse button is held down, defining one corner of the
 rectangle

2. the mouse is dragged and released at the point defining the opposite
 corner of the rectangle

3. the rectangle is drawn while the mouse is being dragged, so that it
 looks like the rectangle is being stretched and contracted, like a
 rubber band

MORE INFORMATION
================

The key to making this work is in the following call, which should be
made in the WM_LBUTTONDOWN case:

 SetROP2(hDC, R2_NOT)

On each WM_MOUSEMOVE message, the rectangle is redrawn in its previous
position. Because of the ROP code, the rectangle appears to be erased. The
new position for the rectangle is calculated and then the rectangle is
drawn.

Note that Windows will only let you draw in the invalid area of the window
if you use a DC returned from BeginPaint(). If you want to use the DC
returned from BeginPaint(), you must first call InvalidateRect() to specify
the region to be updated.

With the DC returned from GetWindowDC(), Windows will restrict your drawing
to the client and non-client areas. With the hDC returned from CreateDC(),
you can write on the entire display, so you must be careful.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbgraphic

KBSubcategory: GdiDrw

Drawing Outside a Window's Client Area
PSS ID Number: Q33096

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

When an application uses the BeginPaint or GetDC function to obtain a
device context (DC) for its client window and draws into this DC,
Windows clips the output to the edge of the client window. While this
is usually the desired effect, there are circumstances where an
application draws outside the client area of its window.

MORE INFORMATION
================

The GetWindowDC function provides a DC that allows an application to
draw anywhere within its window, including the nonclient area.

In the Windows environment, the display is a scarce resource that is
shared by all applications running in the system. Most of the time, an
application should restrict its output to the area of the screen it
has been assigned by the user. However, an application can use the
CreateDC function to obtain a DC for the entire display, as follows:

 hDC = CreateDC("DISPLAY", NULL, NULL, NULL);

Device contexts are another scarce resource in the Windows
environment. When an application creates a DC in response to a
WM_PAINT message, it must call the DeleteDC function to free the DC
before it completes processing of the message.

Painting in the nonclient area of a window is not recommended. If an
application changes the nonclient area of its window, the user can
become confused because the familiar Windows controls change
appearance or are not available. An application should not corrupt
other windows on the display.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbgraphic
KBSubcategory: GdiDc

DSKLAYT2 Does Not Preserve Tree Structure of Source Files
PSS ID Number: Q87947
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.5
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0
--

The DSKLAYT2 utility in the Microsoft Setup Toolkit for Windows creates
disk images using the files specified in the .LYT file produced by the
DSKLAYT utility. The created disk images are flat; all files are placed in
the root directory. DSKLAYT2 does not preserve the tree structure of the
source files.

Having flat directories on the setup disks is a limitation of only the
DSKLAYT2 utility. _MSTEST.EXE, the setup driver spawned by SETUP.EXE,
supports a tree structure on the setup disks. Once DSKLAYT2 creates disk
images, manually create subdirectories on each disk. Then move files from
the root directory of the disk to the appropriate position in the tree
structure. (Do not move files between disks.) Make corresponding changes to
the .INF file. In the file description line of each moved file, change the
filename to indicate the file's new location in the tree structure.

Additional reference words: 3.10 3.50 4.00 95 MSSetup tool kit
KBCategory: kbtool
KBSubcategory: TlsMss

Dsklayt2 Does Not Support Duplicate Filenames
PSS ID Number: Q87906
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
--

SUMMARY
=======

The Dsklayt2 utility in the Microsoft Setup Toolkit for Windows does
not support duplicate filenames in the source tree. If two or more
files have the same name, Dsklayt2 may place more than one of these
files into the root directory of the same setup disk. If this happens,
Dsklayt2 generates a warning message when it creates a disk image for
the disk that warns that the first file is overwritten.

If two or more files in the source tree for an application share the
same name, rename all but one of the files before running the Dsklayt
utility. Use the Rename Copied File option in the Dsklayt utility to
have the filenames changed back to their original names when SETUP.EXE
or _MSTEST.EXE copies the files from the setup disk to the destination
disk.

When Dsklayt2 creates a compressed file, it adds an underscore (_) to
the end of the file extension, replacing the third character if
necessary. Therefore, Dsklayt2 does not support compressed files if
the names of the uncompressed files differ only in the third character
of the file extension.

Additional reference words: 3.10 3.50 4.00 95 MSSetup tool kit
KBCategory: kbtool
KBSubcategory: TlsMss

Dynamic Loading of Win32 DLLs
PSS ID Number: Q90745

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

When using LoadLibrary() under Win16 or OS/2, the Dynamic Link Library
(DLL) is loaded only once. Therefore, the DLL has the same address in all
processes. Dynamic loading of DLLs is different under Windows NT.

A DLL is loaded separately for each process because each application has
its own address space, unlike Win16 and OS/2. Pages must be mapped into the
address space of a process. Therefore, it is possible that the DLL is
loaded at different addresses in different processes. The memory manager
optimizes the loading of DLLs so that if two processes share the same pages
from the same image, they will share the same physical memory.

Each DLL has a preferred base address, specified at link time. If the
address space from the base address to the base address plus image size is
unavailable, then the DLL is loaded elsewhere and fixups will be applied.
There is no way to specify a load address at load time.

To summarize, at load time the system:

1. Examines the image and determines its preferred base address and
 required size.

2. Finds the address space required and maps the image, copy-on-write,
 from the file.

3. Applies internal fixups if the image isn't at its preferred base.

4. Fixes up all dynamic link imports by placing the correct address for
 each imported function in the appropriate entry of the Import Address
 Table. This table is contiguous with 32-bit addresses, so 1024 imports
 require dirtying only one page.

MORE INFORMATION
================

The pages containing code are shared, using a copy-on-write scheme. The
term copy-on-write means that the pages are read-only; however, when a
process writes the page, instead of an access violation, the memory manager
makes a private copy of the page and allows the write to proceed. For
example, if two processes start from the same .EXE, both initially have all
pages mapped from the .EXE copy-on-write. As the two processes proceed to

modify pages, they get their own copies of the modified pages. The memory
manager is free to optimize unmodified pages and actually map the same
physical memory into the address space of both processes. Modified pages
are swapped to/from the page file instead of the .EXE file.

There are two kinds of fixups. One is the address of an imported function.
All these fixups are localized in what the Portable Executable (PE)
specification calls the Import Address Table (IAT). This is an array of 32-
bit function pointers, one for each imported API. The IAT is located on its
own page(s), because it is always modified. Calling an imported function is
actually an indirect call through the appropriate entry in this array. In
case that the image is loaded at the preferred address, the only fixups
needed are for imports.

Note that there is an optimization whereby each import library exports a 32-
bit number for each API along with any name and ordinal. This serves as a
"hint" to speed the fixups performed at load time. If the hints in the
program and the DLL do not match, the loader uses a binary search by name.

The other kind of fixup is needed for references to the image's own code or
data when the image can't be loaded at its preferred address. When a page
must be taken out of memory, the system checks to see whether the page has
been modified. If it has not, then the page is still mapped copy-on-write
against the EXE and can be discarded from memory. Otherwise, it must be
written to the page file before it can be removed from memory, so that the
page file is used as the backing store (where the page is recovered from)
rather than the executable image file.

NOTES
=====

The DLL's entry point does not get called for a second LoadLibrary() call
in a process (that is, no second DLL_PROCESS_ATTACH entry). There is one
call to DllEntry/DLL_THREAD_ATTACH per thread no matter the number of times
a thread calls LoadLibrary(). The same goes for FreeLibrary(), but the
DLL_PROCESS_DETACH happens only on the last call (that is, reference count
back to zero for the process).

Global instance data for the DLL is on a per process basis (only one set
per unique process). If it is necessary to ensure that global instance data
is unique for each LoadLibrary() performed in a single process, consider
thread local storage (TLS) as an alternative. This requires multiple
threads of execution, but TLS allows unique data for each ThreadID. There
is very little overhead on the DLL's part; just create a global TLS index
during process initialization. During thread initialization, allocate
memory (via HeapAlloc(), GlobalAlloc(), LocalAlloc(), malloc(), and so on)
and store a pointer to the memory using the global TLS index value in the
function TlsSetValue. Win32 internally stores each thread's pointer by TLS
index and ThreadID to achieve the thread specific storage.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseDll

Efficiency of Using SendMessage Versus SendDlgItemMessage
PSS ID Number: Q66944

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The SendDlgItemMessage function is equivalent to obtaining the
handle of a dialog control using the GetDlgItem function and then
calling the SendMessage function with that handle. The
SendDlgItemMessage function therefore takes slightly longer to
execute than the SendMessage function for the same message, because
an extra call to the GetDlgItem function is required each time the
SendDlgItemMessage function is called.

The GetDlgItem function searches through all controls in a given
dialog box to find one that matches the given ID value. If there are
many controls in a dialog box, the GetDlgItem function can be quite
slow.

If an application needs to send more than one message to a dialog
control at one time, it is more efficient to call the GetDlgItem
function once, using the returned handle in subsequent SendMessage
calls. This saves Windows from searching through all the controls
each time a message is sent. The SendMessage function should also be
used when your application retains handles to controls that receive
messages.

However, if your application needs to send one message to many
controls, such as sending WM_SETFONT messages to all the controls in a
dialog, then the SendDlgItemMessage function will save code in the
application because a call to the GetDlgItem function is not made for
each control.

Note that if the message sent to a control may result in a lengthy
operation (such as sending the LB_DIR message to a list box), then the
overhead in the GetDlgItem call is negligible. Either the
SendDlgItemMessage or SendMessage can be used, whichever is more
convenient.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95 dlgitem
KBCategory: kbui
KBSubcategory: UsrDlgs

EM_SETHANDLE and EM_GETHANDLE Messages Not Supported
PSS ID Number: Q130759

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The EM_GETHANDLE and EM_SETHANDLE messages are not supported for edit
contols that are created as controls of a 32-bit application under Windows
95. This is due to the way USER is designed under Windows 95. 16-bit
applications work the same way they did under Windows version 3.1. That is,
they can use the EM_GET/SETHANDLE messages. Also Win32-based applications
running under Windows NT will be able to use these messages.

MORE INFORMATION
================

The EM_GETHANDLE and EM_SETHANDLE messages are used to retrieve and set the
handle of the memory currently allocated for a multiline edit control's
text. USER under Windows 95 is a mixture of 16- and 32-bit code, so edit
controls created inside a 32-bit application cannot use these messages to
retrieve or set the handles. Trying to do so causes the application to
cause a general protection (GP) fault and thereby be terminated by the
System.

One workaround that involves a little code modification is to use the
GetWindowTextLengt(), GetWindowText(), and SetWindowText() APIs to retrieve
and set the text in a edit control.

NOTE: USER is almost completely 16-bit, so 32-bit applications thunk down
to the 16-bit USER. Also note that the EM_GETHANDLE and EM_SETHANDLE
messages cannot be used with Win32s-based applications either.

Additional reference words: 4.00 user controls GPF
KBCategory: kbui
KBSubcategory: UsrCtl

Enumerating Network Connections
PSS ID Number: Q119216
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0
--

SUMMARY
=======

From the MS-DOS prompt, you can enumerate the network connections (drives)
by using the following command:

 net use

Programmatically, you would call WNetOpenEnum() to start the enumeration of
connected resources and WNetEnumResources() to continue the enumeration.

MORE INFORMATION
================

The following sample code enumerates the network connections:

Sample Code

 #include <windows.h>
 #include <stdio.h>

 void main()
 {
 DWORD dwResult;
 HANDLE hEnum;
 DWORD cbBuffer = 16384;
 DWORD cEntries = 0xFFFFFFFF;
 LPNETRESOURCE lpnrDrv;
 DWORD i;

 dwResult = WNetOpenEnum(RESOURCE_CONNECTED,
 RESOURCETYPE_ANY,
 0,
 NULL,
 &hEnum);

 if (dwResult != NO_ERROR)
 {
 printf("\nCannot enumerate network drives.\n");
 return;
 }

 printf("\nNetwork drives:\n\n");

 do
 {
 lpnrDrv = (LPNETRESOURCE) GlobalAlloc(GPTR, cbBuffer);

 dwResult = WNetEnumResource(hEnum, &cEntries, lpnrDrv, &cbBuffer
);

 if (dwResult == NO_ERROR)
 {
 for(i = 0; i < cEntries; i++)
 {
 if(lpnrDrv[i].lpLocalName != NULL)
 {
 printf("%s\t%s\n", lpnrDrv[i].lpLocalName,
 lpnrDrv[i].lpRemoteName);
 }
 }
 }
 else if(dwResult != ERROR_NO_MORE_ITEMS)
 {
 printf("Cannot complete network drive enumeration");
 GlobalFree((HGLOBAL) lpnrDrv);
 break;
 }
 GlobalFree((HGLOBAL) lpnrDrv);
 }
 while(dwResult != ERROR_NO_MORE_ITEMS);

 WNetCloseEnum(hEnum);
 }

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbnetwork
KBSubcategory: NtwkWinnet

ERROR_BUS_RESET May Be Benign
PSS ID Number: Q111837

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

Tape API (application programming interface) functions may return an error
code of ERROR_BUS_RESET when operating on SCSI tape devices. In many cases,
you can ignore this error value and retry the operation. However, this
error is fatal if received during a series of write operations because a
tape drive cannot recover from a bus reset and continue writing.

MORE INFORMATION
================

When Windows NT boots up it resets the SCSI bus. This bus reset is reported
by the tape drive in response to the first operation after the reset.

The code fragment shown below in the Sample Code section could be used to
check for ERROR_BUS_RESET and clear it. The same technique could be used
for other informational errors, such as ERROR_MEDIA_CHANGED, that may not
be relevant at application startup.

Sample Code

/*
** This is a code fragment only and will not compile and run as is.
*/

 ...
 do {
 dwError = GetTapeStatus(hTape);
 } while (dwError == ERROR_BUS_RESET);
 ...

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseFileio

Establishing Advise Loop on Same topic!item!format! Name
PSS ID Number: Q95983

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Sometimes more than one DDEML client application might establish an
advise loop with a server on the same topic!item!format name set. This
article discusses the complexities involved in such a transaction.

MORE INFORMATION
================

A client application sends an XTYP_ADVSTART to DDEML when it needs
periodic updates on a particular data item from a server, typically
when that particular data item's value changes.

The server application calls DdePostAdvise whenever the value of the
requested data item changes. This results in an XTYP_ADVREQ
transaction being sent to the server's DDEML callback function, where
the server returns a handle to the changed data.

The client then receives the updated data item during the XTYP_ADVDATA
transaction in the case of a hot advise loop. In a warm advise loop,
the XTYP_ADVDATA transaction that the client receives in its callback
does not contain data; it has to specifically request data with an
XTYP_REQUEST transaction.

When more than one client application requests an advise loop on the
same topic!item!format name set, DDEML maintains a list of these
client applications so that it knows that on one call to
DdePostAdvise(), it should send the changed hData to all the
requesting applications in its list.

The server's callback receives an XTYP_ADVREQ transaction as a result
of DdePostAdvise() with the LOWORD (dwData1) containing a count of the
number of ADVREQ transactions remaining to be processed on the same
topic!item!format name set.

This count allows the server application to create its hData as
HDATA_APPOWNED, whereby it could create a data handle just once and
pass the same handle on to its other pending requests on the same
topic!item!format name set. Finally, when the count is down to zero,
DdeFreeDataHandle() can then be called on this hData.

Note that a server needs to call DdePostAdvise() only once regardless
of how many pending advise requests it has on the same
topic!item!format name set. This one call to DdePostAdvise() causes
DDEML to send the appropriate number of XTYP_ADVREQ transactions to
the server's callback.

All these can be easily illustrated using the Windows version 3.1 Software
Development Kit (SDK) DDEML CLIENT and SERVER samples in this manner:

1. Start the SERVER application.

2. a. Start the CLIENT application.
 b. Establish a connection with the SERVER.
 c. Start an advise loop on the item "Rand".

3. a. Start another instance of the client application.
 b. Establish a connection with the SERVER.
 c. Start an advise loop on the item Rand.

4. Bring up DDESPY.

5. Go back to the SERVER and choose ChangeData from the Options menu and
 watch both CLIENT applications update their data.

Results (from DDESPY main window):

1. Two XTYP_ADVREQs (because you have two pending ADVREQs on the same
 test!Rand pair.

2. Changed Rand data is then sent to the first CLIENT in the advise list.

3. The first CLIENT in the advise list receives the data via XTYP_ADVDATA.

4. Changed "Rand" data is sent to the second CLIENT in the advise list.

5. The second CLIENT in the advise list receives its XTYP_ADVDATA.

One caveat to this scenario is when an advise loop is invoked with the
XTYPF_ACKREQ flag set (that is, the client establishes an
XTYP_ADVSTART transaction or'ed with the XTYPF_ACKREQ flag). In this
case, the server does not send the next data item until an ACK is
received from the client for the first data item. During a particular
call to DdePostAdvise(), the server might not necessarily receive
XTYP_ADVREQ in its callback for all active links, and the
LOWORD(dwData1) might not necessarily reach 0 (zero). When the
DDE_FACK from the client finally arrives, DDEML then sends the server
an XTYP_ADVREQ with LOWORD(dwData1) set to CADV_LATEACK, identifying
the late-arriving ACK appropriately.

Advise links of this kind (with XTYPF_ACKREQ flag set) are best suited
to situations where the server sends information faster than a client
can process it--setting the XTYPF_ACKREQ bit ensures that the server
never outruns the client. However, setting this flag also sets a
drawback in circumstances where data transitions may be lost. Thus, in

Windows NT or in similar situations where server outrun is highly
unlikely, it is recommended that the XTYPF_ACKREQ bit not be used to
prevent such data transition loss.

Note that in this delayed ACK update scenario, the count received in
the LOWORD (dwData1) may not be relied upon for creating APPOWNED data
handles as discussed in the earlier paragraphs; where an hData is
created once, and when the count is down to zero, DdeFreeDataHandle()
is called on this hData.

This does not, however, imply that the efficiency provided by APPOWNED
data handles may not be used at all. In this case, a server could
create an APPOWNED data handle once--usually on the first XTYP_ADVREQ
it receives--and associate that handle with a topic!item!format name
set. It could then return this data handle for all subsequent requests
it receives on this topic!item!format set. Each time data changes
thereafter, the server should destroy the old data handle and not
re-render the data [that is, call DdeCreateDataHandle()] until another
request comes through.

This might be better explained as follows:

 case XTYP_ADVREQ:
 if (ThisIsForTheTopicItemFormatSpecified)
 {
 if (bFirstTimeRequested)
 {
 bFirstTimeRequested = FALSE;
 hData = DdeCreateDataHandle();
 }
 return hData;
 }
 break;

 // and then whenever data changes for this topic!item!format
 if (hData)
 {
 DdeFreeDataHandle (hData);
 bFirstTimeRequested = TRUE;
 }
 DdePostAdvise(); // specify topic!item!format here.
 // This causes DDEML to send an
XTYP_ADVREQ
 // which is handled above.

For Microsoft Windows version 3.1 DDEML, the only way for a server
application to distinguish which client's advise request is currently
being responded to is through the XTYP_ADVREQ's hConv parameter. The
hConvPartner field of the CONVINFO structure may be used to
distinguish between clients.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrDde

Examining the dwOemId Value
PSS ID Number: Q101190

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

The Win32 application programming interface (API) GetSystemInfo() fills in
the members of a SYSTEM_INFO structure. The dwOemId member represents a
computer identifier that is specific to a particular OEM (original
equipment manufacturer). Windows NT versions 3.1 - 3.51 and Windows 95
always place a zero in the dwOemId member. In later releases, this behavior
will change to include different OEM IDs.

Additional reference words: 3.10 3.50 4.00
KBCategory: kbprg
KBSubcategory: BseMisc

Explanation of the NEWCPLINFO Structure
PSS ID Number: Q103315

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

The following is an explanation of the NEWCPLINFO structure:

dwSize: Specifies the length of the structure, in bytes. Set this to
sizeof(NEWCPLINFO).

dwFlags: Specifies Control Panel flags. This is field is currently
unused. Set this field to NULL.

dwHelpContext: Specifies the context number for the topic in the help
project (.HPJ) file that displays when the user selects help for the
application. If dwData is non-NULL, Windows Help will be invoked with
the HELP_CONTEXT fuCommand with dwHelpContext as dwData. If
dwHelpContext is NULL, Windows Help is invoked with the HELP_INDEX
fuCommand.

lData: Specifies data defined by the application. This is passed back
to the application in the CPL_DBLCLK, CPL_SELECT, and CPL_STOP
messages via lParam2.

hIcon: Identifies an icon resource for the application icon. This icon
is displayed in the Control Panel window.

szName: Specifies a null-terminated string that contains the
application name. The name is the short string displayed below the
application icon in the Control Panel window. The name is also
displayed in the Settings menu of Control Panel.

szInfo: Specifies a null-terminated string containing the application
description. The description is displayed at the bottom of the Control
Panel window when the application icon is selected.

szHelpFile: Specifies a null-terminated string that contains the path
of the help file, if any, for the application. If this field is
unused, set it to NULL. The Control Panel will invoke a default
Windows Help file when this field is NULL.

Additional reference words: 3.10 3.50 3.51 4.00 95 cpl control panel
extension
KBCategory: kbui
KBSubcategory: UsrExt

Exporting Callback Functions
PSS ID Number: Q83706

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

It is not necessary for Win32-based applications to export callback
functions. Windows versions 3.1 and earlier (Win16) need callback functions
primarily for fixing references to global data and ensuring that EMS memory
is not paged out. Neither of these situations applies to the Windows NT
operating system.

MORE INFORMATION
================

Exports are necessary for any function that must be located at either

 - Run time via GetProcAddress()(dynamic linking)

 -or-

 - Load time via an import library (static linking)

Both of these linking methods require that the name or ordinal number of
the export be known and that their names (or ordinal numbers) be present in
the executable's exported entry table. This enables Windows to determine
the addresses at run time.

Static linking is done by the loader, which performs this lookup for all of
the imported entry points that an executable needs (normally by ordinal
number). In dynamic linking, the system scans by ordinal number or by name
through the DLL (Dynamic Link Library) exports table.

In Win16, exported entries are automatically fixed by the linker to adjust
to the appropriate data segment. Exporting entries on Win32 just adds them
to the module's exported names and ordinal numbers table; the linker does
not need to "fix" them. For code compatibility with Win16, you may want to
continue to use MakeProcInstance() and export all callbacks. This macro
does nothing on Windows NT.

In short,

 On Windows Win32
 --------------------------- -----------------

 Callbacks Export or use MakeProcInstance Use address of fn

 GetProcAddress Must export Must export
 Static linking Must export Must export

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseDll

Exporting Data from a DLL or an Application
PSS ID Number: Q90530

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

It is possible for a Win32-based application to be able to address DLL
global variables directly by name from within the executable. This is done
by exporting global data names in a way that is similar to the way you
export a DLL function name. Use the following steps to declare and utilize
exported global data.

1. Define the global variables in the DLL code. For example:

 int i = 1;
 int *j = 2;
 char *sz = "WBGLMCMTP";

2. Export the variables in the module-definition (DEF) file. With the 3.1
 SDK linker, use of the CONSTANT keyword is required, as shown below:

 EXPORTS
 i CONSTANT
 j CONSTANT
 sz CONSTANT

 With the 3.5 SDK linker or the Visual C++ linker, use of the DATA
 keyword is required, as shown below

 EXPORTS
 i DATA
 j DATA
 sz DATA

 Otherwise, you will receive the warning

 warning LNK4087: CONSTANT keyword is obsolete; use DATA

 Alternately, with Visual C++, you can export the variables with:

 _declspec(dllexport) int i;
 _declspec(dllexport) int *j;
 _declspec(dllexport) char *sz;

3. If you are using the 3.1 SDK, declare the variables in the modules that
 will use them (note that they must be declared as pointers because a

 pointer to the variable is exported, not the variable itself):

 extern int *i;
 extern int **j;
 extern char **sz;

 If you are using the 3.5 SDK or Visual C++ and are using DATA, declare
 the variables with _declspec(dllimport) to avoid having to manually
 perform the extra level of indirection:

 _declspec(dllimport) int i;
 _declspec(dllimport) int *j;
 _declspec(dllimport) char *sz;

4. If you did not use _declspec(dllimport) in step 3, use the values by
 dereferencing the pointers declared:

 printf("%d", *i);
 printf("%d", **j);
 printf("%s", *sz);

 It may simplify things to use #defines instead; then the variables can
 be used exactly as defined in the DLL:

 #define i *i
 #define j *j
 #define sz *sz

 extern int i;
 extern int *j;
 extern char *sz;

 printf("%d", i);
 printf("%d", *j);
 printf("%s", sz);

MORE INFORMATION
================

NOTE: This technique can also be used to export a global variable from an
application so that it can be used in a DLL.

REFERENCE
=========

For more information on the use of EXPORTS and CONSTANT in the Module
Definition File (DEF) file for the 3.1 SDK, see Chapter 4 of the Win32 SDK
"Tools" manual.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseDll

Extending Standard Windows Controls Through Superclassing
PSS ID Number: Q76947

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

A Windows-based application can extend the behavior of a standard Windows
control by using the technique of superclassing. An application can
superclass a standard Windows control by retrieving its window class
information, modifying the fields of the WNDCLASS structure, and
registering a new class. For example, to associate status information with
each button control in an application, the buttons can be superclassed to
provide a number of window extra bytes.

This article describes a technique to access the WNDCLASS structure
associated with the standard "button" class.

MORE INFORMATION
================

The following five steps are necessary to register a new class that
uses some information from the standard windows "button" class:

1. Call GetClassInfo() to fill the WNDCLASS structure.

2. Save the cbWndExtra value in a global variable.

3. Add the desired number of bytes to the existing cbWndExtra value.

4. Change the lpszClassName field.

5. Call RegisterClass() to register the new class.

The first step will fill the WNDCLASS structure with the data that was used
when the class was originally registered. In this example, the second step
is necessary so that when the "new" extra bytes are accessed, the original
extra bytes are not destroyed. Please note that it is NOT safe to assume
that the original cbWndExtra value was zero. When accessing the "new" extra
bytes, it is necessary to use the original value of cbWndExtra as the base
for any new data stored in the extra bytes. The third step allocates the
new extra bytes. The fourth step specifies the new name of the class to be
registered, and the final step actually registers the new class.

Any new class created in this manner MUST have a unique class name.

Typically, this name would be similar but not identical to the original
class. For example, to superclass a button, an appropriate class name might
be "superbutton." There is no conflict with class names used by other
applications as long as the CS_GLOBALCLASS class style is not specified.
The standard Windows "button" class remains unchanged and can still be used
by the application as normal. In addition, once a new class has been
registered, any number of controls can be created and destroyed with no
extra coding effort. The superclass is simply another class in the pool of
classes that can be used when creating a window.

The sample code below demonstrates this procedure:

BOOL DefineSuperButtonClass(void)
{
#define MYEXTRABYTES 8

 HWND hButton;
 WNDCLASS wc;
 static char pszClassName[] = "superbutton";

 GetClassInfo(NULL, "button", (LPWNDCLASS)&wc);

 iStdButtonWndExtra = wc.cbWndExtra; // Save this in a global

 wc.cbWndExtra += MYEXTRABYTES;

 wc.lpszClassName= pszClassName;

 return(RegisterClass((LPWNDCLASS)&wc));
}

It is important to note that the lpszClassName, lpszMenuName, and hInstance
fields in the WNDCLASS structure are NOT returned by the GetClassInfo()
function. Please refer to page 4-153 of the "Microsoft Windows Software
Development Kit Reference Volume 1" for more information. Also, each time a
new class is registered, scarce system resources are used. If it is
necessary to alter many different standard classes, the GetProp(),
SetProp(), and RemoveProp() functions should be used as an alternative
approach to associating extra information with standard Windows controls.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbui
KBSubcategory: UsrCtl

Extracting the SID from an ACE
PSS ID Number: Q102101

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

To access the security identifier (SID) contained in an access control
entry (ACE), the following syntax can be used:

 PSID pSID;

 if((((PACE_HEADER)pTempAce)->AceType) == ACCESS_ALLOWED_ACE_TYPE)
 {
 pSID=(PSID)&((PACCESS_ALLOWED_ACE)pTempAce)->SidStart;
 }

MORE INFORMATION
================

The "if" statement checks the type of ACE, which is one of the following
values:

 ACCESS_ALLOWED_ACE_TYPE
 ACCESS_DENIED_ACE_TYPE
 SYSTEM_AUDIT_ACE_TYPE

The conditional statement casts pTempAce (the pointer to the ACE) to a
PACCESS_ALLOWED_ACE structure. The address of the SidStart member is then
cast to a PSID and assigned to the pSID variable. pSID can now be used with
any Win32 Security application programming interface (API) that takes a
PSID as a parameter.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

FADEIN: Sample App Uses Palette Animation & Identity Palettes
PSS ID Number: Q149855
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)
--

SUMMARY
=======

A popular method used to perform a fade on an image is to animate
the palette. An application displays a bitmap, and then animates the
palette to all black, fading the image into blackness.

To perform the fade in the opposite direction, starting with all
black and fading into color, requires some additional ingenuity.
The original BitBlt() that gets the image's bits on the screen must
be done without color matching. Because all of the pixels are intended to
be black, if color matching were used, the pixels would be matched to the
same palette entry. A subsequent palette animation would result in a single-
colored rectangle.

You can take advantage of an optimization in Windows to work around this
issue. When Windows is performing a BitBlt and it detects that an identity
palette is being used, no color matching is performed. The source bits are
moved to the destination unchanged. To perform a fade from black to color,
use an identity palette to get the bits onto the screen and then fade the
palette from all black to the original bitmap's desired colors.

To prepare a bitmap to use an identity palette, you must reduce the image
from 256 colors to 236. An identity palette must contain the system entries
in its first and last ten entries. The code in the sample below that
reduces the image to 236 colors must first calculate the optimal 236 colors
from a 256 color table. It then determines how close the colors are to each
other, and discards colors that have close matches while keeping colors
that have no close matches. Once it determines the best 236 colors,
BitBlt() maps the 256 color image to 236 colors. Everything is then moved
up ten to allow for the system colors in the identity palette.

This sample application in FADEIN.EXE contains code that performs the
following tasks:

 - Creates a DIBSection from a bitmap stored as a resource

 - Chooses the optimal 236 colors from a 256 color table

 - Reduces a 256 color DIBSection to 236 colors

 - Creates an identity palette

 - Performs palette animation to fade from black to color

MORE INFORMATION

================

Download FADEIN.EXE, a self-extracting file, from the Microsoft
Software Library (MSL) on the following services:

You can find FADEIN.EXE, a self-extracting file, on these services:

 - Microsoft's World Wide Web site on the Internet
 On the www.microsoft.com home page, click the Support icon
 Click Knowledge Base, and select the product
 Enter kbfile FADEIN.EXE, and click GO!
 Open the article, and click the button to download the file

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the Softlib/Mslfiles folder
 Get FADEIN.EXE

 - The Microsoft Network
 On the Edit menu, click Go To, and then click Other Location
 Type "mssupport" (without the quotation marks)
 Double-click the MS Software Library icon
 Find the appropriate product area
 Locate and Download FADEIN.EXE

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download FADEIN.EXE

For additional information about downloading, please see the following
article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q119591
 TITLE : How to Obtain Microsoft Support Files from Online Services

Additional reference words: 3.50 AnimatePalette CreateDIBSection
KBCategory: kbgraphic kbfile kbcode kbhowto
KBSubcategory: GdiPal

Fault Handling Logic Changed for Windows 95
PSS ID Number: Q141203

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included
 with Microsoft Windows 95

SUMMARY
=======

Windows 95 has modified the way VxD fault handlers should handle passing
the fault on to the previous handler. Using fault handler logic from a
Windows 3.10 VxD may cause problems in Windows 95.

MORE INFORMATION
================

In Windows 3.1x, the following code logic might have been used by a fault
handler:

 pPrevFaultHandler dd ?

 mov eax, fault_number
 mov esi, offset32 FaultHandler
 VMMCall Hook_V86_Fault
 mov pPrevFaultHandler, esi

 BeginProc FaultHandler
 ;;;
 ;;; handler code
 ;;;

 cmp pPrevFaultHandler, 0
 jz @F
 jmp pPrevFaultHandler
 @@: ret
 EndProc FaultHandler

In Windows 95, this logic should be modified as follows:

 pPrevFaultHandler dd 0

 mov eax, fault_number
 mov esi, offset32 FaultHandler
 VMMCall Hook_V86_Fault
 ; NOTE: No "mov pPrevFaultHandler, esi" instruction
 ; esi = 0 if this is the first fault handler
 ; pPrevFaultHandler will *always* be nonzero.
 ; if esi = 0, pPrevFaultHandler will be the address
 ; of the default handler.

 ...

 mov eax, fault_number
 mov esi, offset32 FaultHandler
 VMMCall UnHook_V86_Fault

 BeginProc FaultHandler, HOOK_PROC, pPrevFaultHandler
 ;;;
 ;;; handler code
 ;;;

 ; NOTE: No "cmp pPrevFaultHandler, 0" instruction
 jmp pPrevFaultHandler
 EndProc FaultHandler

Additional reference words: 4.00
KBCategory: kbprg kbcode
KBSubcategory:

File Manager Passes Short Filename as Parameter
PSS ID Number: Q98575

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

When starting an application from File Manager by double-clicking a
document associated with the application, if the document resides on an
NTFS partition and has a long (non-8.3 form) filename, File Manager will
pass the short version of the filename (also known as the MS-DOS alias or
8.3 name) to the associated application if the application is an MS-DOS or
16-bit Windows-based application. This is done for compatibility reasons;
applications not aware of long filenames (16-bit Windows-based
applications) can still function correctly. 32-bit Windows-based
applications will be passed the long file name.

This can create confusion, however, if the application displays the name of
the file the application was started with; the short name is displayed even
though the long name was double-clicked.

You can avoid possible confusion by always expanding any filenames passed
to an application via the command line. Do this by calling the
FindFirstFile() application programming interface (API) on these filenames.
FindFirstFile() will always return the file system's version of the
filename in the WIN32_FIND_DATA.cFileName structure member, which the
application can then use in all further references to the file without any
problems.

Additional reference words: 3.10 file name 3.50
KBCategory: kbprg
KBSubcategory: BseFileio

FILE_FLAG_WRITE_THROUGH and FILE_FLAG_NO_BUFFERING
PSS ID Number: Q99794

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The FILE_FLAG_WRITE_THROUGH flag for CreateFile() causes any writes made to
that handle to be written directly to the file without being buffered. The
data is cached (stored in the disk cache); however, it is still written
directly to the file. This method allows a read operation on that data to
satisfy the read request from cached data (if it's still there), rather
than having to do a file read to get the data. The write call doesn't
return until the data is written to the file. This applies to remote writes
as well--the network redirector passes the FILE_FLAG_WRITE_THROUGH flag to
the server so that the server knows not to satisfy the write request until
the data is written to the file.

The FILE_FLAG_NO_BUFFERING takes this concept one step further and
eliminates all read-ahead file buffering and disk caching as well, so that
all reads are guaranteed to come from the file and not from any system
buffer or disk cache. When using FILE_FLAG_NO_BUFFERING, disk reads and
writes must be done on sector boundaries, and buffer addresses must be
aligned on disk sector boundaries in memory.

These restrictions are necessary because the buffer that you pass to the
read or write API is used directly for I/O at the device level; at that
level, your buffer addresses and sector sizes must satisfy any processor
and media alignment restrictions of the hardware you are running on.

MORE INFORMATION
================

This code fragment demonstrates how to sector-align data in a buffer and
pass it to CreateFile():

 char buf[2 * SECTOR_SIZE - 1], *p;

 p = (char *) ((DWORD) (buf + SECTOR_SIZE - 1) & ~(SECTOR_SIZE - 1));
 h = CreateFile(argv[1], GENERIC_READ | GENERIC_WRITE,
 FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, CREATE_ALWAYS,
 FILE_ATTRIBUTE_NORMAL | FILE_FLAG_NO_BUFFERING, NULL);
 WriteFile(h, p, SECTOR_SIZE, &dwWritten, NULL);

The pointer p is sector-aligned and points within the buffer.

If you have a situation where you want to flush all open files on the

current logical drive, this can be done by:

 hFile = CreateFile("\\\\.\\c:",);
 FlushFileBuffers(hFile);

This method causes all buffered write data for all open files on the C:
partition to be flushed and written to the disk. Note that any buffering
done by anything other than the system is not affected by this flush; any
possible file buffering that the C Run-time is doing on files opened with C
Run-time routines is unaffected.

When opening a remote file over the network, the server always caches and
ignores the no buffering flag specified by the client. This is by design.
The redirector and server cannot properly implement the full semantics of
FILE_FLAG_NO_BUFFERING over the network. In particular, the requirement for
sector-sized, sector-aligned I/O cannot be met. Therefore, when a Win32-
based application asks for FILE_FLAG_NO_BUFFERING, the redirector and
server treat this as a request for FILE_FLAG_WRITE_THROUGH. The file is not
cached at the client, writes go directly to the server and to the disk on
the server, and the read/write sizes on the network are exactly what the
application asks for. However, the file is cached on the server.

Not caching the client can have a different effect, depending on the type
of I/O. You eliminate the cache hits or read ahead, but you also may reduce
the size of transmits and receives. In general, for sequential I/O, it is a
good idea to cache on the client. For small, random access I/O, it is often
best not to cache.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseFileio

FILE_READ_EA and FILE_WRITE_EA Specific Types
PSS ID Number: Q102104

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

The FILE_READ_EA and FILE_WRITE_EA specific types provide access to read
and write a file's extended attributes. Specific access types are
represented as bits in the access mask and are specific to the object type
associated with the mask.

Please note that these specific types are used in the definition of
constants such as FILE_GENERIC_READ, and are not intended to be generally
used when specifying access (generic access types are much more
appropriate).

Additional reference words: 3.10
KBCategory: kbprg
KBSubcategory: BseFileio

Filenames Ending with Space or Period Not Supported
PSS ID Number: Q115827

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

CreateFile() removes trailing spaces and periods from file and directory
names. This is done for compatibility with the FAT and HPFS file systems.

Problems can arise when a Macintosh client creates a file on a Windows NT
server. The code to remove trailing spaces and periods is not carried out
and the Macintosh user gets the correctly punctuated filename. The Win32
APIs FindFirstFile() and FindNextFile() return a filename that ends in a
space or in a period; however, there is no way to create or open the file
using the Win32 API.

Applications such as File Manager and Backup check to see whether the
filename ends with a space or period. If the filename does end in a space
or a period, then File Manager and Backup use the alternative name found in
WIN32_FIND_DATA.cAlternateFileName to create and open the file. Therefore,
the full filename is lost.

Additional reference words: 3.10 3.50 4.00 95 winfile ntbackup
KBCategory: kbprg
KBSubcategory: BseFileio

FileTimeToLocalFileTime() Adjusts for Daylight Saving Time
PSS ID Number: Q128126

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.5

SUMMARY
=======

Under NTFS, the API GetFileTime() returns the create time, last access
time, and last write time for the specified file. The times returned in the
FILETIME structures are in Universal Coordinated Time (UTC). This is also
the time that NTFS uses. You can use FileTimeToLocalFileTime() to convert a
file time to a local time. However, if you automatically adjust for
Daylight Saving Time, FileTimeToLocalFileTime() will adjust for Daylight
Saving Time based on whether the current date should be adjusted for
Daylight Saving Time, not based on whether the date represented by the
FILETIME structure should be adjusted.

The behavior in this situation is different under FAT, but may be changed
to match the behavior under NTFS in a future version of Windows NT.

MORE INFORMATION
================

The result of this behavior, which is by design, is that reported file
times under NTFS may change with the start and end of Daylight Saving Time.
For example, suppose that the file TEST.C has a last write FILETIME
representing Jan 1, 1995 9:00pm (UTC), it is not Daylight Saving Time,
and you are in the Pacific time zone. Both the DIR command and the
following sample code report the file time as 1:00pm (LocalTime = UTC - 8).

Sample Code 1

 #include <windows.h>

 void main()
 {
 HANDLE hFile;
 FILETIME ftCreate, ftLastAccess, ftLastWrite, ftLocal;
 SYSTEMTIME st;

 char buf[80];

 // Open the file.

 hFile = CreateFile("test.c",
 GENERIC_READ,
 0,

 NULL,
 OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL,
 NULL);

 // Get the file time (in UTC) and convert to local time.

 GetFileTime(hFile, &ftCreate, &ftLastAccess, &ftLastWrite);
 FileTimeToLocalFileTime(&ftLastWrite, &ftLocal);

 // Display the time, as a test.

 FileTimeToSystemTime(&ftLocal, &st);
 GetTimeFormat(LOCALE_USER_DEFAULT, 0, &st, NULL, buf, sizeof(buf));
 MessageBox(NULL, buf, " FILE TIME", MB_OK);
 }

Now, set the date to 7/1/95 and enable Automatically Adjust for Daylight
Saving Time. The DIR command and the sample code above will report the
file time as 2:00pm, because FileTimeToLocalFileTime() has adjusted for
Daylight Saving Time (LocalTime = UTC - 7).

The following sample code will correctly report the file time of TEST.C
with the date set to 7/1/95 under NTFS. The FILETIME structure is
converted to a SYSTEMTIME structure with FileTimeToSystemTime(). Then the
time is converted using SystemTimeToTzSpecificLocalTime(). If you need to
convert back to a FILETIME structure, use SystemTimeToFileTime() after the
conversion to local time.

Sample Code 2

 #include <windows.h>

 void main()
 {
 HANDLE hFile;
 FILETIME ftCreate, ftLastAccess, ftLastWrite;
 SYSTEMTIME stUTC, st;
 char buf[80];

 // Open the file.

 hFile = CreateFile("test.c",
 GENERIC_READ,
 0,
 NULL,
 OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL,
 NULL);

 // Get the file time (in UTC) and convert to local time.

 GetFileTime(hFile, &ftCreate, &ftLastAccess, &ftLastWrite);
 FileTimeToSystemTime(&ftLastWrite, &stUTC);

 SystemTimeToTzSpecificLocalTime(NULL, &stUTC, &st);

 // Display the time, as a test.

 GetTimeFormat(LOCALE_USER_DEFAULT, 0, &st, NULL, buf, sizeof(buf));
 MessageBox(NULL, buf, "FILE TIME", MB_OK);
 }

The FAT file system stores local time, not UTC. GetFileTime() gets cached
UTC times from FAT. In this sample, the time stored is 1pm and the cached
time is 9pm. When it becomes Daylight Saving Time, sample codes 1 and 2
will demonstrate the same behavior that they do under NTFS, because 9pm is
still used. However, when you restart the machine, the new cached time will
be 8pm (UTC = LocalTime + 7). The call to FileTimeToLocalFileTime() cancels
the adjustment made by GetFileTime() (LocalTime = UTC - 7). Therefore,
sample code 1 will report the correct time under FAT, but sample code 2
will not.

On the other hand, FindFirstFile() on FAT always reads the time from the
file (stored as local time) and converts it into UTC, adjusting for DST
based on the current date. So if FindFirstFile() is called, the date is
changed to a different DST season, and then FindFirstFile() is called
again, the UTC returned by the two calls will be different.

Additional reference words: 3.50
KBCategory: kbprg kbcode
KBSubcategory: BseMisc

Filtering All Paging File I/O Under Windows 95
PSS ID Number: Q141204

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included
 with Microsoft Windows 95

SUMMARY
=======

A file system API hook installed by a VxD by calling
IFSMGR_InstallFileSystemAPIHook will not see initial file I/O requests for
the paging file unless it installs the hook during Device_Init.

MORE INFORMATION
================

Some file system API hooker VxDs need to see all file I/O, including all
the initial requests for the paging file used by Windows. The FS_ReadFile
and FS_WriteFile requests will be sent for the paging file with the
R0_SWAPPER_CALL flag set for paging file I/O. The paging file is opened at
the Init_Complete system control message sent to VxDs. If the VxD installs
the hook during Device_Init, it will see all paging file I/O requests.

Additional reference words: 4.00
KBCategory: kbprg
KBSubcategory:

First and Second Chance Exception Handling
PSS ID Number: Q105675

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

Structured exception handling (SEH) takes a little getting used to,
particularly when debugging. It is common practice to use SEH as a
signaling mechanism. Some application programming interfaces (APIs)
register an exception handler in anticipation of a failure condition that
is expected to occur in a lower layer. When the exception occurs, the
handler may correct or ignore the condition rather than allowing a failure
to propagate up through intervening layers. This is very handy in complex
environments such as networks where partial failures are expected and it is
not desirable to fail an entire operation simply because one of several
optional parts failed. In this case, the exception can be handled so that
the application is not aware that an exception has occurred.

However, if the application is being debugged, it is important to realize
that the debugger will see all exceptions before the program does. This is
the distinction between the first and second chance exception. The debugger
gets the "first chance," hence the name. If the debugger continues the
exception unhandled, the program will see the exception as usual. If the
program does not handle the exception, the debugger will see it again (the
"second chance"). In this latter case, the program normally would have
crashed had the debugger not been present.

If you do not want to see the first chance exception in the debugger, then
disable the feature. Otherwise, during execution, when the debugger gets
the first chance, continue the exception unhandled and allow the program to
handle the exception as usual. Check the documentation for the debugger
that you are using for descriptions of the commands to be used.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseExcept

FIX: Corruption of the Perflib Registry Values
PSS ID Number: Q128404

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.5

SYMPTOMS
========

The Performance Monitoring tool can be affected by a corruption problem in
the Perflib key. The following symptoms are evidence of this corruption
problem:

 - The explain text is not displayed.

 -or-

 - The objects and counters are not displayed.

 -or-

 - The explain text, objects, and counters are not displayed.

CAUSE
=====

When an .INI file, which contains an extra language entry not associated
with any specific objects and counters, is passed as a parameter to
LODCTR.EXE, the values of 'Last Counter' and 'Last Help' are set to zero.
This in turn causes the Performance Monitoring tool to fail.

The following is an example of a problem-causing .INI file:

 [info]
 drivername=SampPerf
 symbolfile=sampperf.h

 [languages]
 009=English
 011=OtherLanguage <-- problem area

 [text]
 SampObj_009_Name=SampPerf
 SampObj_009_Help=A sample performance object.

 Count_1_009_Name=Tests/sec
 Count_1_009_Help=The number of tests completed.

A further complication arises when a user attempts to rectify the situation
by executing UNLODCTR.EXE. At this point, because Last Counter and Last

Help are set to zero, UNLODCTR.EXE only resets '\009\HELP' and
'\009\COUNTER' to NULL.

RESOLUTION
==========

To resolve this corruption problem, you must restore the Registry to its
former state by using one of the following five methods:

 - Backup and restore the local copy of the Registry by using Windows NT
 Backup.

 -or-

 - Copy and restore the data located in the %WINNT%\SYSTEM32\CONFIG
 directory. This can be done only if Windows NT was installed on a FAT
 partition.

 -or-

 - Save and restore the SOFTWARE registry hive.

 -or-

 - Save and restore the Registry values First Counter, First Help, Last
 Counter, and Last Help.

 -or-

 - Save and restore the Registry by using REGBACK.EXE and REGREST.EXE. Both
 programs are available with the Windows NT Resource Kit (RESKIT).

If the user ran UNLODCTR.EXE to attempt to fix the problem, you will also
need to restore \009\HELP and \009\COUNTER, which you can do by simply
rebooting the computer running Windows NT.

WARNING: The Registry is a vital part of Windows NT; improper modification
of its keys and values can cause Windows NT to malfunction.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. This problem was corrected in Windows NT
3.51.

Additional reference words: 3.50
KBCategory: kbprg kbfixlist kbbuglist
KBSubcategory: BseMisc

FIX: Error C2664 'AVIFileCreateStream' from Visual C++ 2.0/2.1
PSS ID Number: Q139825
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.5,
 3.51, 4.0
 - Microsoft Visual C++, 32-bit Edition, versions 2.0 and 2.1
--

SYMPTOMS
========

The following error is generated when you compile an application under
Visual C++ version 2.0 or 2.1 that calls AVIFileCreateStream() and does not
use UNICODE:

 error C2664: 'AVIFileCreateStream' : cannot convert parameter 3 from
 'struct _AVISTREAMINFOA*' to 'struct _AVISTREAMINFOW*'

CAUSE
=====

The Vfw.h header file from Visual C++ version 2.0 or 2.1 has the following
declaration for the AVIFileCreateStream() function:

STDAPI AVIFileCreateStream(PAVIFILE pfile,
 PAVISTREAM FAR *ppavi,
 AVISTREAMINFOW FAR *psi);

Note the wide version of the structure in the third parameter:
AVISTREAMINFOW. There is no ANSI declaration for this function in vfw.h.
The header file is incorrect. It should list an ANSI version of the
function that takes an ANSI AVISTREAMINFO in addition to the UNICODE
version.

STATUS
======

Microsoft has confirmed this to be a bug in Visual C++ versions 2.0 and
2.1. This bug was corrected in Visual C++ version 2.2. The Vfw.h header
file from that product declares an AVIFileCreateStreamA() function in
addition to the W variety, AVIFileCreateStreamW().

Additional reference words: 3.50 2.10 2.00 4.00 Windows 95
KBCategory: kbmm kbprg kbfixlist kbbuglist
KBSubcategory: MMVideo

FIX: Error Messages or Calls to Winhelp() 4.0 Fail with Win32s
PSS ID Number: Q147867
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 Application Programming Interface (API) included
 with Microsoft Win32s versions 1.3 and 1.3a
--

SYMPTOMS
========

You may encounter the following problems with the Winhelp version 4.0
program included with Win32s versions 1.30 and 1.30a if Windows NT is
installed in the same directory as Win32s.

 - Calls to WinHelp() from within a 32-bit application fail.

 - One of the following error messages may occur:

 An error exists in your Help file. Contact your application vendor for
 an updated Help file (1053)

 -or-

 Error: This app uses CTL3D32.dll which is not the correct version. This
 version is for Windows NT Systems only.

CAUSE
=====

These problems are caused by the way that Win32s 1.30 and 1.30a searches
the path for DLL files, specifically, the SYSTEM32 directory is searched
before SYSTEM. Because of this, Winhelp finds component files that are
designed for Windows NT and will not run under Win32s.

RESOLUTION
==========

This problem has been corrected in Win32s version 1.30c. For information on
how to obtain the latest version of Win32s, please see the following
article in the Microsoft Knowledge Base:

ARTICLE-ID: Q122235
TITLE : Microsoft Win32s Upgrade

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. This problem was corrected in Win32s
version 1.30c.

Additional reference words: 3.10 1.30 1.30a
KBCategory: kbprg kbfixlist kbbuglist
KBSubcategory: W32s

FIX: Floating Point Exception Incorrect Under Win32s
PSS ID Number: Q150405
--
The information in this article applies to:

 - Microsoft Win32s version 1.3
--

SYMPTOMS
========

There are some inconsistencies in floating point exception handling under
Win32s and Windows NT platforms. For example, the following code causes a
underflow on both platforms as expected and the exception is masked:

 d1 = pow(1000000, -53);

However, the following code:

 d2 = 1/d1;

causes this behavior:

 Windows NT 3.51 - Floating point Overflow.
 Windows 3.1/Win32s - Denormal operand error

The overflow exception under Windows NT is correct, but the result under
Win32s is not.

RESOLUTION
==========

If you examine the exception record, you can see that the denormal operand
status bit is set but the exception is masked in the control word. On the
other hand, the overflow exception status bit is also set and the exception
is unmasked. Even though the exception indication is incorrect, you can get
the correct exception by examining the status and control words
appropriately.

STATUS
======

Microsoft has confirmed this to be a bug in Win32s version 1.30. Win32s
incorrectly sets the floating point exception in the above case to a
Denormal operand error instead of an Overflow exception. This problem has
been corrected in Win32s version 1.30c.

Additional reference words: 1.30 win32s fp error
KBCategory: kbprg kbbuglist kbfixlist
KBSubcategory: w32s

FIX: High CPU Usage When SNMP Retrieves Performance Counters
PSS ID Number: Q130563
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.5
--

SYMPTOMS
========

When an SNMP extension agent tries to retrieve performance counters, CPU
utilization jumps to 100 percent.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. This problem was corrected in Windows NT
version 3.51.

MORE INFORMATION
================

If an SNMP extension agent tries to retrieve performance counters as in the
following example, the CPU utilization is observed to jump to 100 percent
and stay there until the SNMP service is stopped.

 RegOpenKeyEx(...);
 .
 .
 RegQueryValueEx(HKEY_PERFORMANCE_DATA,
 ...)

To see this, use the Performance Monitor tool in the Administrative Tools
program group.

The same problem can occur when an application is trying to retrieve TCP/IP
performance counters and the Internet MIB II agent is being used to
retrieve the counters.

REFERENCES
==========

For more information, please see the Windows NT 3.5 Resource Kit Vol IV.

Additional reference words: 3.50
KBCategory: kbnetwork kbfixlist kbbuglist
KBSubcategory: NtwkSnmp

FIX: MCIWndCreate Does Not Allow Filename
PSS ID Number: Q132452
--
The information in this article applies to:

 - Microsoft Windows NT version 3.5
--

SYMPTOMS
========

If a filename is specified when MCIWndCreate is called (that is, the last
parameter is not NULL), an MCI Error occurs giving this message:

 Cannot find the specified file. Make sure the path and file name
 are correct.

RESOLUTION
==========

This bug was fixed in Windows NT version 3.51. The workaround is to pass
NULL as the filename when calling MCIWndCreate. Then call MCIWndOpen to
open the file.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. This problem was corrected in Windows NT
version 3.51.

Additional reference words: 3.50
KBCategory: kbprg kbbuglist kbfixlist
KBSubcategory: MMMisc MCIWnd

FIX: MFC-Based App Cannot Run Under International Win32s
PSS ID Number: Q125457

The information in this article applies to:

 - Microsoft Win32s version 1.2

SYMPTOMS
========

When activating a Microsoft Foundations Classes (MFC)-based application
built with Visual C++ version 2.0 under Win32s version 1.2, if the language
setting in Windows or Windows for Workgroups Control panel is set to
anything other than English, German, or French, the following error occurs:

 Win32s - Error: Initialization of a dynamic link library failed.
 The process is terminating abnormally.

This error has also been reported with non-MFC-based applications as well.

CAUSE
=====

CRT startup code causes an unhandled exception in the Win32s DLL
(W32SCOMB.DLL).

RESOLUTION
==========

For an international version of Windows 3.1 or Windows for Workgroups, if
the country and language settings are changed to United States and
English(American), 32-bit MFC-based applications are able to run.

STATUS
======

Microsoft has confirmed this to be a bug in Win32s version 1.2. This
problem has been corrected in Win32s version 1.25.

Additional reference words: 1.20 w32scomb
KBCategory: kbinterop kbfixlist kbbuglist
KBSubcategory: W32s WIntlDev

FIX: MIDL 2.0 Does Not Handle VAX Floating Point Numbers
PSS ID Number: Q129064
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.5
--

SYMPTOMS
========

RPC applications (client and server) built using MIDL 2.0 (shipped with
Windows NT version 3.5) may get spurious characters or report memory
violations when dealing with VAX floating point numbers.

RESOLUTION
==========

There are two possible resolutions to this problem:

 - Use MIDL 1.0 (shipped with Windows NT version 3.1) to build RPC client
 and server applications.

 -or-

 - On the VAX side, use a compiler switch to make sure the application
 represents its floating point numbers in IEEE format.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. This problem was corrected in Windows NT
version 3.51.

MORE INFORMATION
================

Note that Microsoft RPC is binary compatible with DCE RPC. There are four
types of representations for floating point numbers: IEEE, VAX, IBM, and
CRAY. An application built using MIDL 1.0 can recognize IEEE and VAX
representations but not IBM and CRAY. Applications built using MIDL 2.0 can
recognize only IEEE representaion as mentioned above. Both, MIDL 1.0 and
2.0, use IEEE representations to send data.

Additional reference words: 3.50
KBCategory: kbnetwork kbfixlist kbbuglist
KBSubcategory: NtwkRpc

FIX: OLE Libraries Fix List
PSS ID Number: Q134799

The information in this article applies to:

 - Microsoft OLE Libraries for Windows and Win32s, versions 2.02, 2.03
 - Microsoft Win32s, versions 1.2, 1.25a, and 1.3

Fixes in OLE 2.02 (Win32s 1.2)

The following is a list of the known bugs that were fixed in OLE 2.02,
which is distributed with Win32s version 1.2.

 - Changing the source of a link when the object is iconic does not update
 the new link name.

 - GetClassfile fails if the offset is greater than 32K.

 - GetClassfile returns NO_ERROR when the clsid string in the registry
 contains illegal characters.

 - The IStream returned from CreateStreamOnHGlobal does not support
 QueryInterface correctly.

 - GetClassfile fails if the offset is negative.

 - For composite monikers, IMoniker::CommonPrefixWith returns the wrong
 hresult if both monikers have a common prefix. For item monikers,
 IMoniker::CommonPrefixWith doesn't handle the case that the other
 moniker is not an item moniker.

 - CreateGenericComposite fails when handling an item moniker with an
 anti moniker.

 - For item monikers, IMoniker::ParseDisplayName causes a general
 protection (GP) fault when pmkToLeft is NULL.

 - For anti monikers, IMoniker::RelativePathTo returns an interface pointer
 without first calling AddRef and returns a wrong hresult.

 - The ILockBytes returned from CreateILockBytesOnHGlobal does not support
 QueryInterface correctly.

 - ICLassFactory::LockServer returns the wrong hresult.

 - OLE time APIs do not validate input pointers.

 - For composite monikers, calling IMoniker::RelativePathTo leaks memory.

 - OleLoadFromStream(pstrm, IID_IUnknows, &pmk) always returns
 E_NOINTERFACEW (0x80004002).

 - When registering a new pointer to unknown with an existing key,
 IBindCtx::RegisterObjectParam does not release the old pointer,
 resulting in a memory leak.

 - IBindCtx::RevokeObjectBound fails with MK_E_NOTBOUND even though the
 object is in the list.

 - IPersistFile::IsDirty fails.

 - There is no marshalling code for IPersistStream.

 - For pointer monikers, IMoniker::IsRunning is not implemented correctly.

 - Drawing a metafile causes a leak of many palettes.

 - OleMetafilePictFromIconAndLabel mishandles long labels.

 - OleMetafilePictFromIconAndLabel tries to write to a label.

Fixes in OLE 2.03 (Win32s 1.25)

The following is a list of the known bugs that were fixed in OLE 2.03,
which is distributed with Win32s version 1.25.

 - IMalloc::DidAlloc does not return 1 for memory it allocates.

 - There is no marshalling code for IEnumUnknown, IMoniker, and
 IEnumMoniker.

 - MkParseDisplayName silently fails if the server is already running.

 - Wrong cbSize in OBJECTDESCRIPTOR.

 - GPF occurs when marshalling a MSG structure in 16-32 interop.

 - Bug in remoting of OA interfaces (32-bit only).

 - Bug in second activation of the olespy tool. It may not run.

 - OleConvertOLESTREAMToIStorage always saves CLSID_NULL instead of the
 real clsid.

 - GPF marshalling ILockBytes::Stat, IStorage::Stat, and IStream::Stat.

 - GPF with 16-32 interop when the 32-bit application installs a hook.

Fixes in OLE 2.03 (Win32s 1.25a)

The following is a list of the known bugs that were fixed in OLE 2.03,
which is distributed with Win32s version 1.25a.

 - Can't unload an Excel Add-in.

 - Cross-bitness QueryInterface does not return the correct error code.

 - Japanese NEC PCs may crash when calling CoCreateGuid.

 - Failure to call a 32-bit OA server if the calling chain is too long.
 Therefore, you can not do the following: OA controller -> OA serverA ->
 OA serverB -> OA serverC.

Fixes in 32-bit OLE (Win32s 1.3)

The following is a list of the known bugs that were fixed in the 32-bit OLE
which is distributed with Win32s version 1.3.

 - General protection (GP) fault when a 32-bit container activates a 16-bit
 server more than once and uses both OA intefaces and core OLE
 interfaces.

 - When a call to OleGetClipboard fails, the clipboard become corrupted and
 other applications can not use it.

 - A 16-bit container copies data to the clipboard and a 32-bit server uses
 the Paste Special dialog. The string from the object descriptor is
 corrupted and a general protection (GP) fault may occur.

Additional reference words: 1.20 1.30
KBCategory: kbprg kbfixlist kbbuglist
KBSubcategory: LeTwoMisc W32s

FIX: Owner Drawn Items on the Menu Bar Hang Windows NT
PSS ID Number: Q126720

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.5

SYMPTOMS
========

Windows NT supports owner drawn items on the menu bar. However, Windows NT
may stop responding (hang) if multiple windows of same class are created
with the owner drawn menu bar.

STATUS
======

Microsoft has confirmed this to be a bug in Windows NT version 3.50. This
problems was corrected in Windows NT version 3.51.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Assign a menu to a window class via RegisterClass().

2. Modify the menu bar to be owner draw in WM_CREATE.

3. Create multiple windows of the same window class.

Windows NT may stop responding, in which case, you must turn off the
computer.

Additional reference words: 3.50
KBCategory: kbui kbfixlist kbbuglist
KBSubcategory: UsrMen UsrOwn

FIX: Sample File Fixes OpenGL's DIB-Resizing Bug
PSS ID Number: Q145888
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for
 Microsoft Windows 95
--

SYMPTOMS
========

On the Windows 95 version of OpenGL, if you use OpenGL to render to a
bitmap by using a memory DC and a new (larger) bitmap is selected into the
memory DC, then the new bitmap dimensions are not recognized and drawing is
limited to the old bitmap size.

RESOLUTION
==========

Download the fix (OGLFIX.EXE), and then read the Readme.txt file included
before installing the fix onto your system.

You can find OGLFIX.EXE, a self-extracting file, on these services:

 - Microsoft's World Wide Web site on the Internet
 On the www.microsoft.com home page, click the Support icon
 Click Knowledge Base, and select the product
 Enter kbfile OGLFIX.EXE, and click GO!
 Open the article, and click the button to download the file

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the Softlib/Mslfiles folder
 Get OGLFIX.EXE

 - The Microsoft Network
 On the Edit menu, click Go To, and then click Other Location
 Type "mssupport" (without the quotation marks)
 Double-click the MS Software Library icon
 Find the appropriate product area
 Locate and Download OGLFIX.EXE

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download OGLFIX.EXE

For additional information about downloading, please see the following
article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q119591
 TITLE : How to Obtain Microsoft Support Files from Online Services

STATUS

======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. This bug was corrected in OpenGL32.dll
which is contained in OGLFIX.EXE.

Additional reference words: 4.00 OpenGL PFD_DRAW_TO_BITMAP DIB resize
KBCategory: kbgraphic kbfixlist kbbuglist kbfile
KBSubcategory: GdiOpenGL

FIX: Setsockopt() for Winsock over Appletalk Returns Error
PSS ID Number: Q129062
--
The information in this article applies to

 - Microsoft Win32 Software Development Kit (SDK) version 3.5
--

SYMPTOMS
========

After you open a socket of type SOCK_STREAM by using the ATPROTO_ADSP
protocol, and bind to a dynamic socket, the setsockopt() function fails
under these conditions:

 - The setsockopt() function uses the zone name returned by getsockopt()
 (also found by looking at the control panel network entry) with the
 SO_LOOKUP_MYZONE option.

 - The zone name is supplied to setsockopt() with the SO_REGISTER_NAME
 option.

Error code 10022 (WSAINVAL :Invalid Argument) is returned on calling
GetLastError().

RESOLUTION
==========

Instead of passing the string returned by getsockopt() for the zone name,
use the character "*" for the ZoneName member of the WSH_REGISTER_NAME
struct. For example, use this:

 WSH_REGISTER_NAME regName;

 strcpy(regName.ZoneName, "*");

instead of this:

 strcpy(regName.ZoneName, "BLDG/1");

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. This problem was corrected in Windows NT
3.51.

REFERENCES
==========

Windows Sockets for Appletalk (SFMWSHAT.WRI version 1.2).

Additional reference words: 3.50
KBCategory: kbnetwork kbfixlist kbbuglist

KBSubcategory: NtwkWinsock

FIX: SNMP Sample Generates an Application Error
PSS ID Number: Q124961
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.5
--

SYMPTOMS
========

The Win32 SDK for Windows NT 3.5 contains a SNMP sample called SNMPUTIL
(\MSTOOLS\SAMPLES\WIN32\SNMP\SNMPUTIL). Building this sample generates an
executable file that causes an access violation. The message box displayed
resembles the following:

 snmputil.exe - Application Error

 The instruction at <address> referenced memory at <address>. The
 memory could not be "read".

CAUSE
=====

One part of the SNMP run times uses the C run-time routines provided by
CRTDLL.DLL. The other part of the SNMP run times uses the C run-time
routines that the application uses. Because many people are using Visual
C++ to build the samples, the run time routines used are in MSVCRT20.DLL.
The access violation occurs when memory allocated using one run time
version are freed using a different copy of the run time library.

RESOLUTION
==========

One possible solution is to build the sample application using the
CRTDLL.DLL version of the run time library. If you are using the makefile
supplied with the Win32 SDK, one way to accomplish this is to:

1. Copy NTWIN32.MAK from your include directory to the working directory
 for the sample.
2. Change all references to MSVCRT.LIB in NTWIN32.MAK to CRTDLL.LIB.

If you are using a Visual C++ make file, you can:

1. Select the "Ignore All Default Libraries" check box in the Linker
 Project Settings property page.
2. Add CRTDLL.LIB to the "Object/Library Modules" section in the Linker
 Project Settings property page.

NOTE: CRTDLL.LIB does not ship with Visual C++. You can get the CRTDLL.LIB
file from the Win32 SDK in the \MSTOOLS\LIB\CRT\<PLATFORM> directory, where
<PLATFORM> would be replaced with the type of machine you are using (I386,
alpha, and so forth).

If you are using MFC 3.0, you will not be able to use CRTDLL.DLL because
MFC 3.0 uses some functions that are not supplied in CRTDLL.DLL.

STATUS
======

Microsoft has confirmed that this is a problem in the Microsoft products
listed at the beginning of this article. This problem was corrected in the
Win32 SDK version 3.51.

Additional reference words: 3.50
KBCategory: kbnetwork kbnetwork kbfixlist kbbuglist
KBSubcategory: NtwkSnmp

FIX: SVCGUID.H Has Wrong UDP Port for SNMP Traps
PSS ID Number: Q129061
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.5
--

SYMPTOMS
========

The file SVCGUID.H used by the Registration and Name Resolution (RnR) APIs
has the UDP trap port for SNMP set to 167:

 #define SVCID_SNMP_TRAP_UDP SVCID_UDP(167)

RESOLUTION
==========

The correct port number for SNMP traps is 162. However, please note that
this entry is not looked at by the SNMP service for Windows NT. Hence, it
cannot cause traps to be sent to the wrong port. SVCGUID.H is used only by
Registration and Name Resolution (RnR) APIs.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. This problem was corrected in Windows NT
3.51.

Additional reference words: 3.50
KBCategory: kbnetwork kbfixlist kbbuglist
KBSubcategory: NtwkWinsock

FIX: Win32s 1.25a Fix List
PSS ID Number: Q130139

The information in this article applies to:

 - Microsoft Win32s, version 1.25a

The following is a list of the known bugs in Win32s version 1.2 that
were fixed in Win32s version 1.25.

 - GlobalAlloc(GMEM_FIXED) from 32-bit .EXE locks memory pages. It is
 more efficient to use GlobalAlloc(GMEM_MOVEABLE) and call GlobalFix()
 if necessary.

 - WINMM16.DLL has no version information.

 - CreateFileMapping() with SEC_NOCOMMIT returns ERROR_INVALID_PARAMETER.

 - PolyPolygon() does not close the polygons.

 - OpenFile() only searches the current directory when only a filename is
 given, not the application directory, the system directory, the windows
 directory, or the directories listed on the path.

 - GetFileInformationByHandle() doesn't return the correct file attribute.

 - GlobalUnlock() sets an error of ERROR_INVALID_PARAMETER.

 - lstrcmp()/lstrcmpi() do not use the collate table correctly.

 - FreeLibrary() in DLL_PROCESS_DETACH crashes the system.

 - FindResource(), LoadResource(), GetProcAddress(), GetModuleFileName(),
 EnumResourceNames(), and other APIs, fail with a NULL hInstance.

 - sndPlaySound() with SND_ASYNC | SND_MEMORY may cause a crash or may work
 poorly.

 - Thread Local Storage (TLS) data is not initialized to 0 in TlsAlloc().

 - The pointer received in the lParam of WM_INITDIALOG in the common dialog
 hook function becomes invalid in the following messages if the pointer
 is "remembered" in a static variable.

 - Stubbed API GetFileAttributesW() does not return -1 on error.

 - Code page CP_MACCP not supported.

 - Invalid LCIDs are not recognized.

 - CreateFile() fails to open an existing file in share mode.

 - GetLocaleInfo() for locale returns system defaults from WIN.INI.

 - GetVolumeInformation() fails with ERROR_INVALID_NAME for volumes
 without a label.

 - VirtualProtect() may miss the last page in an address range.

 - GetLocaleInfo() returns incorrect information for most non-US locales.

 - ANSI/OEM conversions always use code page 437.

 - GetProcAddress() for printer driver APIs is case sensitive.

 - The LanMan APIs are unsupported, but they return 0, which indicates
 that the API was successful. They should return NERR_InvalidAPI (2142).

 - CreateFileW() returns 0 instead of -1 (HFILE_ERROR).

 - lstrcpyn() copies n bytes from source to destination, then appends a
 NULL terminator, instead of copying n-1 bytes and appending the NULL
 terminator.

 - GetDriveType() doesn't report detecting a CD-ROM or a RAM DISK.

 - CRTDLL calls TlsFree() upon each process detach, not just the last.

 - If a DllEntryPoint calls FreeLibrary() when using universal thunks,
 the system can crash.

 - Not all 32-bit DLLs have correct version numbers.

 - GetCurrentDirectory() returns the wrong directory after calling
 GetOpenFileName(). The workaround is to call SetCurrentDirectory(".")
 right after returning from the call to GetOpenFileName().

 - RegEnumValue() and other Registry functions return ERROR_SUCCESS even
 though they are not implemented. Win32s implements only the registry
 functions supported by Windows.

 - AreFileApisANSI()/SetFileApisToANSI()/SetFileApisToOEM() are not
 exported. AreFileApisANSI() should always return TRUE, SetFileApiToOEM()
 should always fail, and SetFileApiToANSI() should always succeed.

 - SetLocaleInfoW()/SetLocateInfoA() are not implemented.

 - GetScrollPos() sets the last error if the scroll position is 0.

 - SetScrollPos() sets the last error if the last scroll position is 0.

 - LoadString() leaks memory if the string is a null string.

 - GetFileVersionInfoSize() fails if the resource section is small and
 close to the end of the file.

 - MoveFile() doesn't call SetLastError() on failure or sets a different
 error than on Windows NT.

 - SetCurrentDirectory() does not work on a CD-ROM drive.

 - GetFileVersionInfoSize() fails if the 2nd parameter is NULL.

 - WSOCK32.DLL is missing exported stubs for unimplemented APIs.

 - Win32s fails to load 64x64 monochrome (black and white) icons.

 - CreateFile() fails when called with a filename with an international
 character.

 - GetCurrentDirectory() returns an OEM string.

 - PrintDlg() causes GP fault if hDevMode!=NULL and another printer is
 selected that uses a larger DevMode buffer.

 - Unicode resources are not properly converted to 8-bit characters.

 - CreateDC() returns an incorrect DEVMODE. This can cause a variety of
 symptoms, like the inability to do a Landscape Print Preview from an
 MFC application or the displayed paper width and height not changing,
 even when you change the paper size.

 - OpenFile() fails on filenames with OEM characters in the name.

 - WNetCancelConnection() should be supported similar to
 NetAddConnection().

 - GetDriveType() fails on a Stacker 3.1 drive.

 - SetCurrentDirectory() fails on Novell client machines.

 - GetProp() returns 0 in the second instance of an app in certain cases.

 - fopen(fn, "w") fails on second call.

 - TLS indices allocated by a module are released when that module is
 freed.

 - CreateWindow() handles STARTUPINFO incorrectly if the application starts
 minimized.

 - CreateFile() creates files with incorrect attributes.

 - Resource sections are now read/write to emulate the behavior of Windows
 NT and Windows 95.

 - Removed the 128K stack limitation.

 - CompareStringW() sometimes uses incorrect locale, primarily Swedish and
 other Scandinavian locales.

 - Added dummy _iob to CRTDLL for applications that reference standard
 handles.

 - Added support for OPENCHANNEL, CLOSECHANNEL, SEXGDIXFORM, and
 DOWNLOADHEADER escapes.

Additional reference words: 1.25 1.25a
KBCategory: kbprg kbfixlist kbbuglist
KBSubcategory: W32s

FIX: Win32s 1.3 Fix List
PSS ID Number: Q133027

The information in this article applies to:

 - Microsoft Win32s version 1.3

The following is a list of the known bugs in Win32s version 1.25a that
were fixed in Win32s version 1.3.

 - DeviceCapabilities() with DC_BINS and DC_PAPERS are thunked
 incorrectly. The array should be left as is.

 - SearchPath() and OpenFile() don't work properly with OEM chars in the
 filename.

 - GetSystemInfo() doesn't set correct ProcessorType for the Pentium.

 - FindResource() returns a non-NULL handle for a nonexistent resource.

 - VirtualProtect() with anything other than PAGE_NOACCESS, PAGE_READ, OR
 PAGE_READWRITE yields unpredictable page protections.

 - COMPAREITEMSTRUCT, DELETEITEMSTRUCT, DRAWITEMSTRUCT, AND
 MEASUREITEMSTRUCT incorrectly sign-extend fields.

 - GetWindowTextLength() and GetWindowText() incorrectly sign-extend the
 return value.

 - MoveFile() fails on Windows for Workgroups when the source is remote and
 the destination is local.

 - PrintDlg() GP faults if the PRINTDLG structure has an illegal size (size
 other than 42).

 - Loading resources may cause memory and selector leakage. The leakage
 occurs when the resource is loaded from a DLL.

 - FP context is corrupted when an FP exception occurs while using the FP
 emulator.

 - If a window class defined in one DLL uses a window function in another
 DLL and this DLL is unloaded before the DLL that defines the window
 class, a general protection (GP) fault occurs in WIN32S16.DLL when you
 terminate the process from a debugger.

 - GetBitmapBits() and SetBitmapBits() return the wrong value. The return
 code is not converted from dx:ax to eax.

 - FindResource() does not set the last error code to a proper value.

 - NLS APIs fail when AnsiCP in the [NLS] section of WIN32S.INI is set to
 the code page of the machine (473 on U.S. machines).

 - _tzset() in CRTDLL.DLL can cause a general protection (GP) fault.

In addition, there were several bugs fixed in the Windows NT FP emulator.
These fixes were are included in Win32s.

REFERENCES
==========

For the list of known bugs in Win32s version 1.2 that were fixed in Win32s
version 1.25a, please see the following article in the Microsoft Knowledge
Base:

 ARTICLE-ID: Q130139
 TITLE : Win32s 1.25a Fix List

Additional reference words: 1.30
KBCategory: kbprg kbfixlist kbbuglist
KBSubcategory: W32s

FIX: Win32s Version 1.3a Bugs That Were Fixed in Version 1.3c
PSS ID Number: Q147435
--
The information in this article applies to:

 - Microsoft Win32s version 1.3a
--

The following is a list of known bugs in Win32s version 1.3a that were
fixed in Win32s version 1.3c.

 - WinHlp32 - Tab pages are not painted correctly

 - Wrong Floating Point Exception reported for overflow exceptions

 - DRAWITEMSTRUCT.CtlID is not sign extended for ID=-1.

 - Winhlp32: In Spanish Winhlp32, character à is treated as a space
 character.

 - GetCPInfo() returns the wrong CPINFO.LeadByte array for CP=949.

 - Winhlp32 loads Windows NT's FTSRCH and COMCTL32 DLLs when Windows NT
 and Windows for Workgroups are installed in common directories.

 - Winhlp32 behaves incorrectly when the display driver S3 v1.6 version
 3.10.061 is installed.

 - GetWindowTextLength() returns 0xffff instead of 0xffffffff. This may be
 a problem with combo boxes.

 - ListView scroll bars appear sometimes when they shouldn't.

 - With some display device drivers, WinHlp32's bitmaps are not drawn
 correctly.

 - Some unimplemented shell functions do not restore the stack correctly.

 - Ownerdraw Fixed ListView controls do not work properly on modeless
 dialogs.

 - Scrolling a list view by dragging the scroll thumb does not scroll
 the window.

 - Win32s Setup shows unexpected behavior when the System.ini file is
 read-only.

 - The NLS sort table is freed when the process that allocated it
 terminates.

Additional reference words: w32s 1.30a buglist1.30a fixlist1.30c
KBCategory: kbref kbbuglist kbfixlist
KBSubcategory: w32s

FIX: Winsock Over Appletalk (DDP) Leaks Memory
PSS ID Number: Q131159

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.5

SYMPTOMS
========

A memory leak occurs when you open a socket with address family
AF_APPLETALK, type SOCK_DGRAM, and protocol ATPROTO_BASE + x (where x is a
user-defined number except the ones that are reserved - please refer to the
SDK header file ATALKWSH.H); then once a server is located to send data to,
you send data to it.

Observing with PerfMon, you can see that non-paged memory use keeps on
increasing. It does not decrease even after the application is stopped. If
the application is allowed to continue for a long time, the results are
unpredictable and it is neccessary to restart the computer.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft products listed
at the beginning of this article. This bug was corrected in Windows NT
version 3.51.

Additional reference words: 3.50 3.51
KBCategory: kbnetwork kbfixlist kbbuglist
KBSubcategory: NtwkWinsock

FixBrushOrgEx() and Brush Origins under Win32s
PSS ID Number: Q124191

The information in this article applies to:

 - Microsoft Win32s versions 1.15, 1.15a, and 1.2

FixBrushOrgEx() is not implemented in the Win32 API, but it is provided for
compatibility with Win32s. If called, the function does nothing, and
returns FALSE.

A brush's origin relates to the origin of the window being painted. If you
move a window, the brush origin needs to be updated or else newly painted
patterns won't line up with the old patterns. On Windows version 3.1, the
system does not automatically update the brush origin when it is selected
into a device context (DC), so applications have to call SetBrushOrg(). On
Windows NT, the system automatically fixes brush origins when necessary.

Win32s uses FixBrushOrgEx() to hide this difference in system behavior. On
Win32s, FixBrushOrgEx() calls SetBrushOrgEx(). A Win32-based application
can check the platform and call SetBrushOrgEx() only if it is Win32s, or it
could simply always call FixBrushOrgEx() wherever a Windows-based
application would call SetBrushOrg() for brush origin tracking.

Additional reference words: 1.20
KBCategory: kbprg
KBSubcategory: W32s

FlushViewOfFile() on Remote Files
PSS ID Number: Q95043

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

When flushing a memory-mapped file over a network, FlushViewOfFile()
guarantees that the data has been written from the workstation, but not
that the data resides on the remote disk.

This is because the server may be caching the data on the remote end.
Therefore, FlushViewOfFile() may return before the data has been physically
written to disk.

However, if the file was created via CreateFile() with the flag
FILE_FLAG_WRITE_THROUGH, the remote file system will not perform lazy
writes on the file, and FlushViewOfFile() will return when the actual
physical write is complete.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseFileio

Format for LANGUAGE Statement in .RES Files
PSS ID Number: Q89822
--
The information in this article applies to:

- Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0
--

SUMMARY
=======

The syntax for the LANGUAGE statement in the resource script file is given
as follows on page 289 of the Win32 SDK "Tools User's Guide" manual:

 LANGUAGE major, minor

 major
 Language identifier. Must be one of the constants from WINNLS.H

 minor
 Sublanguage identifier. Must be one of the constants from WINNLS.H

For example, suppose that you want to set the language for the resources in
a file to French. For the major parameter, you would choose the following
constant from the list of language identifiers

 #define LANG_FRENCH 0x0c

and you would have the choice of any of the sublanguages that begin with
SUBLANG_FRENCH in the list of sublanguage identifiers. They are:

 #define SUBLANG_FRENCH 0x01
 #define SUBLANG_FRENCH_BELGIAN 0x02
 #define SUBLANG_FRENCH_CANADIAN 0x03
 #define SUBLANG_FRENCH_SWISS 0x04

RC.EXE does not directly place these constants in the .RES file. It uses
the macro MAKELANGID to turn the parameters into a WORD that corresponds to
a language ID.

NOTE: The following three combinations have special meaning:

Primary language ID Sublanguage ID Meaning

LANG_NEUTRAL SUBLANG_NEUTRAL Language neutral
LANG_NEUTRAL SUBLANG_DEFAULT User default language
LANG_NEUTRAL SUBLANG_SYS_DEFAULT System default language

MORE INFORMATION
================

The following information is taken from the WINNLS.H file.

 A language ID is a 16-bit value that is the combination of a

 primary language ID and a secondary language ID. The bits are
 allocated as follows:

 +-----------------------+-------------------------+
 | Sublanguage ID | Primary Language ID |
 +-----------------------+-------------------------+
 15 10 9 0 bit

 Language ID creation/extraction macros:

 MAKELANGID - Construct language ID from primary language ID and
 sublanguage ID.
 PRIMARYLANGID - Extract primary language ID from a language ID.
 SUBLANGID - Extract sublanguage ID from a language ID.

The macros are defined as follows

 #define MAKELANGID(p, s) ((((USHORT)(s)) << 10) | (USHORT)(p))
 #define PRIMARYLANGID(lgid) ((USHORT)(lgid) & 0x3ff)
 #define SUBLANGID(lgid) ((USHORT)(lgid) >> 10)

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsRc

FormatMessage() Converts GetLastError() Codes
PSS ID Number: Q94999

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The FormatMessage() application programming interface (API) allows you
to convert error codes returned by GetLastError() into error strings,
using FORMAT_MESSAGE_FROM_SYSTEM in the dwFlags parameter.

MORE INFORMATION
================

The following code fragment demonstrates how to get the system message
string:

LPVOID lpMessageBuffer;

FormatMessage(
 FORMAT_MESSAGE_ALLOCATE_BUFFER |
 FORMAT_MESSAGE_FROM_SYSTEM,
 NULL,
 GetLastError(),
 MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), //The user default language
 (LPTSTR) &lpMessageBuffer,
 0,
 NULL);

//... now display this string

// Free the buffer allocated by the system

LocalFree(lpMessageBuffer);

REFERENCES
==========

For more information on language identifiers, please see the topic
MAKELANGID in the Win32 Programmer's Reference.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseMisc

Fractional Point Sizes Not Supported in ChooseFont()
PSS ID Number: Q77843

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

The ChooseFont() common dialog box library routine does not support
fractional point sizes. When a fractional point size is entered, it is
rounded to the nearest integral point size.

Rounding point sizes affects certain printers that support fractional font
sizes. For example, one particular HP LaserJet font cartridge contains an
8.5-point font. The ChooseFont() dialog box displays this font as an 8-
point font.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrCmnDlg

Freeing Memory for Transactions in a DDEML Client App
PSS ID Number: Q83912

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

A Dynamic Data Exchange Management Library (DDEML) client application
can request data from a server both synchronously and asynchronously
by calling the DdeClientTransaction function.

To make a synchronous request, the client application specifies
XTYP_REQUEST as the value for the uType parameter to
DdeClientTransaction, and any reasonable value for the uTimeout
parameter.

To make an asynchronous request, the client application specifies
XTYP_REQUEST as the value for the uType parameter to
DdeClientTransaction, and TIMEOUT_ASYNC as the value for the uTimeout
parameter.

The client can also establish an advise loop with a server application
by specifying XTYP_ADVSTART as the value for the uType parameter. In
an advise loop, the client application's callback function receives an
XTYP_ADVDATA transaction each time the specified data item changes in
the server application. (NOTE: This article discusses only hot advise
loops in which changed data is communicated to the application. No
data is transferred for a warm advise loop, only a notification that
the data changed.)

The client application must free the data handle it receives from a
synchronous transaction; however, the client application should not
free the data handle it receives from an asynchronous transaction or
from an advise loop.

MORE INFORMATION
================

If the client application initiates a synchronous transaction, the
DdeClientTransaction function returns a handle to the requested data.
If the client application initiates an asynchronous transaction, the
DdeClientTransaction function returns either TRUE or FALSE. When the
data becomes available, the DDEML sends the client application an
XTYP_XACT_COMPLETE notification accompanied by a handle to the
requested data. In an active advise loop, the DDEML sends the client

application an XTYP_ADVDATA notification accompanied by a handle to
the updated data.

In the synchronous case, the client application must call
DdeFreeDataHandle before it terminates to free a data handle (and the
associated memory) that it received as the return value from
DdeClientTransaction. If the DDEML server specified HDATA_APPOWNED
when it created the data handle, then the data is invalidated when the
client calls DdeFreeDataHandle; the server must call DdeFreeDataHandle
before terminating to free the associated memory.

In the asynchronous case, the DDEML sends the client application's
callback function an XTYP_XACT_COMPLETE notification when the server
has completed the transaction. A handle to the requested data
accompanies the notification as the hData parameter to the callback
function. This handle is valid until control returns from the client
application's callback function. Once the client application's
callback function returns control, the DDEML may free the data handle
and the client application must not assume that the data handle
received in the callback function remains valid. This fact has two
implications, as follows:

 - The client application cannot call DdeFreeDataHandle on the data
 handle it receives with an XTYP_XACT_COMPLETE transaction. If the
 client invalidates the data handle by freeing it in the client's
 callback function, and the DDEML later attempts to free the handle,
 a Fatal Exit will result.

 - The client application must make a local copy of the data it
 receives with the XTYP_XACT_COMPLETE transaction to use that data
 after the callback function returns.

In an advise loop, the client application should not free the data
handle that it receives as the hData parameter to the callback
function. The DDEML frees the data handle when the client application
returns from its callback function. If the client calls
DdeFreeDataHandle on the data handle, the DDEML will cause a Fatal
Exit when it attempts to free the same data handle.

These rules apply to all data handles, whether or not the server
application specified the HDATA_APPOWNED flag when it created the
handle.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrDde

Freeing Memory in a DDEML Server Application
PSS ID Number: Q83413

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

A Dynamic Data Exchange Management Library (DDEML) server application
calls the DdeCreateDataHandle function to allocate a block of memory
for data it will send to a client application. DdeCreateDataHandle
returns a handle to a block of memory that can be passed between
applications.

The server application owns every data handle it creates. However, it
is not necessary to call DdeFreeDataHandle under every circumstance.
This article details the circumstances under which the server
application must call DdeFreeDataHandle and when the DDEML will
automatically free a data handle.

MORE INFORMATION
================

If the server application specifies the HDATA_APPOWNED flag in the
afCmd parameter to DdeCreateDataHandle, it must explicitly call
DdeFreeDataHandle to free the memory handle. Using HDATA_APPOWNED data
handles is convenient when data, such as system topic information, is
likely to be passed to a client application more than once, because the
server calls DdeCreateDataHandle only once, regardless of the number
of times the data handle is passed to a client application.

When it closes down, a server application must call DdeFreeDataHandle
for each data handle that it has not passed to a client application.
When the server creates a handle without specifying HDATA_APPOWNED,
and passes the handle to a client application in an asynchronous
transaction, the DDEML frees the data handle when the client returns
from its callback function. Therefore, the server is not required to
free the data handle it passes to a client because the DDEML frees the
handle. However, if the data handle is never sent to a client
application, the server must call DdeFreeDataHandle to free the
handle. It is the client application's responsibility to call
DdeFreeDataHandle for any data provided by a server in a synchronous
transaction.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui

KBSubcategory: UsrDde

Freeing PackDDElParam() Memory
PSS ID Number: Q94149
--

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

When posting DDE messages via PostMessage(), an application first calls
PackDDElParam() and sends its return value (a pointer cast to LPARAM) as
the lParam in PostMessage().

Normally the receiving application is responsible for freeing the structure
[via FreeDDElParam()]. However, if the call to PostMessage() fails, the
posting application must free the packed data. This is also the method used
by 16-bit Windows.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrDde

Gaining Access to ACLs
PSS ID Number: Q102098

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

To gain access to a security access control list (SACL), a process must
have the SE_SECURITY_NAME privilege. When requesting access, the calling
process must request ACCESS_SYSTEM_SECURITY in the desired access mask.

There is not a privilege that controls read or write access to a
discretionary access control list (DACL). Instead, access to read and write
an object's DACL is granted by the READ_CONTROL and WRITE_DAC access
rights, respectively. These rights must be specifically granted to the user
(or group containing the user) for DACL read or write access to be granted.
If the owner of an object requests READ_CONTROL or WRITE_DAC, the access
will always be granted.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

GDI Objects and Windows 95 Heaps
PSS ID Number: Q125699

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

Under Windows version 3.1, GDI allocates all resources from a single 64K
heap. This limit has caused many applications to run out of GDI resources,
especially when using objects that can really take up a lot of the heap,
like elliptical regions. This caused GDI resources to be dangerously low
when executing several applications at once.

Windows 95 has now introduced a combination of a 16-bit heap and an
additional 32-bit heap. The 16-bit heap is still limited to 64K but the
32-bit heap can grow as large as available memory.

As in Windows version 3.1, the 16-bit GDI.EXE of Windows 95 continues to
have a 16-bit DGROUP segment with a local heap within it, and most logical
objects are still stored in this local heap. The data structures that
describe brushes, bitmap headers, and pens, for example, stay in the 16-bit
heap. All physical objects, like fonts and bitmaps, are now stored in the
32-bit heap. GDI regions have also been moved to the 32-bit heap. Moving
these GDI resources to the 32-bit heap takes the pressure off of the 64K
16-bit heap.

Regions can take up a large amount of resources and were the main source of
problems with GDI memory in Windows version 3.1. This will not be a
limitation in Windows 95 because regions are stored in the 32-bit heap.
Applications will be able to use much more complex regions, and regions
will be more useful now that they are not limited to a local 64K heap.

Windows 95, like Windows NT, will free all GDI resources owned by a 32-bit
process when that process terminates. Windows 95 will also clean up any GDI
resources of 16-bit processes marked as a 4.0 application. Because GDI
objects were sharable between applications in Windows version 3.1, Windows
95 will not immediately clean up GDI resources for 16-bit applications
marked with a version less than 4.0. However, when all 16-bit applications
have finished running, all GDI resources allocated by previous 16-bit
applications will be cleaned up.

Additional reference words: 4.00 Heaps
KBCategory: kbgraphic
KBSubcategory: GdiGeneral

General Overview of Win32s
PSS ID Number: Q83520
--
The information in this article applies to:

 - Microsoft Win32s versions 1.1 and 1.2
--

SUMMARY
=======

The following is intended as a general introduction to Win32s. More
information can be found in the "Win32s Programmer's Reference" and by
querying for Knowledge Base articles on "Win32s".

MORE INFORMATION
================

General Overview

The Win32 API consists of the Window 3.1 (Win16) API, with types stretched
to 32 bits, plus the addition of APIs which offer new functionality, like
threads, security, services, and virtual memory. Applications developed
using the Win32 API are called "Win32-based applications".

Win32s is a set of DLLs and a VxD which allow Win32-based applications to
run on top of Windows or Windows for Workgroups version 3.1. Win32s
supports a subset of the Win32 API, some directly (like memory management)
and some through thunks to the 16-bit systems (particularly GDI and User).
Win32s contains function stubs for the APIs that are not supported, which
return ERROR_NOT_IMPLEMENTED. Win32s also includes 4 new APIs which support
the Universal Thunk (UT). For details on which API are supported under
Win32s, refer to the individual API entries in the help file "Win32 API
Reference." Among the new features gained from Win32 are structured
exception handling (SEH), FP emulation, memory-mapped files, named shared
memory, and sparse memory.

Win32-based applications running on Windows 3.1 will generally be faster
than their Win16 equivalents on Windows 3.1, particularly if they are
memory or floating-point intensive. The actual speed improvement varies
with each application, because it depends on how often you cross the thunk
layer. Each call which uses a thunk is no more than 10 percent slower than
a direct call.

Binary Compatibility

Win32s offers binary compatibility for Win32-based applications on Windows
3.1 and Windows NT.

When you call a Win32 API, two options should be allowed:

 - Option A: Your code should allow for a successful return from the

 function call.

 - Option B: Your code should allow for an unsuccessful return from
 the function call.

For example, if the application is running under Windows 3.1 and a call is
made to one of the supported APIs, then the call returns successfully and
option A is executed. If the call is made while running under Windows NT,
the call again returns successfully and option A should be executed.
However, if running under Windows 3.1 and a Win32 API function is called
that is unsupported, then an error code is returned and option B should be
executed.

If, for example, option A were using a CreateThread() call, then option B
would be alternative code, which would handle the task using a single-
thread solution.

Programming Issues

Win32-based applications cannot use MS-DOS and BIOS interrupts; therefore,
the Win32s VxD has Win32 entries for each Interrupt 21 and the BIOS calls.

The Win32s DLLs may thunk to Win16 when a Win32 application makes a call.
The 32-bit parameters are copied from the 32-bit stack to a 16-bit stack
and the 16-bit entry point is called. The Win32 application has a 128K
stack. When switching to the 16-bit side via UT, the same stack is used,
and a 16:16 stack pointer is created which points to the top of the stack.
The selector base is set so that there is at least an 8K stack for the
16-bit code.

There are other semantic difference between Windows 3.1 and Win32. Windows
3.1 will run applications for Win32 nonpreemptively in a single, shared
address space, while Windows NT runs them preemptively in separate address
spaces. It is therefore important that you test your Win32-based
application on both Windows 3.1 and Windows NT.

If you need to call routines that reside in a 16-bit DLL or Windows from
32-bit code, you can do this using the Win32s Universal Thunk or other
client-server techniques. For a description of UT, please see the
"Win32s Programmer's Reference" and the sample UTSAMPLE.

DDE, OLE, WM_COPYDATA, the clipboard, metafiles, and bitmaps can be used
between 16-bit Windows-based and Win32-based applications on both Windows
3.1 and Windows NT. RPC is not supported from Win32-based applications.

Additional reference words: 1.10 1.20
KBCategory: kbprg
KBSubcategory: W32s

GetClientRect() Coordinates Are Not Inclusive
PSS ID Number: Q43596

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

The coordinates returned by GetClientRect() are not inclusive. For
example, to draw a border around the edge of the client area, draw it
from the coordinates (Rectangle.left, Rectangle.top) to
(Rectangle.right-1, Rectangle.bottom-1).

Addtional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrPnt

GetCommandLine() Under Win32s
PSS ID Number: Q102762
--
The information in this article applies to:

 - Microsoft Win32s versions 1.0, 1.1, and 1.2
--

Under Win32s, GetCommandLine() includes the full drive/path of the
executable, while under Windows NT GetCommandLine() does not include the
full path.

When programs are run from the Program Manager or the File Manager on
Windows 3.1, they are spawned using the full path. As a result, argv[0]
will have the complete path. When a Win32s application is spawned by a 16-
bit application, Windows detects that the application is a Win32s
application. The full path is passed to Win32s regardless of whether or not
WinExec() was invoked with the full path. As a result, 32-bit applications
receive the full path.

When a Win32-based application is spawned from another Win32-based
application, the 32-bit kernel passes the information as given by the
parent process [that is, if a Win32-based application is started via
CreateProcess() from another Win32-based application, argv[0] will contain
the path that the spawning application passed in].

Additional reference words: 1.00 1.10 1.20
KBCategory: kbprg
KBSubcategory: W32s

GetCurrentTime and GetTickCount Functions Identical
PSS ID Number: Q45702

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

The GetCurrentTime() and GetTickCount() functions are identical. Each
returns the number of milliseconds (+/- 55 milliseconds) since the user
started Windows, and the return value of each function is declared to be a
DWORD.

The following code demonstrates these two functions:

 DWORD dwCurrTime;
 DWORD dwTickCount;
 char szCurrTime[50];

 dwCurrTime = GetCurrentTime ();
 dwTickCount = GetTickCount ();

 sprintf (szCurrTime, "Current time = %lu\nTick count = %lu",
 dwCurrTime, dwTickCount);

 MessageBox (hWnd, szCurrTime, "Times", MB_OK);

NOTE: GetCurrentTime() and GetTickCount() return an unsigned double word
(32-bit DWORD) which gives a maximum count of 4,294,967,296 ticks. This
number will yield a maximum count of 49.71 days which the system keeps
track of running time.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrTim

GetDeviceCaps(hDC, RASTERCAPS) Description
PSS ID Number: Q75912

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

GetDeviceCaps(hDC, RASTERCAPS) returns the raster capabilities bit
field in the GDIINFO structure, which indicates the raster
capabilities of the device. The RASTERCAPS index of the
GetDeviceCaps() function is documented in the "Microsoft Windows
Software Development Kit Reference Volume 1" on page 4-168. The flags
available include: RC_BANDING, RC_BITBLT, RC_BITMAP64, RC_DI_BITMAP,
RC_DIBTODEV, RC_GDI20_OUTPUT, RC_PALETTE, RC_SCALING, RC_STRETCHBLT,
and RC_STRETCHDIB. The GDIINFO structure itself is documented in the
"Microsoft Windows Device Development Kit Device Driver Adaptation
Guide."

An application should use GetDeviceCaps() to query the printer driver
for device capabilities. For example, before printing a bitmap larger
than 64K, the application should query the driver using
GetDeviceCaps() with the index RASTERCAPS and the flag RC_BITMAP64. If
the application fails to test for the capability and prints a bitmap
larger than 64K, unexpected printer output may occur if the driver
does not support bitmaps larger than 64K.

In particular, if the driver does not support a capability, GDI will
attempt to simulate it using a more fundamental capability of the
driver. However, the resulting GDI simulation is usually slower, is of
lower quality, or differs in some way from a device driver
implementation of the capability.

 Differences in
 GDI Call to Invoke Functionality Resulting
Field Capability Capability or from Supporting or not
Name or Function Function Supporting Capability
------|-------------|--------------------|----------------------------
0	BitBlt		?
 1 | Requires | | ?
 | banding | |
------|-------------|--------------------|----------------------------
 2 | Requires | | ?
 | scaling | |

------|-------------|--------------------|----------------------------
 3 | Supports | | ?
 | >64K bitmaps| |
------|-------------|--------------------|----------------------------
 4 | Supports | ExtTextOut | GDI will call StrBlt() once
 | ExtTextOut, | | for each character to
 | FastBorder, | | simulate the ExtTextOut()
 | GetCharWidth| | function's ability to
 | | | position proportionally-
 | | | spaced characters. This can
 | | | be very slow. GDI simulates
 | | | bold text by overstriking
 | | | one or more times. This
 | | | fails on laser printers.
 | | | Laser printer drivers that
 | | | support ExtTextOut() offset
 | | | the text before overstriking.
 | | |
 | | FastBorder |
 | | |
 | | GetCharWidth | Returns 0 if driver does
 | | | not support GetCharWidth;
 | | | otherwise, it calls
 | | | ExtTextOut() or StrBlt()
 | | | with count = -1 to obtain
 | | | the width of each
 | | | individual character.
------|-------------|--------------------|----------------------------
 5 | Has state | |
 | block | |
------|-------------|--------------------|----------------------------
 6 | Saves | |
 | bitmaps in | |
 | shadow | |
 | memory | |
------|-------------|--------------------|----------------------------
 7 | RC_DI_BITMAP| Supports Get and | If GDI is called upon to
 | | Set DIBs and RLEs | copy a RLE bitmap that
 | | | contains a transparent
 | | | window (region not defined
 | | | by the bitmap), the window
 | | | will be filled by the
 | | | current background color.
 | | |
 | | | The destination for any GDI
 | | | DIB operation is a
 | | | monochrome bitmap.
 | | |
 | | | Unidrv offers a variety of
 | | | halftone dithering
 | | | techniques to simulate a
 | | | range of intensities on
 | | | black and white and color
 | | | printers. GDI does not.
 | | | Unidrv offers intensity

 | | | adjustment to darken and
 | | | lighten halftone output.
 | | | Unidrv does not support RLE
 | | | DIBs at present.
------|-------------|--------------------|----------------------------
 8 | RC_PALETTE | Performs color |
 | | palette management |
------|-------------|--------------------|----------------------------
 9 | RC_DIBTODEV | Supports | See comments above for
 | | SetDIBitsToDevice | RC_DI_BITMAP
------|-------------|--------------------|----------------------------
 10 | RC_BIGFONTS | Supports Windows | This flag specifies the
 | | 3.0 FONTINFO | format of the FONTINFO
 | | structure format | structure passed between
 | | | GDI's SelectObject() call
 | | | and the driver's
 | | | RealizeFont() function. If
 | | | a bit is set, the Windows
 | | | 3.0 format is used.
 | | | Otherwise, the Windows 2.0
 | | | font file format is used.
------|-------------|--------------------|----------------------------
 11 |RC_STRETCHBLT| Supports StretchBlt|
------|-------------|--------------------|----------------------------
 12 | RC_FLOODFILL| Supports flood fill|
------|-------------|--------------------|----------------------------
 13 |RC_STRETCHDIB| Supports | See comments above for
 | | StretchDIBits | RC_DI_BITMAP. Additionally,
 | | | Unidrv has these limits on
 | | | the degree of stretching
 | | | and shrinking supported:
 | | |
 | | | The X and Y axes may be
 | | | scaled independently.
 | | |
 | | | The maximum scale-up factor
 | | | is 256.
 | | |
 | | | The maximum product of the
 | | | X and Y scale-down factors
 | | | is 256.
 | | |
 | | | Therefore, if both axes are
 | | | scaled down equally, the
 | | | maximum scale-down factor
 | | | for each axis is 16.
------|-------------|--------------------|----------------------------

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbgraphic
KBSubcategory: GdiDc

GetGlyphOutline() Native Buffer Format
PSS ID Number: Q87115

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The GetGlyphOutline function provides a method for an application to
retrieve the lowest-level information about a glyph in the TrueType
environment. This article describes the format of the data the
GetGlyphOutline function returns.

MORE INFORMATION
================

A glyph outline is a series of contours that describe the glyph. Each
contour is defined by a TTPOLYGONHEADER data structure, which is
followed by as many TTPOLYCURVE data structures as are required to
describe the contour.

Each position is described by a POINTFX data structure, which
represents an absolute position, not a relative position. The starting
and ending point for the glyph is given by the pfxStart member of the
TTPOLYGONHEADER data structure.

The TTPOLYCURVE data structures fall into two types: a TT_PRIM_LINE
record or a TT_PRIM_QSPLINE record. A TT_PRIM_LINE record is a series
of points; lines drawn between the points describe the outline of the
glyph. A TT_PRIM_QSPLINE record is a series of points defining the
quadratic splines (q-splines) required to describe the outline of the
character.

In TrueType, a q-spline is defined by three points (A, B, and C),
where points A and C are on the curve and point B is off the curve.
The equation for each q-spline is as follows (xA represents the
x-coordinate of point A, yA represents the y-coordinate of point A,
and so on)

 x(t) = (xA-2xB+xC)*t^2 + (2xB-2xA)*t + xA
 y(t) = (yA-2yB+yC)*t^2 + (2yB-2yA)*t + yA

where t varies from 0.0 to 1.0.

The format of a TT_PRIM_QSPLINE record is as follows:

 - Point A on the q-spline is the current position (either pfxStart in
 the TTPOLYGONHEADER, the starting point for the TTPOLYCURVE, or the
 ending point of the previous TTPOLYCURVE).

 - Point B is the current point in the record.

 - Point C is as follows:

 - If the record has two or more points following point B, point C
 is the midpoint between point B and the next point in the
 record.
 - Otherwise, point C is the point following point B.

The following code presents the algorithm used to process a
TT_PRIM_QSPLINE record. While this code demonstrates how to extract
q-splines from a TT_PRIM_QSPLINE record, it is not appropriate for use
in an application.

pfxA = pfxStart; // Starting point for this polygon

for (u = 0; u < cpfx - 1; u++) // Walk through points in spline
 {
 pfxB = apfx[u]; // B is always the current point
 if (u < cpfx - 2) // If not on last spline, compute C
 {
 pfxC.x = (pfxB.x + apfx[u+1].x) / 2; // x midpoint
 pfxC.y = (pfxB.y + apfx[u+1].y) / 2; // y midpoint
 }
 else // Else, next point is C
 pfxC = apfx[u+1];

 // Draw q-spline
 DrawQSpline(hdc, pfxA, pfxB, pfxC);
 pfxA = pfxC; // Update current point
 }

The algorithm above manipulates points directly, using floating-point
operators. However, points in q-spline records are stored in a FIXED
data type. The following code demonstrates how to manipulate FIXED
data items:

FIXED fx;
long *pl = (long *)&fx;

// Perform all arithmetic on *pl rather than on fx
*pl = *pl / 2;

The following function converts a floating-point number into the FIXED
representation:

FIXED FixedFromDouble(double d)
{
 long l;

 l = (long) (d * 65536L);
 return *(FIXED *)&l;
}

In a production application, rather than writing a DrawQSpline
function to draw each q-spline individually, it is more efficient to
calculate points on the q-spline and store them in an array of POINT
data structures. When the calculations for a glyph are complete, pass
the POINT array to the PolyPolygon function to draw and fill the
glyph.

The following example presents the data returned by the
GetGlyphOutline for the lowercase "j" glyph in the 24-point Arial font
of the 8514/a (Small Fonts) video driver:

GetGlyphOutline GGO_NATIVE 'j'
 dwrc = 208 // Total native buffer size in bytes
 gmBlackBoxX, Y = 6, 29 // Dimensions of black part of glyph
 gmptGlyphOrigin = -1, 23 // Lower-left corner of glyph
 gmCellIncX, Y = 7, 0 // Vector to next glyph origin

TTPOLYGONHEADER #1 // Contour for dot on "j"
 cb = 44 // Total size of dot polygon
 dwType = 24 // TT_POLYGON_TYPE
 pfxStart = 2.000, 20.000 // Start at lower-left corner of dot

 TTPOLYCURVE #1
 wType = TT_PRIM_LINE
 cpfx = 3
 pfx[0] = 2.000, 23.000
 pfx[1] = 5.000, 23.000
 pfx[2] = 5.000, 20.000 // Automatically close to pfxStart

TTPOLYGONHEADER #2 // Contour for body of "j"
 cb = 164 // Total size is 164 bytes
 dwType = 24 // TT_POLYGON_TYPE
 pfxStart = -1.469, -5.641

 TTPOLYCURVE #1 // Finish flat bottom end of "j"
 wType = TT_PRIM_LINE
 cpfx = 1
 pfx[0] = -0.828, -2.813

 TTPOLYCURVE #2 // Make hook in "j" with spline
 // Point A in spline is end of TTPOLYCURVE #1
 wType = TT_PRIM_QSPLINE
 cpfx = 2 // two points in spline -> one curve
 pfx[0] = -0.047, -3.000 // This is point B in spline
 pfx[1] = 0.406, -3.000 // Last point is always point C

 TTPOLYCURVE #3 // Finish hook in "j"
 // Point A in spline is end of TTPOLYCURVE #2
 wType = TT_PRIM_QSPLINE
 cpfx = 3 // Three points -> two splines

 pfx[0] = 1.219, -3.000 // Point B for first spline
 // Point C is (pfx[0] + pfx[1]) / 2
 pfx[1] = 2.000, -1.906 // Point B for second spline
 pfx[2] = 2.000, 0.281 // Point C for second spline

 TTPOLYCURVE #4 // Majority of "j" outlined by this polyline
 wType = TT_PRIM_LINE
 cpfx = 3
 pfx[0] = 2.000, 17.000
 pfx[1] = 5.000, 17.000
 pfx[2] = 5.000, -0.250

 TTPOLYCURVE #5 // start of bottom of hook
 wType = TT_PRIM_QSPLINE
 cpfx = 2 // One spline in this polycurve
 pfx[0] = 5.000, -3.266 // Point B for spline
 pfx[1] = 4.188, -4.453 // Point C for spline

 TTPOLYCURVE #6 // Middle of bottom of hook
 wType = TT_PRIM_QSPLINE
 cpfx = 2 // One spline in this polycurve
 pfx[0] = 3.156, -6.000 // B for spline
 pfx[1] = 0.766, -6.000 // C for spline

 TTPOLYCURVE #7 // Finish bottom of hook and glyph
 wType = TT_PRIM_QSPLINE
 cpfx = 2 // One spline in this polycurve
 pfx[0] = -0.391, -6.000 // B for spline
 pfx[1] = -1.469, -5.641 // C for spline

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbgraphic
KBSubcategory: GdiTt

GetInputState Is Faster Than GetMessage or PeekMessage
PSS ID Number: Q35605

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

This article describes a method to quickly determine whether an
application for the Microsoft Windows graphical environment has any
keyboard or mouse messages in its queue without calling the GetMessage
or PeekMessage functions.

NOTE: In Win32, GetInputState is thread-local only.

MORE INFORMATION
================

The GetInputState function returns this information more quickly than
GetMessage or PeekMessage. GetInputState returns TRUE (nonzero) if
either a keyboard or mouse message is in the application's input
queue. If the application must distinguish between a mouse and a
keyboard message, GetInputState returns the value 2 for a keyboard and
the value 1024 for a mouse message.

Because difficulties may arise if the application loses the input
focus, use GetInputState only in tight loop conditions where execution
speed is critical.

In Win32, message queues are not global as they are in 16-bit Windows. The
message queues are local to the thread. When you call GetInputState, you
are checking to see if there are mouse or keyboard messages for the calling
thread only. If a window created by another thread in the application has
the keyboard input waiting, GetInputState will not be able to check for
those messages.

Additional reference words: 3.00 3.10 3.50 4.00 95 yield
KBCategory: kbui
KBSubcategory: UsrMsg

GetLastError() May Differ Between Windows 95 and Windows NT
PSS ID Number: Q127991

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0

The extended error codes returned by the GetLastError() API are not
guaranteed to be the same under Windows 95 and Windows NT. This difference
applies to extended error codes generated by calls to GDI, Window
Management, and System Services APIs.

The set of potential error codes returned by any particular Win32 API
depends on many underlying components, including system kernel-mode
components and loaded drivers. The extended error codes are not a part of
the Win32 specification. Therefore, they can change as operating system and
driver code is changed.

It is impossible to get the error codes for each API in synch across
operating system and platforms. Windows NT and Windows 95 have different
code bases. Third-party drivers return error codes that are mapped to Win32
error codes. In addition, it would be difficult to accurately maintain
error code information in the Win32 Programmer's Reference. Therefore, this
information is not included in the documentation.

In general, you should not rely on GetLastError() returning the same values
under Windows 95 and Windows NT. Sometimes, an API will fail and
GetLastError() will return 0 (ERROR_SUCCESS) under Windows 95. This is
because some of the APIs do not set error codes under Windows 95.

Additional reference words: 4.00
KBCategory: kbui
KBSubcategory: BseMisc UsrMisc GdiMisc

GetSystemMetrics(SM_CMOUSEBUTTONS) Fails Under Win32s
PSS ID Number: Q124836

The information in this article applies to:

 - Microsoft Win32s versions 1.15, 1.15a, and 1.20

Under Win32s, the Win32 API GetSystemMetrics() is implemented as a direct
thunk to Windows version 3.1. Therefore, the call will return whatever
Windows version 3.1 would return for a similar call to the Windows API
GetSystemMetrics().

GetSystemMetrics() returns zero for all unrecognized parameters. Under
Windows, this includes the new flag SM_CMOUSEBUTTONS, which was introduced
in the Win32 API. Therefore, avoid using the SM_CMOUSEBUTTONS flag when
your Win32-based application is running under Win32s.

Additional reference words: 1.20
KBCategory: kbprg
KBSubcategory: W32s

Getting a Dialog to Use an Icon When Minimized
PSS ID Number: Q114612

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The standard Windows dialog box does not have an icon when it is minimized.
A dialog box can be made to use an icon by replacing the standard dialog
box class with a private dialog box class.

MORE INFORMATION
================

The standard dialog box class specifies NULL as the value of the hIcon
field of its WNDCLASS structure. So no icon is drawn when the standard
dialog box is minimized.

An icon can be specified by getting the dialog to use a private class as
follows:

1. Register a private class.

 WNDCLASS wc;

 wc.style = CS_DBLCLKS | CS_SAVEBITS | CS_BYTEALIGNWINDOW;
 wc.lpfnWndProc = DefDlgProc;
 wc.cbClsExtra = 0;
 wc.cbWndExtra = DLGWINDOWEXTRA;
 wc.hInstance = hinst;
 wc.hIcon = LoadIcon(hinst, "DialogIcon");
 wc.hCursor = LoadCursor(NULL, IDC_ARROW);
 wc.hbrBackground = COLOR_WINDOW + 1;
 wc.lpszMenuName = NULL;
 wc.lpszClassName = "MyDlgClass";
 RegisterClass(&wc);

 NOTE: The default dialog window procedure, DefDlgProc(), is used as the
 window procedure of the class. This causes windows of this class to
 behave as standard dialogs. The cbWndExtra field has to be assigned to
 DLGWINDOWEXTRA - the dialog box stores its internal state information in
 these extra window bytes. The icon to be used when the dialog box is
 minimized is assigned to the hIncon field.

2. Get the dialog box to use the private class.

 Use the CLASS statement in the dialog box template to get the dialog box
 to use the private class:

 IDD_MYDIALOG DIALOG 0, 0, 186, 92
 CLASS "MyDlgClass"
 :

3. Create the dialog box using DialogBox() or CreateDialog().

 DialogBox (hinst,
 MAKEINTRESOURCE (IDD_MYDIALOG),
 NULL,
 (DLGPROC)MyDlgFunc);

 MyDlgFunc() is the dialog function implemented by the application. When
 the dialog box is minimized, it will use the icon specified in the
 private class.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrDlgs

Getting and Using a Handle to a Directory
PSS ID Number: Q105306

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

CreateDirectory() can be used to open a new directory. An existing
directory can be opened by calling CreateFile(). To open an existing
directory with CreateFile(), it is necessary to specify the flag
FILE_FLAG_BACKUP_SEMANTICS. The following code shows how this can be done:

 HANDLE hFile;

 hFile = CreateFile("c:\\mstools",
 GENERIC_READ | GENERIC_WRITE,
 FILE_SHARE_READ | FILE_SHARE_WRITE,
 NULL,
 OPEN_EXISTING,
 FILE_FLAG_BACKUP_SEMANTICS,
 NULL
);
 if(hFile == INVALID_HANDLE_VALUE)
 MessageBox(NULL, "CreateFile() failed", NULL, MB_OK);

The handle obtained can be used to obtain information about the directory
or to set information about the directory. For example:

 BY_HANDLE_FILE_INFORMATION fiBuf;
 FILETIME ftBuf;
 SYSTEMTIME stBuf;
 char msg[40];

 GetFileInformationByHandle(hFile, &fiBuf);
 FileTimeToLocalFileTime(&fiBuf.ftLastWriteTime, &ftBuf);
 FileTimeToSystemTime(&ftBuf, &stBuf);
 wsprintf(msg, "Last write time is %d:%d %d/%d/%d",
 stBuf.wHour,stBuf.wMinute,stBuf.wMonth,stBuf.wDay,stBuf.wYear);
 MessageBox(NULL, msg, NULL, MB_OK);

MORE INFORMATION
================

Opening directories with CreateFile is not supported on Windows 95.

This code does not work on Win32s, because MS-DOS does not support opening
a directory. If you are looking for the creation time of a directory, use
FindFirstFile(), because it works on all platforms.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseFileio

Getting Floppy Drive Information
PSS ID Number: Q115828

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

To get the media type(s) supported by a floppy drive, it is necessary to
call CreateFile() to get a handle to the drive and then DeviceIoControl()
to get the information. However, if there is no floppy disk in the floppy
drive, the following message box may appear when CreateFile() is called for
drive A (\\.\a:):

 There is no disk in the drive. Please insert a disk into drive A:

When calling CreateFile(), be sure to use 0 for the access mode and
FILE_SHARE_READ for the share mode so that the user will not be prompted to
insert a floppy disk:

 CreateFile(
 szFileName,
 0,
 FILE_SHARE_READ,
 NULL,
 OPEN_ALWAYS,
 0,
 NULL
);

Another way to avoid the message box prompt is to put

 SetErrorMode(SEM_FAILCRITICALERRORS);

before the call to CreateFile().

MORE INFORMATION
================

The following sample code is based on the code in the FLOPPY SDK sample,
but it simply displays the media type(s) supported by floppy drive A. The
code demonstrates one way to retrieve the supported media without requiring
you to insert a floppy disk in the drive.

Sample Code

#include <windows.h>
#include <stdio.h>

#include <winioctl.h>

DISK_GEOMETRY SupportedGeometry[20];
DWORD SupportedGeometryCount;

VOID
GetSupportedGeometrys(HANDLE hDisk)
{
 DWORD ReturnedByteCount;

 if(DeviceIoControl(
 hDisk,
 IOCTL_DISK_GET_MEDIA_TYPES,
 NULL,
 0,
 SupportedGeometry,
 sizeof(SupportedGeometry),
 &ReturnedByteCount,
 NULL
))
 SupportedGeometryCount = ReturnedByteCount / sizeof(DISK_GEOMETRY);

 else SupportedGeometryCount = 0;
}

VOID
PrintGeometry(PDISK_GEOMETRY lpGeometry)
{
 LPSTR MediaType;

 switch (lpGeometry->MediaType) {
 case F5_1Pt2_512:
 MediaType = "5.25, 1.2MB, 512 bytes/sector";
 break;
 case F3_1Pt44_512:
 MediaType = "3.5, 1.44MB, 512 bytes/sector";
 break;
 case F3_2Pt88_512:
 MediaType = "3.5, 2.88MB, 512 bytes/sector";
 break;
 case F3_20Pt8_512:
 MediaType = "3.5, 20.8MB, 512 bytes/sector";
 break;
 case F3_720_512:
 MediaType = "3.5, 720KB, 512 bytes/sector";
 break;
 case F5_360_512:
 MediaType = "5.25, 360KB, 512 bytes/sector";
 break;
 case F5_320_512:
 MediaType = "5.25, 320KB, 512 bytes/sector";
 break;
 case F5_320_1024:
 MediaType = "5.25, 320KB, 1024 bytes/sector";
 break;

 case F5_180_512:
 MediaType = "5.25, 180KB, 512 bytes/sector";
 break;
 case F5_160_512:
 MediaType = "5.25, 160KB, 512 bytes/sector";
 break;
 case RemovableMedia:
 MediaType = "Removable media other than floppy";
 break;
 case FixedMedia:
 MediaType = "Fixed hard disk media";
 break;
 default:
 MediaType = "Unknown";
 break;
 }
 printf(" Media Type %s\n", MediaType);
 printf(" Cylinders %d, Tracks/Cylinder %d, Sectors/Track %d\n",
 lpGeometry->Cylinders.LowPart, lpGeometry->TracksPerCylinder,
 lpGeometry->SectorsPerTrack
);
}

void main(int argc, char *argv[], char *envp[])
{
 HANDLE hDrive;
 UINT i;

 hDrive = CreateFile(
 "\\\\.\\a:",
 0,
 FILE_SHARE_READ,
 NULL,
 OPEN_ALWAYS,
 0,
 NULL
);
 if (hDrive == INVALID_HANDLE_VALUE)
 {
 printf("Open failed: %d\n", GetLastError());
 ExitProcess(1);
 }

 GetSupportedGeometrys(hDrive);

 printf("\nDrive A supports the following disk geometries\n");
 for(i=0; i<SupportedGeometryCount; i++)
 {
 printf("\n");
 PrintGeometry(&SupportedGeometry[i]);
 }
 printf("\n");
}

Additional reference words: 3.10 3.50

KBCategory: kbprg
KBSubcategory: BseMisc

Getting Real Handle to Thread/Process Requires Two Calls
PSS ID Number: Q90470

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

The API GetCurrentThread() returns a pseudo-handle rather than the real
handle to the thread. To get the real handle to the thread, you need to use
DuplicateHandle() using the pseudo-handle that is returned from
GetCurrentThread(). In addition, to get the real handle to a process, you
need to call DuplicateHandle() after calling GetCurrentProcess().

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseProcThrd

Getting Resources from 16-Bit DLLs Under Win32s
PSS ID Number: Q105761
--
The information in this article applies to:

 - Microsoft Win32s versions 1.0, 1.1, and 1.2
--

A Win32-based application running under Win32s can load a 16-bit dynamic-
link library (DLL) using LoadLibrary() and free it with FreeLibrary(). This
behavior is allowed primarily so that GetProcAddress() can be called for
printer driver application programming interfaces (APIs).

Calling FindResource() with the handle that LoadLibrary() returns to the
DLL that it just loaded results in an access violation. However, the
Win32-based application can use the following APIs with this handle

 LoadBitmap
 LoadCursor
 LoadIcon

because this results in USER.EXE (16-bit) making calls to KERNEL.EXE.

If you go through a Universal Thunk to get raw resource data from the
16-bit DLL, it is necessary to convert the resource to 32-bit format,
because the resource format is different from the 16-bit format. The 32-bit
format is described in the Software Development Kit (SDK) file
DOC\SDK\FILEFRMT\RESFMT.TXT.

To determine whether a DLL is a 32-bit or 16-bit DLL, check the DLL header.
The DWORD at offset 0x3C indicates where to look for the PE signature.
Compare the 4 bytes there to 0x00004550 to determine whether this is a
Win32 DLL.

Additional reference words: 1.00 1.10 1.20
KBCategory: kbprg
KBSubcategory: W32s

Getting the Filename Given a Window Handle
PSS ID Number: Q119163

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

To find the filename of the program that created a given window under
Windows, you would use GetWindowLong(hWnd, GWL_HINSTANCE) to find the
module handle and then GetModuleFileName() to find the filename. This
method cannot be used under Windows NT because instance handles are not
global, but are unique to the address space in which the application is
running.

If the application that created the window is a Windows-based application,
the name returned is "ntvdm". To get the actual filename, you need to spawn
a Win16 application that will call GetModuleFileName() and pass the
filename back to your application using some form of interprocess
communication (IPC).

MORE INFORMATION
================

To find the filename of an application once you have its window handle,
first use GetWindowThreadProcessId() to find the process ID (PID) of the
process that created the window. Using the PID, query the registry for the
performance data associated with the process. To do this, you have to
enumerate all processes in the system, comparing each PID to the PID of the
process that you are looking for, until the data for that process is found.
(This data includes the name of the process.)

The following sample code demonstrates how to find the filename of the
Program Manager, PROGMAN.EXE, after obtaining its window handle:

Sample Code

 #include <windows.h>
 #include <stdio.h>
 #include <string.h>

 #define Key "SOFTWARE\\Microsoft\\Windows
 NT\\CurrentVersion\\Perflib\\009"

 void GetIndex(char *, char *);
 void DisplayFilename(DWORD);

 /**\

 * Function: void main() *
 * *
 * Purpose : Application entry point *
 * *
 **/

 void main()
 {
 HWND hWnd;
 DWORD dwActiveProcessId;

 // Get window handle of Program Manager's main window.

 hWnd = FindWindow("Progman", NULL);

 // Get PID of Program Manager.

 GetWindowThreadProcessId(hWnd, &dwActiveProcessId);

 // Display name of Program Manager's executable file.

 printf("Searching for filename of Program Manager...\n");
 DisplayFilename(dwActiveProcessId);
 }

 /**\
 * Function: void DisplayFilename(DWORD) *
 * *
 * Purpose : Display executable filename of the process whose PID *
 * is passed in as a parameter. *
 * *
 * Comment : The information is retrieved from the performance *
 * data in the registry. *
 * *
 **/

 void DisplayFilename(DWORD dwProcessId)
 {
 DWORD CurrentProcessId;
 BOOL bContinue = TRUE;
 char szIndex[256] = "";
 DWORD dwBytes = 12000;
 DWORD dwProcessIdOffset;
 int i;

 PPERF_DATA_BLOCK pdb;
 PPERF_OBJECT_TYPE pot;
 PPERF_INSTANCE_DEFINITION pid;
 PPERF_COUNTER_BLOCK pcb;
 PPERF_COUNTER_DEFINITION pcd;

 // Get the index for the PROCESS object.
 GetIndex("Process", szIndex);

 // Get memory for PPERF_DATA_BLOCK.

 pdb = (PPERF_DATA_BLOCK) HeapAlloc(GetProcessHeap(),
 HEAP_ZERO_MEMORY,
 dwBytes);

 // Get performance data.
 while(RegQueryValueEx(HKEY_PERFORMANCE_DATA, (LPTSTR)szIndex, NULL,
 NULL, (LPBYTE)pdb, &dwBytes) ==
 ERROR_MORE_DATA)
 {
 // Increase memory.
 dwBytes += 1000;

 // Allocated memory is too small; reallocate new memory.
 pdb = (PPERF_DATA_BLOCK) HeapReAlloc(GetProcessHeap(),
 HEAP_ZERO_MEMORY,
 (LPVOID)pdb,
 dwBytes);
 }

 // Get PERF_OBJECT_TYPE.
 pot = (PPERF_OBJECT_TYPE)((PBYTE)pdb + pdb->HeaderLength);

 // Get the first counter definition.
 pcd = (PPERF_COUNTER_DEFINITION)((PBYTE)pot + pot->HeaderLength);

 // Get index value for ID_PROCESS.
 szIndex[0] = '\0';
 GetIndex("ID Process", szIndex);

 for(i=0; i< (int)pot->NumCounters; i++)
 {
 if (pcd->CounterNameTitleIndex == (DWORD)atoi(szIndex))
 {
 dwProcessIdOffset = pcd->CounterOffset;
 break;
 }

 pcd = ((PPERF_COUNTER_DEFINITION)((PBYTE)pcd + pcd->ByteLength));
 }

 // Get the first instance of the object.
 pid = (PPERF_INSTANCE_DEFINITION)((PBYTE)pot + pot-
 >DefinitionLength);

 // Get the name of the first process.
 pcb = (PPERF_COUNTER_BLOCK) ((PBYTE)pid + pid->ByteLength);
 CurrentProcessId = *((DWORD *) ((PBYTE)pcb + dwProcessIdOffset));

 // Find the process object for PID passed in, then print its
 // filename.

 for(i = 1; i < pot->NumInstances && bContinue; i++)
 {
 if(CurrentProcessId == dwProcessId)
 {

 printf("The filename is %ls.exe.\n",
 (char *) ((PBYTE)pid + pid->NameOffset));
 bContinue = FALSE;
 }
 else
 {
 pid = (PPERF_INSTANCE_DEFINITION) ((PBYTE)pcb + pcb-
 >ByteLength);
 pcb = (PPERF_COUNTER_BLOCK) ((PBYTE)pid + pid->ByteLength);
 CurrentProcessId = *((DWORD *)((PBYTE)pcb +
 dwProcessIdOffset));
 }
 }
 if(bContinue == TRUE)
 printf("Not found.\b");

 // Free the allocated memory.
 if(!HeapFree(GetProcessHeap(), 0, (LPVOID)pdb))
 printf("HeapFree failed in main.\n");

 // Close handle to the key.
 RegCloseKey(HKEY_PERFORMANCE_DATA);
 }

 /**\
 * Function: void GetIndex(char *, char *) *
 * *
 * Purpose : Get the index for the given counter *
 * *
 * Comment : The index is returned in the parameter szIndex *
 * *
 **/

 void GetIndex(char *pszCounter, char *szIndex)
 {
 char* pszBuffer;
 char* pszTemp;
 char szObject[256] = "";
 DWORD dwBytes;
 HANDLE hKeyIndex;
 int i = 0;
 int j = 0;

 // Open the key.
 RegOpenKeyEx(HKEY_LOCAL_MACHINE,
 Key,
 0, KEY_READ,
 &hKeyIndex);

 // Get the size of the counter.
 RegQueryValueEx(hKeyIndex,
 "Counters",
 NULL, NULL, NULL,
 &dwBytes);

 // Allocate memory for the buffer.
 pszBuffer = (char *) HeapAlloc(GetProcessHeap(),
 HEAP_ZERO_MEMORY,
 dwBytes);

 // Get the titles and counters.
 RegQueryValueEx(hKeyIndex,
 "Counters",
 NULL, NULL,
 (LPBYTE)pszBuffer,
 &dwBytes);

 // Find the index value for PROCESS.
 pszTemp = pszBuffer;

 while(i != (int)dwBytes)
 {
 while (*(pszTemp+i) != '\0')
 {
 szIndex[j] = *(pszTemp+i);
 i++;
 j++;
 }
 szIndex[j] = '\0';
 i++;
 j = 0;
 while (*(pszTemp+i) != '\0')
 {
 szObject[j] = *(pszTemp+i);
 i++;
 j++;
 }
 szObject[j] = '\0';
 i++;
 j = 0;
 if(*(pszTemp+i) == '\0')
 i++;
 if(strcmp(szObject, pszCounter) == 0)
 break;
 }

 // Deallocate the memory.
 HeapFree(GetProcessHeap(), 0, (LPVOID)pszBuffer);

 // Close the key.
 RegCloseKey(hKeyIndex);
 }

REFERENCES
==========

For more information on working with the performance data, please see one
or all of the following references:

 - The "Win32 Programmer's Reference."

 - The "Windows NT Resource Kit," volume 3.

 - The source code for PView that is included in the Win32 SDK.

 - The "Windows/MS-DOS Developer's Journal," April 1994.

Additional reference words: 3.10 3.50 file name
KBCategory: kbprg
KBSubcategory: BseMisc

Getting the MAC Address for an Ethernet Adapter
PSS ID Number: Q118623
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0
--

To get the Media Access Control (MAC) address for an ethernet adapter
programmatically, you can use NetBIOS if your card is bound to NetBIOS. Use
the Netbios() NCBASTAT command and provide a "*" as the name in the
NCB.ncb_CallName field. This is demonstrated in the sample code below.

With the NetBEUI and IPX transports, the same information can be obtained
at a command prompt by using:

 net config workstation

The ID given is the MAC address.

Sample Code

 #include <windows.h>
 #include <wincon.h>
 #include <stdlib.h>
 #include <stdio.h>
 #include <time.h>

 typedef struct _ASTAT_
 {
 ADAPTER_STATUS adapt;
 NAME_BUFFER NameBuff [30];
 }ASTAT, * PASTAT;

 ASTAT Adapter;

 void main (void)
 {
 NCB Ncb;
 UCHAR uRetCode;
 char NetName[50];

 memset(&Ncb, 0, sizeof(Ncb));
 Ncb.ncb_command = NCBRESET;
 Ncb.ncb_lana_num = 0;

 uRetCode = Netbios(&Ncb);
 printf("The NCBRESET return code is: 0x%x \n", uRetCode);

 memset(&Ncb, 0, sizeof (Ncb));
 Ncb.ncb_command = NCBASTAT;
 Ncb.ncb_lana_num = 0;

 strcpy(Ncb.ncb_callname, "* ");
 Ncb.ncb_buffer = (char *) &Adapter;
 Ncb.ncb_length = sizeof(Adapter);

 uRetCode = Netbios(&Ncb);
 printf("The NCBASTAT return code is: 0x%x \n", uRetCode);
 if (uRetCode == 0)
 {
 printf("The Ethernet Number is: %02x%02x%02x%02x%02x%02x\n",
 Adapter.adapt.adapter_address[0],
 Adapter.adapt.adapter_address[1],
 Adapter.adapt.adapter_address[2],
 Adapter.adapt.adapter_address[3],
 Adapter.adapt.adapter_address[4],
 Adapter.adapt.adapter_address[5]);
 }
 }

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbnetwork
KBSubcategory: NtwkNetbios

Getting the Net Time on a Domain
PSS ID Number: Q98722

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

When trying to execute

 net time /domain:egdomain /set

you may get a message saying the account is not known or the password is
invalid. This can happen if you are logged on using an account whose name
is spelled "Administrator", but the account is a different Administrator
account than the one on the domain controller. For example, if you are
logged on as EGMACHINE\Administrator, and attempt

 net time /domain:egdomain /set

you will get an error message because EGMACHINE\Administrator is not the
same account as EGDOMAIN\Administrator.

The solution is to log off EGMACHINE, log back on as EGMACHINE\PowerUsr1,
then execute the command. Note that a privilege is needed to set the time
on a machine. In the previous example, the account, EGMACHINE\PowerUsr1,
was used to remind us that power users have the needed privilege.

MORE INFORMATION
================

When running Windows NT while logged on to a domain, doing a NET TIME
without the /DOMAIN parameter, as mentioned above, probably will not yield
the desired results. However, because you are logged on to a domain, you
can do

 net time /domain /set

and a domain controller from the domain you are logged on to will be used.
In other words, if you are logged on to a domain, the /DOMAIN parameter is
necessary, but the actual domain name can optionally be left to default to
the domain you're currently participating in. If your machine is joined to
the a domain, that domain will be the default domain for NET TIME /DOMAIN.

If you are trying to get the time from EGDOMAIN and have done a prior

 net use \\egdomain\ipc$ /user:username

where username can be either a legitimate user name or domain name\user

name pair, or anything that will use the guest access), then the net time
will use the existing connection to the IPC$ share, using the different
user name.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

Getting the WinMain() lpCmdLine in Unicode
PSS ID Number: Q90912

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

The prototype for WinMain() is as follows:

 int PASCAL WinMain(
 HANDLE hInstance,
 HANDLE hPrevInstance,
 LPSTR lpCmdLine,
 int nCmdShow);

The third parameter is an LPSTR, which specifies an ANSI string. WinMain()
cannot be defined to accept Unicode input because there is no way for the
system to know whether or not the application wants Unicode at the time
WinMain() is called; the system knows once the application has registered a
window class.

To get the arguments in Unicode, use GetCommandLine().

Additional reference words: 3.10 3.50
KBCategory: kbui
KBSubcategory: UsrNls

GetWindowRect() Returns TRUE with Desktop Window Handle
PSS ID Number: Q129598

The information in this article applies to:

 - Microsoft Win32s, version 1.2

Under Windows NT and Windows 95, GetWindowRect() returns FALSE (to indicate
failure) if the desktop window handle is used. Under Win32s,
GetWindowRect() returns TRUE if the desktop window handle is used, however,
the RECT structure is not correctly filled in.

On Win32s, GetWindowRect() returns TRUE unconditionally because the 16-bit
Windows GetWindowRect() has no return value. Therefore, before calling
GetWindowRect() on Win32s, you should first check that the window handle is
not the desktop window handle.

Additional reference words: 1.20 GetDesktopWindow HWND_DESKTOP
KBCategory: kbprg
KBSubcategory: W32s

GLLT.EXE: SAMPLE: Demonstrates Simple Lighting in OpenGL
PSS ID Number: Q152001
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit for:
 - Microsoft Windows NT version 3.51
 - Microsoft Windows NT version 4.0 (beta)
 - Microsoft Windows 95 version 4.0
--

SUMMARY
=======

The GLLight sample provides a demonstration of how the various light
settings effect an OpenGL scene. The initial scene is simply a single white
sphere with a single blue light (GL_LIGHT0) shining on it.

You can modify all of the properties of that light as well as the light
model characteristics for the scene to observe the visual effect. GLLight
does not use multiple lights and does not allow you to change the material
properties of the sphere.

The GLLight sample is included in GLLT.EXE, a self-extracting file, which
can be found on these services:

 - Microsoft's World Wide Web site on the Internet
 On the www.microsoft.com home page, click the Support icon
 Click Knowledge Base, and select the product
 Enter kbfile GLLT.EXE, and click GO!
 Open the article, and click the button to download the file

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the Softlib/Mslfiles folder
 Get GLLT.EXE

 - The Microsoft Network
 On the Edit menu, click Go To, and then click Other Location
 Type "mssupport" (without the quotation marks)
 Double-click the MS Software Library icon
 Find the appropriate product area
 Locate and download GLLT.EXE

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download GLLT.EXE

For additional information about downloading, please see the following
article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q119591
 TITLE : How to Obtain Microsoft Support Files from Online Services

MORE INFORMATION
================

GLLight allows you to experiment with all of the OpenGL lighting
capabilities for a single-light scene quickly and easily. These
characteristics fall into the following categories seen in the "Settings"
dialog box:

 Characteristics of the Light Source (GL_LIGHT0):
 Position
 Intensity (ambient, diffuse, specular)
 Spotlight Properties (exponent, cutoff)
 Attenuation (constant, linear, quadratic)

 Characteristics of the Lighting Model:
 Global ambient light
 Viewpoint (local or infinite)
 Lighting (one-sided or two-sided)

The initial settings for these characteristics follow the defaults for
GL_LIGHT0 with two exceptions: the Position is moved back so as to light
the sphere; and the Diffuse Intensity is set to blue.

The material properties of the sphere are left as defaults except for a
white Specular reflectance and a medium Shininess setting. You cannot
modify the material properties through the UI in this sample.

To demonstrate the effects of one-sided vs. two-sided lighting, there is an
option to place a clipping plane through the sphere in order to uncover the
inside of it. To see the difference between the inside and outside more
clearly, you should move the light some distance along the x or y axes.

REFERENCES
==========

For more information on the above settings and OpenGL in general, please
read:

-Neider, Jackie, Tom Davis, and Mason Woo. OpenGL Programming Guide: The
Official Guide to Learning OpenGL, Release 1. Reading, MA: Addison-Wesley,
1993. ISBN 0-201-63274-8. (This book is also known as the "Red Book".)

For information on Material Properties in OpenGL, please see: The GLBMP
Sample "Demonstration of OpenGL Material Property and Printing" in the
Microsoft Software Library, and the "Red Book" mentioned above.

Additional reference words: 3.51 4.00 gllt.exe opengl
KBCategory: kbgraphic kbfile
KBSubcategory: GdiOpenGL

Global Classes in Win32
PSS ID Number: Q80382

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Under 16-bit Windows, when an application wants to check whether or not a
window class has been previously registered in the system, it typically
checks hPrevInstance. Under 32-bit Windows and Windows NT,
hPreviousInstance is always FALSE, because a class definition is not
available outside the process context of the process that registers it.
Thus, code that checks hPreviousInstance will always register the window
class.

MORE INFORMATION
================

Under 32-bit Windows and Windows NT, a style of CS_GLOBALCLASS indicates
that the class is available to every DLL in the process, not every
application and DLL in the system, as it does in Windows 3.1.

To have a class registered for every process in the system under Windows
NT:

1. Register the class in a DLL.

2. Use a style of CS_GLOBALCLASS.

3. List the DLL in the following registry key.

 HKEY_LOCAL_MACHINE\S OFTWARE\
 Microsoft\
 Windows NT\
 CurrentVersion\
 Windows\
 AppInit_DLLs

This will force the DLL to be loaded into every process in the system,
thereby registering the class in each and every process.

NOTE: This technique does not work under Windows 95.

For more information, please see "Window Classes in Win32," which is
available on the MSDN CD, starting April 1994.

Additional reference words: 3.10 3.50 4.00 95

KBCategory: kbui
KBSubcategory: UsrCls

GLPRT: Sample App Demonstrates Printing in OpenGL
PSS ID Number: Q149769
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), for Windows,
 version 4.0 (beta)
--

SUMMARY
=======

Prior to Microsoft Windows NT version 4.0, OpenGL applications that needed
to print a rendered scene had to render their scene onto a DIB Section and
then print that DIB Section. With Windows NT 4.0, OpenGL applications can
now render directly to a printer DC provided the printer is backed by a
metafile spooler.

The GLPrint sample included in GLPRT.EXE shows how to set up a printer DC,
pixel format descriptor, and viewport in order to render an OpenGL scene to
a printer.

You can find GLPRT.EXE, a self-extracting file, on these services:

 - Microsoft's World Wide Web site on the Internet
 On the www.microsoft.com home page, click the Support icon
 Click Knowledge Base, and select the product
 Enter kbfile GLPRT.EXE, and click GO!
 Open the article, and click the button to download the file

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the Softlib/Mslfiles folder
 Get GLPRT.EXE

 - The Microsoft Network
 On the Edit menu, click Go To, and then click Other Location
 Type "mssupport" (without the quotation marks)
 Double-click the MS Software Library icon
 Find the appropriate product area
 Locate and download GLPRT.EXE

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download GLPRT.EXE

For additional information about downloading, please see the following
article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q119591
 TITLE : How to Obtain Microsoft Support Files from Online Services

MORE INFORMATION
================

The GLPrint sample renders a lit-cube to the window. From the File menu,
choose Print, and a dialog box appears. When you choose a printer, the
scene prints provided that the all of the following conditions are met:

 - The print spooler is located on a Windows NT 4.0 (or higher) machine.

 - The printer is backed by a metafile spooler.

 - EMF spooling is turned on for the printer. Some printers, such as
 PostScript printers, have EMF spooling turned off by default.

OpenGL graphics are printed in bands in order to conserve memory. Note
that this can significantly increase the time it takes to print your scene.

Additional reference words: 4.00 glprint.exe
KBCategory: kbgraphic kbfile kbhowto kbcode
KBSubcategory: GdiOpenGL

Graphics as Jumps in Windows Help Files
PSS ID Number: Q67884
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
--

SUMMARY
=======

One of the things that reduces the training required to learn Windows is
the presence of consistent graphical help. You can create Help files that
use graphic images as context jumps or as glossary pop-ups.

MORE INFORMATION
================

To use a graphic as a context jump, perform the following steps:

1. Create the graphic in your favorite graphics editor. The typical
 Windows developer has at least two tools available for this
 purpose:

 a. Windows Paintbrush, included with the retail release of Windows

 b. SDKPaint, provided with the Windows SDK

 A Note to Paintbrush Users

 When an image is saved from Paintbrush, by default, the entire
 "canvas" is saved to disk, not just the image created. To work
 around this potential problem, after the image is complete, use the
 square outline tool (at the upper right of the tool bar) to select
 the image. If the image is not square, select the smallest bounding
 rectangle, leaving a border if desired. From the Edit menu, choose
 Copy To, and fill in the name of the file in which to save the
 selection.

2. Edit the file that contains the Help text. This is often called the
 .RTF file.

3. Place the cursor where the graphic should occur and turn on the
 strikethrough character format feature of the text editor. Word
 for Windows users should use double underline character formatting
 instead.

4. Insert one of the following text strings:

 {bmc <filename>}
 -or-

 {bml <filename>}
 -or-
 {bmr <filename>}

 This text should be struck through (or double underlined).

5. Turn off the strikethrough (or double underline) character format
 and turn on hidden text character formatting.

6. Type the context string for the jump destination.

7. Turn off hidden text character formatting.

8. Save the .RTF file.

9. Edit the .HPJ file. There must be a [BITMAPS] section in this file,
 and that section must include the name of the bitmap used above.

When the Help file is built, clicking the graphic with the mouse will
cause Help to change to the specified context.

If the graphic has a name or other short text description, we
recommend that the text also be coded as a context jump. This way, the
user can click on either the graphic or the text to perform the jump.
The text also provides a means for users without a mouse to perform
the jump.

More information on Windows Help files is in Chapters 15 through 19 of
the "Microsoft Windows Software Development Kit Tools" manual. Chapter
17 discusses context jumps, glossary pop-ups, and inserting graphics
into the Help file by reference.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsHlp

Graying the Text of a Button or Static Text Control
PSS ID Number: Q39480

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

A control is a child window that is responsible for processing
keyboard, mouse, focus, and activation messages, among others. A
control paints itself and processes text strings. The color of the
text in a button or static text control is automatically changed to
gray when the control is disabled with the EnableWindow function.
However, If an application subclasses a control to process WM_PAINT
messages for the control, the application can use the GrayString
function to change the text color.

Additional reference words: 3.00 3.10 3.50 4.00 95 grey
KBCategory: kbui
KBSubcategory: UsrCtl

Handling COMMDLG File Open Network Button Under Win32s
PSS ID Number: Q117825
--
The information in this article applies to:

 - Microsoft Win32s versions 1.1, 1.15, and 1.2
--

When you run a Win32-based application under Win32s on top of Windows 3.1
without a network, the File Open common dialog box still has a Network
button.

Under Windows NT, the File Open common dialog box that appears when you
call GetOpenFileName() has a Network button only when a network is present.
The API (application programming interface) will either use the Network
button in the dialog box template if it exists or dynamically add the
button if it is not in the template and there is a network present. If
there is no network present but the template contains a Network button, the
button will be hidden.

The dialog box template that is included with the Windows Software
Development Kit (SDK) does not have a Network button because Windows does
not include a network. When the 16-bit Windows-based application is
executed under Windows for Workgroups or under Windows NT, the Network
button is dynamically added, because these operating systems have built-in
networking.

The template that is included with the Win32 SDK has a Network button. If
the Win32-based application is run under a non-networked Windows 3.1, the
Network button is shown; however it is nonfunctional because there is no
network. This happens because the COMMDLG.DLL that provides Windows 3.1
with the common dialog boxes does not recognize networks. Therefore,
GetOpenFileName() does not remove the Network button from the template if
there is no network.

One solution is to leave the button in the template, determine when you are
running under Win32s, and include OFN_NONETWORKBUTTON in the OPENFILENAME
structure when Win32s is present but there is no network present. Define a
hook function that during WM_INITDIALOG checks the Flags field of the
OPENFILENAME struct that lParam is pointing to. If OFN_NONETWORKBUTTON is
used, call ShowWindow(GetDlgItem(hWnd, psh14), SW_HIDE).

Alternatively, if your application will most likely run on networked
Windows 3.1 machines, you can install the COMMDLG.DLL that ships with
Windows for Workgroups 3.11 on all machines, because it is a
redistributable dynamic-link library (DLL). This DLL checks to see if a
network is present and removes the Network button for you if it is not.

Additional reference words: 1.10 1.15 1.20
KBCategory: kbprg
KBSubcategory: W32s

Handling WM_CANCELMODE in a Custom Control
PSS ID Number: Q74548

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In the Microsoft Windows graphical environment, the WM_CANCELMODE
message informs a window that it should cancel any internal state.
This message is sent to the window with the focus when a dialog box or
a message box is displayed, giving the window the opportunity to
cancel states such as mouse capture.

When a control has the focus, it receives a WM_CANCELMODE message when
the EnableWindow function disables the control or when a dialog box or
a message box is displayed. When a control receives this message, it
should cancel modes, such as mouse capture, and delete any timers it
has created. A control must cancel these modes because an application
may use a notification from the control to display a dialog box or a
message box.

The DefWindowProc function processes WM_CANCELMODE by calling the
ReleaseCapture function, which cancels the mouse capture for whatever
window has the capture. The DefWindowProc function does not cancel any
other modes.

MORE INFORMATION
================

For example, consider a miniature scroll bar custom control that, when
it receives a mouse click, sets the mouse capture, creates a timer to
provide for repeated scrolling, and sends a WM_VSCROLL message to its
parent application. The timer is used to send WM_VSCROLL messages
periodically to the parent when the mouse button is held down and the
mouse is over the control.

If the application displays a dialog box in response to the WM_VSCROLL
message, the control receives a WM_CANCELMODE message, at which time
it should kill its timer and release the mouse capture. If the
WM_CANCELMODE message is simply passed to the DefWindowProc function,
only the mouse capture is released; the timer remains active. When the
dialog box is closed, the control immediately sends the parent another
WM_VSCROLL message, causing it to display the dialog box again.

Additional reference words: 3.00 3.10 3.50 4.00 95

KBCategory: kbui
KBSubcategory: UsrCtl

Height and Width Limitations with Windows SDK Font Editor
PSS ID Number: Q69081
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
--

The Microsoft Windows Font Editor (FONTEDIT.EXE) does not allow creation of
fonts in which the height or width of the font is greater than 64 pixels.
This corresponds to a font-file size of approximately 115K.

This is a limitation of the Font Editor, and not of the fonts themselves.
There is no limit to the size of the font file in the font format. Font
files created in the Windows version 2.0 font format cannot be larger than
64K.

The Font Editor displays a message box containing one of these two errors
if the entered Font Size Character Pixel Width or Character Pixel Height is
larger than 64:

 Fixed/maximum width must be a number from 1-64

 Font height must be a number from 1-64 pixels

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsFnt

Help Fonts Must Use ANSI Character Set
PSS ID Number: Q92422
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
--

SUMMARY
=======

When creating a help file, it is often necessary to access special
characters available in certain fonts. However, when the Windows
Help engine tries to display the special character, it may not appear
correctly.

MORE INFORMATION
================

Fonts used to create RTF source files for the Windows Help engine must
use the ANSI character set. Fonts that use character sets other than
ANSI may not display properly in the Help engine. The only exception
to this is the Symbol font, which is also supported in Windows Help
version 3.1.

To determine whether a particular font uses the ANSI character set,
run the FONTEST sample included with the Windows Software Development
Kit (SDK). From the Font menu, choose the Choose Font option. In the
Font dialog box, select the font for which you would like to determine
the character set. If the font is an ANSI font, then the tmCharSet
value displayed in the main window will be zero.

Additional reference words: 3.10 3.50 4.00 95 HC HCP
KBCategory: kbtool
KBSubcategory: TlsHlp

High-Precision Timing Under Windows, Windows NT, & Windows 95
PSS ID Number: Q148404
--
The information in this article applies to:

 - Microsoft Windows version 3.1
 - Microsoft Win32 Software Development Kit (SDK) for:

 - Windows NT versions 3.5 and 3.51
 - Windows 95
--

SUMMARY
=======

Windows 3.1 developers who require high precision timers can use the
multimedia timers, which are accurate to 10 milliseconds (ms) in most
cases. However, in the multithreaded environments of Windows NT and
Windows 95, the resolution and accuracy of the multimedia timers may
often be reduced due to the preemptive nature of the operating systems.

MORE INFORMATION
================

In Windows 3.1, multimedia timers are serviced by an interrupt service
routine (ISR) which is tied to the computer's clock. When a tick on the
clock occurs, Windows suspends the running program and services the tick.
Should your application use multimedia timers (by using TimeSetEvent() and
any of the CALLBACK flags), Windows executes your callback function before
returning control to the suspended program. Servicing your callback
function during the hardware timer tick provides high precision timing
because your callback is being executed within the timer interrupt, and
interrupt routines cannot, themselves, be interrupted.

The multithreaded environments of Windows NT and Windows 95 employ CPU
scheduling techniques to improve processor utilization and smooth
multitasking. The portions of code, called threads, within the system are
organized into queues and assigned priorities. Threads of code required by
the operating system are assigned high priorities. The thread scheduler
allows a thread a predetermined amount of execution time (quantum). Then it
evicts the thread from the processor until all threads at the specific
priority level have been serviced. The process continues at the next,
lower, priority level. The timer-servicing thread, like applications, is
subject to CPU scheduling and eviction regardless of the thread priority.
Given that the number of threads ready for execution changes frequently,
the period between timer thread executions can vary dramatically.

For example, say five time-critical threads are ready for execution, and
the quantum is q milliseconds. If the timer thread is fifth, four threads
execute before the timer thread is executed; q milliseconds x 4. This means
that if q is 25 milliseconds, 100 milliseconds will have elapsed before the
fifth thread is executed. Boosting the priority of the thread that created
the timer risks introducing instability in the system by starving the
time-sensitive, system-critical threads.

Additional reference words: 4.00 3.50 multimedia resolution flat generic
KBCategory: kbmm kbprg kbhowto
KBSubcategory: MMTimer

Hooking Console Applications and the Desktop
PSS ID Number: Q108232

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Under Windows NT, system hooks are limited in two situations: hooking
console windows and hooking the desktop.

Because of the current design of the console and the fact that its user
interface runs in the Win32 server, Windows NT does not support hook calls
in the context of console applications. Thus, if application A sets a
system-wide input hook and text is typed in a console window, application
A's input hook will not be called. The same is true for every type of
Windows hook except for journal record and journal playback hooks.

Hooking a console application will be enabled in Windows NT 3.51.

MORE INFORMATION
================

Windows NT supports journaling by forcing the console input thread to
communicate with the application that set the hook. In the case of a
console, the call to the hook functions are run in the context of the
application that installed the hook. This forces Windows NT to
synchronously talk to this process in order for it to work; if this process
is busy or blocked (as it is when it is sitting at a breakpoint), the
console thread is hung.

If console applications were typical Win32-based applications, then this
would not be a problem. A design change such as this would require that
each console take an extra thread just to process input. This was not
acceptable to the designers, and therefore console applications are not
implemented in the same way that other Win32-based applications are
implemented.

Similarly, if Windows NT allowed other hooks to freely hook any process,
then these processes could enter a hanging state as well. The reason that
journaling is allowed to hook consoles is that journaling already requires
synchronization between all processes in the system, and a mechanism to
disengage the journaling process (via the CTRL+ESC, ALT+ESC and
CTRL+ALT+DEL keystroke combinations) is provided to prevent hanging the
system message queue.

For similar reasons, 16-bit Windows-based applications cannot hook
Win32-based applications under Windows NT.

The issues above apply equally well to hooking the desktop. If an
application were allowed to hook the desktop, it could potentially hang it.
This is completely unacceptable and violates one of the design principles
of Windows NT: no application should be allowed to bring down the system or
hang the user interface.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrHks

Host Name May Map to Multiple IP Addresses
PSS ID Number: Q110703
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0
--

The sockets function gethostname() returns a string that identifies the
name of the local host. Each host has only one "official" name,
regardless of how many IP addresses it has, but there may be several
"aliases" for the host.

In TCP/IP, there is not a one-to-one mapping between host name and IP
address. The mapping is one-to-many: one host name can have multiple IP
addresses.

The sockets function getsockname() returns the sockaddr that the socket
is bound to.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbnetwork
KBSubcategory: NtwkWinsock

Hot Versus Warm Links in a DDEML Server Application
PSS ID Number: Q108927

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In message-based dynamic-data exchange (DDE), a server application can
readily distinguish between a hot and a warm link as soon as it receives a
request for an advise loop, via the WM_DDE_ADVISE message. This allows the
server to send the appropriate value in the data handle (for example, a
NULL or a valid data handle) to the client application whenever data
changes. In DDEML, there is no way to distinguish between these two links
when the server receives a request for an advise transaction.

MORE INFORMATION
================

Two applications engaged in a DDE conversation may establish one or more
links (or advise loops) so that the server application sends periodic
updates about the linked item/s to the client, typically when that
particular data item's value changes.

In a hot advise loop, the server immediately sends a data handle to the
changed data item value. In a warm advise loop, however, the server just
notifies the client that the data item value has changed, but does not send
the data handle until the client explicitly requests it.

In message-based DDE, a client requests the server for an update on an item
by posting the WM_DDE_ADVISE message to the server application. Upon
receipt of this message, the server application is able to distinguish
between a request for a hot advise loop and a warm advise loop via the
fDeferUpd bit of the DDEADVISE structure it received in the low-order word
of lParam.

A nonzero fDeferUpd value tells the server that it is a WARM advise loop.
This instructs the server to send a WM_DDE_DATA message with a NULL data
handle whenever the data item changes, and wait for the client to post a
WM_DDE_REQUEST before it sends the handle to the updated data.

A zero fDeferUpd value, however, indicates a HOT advise loop, which then
tells the server to send a WM_DDE_DATA message with the valid data handle
to the changed data item.

In DDEML, a client requests the server for a hot advise loop via the

XTYP_ADVSTART transaction type in a call to the DdeClientTransaction()
function. To request a warm advise loop, the client specifies an
XTYP_ADVSTART transaction or'ed with the XTYPF_NODATA flag. In both cases,
the DDEML passes the same XTYP_ADVSTART to the server callback function,
with no particular flags set, leaving the server with no means to
distinguish between a hot or warm advise request.

Note that DDEML internally remembers the type of advise loop established.

Once an advise loop is established, the server application calls the
DdePostAdvise() function whenever the value of the data item changes. In a
hot advise loop, this causes the DDEML to send the server an XTYP_ADVREQ
transaction to its callback function, where the server then returns a data
handle to the changed data item. The DDEML then sends the XTYP_ADVDATA
transaction to the client's callback function with the data handle.

In a warm advise loop, an XTYP_ADVREQ transaction is not sent to the
server's callback function when the data item changes on a call to
DdePostAdvise(). DDEML takes care of sending the XTYP_ADVDATA transaction
directly to the client's callback function, with the data handle set to
NULL. The server application does not send the handle to the changed data
item until the client issues an XTYP_REQUEST transaction to obtain this
data handle.

Because the type of advise loop (hot versus warm) is not known to the
server application, a good rule of thumb in writing server applications
that support advise loops is to return a data handle in response to both
the XTYP_ADVREQ and the XTYP_REQUEST transactions. This guarantees that a
data handle is returned for both hot and warm advise loops.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrDde

How CREATOR_OWNER and CREATOR_GROUP Affect Security
PSS ID Number: Q126629

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.5

SUMMARY
=======

This article discusses the CREATOR_OWNER and CREATOR_GROUP security
identifiers (SID) and how they affect security.

MORE INFORMATION
================

When logged on, each user is represented by a token object. This token
contains all the SIDs comprising your security context. Tokens identify
one of those SIDs as a default owner for any new objects the user creates,
such as files, processes, events, and so forth. Typically, this is the
user's account (<domain>\<username>). For an administrator however, the
default owner is set to be the local group "Administrators," rather than
the individual's user account.

Each token also identifies a primary group for the user. This group does
not necessarily have to be one the user is a member of (although it is by
default) and it does not determine the objects a user has access to (that
is, it isn't used in access validation decisions). However, by default it
is assigned as the primary group of any objects the user creates. For the
most part, the primary group is required simply for POSIX compatibility,
but the primary group does play a role in object creation.

When a new object is created, the security system has the task of
assigning protection to the new object. The system follows this process:

1. Assign the new object any protection explicitly passed in by the
 object creator.

2. Otherwise, assign the new object any inheritable protection from the
 container the object is created in.

3. Otherwise, assign the new object any protection explicitly passed in by
 the object creator, but marked as "default."

4. Otherwise, if the caller's token has a default DACL, that will be
 assigned to the new object.

5. Otherwise, no protection is assigned to the new object.

In step 2, if the parent container has inheritable access-control entries
(ACE), those are used to generate protection for the new object. In this

case, each ACE is evaluated to see if it should be copied to the new
object's protection. Usually, when an ACE is copied, the SID within that
ACE is copied as is. The two exceptions to this rule are when CREATOR_OWNER
and CREATOR_GROUP are encountered. In this case, the SID is replaced with
the caller's default owner SID or primary group SID.

By default, users logging on to Windows NT are given a primary group of
"Domain Users" (when logging on to a Windows NT Server) or the group called
"None" (when logging onto a Windows NT Workstation system). Therefore, when
you create an object in a container that has an inheritable ACE with the
CREATOR_GROUP SID, you will likely end up with an ACE granting Domain Users
some access. This may not be what you intended.

Additional reference words: 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

How Database WinSock APIs Are Implemented in Windows NT 3.5
PSS ID Number: Q130024

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)
 versions 3.5 and 3.51

SUMMARY
=======

This article describes the ways in which various WinSock database APIs are
implemented through the Windows NT versions 3.5 and 3.51 implementation of
the WinSock DLL. The article covers the following WinSock database APIs:
gethostbyname(), gethostbyaddr(), getprotobyname(), getprotobynumber(),
getservbyname(), and getservebynumber().

MORE INFORMATION
================

Following are the steps taken by each API. In a case where more than one
step may be taken to resolve the requested information, the process is not
carried to the next step if the information is resolved in the current
step.

gethostbyname():

1. Check the HOSTS file at %SystemRoot%\System32\DRIVERS\ETC.
2. Do a DNS query if the DNS server is configured for name resolution.
3. Query one or more WINS servers.

gethostbyaddr():

1. Check the HOSTENT cache.
2. Check the HOSTS file at %SystemRoot%\System32\DRIVERS\ETC.
3. Do a DNS query if the DNS server is configured for name resolution.
4. Do an additional NetBIOS remote adapter status to an IP address for its
 NetBIOS name table. This step is specific only to the Windows NT version
 3.51 implementation.

getprotobyname() and getprotobynumber():

1. Check the PROTOCOL file at %SystemRoot%\System32\DRIVERS\ETC.

getservbyname() and getservebynumber():

1. Check the SERVICES files at %SystemRoot%\System32\DRIVERS\ETC.

Additional reference words: 3.50 3.51
KBCategory: kbnetwork kbnetwork
KBSubcategory: NtwkWinsock

How HEAPSIZE/STACKSIZE Commit > Reserve Affects Execution
PSS ID Number: Q89296

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The syntax for the module-definition statements HEAPSIZE and STACKSIZE is
as follows

 HEAPSIZE [reserve] [,commit]
 STACKSIZE [reserve] [,commit]

The remarks for HEAPSIZE and STACKSIZE on page 62 of the "Tools User's
Guide" manual that comes with the Win32 SDK state the following:

 When commit is less than reserve, memory demands are reduced but
 execution time is slower.

By default, commit is less than reserve.

The reason that execution time is slower (and it is actually only
fractionally slower), is that the system sets up guard pages and could have
to process guard page faults.

MORE INFORMATION
================

If the committed memory is less than the reserved memory, the system sets
up guard page(s) around the heap or stack. When the heap or stack grows big
enough, the guard pages start accessing outside the committed area. This
causes a guard page fault, which tells the system to map in another page.
The application continues to run as if you had originally had the new page
committed.

If the committed memory is greater than the reserve, no guard pages are
created and the program faults if it goes outside the committed memory
area.

Experimenting with the commit versus reserve numbers may result in a
combination that would produce noticeable results, but for most
applications, this difference is probably not noticeable. The potential
benefits do not warrant significant experimentation.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseMisc

How Keyboard Data Gets Translated
PSS ID Number: Q104316

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

Keyboard input is acquired by the keyboard driver, which in turn produces a
scan code. This scan code is passed on to the locale-specific Win32
subsystem keyboard driver. This locale-specific driver then converts the
scan code to a virtual key and a Unicode character. The Win32 subsystem
then passes on this information to the application.

All messages in the Win32 application programming interface (API) that
present textual information to a window procedure depend upon how the
window registered its class. For example, if RegisterClassW() was called,
then Unicode is presented; if RegisterClassA() was called, then ANSI is
presented. The conversion of the text is handled by the Window Manager.
This allows an ANSI application to send textual information to a Unicode
application.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbui
KBSubcategory: UsrInp

How the Service Control Manager Manages Passwords
PSS ID Number: Q149641
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.51
--

SUMMARY
=======

Services have the ability to run in the security context of an ordinary
user account. In order for a service to do this, the Service Control
Manager needs the name and password of the account in which it is to run.

The Service Control Manager keeps two copies of a user account's password,
the current password and the backup password. The first time you install a
service, the password given to the Service Control Manager is stored as the
current password and the backup password is not initialized.

When the Service Control Manager attempts to log the service in the
security context of the user account, it uses the current password. If the
current password is successful, it is also saved as the backup password. If
the user account's password is modified with ChangeServiceConfig() or the
Services control panel applet, the modified password is stored as the
current password and the previous current password is stored as the backup
password. When an attempt is made to start the service, the Service Control
Manager uses the current password. If the current password fails, the
Service Control Manager uses the backup password. If the backup password is
successful, it becomes the current password.

MORE INFORMATION
================

If the Service Control Manager cannot start the service in the security
context of the user account with the current password, the following event
log entry is logged into the system log:

Event ID = 7013
Source = Service Control Manager
Type = Error
Description = Logon attempt with current password failed with the
 following error: Logon failure: unknown user name or
 bad password.

If the Service Control Manager cannot start the service in the security
context of the user account with the backup password, the following event
log entry is logged into the system log:

Event ID = 7014
Source = Service Control Manager
Type = Error
Description = Second logon attempt with old password also failed with
 the following error: Logon failure: unknown user name or

 bad password.

Additional reference words:
KBCategory: kbprg
KBSubcategory: bseservice

How to Add a Custom Find Utility to the Start Menu
PSS ID Number: Q135986

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In Windows 95, you can have a program create a custom Find utility for the
Start Menu. For an example, look at how The Microsoft Network adds
a custom Find "On the Microsoft Network..." option to Windows 95 when the
user signs up on The Microsoft Network.

MORE INFORMATION
================

The first step to registering a custom Find utility is to implement a shell
context menu extension that supplies the menu item. The handler's
IContextMenu::InvokeCommand() member will be called whenever the user
selects the custom Find utility on the Start Menu.

The context menu extension can be registered by adding some information for
the handler to the following key in the registry:

 \HKEY_LOCAL_MACHINE
 \Software
 \Microsoft
 \Windows
 \CurrentVersion
 \Explorer
 \FindExtensions
 \Static

Under this key, your program needs to add a key, such as MyFind, for the
context menu extension that contains the GUID for the context menu handler.
Under MyFind, your program needs to create a second key "0" that contains
the text of the menu item you want to include. Finally, under the "0" key,
you need to create a third key "DefaultIcon" that contains the name of a
.dll file that contains the icon you want displayed on the menu and the
index of the icon in that .dll file.

To summarize, you need to add the following under the
..\FindExtensions\Static key in the registry:

 \MyFind = <GUID>
 \0 = <Text for the menu item>
 \DefaultIcon = <path to dll, index of icon in dll>

The context menu handler must also be registered normally as documented in

the Win32 SDK.

REFERENCES
==========

You can find additional information on writing context menu handlers in:

 - The Win32 SDK's "Programmer's Guide to Windows 95" on MSDN.

 - Nancy Clut's book "Programming the Windows 95 UI."

 - Jeff Prosise's March 1995 MSJ article "Writing Windows 95 Shell
 Extensions."

Additional reference words: 4.00 Windows 95
KBCategory: kbui
KBSubcategory: UsrShell

How to Add a Custom Tab to the Help Topics Dialog Box
PSS ID Number: Q139834

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API)
 included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

This article discusses how to add a custom tab to the Help Topics dialog
box. This option is only available in version 4.0 or later of the Help
Compiler for Windows.

MORE INFORMATION
================

Create a Dialog Resource

To add a custom tab to the WinHelp Help Topics dialog box, you must do
three things:

1. Create a dialog template resource to display in the custom help tab.
 The dialog template that you create will be displayed over the top of
 the existing Help Tab dialog box. You do not need to worry about the
 size of the dialog frame; WinHelp will automatically resize it at
 display time to ensure that it fits.

2. Ensure that the dialog template that you create has no borders and
 includes the WS_CHILD and the DS_CONTROL styles. DS_CONTROL is a new
 style that ensures that the dialog box will get the focus when the tab
 is activated. DS_CONTROL is defined in Winuser.h file included with the
 Win32 SDK. The definition is as follows:

 #define DS_CONTROL 0x0400L

3. Make the dialog box itself visible. On this last point, Help (Hcw.hlp)
 incorrectly suggests that the dialog box should be invisible. This is an
 error. If you do not ensure that the dialog box is visible, you will
 not be able to see it when you click on the custom help tab.

Write a DLL to Support the Dialog Resource
--

Once you have created the dialog resource, you must write a DLL to support
it. In addition to including the dialog box procedure, the DLL must export
the following function, prototyped as follows:

 HWND WINAPI OpenTabDialog(HWND, DWORD, DWORD)

This function will be called automatically by WinHelp when the custom tab
is clicked; at which point, WinHelp passes the window handle of the tab
dialog box as the first parameter. This allows you to call CreateDialog()
from within the function. The remaining two parameters are reserved for
future use and can be ignored.

Example DLL

Here is an example of what this DLL might look like:

#include <windows.h>
#include "resource.h"

HINSTANCE hinst; // Used by OpenTabDialog()

/* DllMain exists solely for the purpose of obtaining the DLL instance
 * and storing it in a global variable used to call CreateDialog().
 */
BOOL WINAPI DllMain (HINSTANCE hinstDll, DWORD fdwReason,
 LPVOID lpReserved)
{

 switch (fdwReason){

 case DLL_PROCESS_ATTACH:
 hinst = hinstDll;
 break;
 }

 return (TRUE);
}

BOOL WINAPI DialogProc (HWND hDlg, UINT message, UINT wParam,
 long lParam)
{
 . . .

 return FALSE;
}

/* This procedure is called by WINHLP32. Winhelp passes in its hwnd
 * so you can call Create Dialog. The instance handle for the DLL is
 * stored in a global variable that is initialized in LibMain.

HWND WINAPI OpenTabDialog(HWND hwnd, DWORD dwReserved1, DWORD dwReserved2){

 return (CreateDialog (hinst, MAKEINTRESOURCE(IDD_DIALOG1), hwnd,
 DialogProc));

}

Modify the Help Project (.hpj) File

Once the DLL has been written, you must modify the Help project file (.hpj
file) to include the custom tab and link the DLL to it. If you are using
HCW, open your Contents file (.cnt file). (If you have not created one, you
must do so in order to use your custom tab.) In the Contents dialog box,
follow these steps:

1. Click the Tabs button to bring up the Custom Tabs dialog box.

2. Click the Add button to bring up the Add Tab dialog box.

3. Enter the name to appear on the tab in the Tab Name edit box.

4. Enter the name of your custom .dll file (and optionally the path) in the
 DLL File Name edit box.

5. Click OK twice to exit the dialog boxes.

6. On the File menu, click Save to save your changes.

7. Compile the .hpj file. When you use your help file, the custom tab
 should now be available to you.

If you do not wish to work with HCW, you can open your Contents file in a
text editor, and add the following line:

 :Tab <tab name>=<path to DLL>

 :Tab mytab=c:\helptab\debug\helptab.dll

Once you make this change, you will need to save the file and recompile
your .hpj file.

Additional reference words: 4.00
KBCategory: kbtool kbdocerr kbhowto kbcode
KBSubcategory: tlshlp

How to Add a Network Printer Connection
PSS ID Number: Q147202
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for:

 - Windows NT version 3.51
 - Windows 95
--

SUMMARY
=======

When writing a Win32 application that installs a network printer
connection, you must take into consideration differences in printing if the
application will be run under both Windows 95 and Windows NT. One important
difference is that Windows NT may download appropriate drivers from the
print server while under Windows 95, you need to add the printer driver
files to the system with the AddPrinterDriver() function.

MORE INFORMATION
================

This process should take two separate code paths depending on whether you
are running Windows NT or Windows 95. In Windows 95, you will want to add
the printer driver with AddPrinterDriver() and add the printer connection
with AddPrinter(). In Windows NT, you need only call the
AddPrinterConnection() function.

Steps for Adding a Printer Connection in Windows 95

1. Fill out a DRIVER_INFO_2 structure with the appropriate driver
 information for the network printer.

2. Copy the driver files to your Windows 95 System directory.

3. Call AddPrinterDriver() to add the printer driver to Windows 95.

4. Fill out a PRINTER_INFO_2 structure, and place a pointer to the
 server and share name in the pPortName field.

5. Call AddPrinter() to add the printer to the system.

Here is an example of how you might do this (assuming you have copied the
driver files to the Windows 95 System directory):

 PRINTER_INFO_2 pi2;
 DRIVER_INFO_2 di2;
 HANDLE hPrinter;

 ZeroMemory(&di2, sizeof(DRIVER_INFO_2));
 di2.cVersion = 1024;

 di2.pName = "HP Laserjet 4Si";
 di2.pEnvironment = "Windows 4.0";
 di2.pDriverPath = "c:\\windows\\system\\hppcl5ms.drv";
 di2.pDataFile = "c:\\windows\\system\\hppcl5ms.drv";
 di2.pConfigFile = "c:\\windows\\system\\hppcl5ms.drv";
 AddPrinterDriver(NULL, 2, (LPBYTE)&di2);

 ZeroMemory(&pi2, sizeof(PRINTER_INFO_2));
 pi2.pPrinterName = "HP Laserjet 4Si";
 pi2.pPortName = "\\\\server\\print_share";
 pi2.pDriverName = "HP Laserjet 4Si";
 pi2.pPrintProcessor = "WinPrint";
 pi2.pDatatype = "EMF";
 hPrinter = AddPrinter(NULL, 2, (LPBYTE)&pi2);
 ClosePrinter(hPrinter);

6. Make sure you close the printer handle returned from AddPrinter, by
 using the ClosePrinter API.

You can add a printer connection under Windows NT by making this call:

 AddPrinterConnection ("\\\\server\\print_share");

Additional reference words: kbinf 4.00
KBCategory: kbgraphic kbhowto kbcode
KBSubcategory: GdiPrnDrvrs

How to Add an Access-Allowed ACE to a File
PSS ID Number: Q102102

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

This article explains the process of adding an access-allowed (or
access-denied) access control entry (ACE) to a file.

Adding an access-allowed ACE to a file's access control list (ACL) provides
a means of granting or denying (using an access-denied ACE) access to the
file to a particular user or group. In most cases, the file's ACL will not
have enough free space to add an additional ACE, and therefore it is
usually necessary to create a new ACL and copy the file's existing ACEs
over to it. Once the ACEs are copied over and the access-allowed ACE is
also added, the new ACL can be applied to the file's security descriptor
(SD). This process is explained in detail in the section below. Sample code
is provided at the end of this article.

MORE INFORMATION
================

At the end of this article is sample code that defines a function named
AddAccessRights(), which adds an access-allowed ACE to the specified file
allowing the specified access. Steps 1-17 in the comments of the sample
code are discussed in detail below:

 1. GetUserName() is called to retrieve the name of the currently
 logged in user. The user name is stored in plszUserName[] array.

 2. LookupAccountName() is called to obtain the SID of the user
 returned by GetUserName() in step 1. The resulting SID is stored
 in the UserSID variable and will be used later in the
 AddAccessAllowedACE() application programming interface (API)
 call. The LookupAccountName() API is also providing the user's
 domain in the plszDomain[] array. Please note that
 LookupAccountName() returns the SID of the first user or group
 that matches the name in plszUserName.

 3. GetFileSecurity() is used here to obtain a copy of the file's
 security descriptor (SD). The file's SD is placed into the ucSDbuf
 variable, which is declared a size of
 65536+SECURITY_DESCRIPTOR_MIN_LENGTH for simplicity. This value
 represents the maximum size of an SD, which ensures the SD will be
 of sufficient size.

 4. Here we initialize the new security descriptor (NewSD variable) by

 calling the InitializeSecurityDescriptor() API. Because the
 SetFileSecurity() API requires that the security item being set is
 contained in a SD, we create and initialize NewSD.

 5. Here GetSecurityDescriptorDacl() retrieves a pointer to the
 discretionary access control list (DACL) in the SD. The pointer is
 stored in the pACL variable.

 6. GetAclInformation() is called here to obtain size information on
 the file's DACL in the form of a ACL_SIZE_INFORMATION structure.
 This information is used when computing the size of the new DACL
 and when copying ACEs.

 7. This statement computes the exact number of bytes to allocate for
 the new DACL. The AclBytesInUse member represents the number of
 bytes being used in the file's DACL. We add this number to the
 size of an ACCESS_ALLOWED_ACE and the size of the user's SID.
 Subtracting the size of a DWORD is an adjustment required to
 obtain the exact number of bytes necessary.

 8. Here we allocate memory for the new ACL that will ultimately
 contain the file's existing ACEs plus the access-allowed ACE.

 9. In addition to allocating the memory, it is important to
 initialize the ACL structure as we do here.

10. Here we check the bDaclPresent flag returned by
 GetSecurityDescriptorDacl() to see if a DACL was present in the
 file's SD. If a DACL was not present, then we skip the code that
 copies the file's ACEs to the new DACL.

11. After verifying that there is at least one ACE in the file's DACL
 (by checking the AceCount member), we begin the loop to copy the
 individual ACEs to the new DACL.

12. Here we get a pointer to an ACE in the file's DACL by using the
 GetAce() API.

13. Now we add the ACE to the new DACL. It is important to note that
 we pass MAXDWORD for the dwStartingAceIndex parameter of AddAce()
 to ensure the ACE is added to the end of the DACL. The statement
 ((PACE_HEADER)pTempAce)->AceSize provides the size of the ACE.

14. Now that we have copied all the file's original ACEs over to our
 new DACL, we add the access-allowed ACE. The dwAccessMask variable
 will contain the access mask being granted. GENERIC_READ is an
 example of an access mask.

15. Because the SetFileSecurity() API can set a variety of security
 information, it takes a pointer to a security descriptor. For this
 reason, it is necessary to attach our new DACL to a temporary SD.
 This is done by using the SetSecurityDescriptorDacl() API.

16. Now that we have a SD containing the new DACL for the file, we set
 the DACL to the file's SD by calling SetFileSecurity(). The

 DACL_SECURITY_INFORMATION parameter indicates that we want the
 DACL in the provided SD applied to the file's SD. Please note that
 only the file's DACL is set, the other security information in the
 file's SD remains unchanged.

17. Here we free the memory that was allocated for the new DACL.

The below sample demonstrates the basic steps required to add an access-
allowed ACE to a file's DACL. Please note that this same process can be
used to add an access-denied ACE to a file's DACL. Because the access-
denied ACE should appear before access-allowed ACEs, it is suggested that
the call to AddAccessDeniedAce() precede the code that copies the existing
ACEs to the new DACL.

Sample Code

#define SD_SIZE (65536 + SECURITY_DESCRIPTOR_MIN_LENGTH)

BOOL AddAccessRights(CHAR *pFileName, DWORD dwAcessMask)
{
 // SID variables

 UCHAR psnuType[2048];
 UCHAR lpszDomain[2048];
 DWORD dwDomainLength = 250;
 UCHAR UserSID[1024];
 DWORD dwSIDBufSize=1024;

 // User name variables

 UCHAR lpszUserName[250];
 DWORD dwUserNameLength = 250;

 // File SD variables

 UCHAR ucSDbuf[SD_SIZE];
 PSECURITY_DESCRIPTOR pFileSD=(PSECURITY_DESCRIPTOR)ucSDbuf;
 DWORD dwSDLengthNeeded;

 // ACL variables

 PACL pACL;
 BOOL bDaclPresent;
 BOOL bDaclDefaulted;
 ACL_SIZE_INFORMATION AclInfo;

 // New ACL variables

 PACL pNewACL;
 DWORD dwNewACLSize;

 // New SD variables

 UCHAR NewSD[SECURITY_DESCRIPTOR_MIN_LENGTH];

 PSECURITY_DESCRIPTOR psdNewSD=(PSECURITY_DESCRIPTOR)NewSD;

 // Temporary ACE

 PVOID pTempAce;
 UINT CurrentAceIndex;

 // STEP 1: Get the logged on user name

 if(!GetUserName(lpszUserName,&dwUserNameLength))
 {
 printf("Error %d:GetUserName\n",GetLastError());
 return(FALSE);
 }

 // STEP 2: Get SID for current user

 if (!LookupAccountName((LPSTR) NULL,
 lpszUserName,
 UserSID,
 &dwSIDBufSize,
 lpszDomain,
 &dwDomainLength,
 (PSID_NAME_USE)psnuType))
 {
 printf("Error %d:LookupAccountName\n",GetLastError());
 return(FALSE);
 }

 // STEP 3: Get security descriptor (SD) for file

 if(!GetFileSecurity(pFileName,
 (SECURITY_INFORMATION)(DACL_SECURITY_INFORMATION),
 pFileSD,
 SD_SIZE,
 (LPDWORD)&dwSDLengthNeeded))
 {
 printf("Error %d:GetFileSecurity\n",GetLastError());
 return(FALSE);
 }

 // STEP 4: Initialize new SD

 if(!InitializeSecurityDescriptor(psdNewSD,SECURITY_DESCRIPTOR_REVISION))
 {
 printf("Error %d:InitializeSecurityDescriptor\n",GetLastError());
 return(FALSE);
 }

 // STEP 5: Get DACL from SD

 if (!GetSecurityDescriptorDacl(pFileSD,
 &bDaclPresent,
 &pACL,
 &bDaclDefaulted))

 {
 printf("Error %d:GetSecurityDescriptorDacl\n",GetLastError());
 return(FALSE);
 }

 // STEP 6: Get file ACL size information

 if(!GetAclInformation(pACL,&AclInfo,sizeof(ACL_SIZE_INFORMATION),
 AclSizeInformation))
 {
 printf("Error %d:GetAclInformation\n",GetLastError());
 return(FALSE);
 }

 // STEP 7: Compute size needed for the new ACL

 dwNewACLSize = AclInfo.AclBytesInUse +
 sizeof(ACCESS_ALLOWED_ACE) +
 GetLengthSid(UserSID) - sizeof(DWORD);

 // STEP 8: Allocate memory for new ACL

 pNewACL = (PACL)LocalAlloc(LPTR, dwNewACLSize);

 // STEP 9: Initialize the new ACL

 if(!InitializeAcl(pNewACL, dwNewACLSize, ACL_REVISION2))
 {
 printf("Error %d:InitializeAcl\n",GetLastError());
 LocalFree((HLOCAL) pNewACL);
 return(FALSE);
 }

 // STEP 10: If DACL is present, copy it to a new DACL

 if(bDaclPresent) // only copy if DACL was present
 {
 // STEP 11: Copy the file's ACEs to our new ACL

 if(AclInfo.AceCount)
 {
 for(CurrentAceIndex = 0; CurrentAceIndex < AclInfo.AceCount;
 CurrentAceIndex++)
 {
 // STEP 12: Get an ACE

 if(!GetAce(pACL,CurrentAceIndex,&pTempAce))
 {
 printf("Error %d: GetAce\n",GetLastError());
 LocalFree((HLOCAL) pNewACL);
 return(FALSE);
 }

 // STEP 13: Add the ACE to the new ACL

 if(!AddAce(pNewACL, ACL_REVISION, MAXDWORD, pTempAce,
 ((PACE_HEADER)pTempAce)->AceSize))
 {
 printf("Error %d:AddAce\n",GetLastError());
 LocalFree((HLOCAL) pNewACL);
 return(FALSE);
 }
 }
 }
 }

 // STEP 14: Add the access-allowed ACE to the new DACL

 if(!AddAccessAllowedAce(pNewACL,ACL_REVISION2,dwAcessMask, &UserSID))
 {
 printf("Error %d:AddAccessAllowedAce",GetLastError());
 LocalFree((HLOCAL) pNewACL);
 return(FALSE);
 }

 // STEP 15: Set our new DACL to the file SD

 if (!SetSecurityDescriptorDacl(psdNewSD,
 TRUE,
 pNewACL,
 FALSE))
 {
 printf("Error %d:SetSecurityDescriptorDacl",GetLastError());
 LocalFree((HLOCAL) pNewACL);
 return(FALSE);
 }

 // STEP 16: Set the SD to the File

 if (!SetFileSecurity(pFileName, DACL_SECURITY_INFORMATION,psdNewSD))
 {
 printf("Error %d:SetFileSecurity\n",GetLastError());
 LocalFree((HLOCAL) pNewACL);
 return(FALSE);
 }

 // STEP 17: Free the memory allocated for the new ACL

 LocalFree((HLOCAL) pNewACL);
 return(TRUE);
}

NOTE: Security descriptors have two possible formats: self-relative and
absolute. GetFileSecurity() returns an SD in self-relative format, but
SetFileSecurity() expects and absolute SD. This is one reason that the code
must create a new SD and copy the information, instead of simply modifying
the SD from GetFileSecurity() and passing it to SetFileSecurity(). It is
possible to call MakeAbsoluteSD() to do the conversion, but there may not
be enough room in the current ACL anyway, as mentioned above.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

How to Add an SNMP Extension Agent to the NT Registry
PSS ID Number: Q128729

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.5

SUMMARY
=======

After developing a new extension agent DLL, you must configure the registry
so that the SNMP extension agent is loaded when the SNMP service is
started. This article shows you how.

MORE INFORMATION
================

You can use REGEDT32.EXE to configure the registry, or you can have your
SNMP extension agent installation program configure the registry using the
Win32 registry APIs.

To configure an SNMP extension agent in the registry, follow these steps:

1. Walk down:

 HKEY_LOCAL_MACHINE\
 SYSTEM\
 CurrentControlSet\
 Services\
 SNMP\
 Parameter\
 ExtensionAgents

 You'll notice at least one entry like this:

 1:REG_SZ:SOFTWARE\Microsoft\LANManagerMIB2Agent\CurrentVersion

 Add an entry for the new extension agent. For the SNMP Toaster sample
 in the SDK, the entry is:

 3:REG_SZ:SOFTWARE\CompanyName\toaster\CurrentVersion

 This entry provides a pointer to another registery entry (see step 2)
 that contains the physical path where the extension agent DLL can be
 found. Note that "CompanyName" and "toaster" strings can be any other
 meaningful strings that will be used in Step 2.

2. Go to:

 HKEY_LOCAL_MACHINE\SOFTWARE

 Create keys that correspond to the new entry in step 1:

 CompanyName\toaster\CurrentVersion

3. Assign the path of the extension agent DLL as the value to the
 CurrentVersion key in step 2. For the SNMP toaster sample agent
 DLL, the entry is:

 Pathname:REG_SZ:D:\mstools\samples\snmp\testdll\testdl.dll

4. Note that names and values in the NT registry are case sensitive.

5. Restart the SNMP service from the control panel. The new extension
 agent DLL will be loaded. Event Viewer in the administrative tools can
 be used to view errors encountered during the startup process of the
 SNMP service and extension agents.

REFERENCES
==========

SNMP.TXT in the \BIN directory of the Win32 SDK.

Windows NT Resource Guide, Chapters 10-14.

Additional reference words: 3.50
KBCategory: kbnetwork
KBSubcategory: NtwkSnmp

How to Add Windows 95 Controls to Visual C++ 2.0 Dialog Editor
PSS ID Number: Q125686

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0

 - Microsoft Visual C++ version 2.0

SUMMARY
=======

When using Visual C++ version 2.0 on Windows 95, the Windows 95 common
controls do not appear by default on the control palette in the Visual C++
Dialog Editor. Many of these controls may be added, however, by adding an
entry into the registry.

MORE INFORMATION
================

To add buttons in the Dialog Editor's control palette for TreeView,
ListView, HotKey, Trackbar, Progress, and UpDown controls:

1. Run REGEDIT from the start menu.

2. Select:

 HKEY_CURRENT_USER\Software\Microsoft\Visual C++ 2.0 Dialog Editor

3. Select the New, Binary Value option from the Edit Menu.

4. Rename the new entry "ChicagoControls" without the quotation marks.

5. Select Modify from the edit menu to change the value of ChicagoControls
 to 01 00 00 00. The editor will add the spaces between each pair of
 digits.

6. Exit REGEDIT.

7. Restart Visual C++ version 2.0.

Additional reference words: 2.00 4.00
KBCategory: kbui
KBSubcategory: UsrCtl

How to Address Multiple CDAudio Devices in Windows NT
PSS ID Number: Q137579

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)
 versions 3.5, 5.51, 4.0

SUMMARY
=======

To use more than one CDAudio device in Windows 3.1, you had to change the
System.ini file. For more information on this process, please see the
following article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q82469
 TITLE : Using Multiple CD-ROM Drives on One Machine

Now, in Windows NT 3.5 and Windows 95, support for multiple CDAudio devices
has been added to the MCI CDAudio driver. However, the problem now becomes
one of how to address a particular CDAudio device.

MORE INFORMATION
================

MCI solves the problem of how to control a particular CDAudio device. All
you need to do is open the CDAudio device, specifying the drive letter of
the CD-ROM drive to be used as the element to open. The MCI string syntax
to do this is as follows:

 open d: type cdaudio alias cd

In this case, the CD-ROM drive is drive D:

The following code fragment demonstrates the equivalent MCI command syntax
code:

 MCI_OPEN_PARMS mciOpen;
 TCHAR szElementName[4];
 TCHAR szAliasName[32];
 DWORD dwFlags;
 DWORD dwAliasCount = GetCurrentTime();
 DWORD dwRet;
 TCHAR chDrive;

 chDrive = TEXT("D"); // Use drive D

 ZeroMemory(&mciOpen, sizeof(mciOpen));
 mciOpen.lpstrDeviceType = (LPTSTR)MCI_DEVTYPE_CD_AUDIO;
 wsprintf(szElementName, TEXT("%c:"), chDrive);
 wsprintf(szAliasName, TEXT("CD%lu:"), dwAliasCount);

 mciOpen.lpstrElementName = szElementName;

 mciOpen.lpstrAlias = szAliasName;

 dwFlags = MCI_OPEN_ELEMENT | MCI_OPEN_SHAREABLE | MCI_OPEN_ALIAS |
 MCI_OPEN_TYPE | MCI_OPEN_TYPE_ID | MCI_WAIT;

 dwRet = mciSendCommand(0, MCI_OPEN, dwFlags, (DWORD)(LPVOID)&mciOpen);

 if (dwRet == MMSYSERR_NOERROR) {

 // The device was opened successfully

 }
 else {

 // The device was not opened successfully

 }

Additional reference words: 3.50 4.00 Windows 95
KBCategory: kbmm kbprg kbcode
KBSubcategory: MMCDROM

How to Allow OS/2 Programs to Run Across Logons
PSS ID Number: Q137861

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.5, 3.51

SUMMARY
=======

When you launch an OS/2 application from a service in Windows NT, the OS/2
application terminates when the current user logs off. If you want the
application to continue running after the user logs off, you can:

 - Run the OS/2 application from the Windows NT Resource Kit utility
 called SRVANY.

 -or-

 - Launch Os2.exe directly from the service, and pass the /S switch. The
 syntax of the call would be:

 CreateProcess (
 NULL,
 "OS2.EXE /S /P <full path to exe> /C <command line>",
 . . .
);

 The <command line> includes the name of the executable. For example:

 CreateProcess (
 NULL,
 "OS2.EXE /S /P C:\\OS2BINS\\LS.EXE /C LS *.c",
 . . .
);

In either case, you must make sure that the first OS/2 application started
after booting your system is the one you want to run as a service.

MORE INFORMATION
================

The OS/2 Subsystem automatically shuts down when a user logs off. Using the
/S switch on the Os2.exe command line tells the OS/2 Subsystem that it is
running in the context of a service. The Subsystem will then continue to
run across logons.

The reason the application must be the first OS/2 executable launched is
that if an OS/2 Subsystem server is present, it will be used rather than
starting a new one to run as a service.

Any OS/2 applications launched by the interactive user will still be
terminated upon logoff.

Additional reference words: 3.50 os2 os2ss service
KBCategory: kbprg kbhowto
KBSubcategory: BseService

How to Assign Privileges to Accounts for API Calls
PSS ID Number: Q131144

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51

SUMMARY
=======

Some new security API calls were added to Win32 in Windows NT version 3.51.
Two of these new calls, LogonUser() and CreateProcessAsUser(), require that
the calling process have certain privileges. If the calling process is a
service running in the Local System account, it will already have these
privileges. Otherwise, the required privileges can be added to an account
by using the "User Rights Policy" dialog box. Run the User Manager and
choose User Rights from the Policies menu to see the dialog box.

NOTE: You must select the "Show Advanced User Rights" check box to see
the privileges mentioned in this article.

MORE INFORMATION
================

The Win32 API reference documents the required privileges, but it gives
their internal string names instead of the display names. The "User Rights
Policy" dialog box displays the privileges using the display names.

The following table shows the display names associated with the internal
string names:

 Privilege Display Name
 --
 SeTcbPrivilege Act as part of the operating system
 SeAssignPrimary Replace a process level token
 SeIncreaseQuota Increase quotas

Additional reference words:
KBCategory: kbprg
KBSubcategory: BseSecurity

How to Avoid Palette Flash During Playback of Video Overlays
PSS ID Number: Q135367

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.5, 3.51, 4.0
 - Microsoft Video for Windows Development Kit (VfWDK) version 1.1

SUMMARY
=======

Developers of multimedia titles that overlay background bitmaps with AVI
(audio-visual interleaved) files are frequently surprised by what is often
called "palette flash." The flash or palette re-realization can be
eliminated with careful design and consideration during authoring.

MORE INFORMATION
================

The Windows Palette Manager attempts to satisfy the demands of the
foreground window first (the AVI), and leaves background windows to contend
for any unused palette entries. Windows that use identical palette entries
do not flash, so the key is to author the background image and the AVI with
the same palette. Incorporate the playback palette from the AVI into the
background image. This works because most video Codecs (compressors and
decompressors) can suggest optimal playback palettes.

Additional reference words: 4.00 1.10 3.50 dib
KBCategory: kbmm kbprg
KBSubcategory: MMVideo

How to Back Up the Windows NT Registry
PSS ID Number: Q128731

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51

SUMMARY
=======

This article shows by example how to back up portions of the Windows NT
registry to be restored later.

MORE INFORMATION
================

This is normally accomplished by enabling the SeBackupPrivilege and calling
RegSaveKey. The operation can fail with ERROR_ACCESS_DENIED if the caller
does not have access to portions of the key, such as the registry key
HKEY_LOCAL_MACHINE\SECURITY.

If you do not have access to the key, but have backup privilege, pass the
REG_OPTION_BACKUP_RESTORE flag to RegCreateKeyEx in the dwOptions
parameter. This has an effect similar to FILE_FLAG_BACKUP_SEMANTICS with
CreateFile, allowing you to open the key for backup. The resultant key
handle can be used in a subsequent call to RegSaveKey.

To back up the registry from the root, it is necessary to enumerate the
subkeys from the root, opening each subkey with RegCreateKeyEx and saving
the subkey with RegSaveKey.

Sample Code

The following sample source code saves the HKEY_LOCAL_MACHINE registry
key, with each subkey saved to a filename matching the subkey name.

The folloing function performs the save operation:

LONG SaveRegistrySubKey(
 HKEY hKey, // handle of key to save
 LPTSTR szSubKey, // pointer to subkey name to save
 LPTSTR szSaveFileName // pointer to save path/filename
)

If the function succeeds, the return value is ERROR_SUCCESS.
If the function fails, the return value is an error value.

/* Save HKEY_LOCAL_MACHINE registry key, each subkey saved to a file of
 * name subkey
 *

 * this allows us to get around security restrictions which prevent
 * the use of RegSaveKey() on the root key
 *
 * the use of REG_OPTION_BACKUP_RESTORE is not documented in the Win32
 * documentation at this time. The documentation will be changed to
 * reflect this flag. This flag is contained in the WINNT.H header file.
 *
 * the optional target machine name is specified in argv[1]
 *
 * v1.21
 * Scott Field (sfield) 01-Apr-1995
 */

#define RTN_OK 0
#define RTN_USAGE 1
#define RTN_ERROR 13

#include <windows.h>
#include <stdio.h>
#include <stdlib.h>

LONG SaveRegistrySubKey(HKEY hKey, LPTSTR szSubKey, LPTSTR szSaveFileName);
void PERR(LPTSTR szAPI, DWORD dwLastError);

int main(int argc, char *argv[])
{
 TOKEN_PRIVILEGES tp;
 HANDLE hToken;
 LUID luid;
 LONG rc; // contains error value returned by Regxxx()
 HKEY hKey; // handle to key we are interested in
 LPTSTR MachineName=NULL; // pointer to machine name
 DWORD dwSubKeyIndex=0; // index into key
 char szSubKey[_MAX_FNAME]; // this should be dynamic.
 // _MAX_FNAME is good because this
 // is what we happen to save the
 // subkey as
 DWORD dwSubKeyLength=_MAX_FNAME; // length of SubKey buffer

/*
 if (argc != 2) // usage
 {
 fprintf(stderr,"Usage: %s [<MachineName>]\n", argv[0]);
 return RTN_USAGE;
 }
 */

 // set MachineName == argv[1], if appropriate
 if (argc == 2) MachineName=argv[1];

 //
 // enable backup privilege
 //
 if(!OpenProcessToken(GetCurrentProcess(),
 TOKEN_ADJUST_PRIVILEGES,

 &hToken))
 {
 PERR("OpenProcessToken", GetLastError());
 return RTN_ERROR;
 }

 if(!LookupPrivilegeValue(MachineName, SE_BACKUP_NAME, &luid))

 {
 PERR("LookupPrivilegeValue", GetLastError());
 return RTN_ERROR;
 }

 tp.PrivilegeCount = 1;
 tp.Privileges[0].Luid = luid;
 tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;

 AdjustTokenPrivileges(hToken, FALSE, &tp, sizeof(TOKEN_PRIVILEGES),
 NULL, NULL);

 if (GetLastError() != ERROR_SUCCESS)
 {
 PERR("AdjustTokenPrivileges", GetLastError());
 return RTN_ERROR;
 }

 // only connect if a machine name specified
 if (MachineName != NULL)
 {
 if((rc=RegConnectRegistry(MachineName,
 HKEY_LOCAL_MACHINE,
 &hKey)) != ERROR_SUCCESS)
 {
 PERR("RegConnectRegistry", rc);
 return RTN_ERROR;
 }
 }
 else hKey=HKEY_LOCAL_MACHINE;

 while((rc=RegEnumKeyEx(
 hKey,
 dwSubKeyIndex,
 szSubKey,
 &dwSubKeyLength,
 NULL,
 NULL,
 NULL,
 NULL)
) != ERROR_NO_MORE_ITEMS) { // are we done?

 if(rc == ERROR_SUCCESS)
 {
 LONG lRetVal; // return value from SaveRegistrySubKey

#ifdef DEBUG

 fprintf(stdout,"Saving %s\n", szSubKey);
#endif

 // save registry subkey szSubKey to filename szSubKey
 if((lRetVal=SaveRegistrySubKey(hKey, szSubKey, szSubKey)
) != ERROR_SUCCESS)
 {
 PERR("SaveRegistrySubKey", lRetVal);
 }

 // increment index into the key
 dwSubKeyIndex++;

 // reset buffer size
 dwSubKeyLength=_MAX_FNAME;

 // Continue the festivities
 continue;
 }
 else
 {
 //
 // note: we need to watch for ERROR_MORE_DATA
 // this indicates we need a bigger szSubKey buffer
 //
 PERR("RegEnumKeyEx", rc);
 return RTN_ERROR;
 }

 } // RegEnumKeyEx

 // close registry key we have been working with
 RegCloseKey(hKey);

 // Revoke all privileges this process holds (including backup)
 AdjustTokenPrivileges(hToken, TRUE, NULL, 0, NULL, NULL);

 // close handle to process token
 CloseHandle(hToken);

 return RTN_OK;
}

LONG SaveRegistrySubKey(
 HKEY hKey, // handle of key to save
 LPTSTR szSubKey, // pointer to subkey name to save
 LPTSTR szSaveFileName // pointer to save path/filename
)
{
 HKEY hKeyToSave; // Handle of subkey to save
 LONG rc; // result code from RegXxx
 DWORD dwDisposition;

 if((rc=RegCreateKeyEx(hKey,
 szSubKey, // Name of subkey to open

 0,
 NULL,
 REG_OPTION_BACKUP_RESTORE, // in winnt.h
 KEY_QUERY_VALUE, // minimal access
 NULL,
 &hKeyToSave,
 &dwDisposition)
) == ERROR_SUCCESS)
 {
 // Save registry subkey. If the registry is remote, files will
 // be saved on the remote machine
 rc=RegSaveKey(hKeyToSave, szSaveFileName, NULL);

 // close registry key we just tried to save
 RegCloseKey(hKeyToSave);
 }

 // return the last registry result code
 return rc;
}

void PERR(
 LPTSTR szAPI, // pointer to failed API name
 DWORD dwLastError // last error value associated with API
)
{
 LPTSTR MessageBuffer;
 DWORD dwBufferLength;

 //
 // TODO get this fprintf out of here!
 //
 fprintf(stderr,"%s error! (rc=%lu)\n", szAPI, dwLastError);

 if(dwBufferLength=FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
 FORMAT_MESSAGE_FROM_SYSTEM,
 NULL,
 dwLastError,
 LANG_NEUTRAL,
 (LPTSTR) &MessageBuffer,
 0,
 NULL))
 {

 DWORD dwBytesWritten;

 //
 // Output message string on stderr
 //
 WriteFile(GetStdHandle(STD_ERROR_HANDLE),
 MessageBuffer,
 dwBufferLength,
 &dwBytesWritten,
 NULL);

 //
 // free the buffer allocated by the system
 //
 LocalFree(MessageBuffer);
 }
}

Additional reference words: 3.50
KBCategory: kbprg kbcode
KBSubcategory: BseMisc BseSecurity CodeSam

How to Broadcast Messages Using NetMessageBufferSend()
PSS ID Number: Q131458

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.5, 3.51

The NetMessageBufferSend() API can be used to broadcast a message. To
broadcast a copy a of a particular message to all workstations running
messanger service in a particular domain, the LPWSTR msgname parameter
needs to be specified as "DOMAINNAME*" - where DOMAINNAME is the name of
the domain to which a message is to be sent. In this case, you can use the
following piece of code to call this API:

 #define UNICODE
 #define MESGLEN 50
 WCHAR awcToName[] = TEXT("DomainName*");
 WCHAR awcFromName[] = Text("MyComputer");
 WCHAR awcMesgBuffer[MESGLEN] = Text("This ia Test Message");
 NET_API_STATUS nasStatus;

 nasStatus = NetMessageBufferSend(NULL,
 awcToName,
 awcFromName,
 awcMesgBuffer,
 MESGLEN);

Additional reference words: 3.50 3.51 LanMan
KBCategory: kbnetwork kbnetwork
KBSubcategory: NtwkMisc

How to Build a Japanese NT 3.50 Application on US NT 3.50
PSS ID Number: Q126744
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.5 and 3.51
 - Microsoft Visual C++, 32-bit Edition, version 2.0
 - Microsoft Windows NT versions 3.5 and 3.51
--

Use the following steps to build a Japanese application on U.S. Windows NT
version 3.5 using the English 32-bit Edition of Visual C++ version 2.0:

1. Copy c_932.nls from your Japanese Windows NT version 3.5 CD or disks.

2. Add c_932.nls to your English Windows NT version 3.5 system directory
 (for example, WINNT35\SYSTEM32.

3. Using REGEDT32.EXE, search for "codepage" in the following registry
 subkey:

 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet

 Add this value:

 932 : REG_SZ : c_932.nls

4. Add the "/C932" switch to the RC compiler option in the Project setting
 in the Microsoft Visual C++ IDE (Intergrated Development Environment).

Take similar steps if you want to use U.S. Windows NT version 3.5 as the
development environment and build an application that requires a codepage
that is not present on U.S. Windows NT version 3.5.

Additional reference words: 3.50 3.51 msvcj setlocale language
KBCategory: kbprg
KBSubcategory: WIntlDev

How to Build Localized Win32s Kits with .nls Files
PSS ID Number: Q149972
--
The information in this article applies to:

 - Microsoft Win32 Application Programming Interface included with
 Microsoft Win32s version 1.30c
--

SUMMARY
=======

Microsoft Win32s version 1.30c contains files that allow localized Win32s
kits to be built.

MORE INFORMATION
===============

There are 111 files under the NLS directory in Win32s 1.30c. These include
various .nls files, and the following files in nine different languages:

 COMCTL32.DLL
 COMDLG32.DLL
 FTSRCH.DLL
 OLEDLG.DLL
 RICHED32.DLL
 W32S.386
 W32SYS.DLL
 WINHLP32.EXE

These nine different languages are:

 Danish (extension: DAN)
 German (extension: DEU)
 Spanish (extension: ESP)
 Finnish (extension: FIN)
 French (extension: FRA)
 Italian (extension: ITA)
 Dutch (extension: NLD)
 Norwegian (extension: NOR)
 Swedish (extension: SVE)

NOTE: The language version of the file is signified by the extension of the
file name.

To build a localized Win32s, install English Win32s as usual, and then
substitute:

 COMCTL32.DLL
 COMDLG32.DLL
 FTSRCH.DLL
 OLEDLG.DLL
 RICHED32.DLL
 W32S.386

 W32SYS.DLL
 WINHLP32.EXE

with the corresponding file in the appropriate language. Then copy the NLS
files in the NLS directory.

For example, to build a Danish Win32s, install Win32s English version, and
then substitute:

 COMCTL32.DLL
 COMDLG32.DLL
 FTSRCH.DLL
 OLEDLG.DLL
 RICHED32.DLL
 W32S.386
 W32SYS.DLL
 WINHLP32.EXE

with

 COMCTL32.DAN
 COMDLG32.DAN
 FTSRCH.DAN
 OLEDLG.DAN
 RICHED32.DAN
 W32S.DAN
 W32SYS.DAN
 WINHLP32.DAN

Change the extension into DLL or EXE or 386 as appropriate.

Additional reference words: 1.30c Win32s NLS
KBCategory: kbprg kbhowto
KBSubcategory: wintldev

How to Calculate Dialog Base Units with Non-System-Based Font
PSS ID Number: Q125681

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

This article shows how to calculate the dialog base unit in Windows for
the dialog box using a font other than System Font. You can use this
calculation to build dialog templates in memory or calculate dialog
dimensions.

MORE INFORMATION
================

Each dialog box template contains measurements that specify the position,
width, and height of the dialog box and the controls it contains. These
measurements are device independent, so an application can use a single
template to create the same dialog box for all types of display devices.
This ensures that a dialog box will have the same proportions and
appearance on all screens despite differing resolutions and aspect ratios
between screens.

Further, dialog box measurements are given in dialog base units. One
horizontal base unit is equal to one-fourth of the average character width
for the system font. One vertical base unit is equal to one-eighth of the
average character height for the system font. An application can retrieve
the number of pixels per base unit for the current display by using the
GetDialogBaseUnits function. The low-order word of the return value, from
the GetDialogBaseUnits function, contains the horizontal base units
and the high-order word of the return value, from the GetDialogBaseUnits
function, contains the vertical base units.

Using this information, you can compute the dialog base units for a dialog
using font other than system font:

 horz pixels == (horz dialog units * average char width of font) / 4
 vert pixels == (vert dialog units * average char height of font) / 8

As the font of a dialog changes, the actual size and position of a
control also changes.

 - Four pixels is half the average character width of the system font.
 - Eight pixels is half the average character height of the system font.

Here's another version of the same formulas:

horz pixels == 2 * horz dialog units * (average char width of dialog font

 / average char width of system font)
vert pixels == 2 * vert dialog units * (average char height of dialog font
 / average char height of system font)

One dialog base unit is equivalent to the number of pixels per dialog unit
which gives:

1 horz dialog base unit == (2 * average char width dialog font /
 average char width system font) pixels
1 vert dialog base unit == (2 * average char height dialog font /
 average char height system font) pixels

Average character width and height of a font can be computed as follows:

hFontOld = SelectObject(hdc,hFont);
GetTextMetrics(hdc,&tm);
GetTextExtentPoint32(hdc,"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrst"
 "uvwxyz",52,&size);
avgWidth = (size.cx/26+1)/2;
avgHeight = (WORD)tm.tmHeight;

The tmAveCharWidth field of the TEXTMETRIC structure only approximates the
actual average character width (usually it gives the width of the letter
'x') and so the true average character width must be calculated to match
the value used by the system.

Additional reference words: 4.00 95
KBCategory: kbui
KBSubcategory: UsrDlg

How to Calculate the Height of Edit Control to Resize It
PSS ID Number: Q124315
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK), version 3.1
 - Microsoft Win32 Software Development Kit (SDK), versions 3.5 and 3.51
--

SUMMARY
=======

When a program changes the font of an edit control, it must calculate the
new height of the control so that text is displayed correctly. When an edit
control contains a border, the control automatically adds white space
around the text so the text won't interfere with the border.

This article shows by example how a program can modify the height of an
edit control so that text displayed in the control looks right after the
program changes the font.

MORE INFORMATION
================

The height of the control on creation is calculated as the height of the
control's font plus half of the smaller of the height of the control's font
or the height of the system font. You can use a function similar to the one
below to calculate the new height of an edit control when the font in the
control is changed.

Sample Code

void ResizeEdit(HWND hwndEdit, HFONT hNewFont)
{
 HFONT hSysFont,
 hOldFont;
 HDC hdc;
 TEXTMETRIC tmNew,
 tmSys;
 RECT rc;
 int nTemp;

 //get the DC for the edit control
 hdc = GetDC(hwndEdit);

 //get the metrics for the system font
 hSysFont = GetStockObject(SYSTEM_FONT);
 hOldFont = SelectObject(hdc, hSysFont);
 GetTextMetrics(hdc, &tmSys);

 //get the metrics for the new font
 SelectObject(hdc, hNewFont);
 GetTextMetrics(hdc, &tmNew);

 //select the original font back into the DC and release the DC
 SelectObject(hdc, hOldFont);
 DeleteObject(hSysFont);
 ReleaseDC(hwndEdit, hdc);

 //calculate the new height for the edit control
 nTemp = tmNew.tmHeight + (min(tmNew.tmHeight, tmSys.tmHeight)/2) +
 (GetSystemMetrics(SM_CYEDGE) * 2);

 //re-size the edit control
 GetWindowRect(hwndEdit, &rc);
 MapWindowPoints(HWND_DESKTOP, GetParent(hwndEdit), (LPPOINT)&rc, 2);
 MoveWindow(hwndEdit,
 rc.left,
 rc.top,
 rc.right - rc.left,
 nTemp,
 TRUE);
}

Additional reference words: 3.10 3.50 win16sdk
KBCategory: kbprg kbcode
KBSubcategory: UsrCtl

How To Cause Inheriting of Environment Variables on Windows 95
PSS ID Number: Q152648

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), version 3.5

SUMMARY
=======

When launching 16-bit MS-DOS applications or batch files on Windows 95 from
a 32-bit process, a changed or modified environment will not be inherited
if creation of the MS-DOS application requires a new console window. To
cause the environment to be successfully inherited, the Win32 process can
launch a 32-bit console application which will inherit the Win32 parent's
current or specified environment variables. The 32-bit console application
can then launch the 16-bit MS-DOS application or batch file, causing the MS-
DOS application to inherit the Win32 parent's console window and its
environment variables.

MORE INFORMATION
================

The CreateProcess API's lpEnvironment parameter allows programmers to
specify an environment string for the process to be launched. If no
environment is specified, the child process will inherit the parent's
current environment variables.

On Windows 95, the parent's modified environment or specified environment
string will not be inherited if the child is a 16-bit MS-DOS application or
batch file. If the parent process is a Win32 console application, the 16-
bit MS-DOS application or batch file can inherit the Win32 process' console
and successfully inherit the environment variables of the parent.

For console-less Win32 applications to launch MS-DOS applications or batch
files with an inherited or specified environment string, they must first
launch a Win32 console process that will successfully inherit the
environment. The Win32 console application can then launch the MS-DOS
application or batch file, causing the spawned 16-bit application to
inherit the Win32 parent's console and its environment variables.

Additional reference words: 3.50
KBCategory: kbprg kbhowto
KBSubcategory: Console

How to Change Hard Error Popup Handling in Windows NT
PSS ID Number: Q128642

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51

SUMMARY
=======

In an unattended environment, you may want to automatically dispatch hard
error popups that require user intervention. This article gives you the
code you need to change the hard error popup mode.

MORE INFORMATION
================

Windows NT allows the user to change the handling of hard error popups that
result from application and system errors. Such errors include no disk in
the drive and general protection (GP) faults.

Normally, these events cause a hard error popup to be displayed, which
requires user intervention to dispatch. This behavior can be modified so
that such errors are logged to the Windows NT event log. When the error is
logged to the event log, no user intervention is necessary, and the system
provides a default handler for the hard error. The user can examine the
event log to determine the cause of the hard error.

Registry Entry

The following registry entry controls the hard error popup handling in
Windows NT:

HKEY_LOCAL_MACHINE\
 SYSTEM\
 CurrentControlSet\
 Control\
 Windows\
 ErrorMode

Valid Modes

The following are valid values for ErrorMode:

 - Mode 0

 This is the default operating mode that serializes the errors and waits
 for a response.

 - Mode 1

 If the error does not come from the system, this is the normal operating
 mode. If the error comes from the system, this logs the error to the
 event log and returns OK to the hard error. No intervention is required
 and the popup is not seen.

 - Mode 2

 This always logs the error to the event log and returns OK to the hard
 error. Popups are not seen.

In all modes, system-originated hard errors are logged to the system log.
To run an unattended server, use mode 2.

Sample Code to Change Hard Error Popup Mode

The following function changes the hard error popup mode. If the function
succeeds, the return value is TRUE. If the function fails, the return value
is FALSE.

BOOL SetGlobalErrorMode(
 DWORD dwErrorMode // specifies new ErrorMode value
)
{
 HKEY hKey;
 LONG lRetCode;

 // make sure the value passed isn't out-of-bounds
 if (dwErrorMode > 2) return FALSE;

 if(RegOpenKeyEx(HKEY_LOCAL_MACHINE,
 "SYSTEM\\CurrentControlSet\\Control\\Windows",
 0,
 KEY_SET_VALUE,
 &hKey) != ERROR_SUCCESS) return FALSE;

 lRetCode=RegSetValueEx(hKey,
 "ErrorMode",
 0,
 REG_DWORD,
 (CONST BYTE *) &dwErrorMode,
 sizeof(DWORD));

 RegCloseKey(hKey);

 if (lRetCode != ERROR_SUCCESS) return FALSE;

 return TRUE;
}

Sample Code to Obtain Hard Error Popup Mode

The following function obtains the hard error popup mode. If the function
succeeds, the return value is TRUE. If the function fails, the return value
is FALSE. If the function succeeds, dwErrorMode contains the error popup
mode. Otherwise, dwErrorMode is undefined.

BOOL GetGlobalErrorMode(
 LPDWORD dwErrorMode // Pointer to a DWORD to place popup mode
)
{
 HKEY hKey;
 LONG lRetCode;
 DWORD cbData=sizeof(DWORD);

 if(RegOpenKeyEx(HKEY_LOCAL_MACHINE,
 "SYSTEM\\CurrentControlSet\\Control\\Windows",
 0,
 KEY_QUERY_VALUE,
 &hKey) != ERROR_SUCCESS) return FALSE;

 lRetCode=RegQueryValueEx(hKey,
 "ErrorMode",
 0,
 NULL,
 (LPBYTE) dwErrorMode,
 &cbData);

 RegCloseKey(hKey);

 if (lRetCode != ERROR_SUCCESS) return FALSE;

 return TRUE;
}

Additional reference words: 3.50
KBCategory: kbprg kbcode
KBSubcategory: BseErrdebug BseMisc CodeSam

How To Change Passwords Programmatically in Windows NT
PSS ID Number: Q151546
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.51, 4.00
--

SUMMARY
=======

This article describes how to change passwords on accounts in Windows NT
programmatically. Windows NT Lan Manager API calls are used to accomplish
this task.

MORE INFORMATION
================

There are several considerations that apply to changing passwords:

 - Windows NT Lan Manager APIs are Unicode only. All strings passed to and
 returned by these functions are in Unicode form.

 - When targeting a domain controller for account update operations, be
 sure to target the primary domain controller for the domain. The account
 settings are replicated by the primary domain controller to each backup
 domain controller as appropriate. The NetGetDCName() Lan Manager API
 call can be used to get the primary domain controller computer name from
 a domain name.

 - If the caller is an administrator or account operator on the target
 machine/domain, the NetUserSetInfo() Lan Manager API call at info-level
 1003 can be used to override the existing password. The caller does not
 need to know the existing password. Note that passwords can be provided
 for accounts during account creation time using NetUserAdd().

 - If the caller is a non-administrator on the target machine/domain, the
 NetUserChangePassword() Lan Manager API call can be used to override the
 existing password. In order for this call to succeed, the caller must
 supply the correct current password. NetUserChangePassword() behaves
 differently than other Lan Manager APIs with respect to the first
 parameter which specifies either a domain name or machine name. If this
 parameter is set to NULL, the domain name of the caller is used. Keep
 this in mind if you intend to change passwords on accounts outside the
 domain of the logged-on caller. You should explicitly provide the target
 domain name.

Sample Code

/*++

Module Name:

 chngpass.c

Abstract:

 This sample changes the password for an arbitrary user on an arbitrary
 target machine.

 When targeting a domain controller for account update operations,
 be sure to target the primary domain controller for the domain.
 The account settings are replicated by the primary domain controller
 to each backup domain controller as appropriate. The NetGetDCName()
 Lan Manager API call can be used to get the primary domain controller
 computer name from a domain name.

 Username is argv[1]
 new password is argv[2]
 optional target machine (or domain name) is argv[3]
 optional old password is argv[4]. This allows non-admin password
 changes.

 Note that admin or account operator privilege is required on the
 target machine unless argv[4] is present and represents the correct
 current password.

 NetUserSetInfo() at info-level 1003 is appropriate for administrative
 override of an existing password.

 NetUserChangePassword() allows for an arbitrary user to override
 an existing password providing that the current password is confirmed.

 Link with netapi32.lib

--*/

 #include <windows.h>
 #include <stdio.h>

 #include <lm.h>

 #define RTN_OK 0
 #define RTN_USAGE 1
 #define RTN_ERROR 13

 void
 DisplayErrorText(
 DWORD dwLastError
);

 //
 // Unicode entry point and argv
 //

 int
 __cdecl

 wmain(
 int argc,
 wchar_t *argv[]
)
 {
 LPWSTR wUserName;
 LPWSTR wComputerName = NULL; // default to local machine
 LPWSTR wOldPassword;
 LPWSTR wNewPassword;
 USER_INFO_1003 pi1003;
 NET_API_STATUS nas;

 if(argc < 3) {
 fprintf(stderr, "Usage: %ls <user> <new_password> "
 "[\\\\machine | domain] [old_password]\n",
 argv[0]);
 return RTN_USAGE;
 }

 //
 // process command line arguments
 //

 wUserName = argv[1];
 wNewPassword = argv[2];

 if(argc >= 4 && *argv[3] != L'\0') {

 //
 // obtain target machine name, if appropriate,
 // always in Unicode, as that is what the API takes.
 //

 if(argv[3][0] == L'\\' && argv[3][1] == L'\\') {

 //
 // target specified machine name
 //

 wComputerName = argv[3];
 }
 else {

 //
 // the user specified a domain name. Look up the PDC.
 // This is done in both password change cases to ensure the
 // same computer is targeted for the update operation.
 //

 nas = NetGetDCName(
 NULL,
 argv[3],
 (LPBYTE *)&wComputerName
);

 if(nas != NERR_Success) {
 DisplayErrorText(nas);
 return RTN_ERROR;
 }
 }
 }

 if(argc == 5) {
 wOldPassword = argv[4];
 } else {
 wOldPassword = NULL;
 }

 if(wOldPassword == NULL) {

 //
 // administrative over-ride of existing password
 //

 pi1003.usri1003_password = wNewPassword;

 nas = NetUserSetInfo(
 wComputerName, // computer name
 wUserName, // username
 1003, // info level
 (LPBYTE)&pi1003, // new info
 NULL
);
 } else {

 //
 // allows user to change their own password
 //

 nas = NetUserChangePassword(
 wComputerName,
 wUserName,
 wOldPassword,
 wNewPassword
);
 }

 if(wComputerName != NULL && wComputerName != argv[3]) {

 //
 // a buffer was allocated for the PDC name. Free it.
 //

 NetApiBufferFree(wComputerName);
 }

 if(nas != NERR_Success) {
 DisplayErrorText(nas);
 return RTN_ERROR;
 }

 return RTN_OK;
 }

 void
 DisplayErrorText(
 DWORD dwLastError
)
 {
 HMODULE hModule = NULL; // default to system source
 LPSTR MessageBuffer;
 DWORD dwBufferLength;
 DWORD dwFormatFlags;

 dwFormatFlags = FORMAT_MESSAGE_ALLOCATE_BUFFER |
 FORMAT_MESSAGE_IGNORE_INSERTS |
 FORMAT_MESSAGE_FROM_SYSTEM ;

 //
 // if dwLastError is in the network range, load the message source
 //
 if(dwLastError >= NERR_BASE && dwLastError <= MAX_NERR) {
 hModule = LoadLibraryEx(
 TEXT("netmsg.dll"),
 NULL,
 LOAD_LIBRARY_AS_DATAFILE
);

 if(hModule != NULL)
 dwFormatFlags |= FORMAT_MESSAGE_FROM_HMODULE;
 }

 //
 // call FormatMessage() to allow for message text to be acquired
 // from the system or the supplied module handle.
 //
 if(dwBufferLength = FormatMessageA(
 dwFormatFlags,
 hModule, // module to get message from (NULL == system)
 dwLastError,
 MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), // default language
 (LPSTR) &MessageBuffer,
 0,
 NULL
))
 {
 DWORD dwBytesWritten;

 //
 // Output message string on stderr
 //
 WriteFile(
 GetStdHandle(STD_ERROR_HANDLE),
 MessageBuffer,
 dwBufferLength,

 &dwBytesWritten,
 NULL
);

 //
 // free the buffer allocated by the system
 //
 LocalFree(MessageBuffer);
 }

 //
 // if you loaded a message source, unload it.
 //
 if(hModule != NULL)
 FreeLibrary(hModule);
 }

Additional reference words: 3.51 4.00 password LanMan
KBCategory: kbprg kbhowto
KBSubcategory: NtwkMisc BseSecurity CodeSam

How to Change Small Icon for FileOpen and Other Common Dialogs
PSS ID Number: Q130758

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Applications that need to display icons on the caption bars of File Open
and other Common Dialogs can do so by installing a hook function and
sending the WM_SETICON message from within the hook function to the common
dialog to change its small icon. Note that OFN_ENABLEHOOK flag (or relavant
flags for other common dialogs) has to be set for your hook function to be
called.

MORE INFORMATION
================

Under Windows 95, every popup or overlapped window can have two icons
associated with it, a large icon used when the window is minimized and a
small icon used for displaying the system menu icon.

Common Dialogs under Windows 95 do not display a small icon on their
caption bars by default. If you want the application to display its own
icon for the system menu, have the application install a hook funtion for
that common dialog and send the WM_SETICON message when the hook callback
function is called with the WM_INITDIALOG message.

The WM_SETICON message is sent to change or set the small and large icons
of a window. In this case, because you are setting the small icon, wParam
must be set to FALSE.

Code Sample

The following code shows how to do this for a File Open Common Dialog:

 // Fill in the OPENFILENAME structure to support
 // a hook and a template (optional).

 OpenFileName.lStructSize = sizeof(OPENFILENAME);
 OpenFileName.hwndOwner = hWnd;
 OpenFileName.hInstance = g_hInst;
 ...
 ...
 ...
 ...

 OpenFileName.lpfnHook = ComDlg32HkProc;
 OpenFileName.lpTemplateName = NULL;
 OpenFileName.Flags = OFN_SHOWHELP |
 OFN_EXPLORER | OFN_ENABLE_HOOK;

Note that the lpTemplateName parameter is set to NULL. To just install a
hook, one does not need a custom template. The hook function will get
called if it is sepcified in the structure.

Below is the Comdlg32HkgProc hook callback funtion that chages the small
icon. This code below is for the open or save as dialog boxes only.

BOOL CALLBACK ComDlg32HkProc(HWND hDlg,
 UINT uMsg,
 WPARAM wParam,
 LPARAM lPar
{

 HWND hWndParent;
 HICON hIcon;

 switch (uMsg)
 {
 case WM_INITDIALOG:

 hWndParent = GetParent(hDlg);

 hIcon = LoadIcon(g_hInst, "CustomIcon");

 SendMessage(hWndParent,
 WM_SETICON,
 (WPARAM)(BOOL)FALSE,
 (LPARAM)(HICON)hIcon);

 return TRUE;

 break;

 default:
 break;

 }

NOTE: This code calls GetParent() to get the actual window handle of the
common dialog box. This is done for the FileOpen and SaveAs dialog boxes
only. These dialogs, when created with the OFN_EXPLORER look with a hook
and a template (optional), create a seperate dialog to hold all the
controls. This is the dialog handle that is passed in the hook function.
The parent of this dialog is the main common dialog window, whose caption
icon must be modified. The FileOpen and SaveAs dialog boxes with the old
style (no OFN_EXPLORER) need not call GetParent().

All other common dialogs, such as ChooseColor and ChooseFont, behave as the

the Windows version 3.1 common dialogs behaved, so the code listed in this
article does not need to call GetParent(). It can just send the WM_SETICON
message to the hDlg that is passed to the hook function.

Additional reference words: 4.00 user common dialog
KBCategory: kbui kbcode
KBSubcategory: UsrCmnDlg

How to Change the International Settings Programmatically
PSS ID Number: Q126625

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

The International control panel icon allows you to choose international
settings for the time, date, keyboard, and so forth. You can change
these settings from your application code by calling SetLocaleInfo(). Be
sure to broadcast a WM_WININICHANGE message using PostMessage() so that all
applications are notified of the change.

The Win32 API allows you to display the time and date in the correct
international format. Use GetDateFormat() and GetTimeFormat() to get the
date and time in the format specified by the user.

Additional reference words: 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrLoc WintlDev

How To Clear the z-buffer in Direct3D Retained Mode
PSS ID Number: Q152668
--
The information in this article applies to:

 - Microsoft DirectX 2 Software Development Kit (SDK), for Windows 95
--

SUMMARY
=======

The IDirect3DRMViewport::Clear() function will clear a Retained Mode
viewport's z-buffer and target rendering surface. You cannot direct this
function to clear the z-buffer only. If you need to clear the z-buffer
without calling IDirect3DRMViewport::Clear(), then you will need to
extract the immediate mode viewport from the retained mode viewport and
use the low level clear functions in the immediate mode API to clear the
z-buffer only.

MORE INFORMATION
================

A set of normal Retained Mode rendering instructions may look like the
following:

 scene->Move(D3DVALUE(1.0));
 view->Clear();
 view->Render(scene);
 rmdev->Update();

If you want to render without clearing your target surface, you will
need to remove your call to Clear(). If you do this, however, your
z-buffer will not get cleared and your objects will not be rendered
properly. If you obtain the immediate mode viewport associated with your
retained mode viewport, you can clear the z-buffer without clearing the
target. Call IDirect3DRMViewport::GetDirect3DViewport() to retrieve the
Direct3D immediate mode viewport and then call the immediate mode
viewport's Clear() method to clear the z-buffer. You can do this by
calling IDirect3DViewport::Clear() with the D3DCLEAR_ZBUFFER flag set.

Sample Code

The following code shows how you can modify your rendering calls to
achieve this functionality:

 LPDIRECT3DVIEWPORT d3dview;

 scene->Move(D3DVALUE(1.0));
 view->GetDirect3DViewport(&d3dview);

 int clearflags;
 D3DRECT rc;
 clearflags = D3DCLEAR_ZBUFFER;

 rc.x1 = rc.y1 = 0;
 rc.x2 = 640;
 rc.y2 = 480;
 d3dview->Clear(1, &rc, clearflags);

 view->Render(scene);
 rmdev->Update();

Additional reference words: 4.00
KBCategory: kbrpg kbhowto
KBSubcategory: Direct3D

How To Close Console Window When MS-DOS Application Completes
PSS ID Number: Q152682

The information in this article applies to:

 - Microsoft Win32 Software Development Kit for:
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In Windows 95, running an MS-DOS application will cause the creation of a
new console window. If this application has written text to the window,
such as stdout or stderr, then the console window will not close when the
application completes. In order to programmatically force the console
window to close, Windows 95 must be tricked into thinking that it is OK to
close the console window. In order to implement this behavior, all
displayed text must be removed.

MORE INFORMATION
================

In Windows 95, the default behavior of the operating system is to keep the
console window of an MS-DOS application open if it has displayed text in
the window. This provides end-users with an opportunity to read any
messages that may have been displayed in the window before the window is
closed. To close a window in this state, you must select the Close button
("X") on the Window caption or the Close Menu options from the System menu.

To programmatically close a console window for an MS-DOS application that
has displayed some text to the window, you must trick Windows 95 into
believing that it is OK to close the console window. You can do this by
creating a .BAT file, and in this file, adding the following lines:

 @echo off
 >> DOS app
 @cls

The first line, "@echo off," prevents .BAT file commands from being
displayed in the window. After the MS-DOS application completes, the "cls"
command clears away any text that may have been sent to the console window.
This behavior tricks Windows 95 and enables the console window to be closed
after the .BAT file has completed.

Additional reference words: 4.00 Win95
KBCategory: kbprg kbusage kbhowto
KBSubcategory: Bsecon

How to Compile CAPCPP Sample Using Visual C++ 2.x Compiler
PSS ID Number: Q137900

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.5, 3.51, 4.0
 - Microsoft Video for Windows Development Kit version 1.1
 - Microsoft Visual C++, 32-bit Edition, versions 2.0, 2.1, 2.2

SUMMARY
=======

CAPCPP is a Microsoft Foundation Class (MFC)-based sample included in
the Video for Windows Development Kit. The sample was written as a 16-bit
Windows-based application. However, with minor modifications, you can
compile it as a 32-bit Windows-based application.

MORE INFORMATION
================

The CAPCPP sample comes with a project file (Capcpp.mak) created by Visual
C++ version 1.5x. To convert this project for use by Visual C++ version 2.x
compiler, follow these steps:

1. Use Visual C++ version 2.x to open Capcpp.mak. It will convert this
 project file.

2. Remove Msacm.lib and Vfw.lib from files list presented when you click
 Library on the Object menu.

3. Replace FAR PASCAL _export with CALLBACK in the Captevw.cpp file.

4. Remove #include "avicap.h" from the Captevw.h file.

5. Add #define _AFX_NO_BSTR_SUPPORT to the beginning of the Stdafx.h file;
 this removes BSTR errors. For more information about this, please see
 the following article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q129953
 TITLE : PRB: C2371 BSTR Redefinition When VFW.H Included in MFC App

6. Add Winmm.lib, Vfw32.lib, and Msacm32.lib to the Link tab that comes up
 when you click Settings on the Project menu. Also, remove Vfw.lib from
 the Modules list.

After completing these steps, you are ready to compile the sample as a
32-bit application by using Visual C++ version 2.x.

Additional reference words: 1.10 2.00 3.50 2.1 2.20 AVICap MCIWnd video
capture visualc
KBCategory: kbmm kbhowto
KBSubcategory: MMVideo

How to Compile Large Chinese or Korean Help Files
PSS ID Number: Q123331

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 SDK version 3.5

The Extended Help Compiler is not available in Traditional/Simplified
Chinese Windows version 3.1 SDK extension or in the Korean Windows version
3.1 SDK extension. Therefore, large help files in Chinese or Korean cannot
be compiled under Windows version 3.1 using the extended help compiler.

However, large Chinese or Korean help files can be compiled under Windows
NT, by using Chinese or Korean Help Compiler (HC31.EXE). Make sure the
directory containing the appropriate HC31.EXE is in the path.

If the .HPJ file contains Compress=YES, change it to compress=MEDIUM or to
compress=FALSE.

The resulting .HLP files cannot be displayed correctly under Windows NT. If
you try it, you'll see random symbols in place of the Chinese or Korean
characters. To examine the result of the compilation, exit from Windows NT,
and start Chinese or Korean Windows. Then display the help files.

Additional reference words: fesdk hcp
KBCategory: kbprg kbtool
KBSubcategory: WIntlDev

How to Connect Local Printers to Network Print Shares
PSS ID Number: Q152551
--
The information in this article applies to:

 - Microsoft Win32 Application Programming Interface included with:
 - Microsoft Windows NT, version 3.51
 - Microsoft Windows 95, version 4.0
--

SUMMARY
=======

Prior to Windows 95 and Windows NT, network print shares were used in
Windows by connecting MS-DOS devices to network resources. Often, this was
accomplished by the WNetAddConnection function that was implemented by the
underlying network software. This architecture limited the number of
connections to the number of MS-DOS devices that could be redirected.
Further, it suffered from an inherent inflexibility of print job and
printer management.

The current Win32 Application Programming Interface defines a collection of
functions known as the Print Spooler API. The Print Spooler API manipulates
the Spooler, a component of the operating system that is always running,
and manages printers and print jobs both local and remote. The Spooler and
its printers are no longer tied to MS-DOS devices for access to network
print shares. Any printer in Windows can now be connected (redirected)
directly to network print shares by their UNC names.

MORE INFORMATION
================

Configuring a printer to be redirected to a network print share is a three-
step process: The application first obtains a current PRINTER_INFO_2
structure via the GetPrinter function; the new configuration is then
defined by altering the members of the PRINTER_INFO_2 structure; once
modified, the structure is passed to the SetPrinter function that resets
the configuration.

To configure a printer to print to a network print share, set the pPortName
member of the PRINTER_INFO_2 structure to point to a valid port name
string. Windows NT requires the name of the port to be in the list of ports
that are returned from the EnumPorts function. On Windows 95, this string
may contain the UNC path to a remote network print share or can be from
this list of installed ports. Additional ports are defined by calling the
AddPort function and specifying the appropriate Port Monitor.

When AddPort is used to set up a new port, a dialog provided by the Port
Monitor will pop up. There is no way to prevent this dialog from being
displayed. The Port Monitor uses this dialog to configure the new port with
information specific to that type of port.

Although Windows NT supports the redirection of local printers to network
print shares, the recommended method for printing to a network print share

on Windows NT is a Printer Connection. A Printer Connection is a direct
representation of the network printer resource on the local workstation.
Printing to a Connection involves Remote Procedure Calls (RPC) that offer
many advantages, such as spooling on the Server and Server-supplied printer
drivers. However, Printer Connections currently work only when the client
and server are both Windows NT or if the network specifically supports it.

Microsoft recommends that applications running on Windows NT attempt to
call AddPrinterConnection to define Network Printers to which applications
would print. If AddPrinterConnection fails, applications should then
attempt to use a local printer redirected to the network print share as
this article describes. Use and diagnosis of AddPrinterConnection failures
is beyond the scope of this article.

For more information on the use of AddPrinterConnection and how to install
local printers, please see the following article in the Microsoft Knowledge
Base:

 ARTICLE-ID: Q147202
 TITLE : How to Add a Network Printer Connection

Use the following steps to configure a printer with the Print Spooler
functions:

1. Use OpenPrinter to obtain a handle to a printer object whose
 configuration can be modified by the SetPrinter function. For SetPrinter
 to succeed, the calling process must have administrative privileges and
 the printer must be opened with PRINTER_ALL_ACCESS.

2. Call GetPrinter once to determine the size of a PRINTER_INFO_2 structure
 for the current configuration by passing zero for the size of the buffer
 in the cbBuffer parameter, 2 in the Level parameter, NULL for pPrinter
 parameter, the handle to the opened printer in the hPrinter parameter
 and the address of a DWORD in the pcbNeeded parameter. GetPrinter will
 fail and GetLastError will return ERROR_INSUFFICIENT_BUFFER. This is an
 indication of success, because GetPrinter was asked to return the
 required buffer size by forcing a failure with too small a buffer. Under
 these conditions, GetPrinter returns the required buffer size in the
 pcbNeeded parameter. If GetLastError returns anything other than this
 return value, it is an indication of an actual error.

3. Allocate a buffer of size pcbNeeded and call GetPrinter to retrieve the
 PRINTER_INFO_2 structure for the current configuration. For this second
 call, the address of the allocated buffer is passed in the pPrinter
 parameter and the size of this buffer is passed in the cbBuffer
 parameter.

4. Update the members of the PRINTER_INFO_2 structure to change the
 printer's configuration. Generally, the pSecurityDescriptor member of
 the structure should be set to NULL to avoid changing the security
 information for the printer. String pointers such as pPortName should
 simply be assigned the address of the string containing the new value.
 SetPrinter will copy the data from this structure and any strings
 pointed to by members of this structure.

5. Finally, call SetPrinter, passing the handle to the open printer, 2 for
 the dwLevel parameter, the address of the buffer containing the modified
 PRINTER_INFO_2 structure, and zero in the dwCommand parameter. If
 SetPrinter succeeds, the contents of the PRINTER_INFO_2 structure will
 have been used to reconfigure the printer. If SetPrinter fails, call
 GetLastError to determine the cause. A typical reason for the failure of
 a SetPrinter call is insufficient privileges for the user to change some
 part of the printer's configuration.

Sample Code
===========

The following code sample demonstrates the calls to GetPrinter and
SetPrinter:

 BOOL ConnectToRemotePrinter(char *pszRemotePath, HANDLE hPrinter)
 {
 PRINTER_INFO_2 *ppi = NULL;
 DWORD dwNeeded, dwReturned;

 if (!pszRemotePath && lstrlen(pszRemotePath) == 0)
 goto Fail;

 /*
 * Manage Printer's port connections
 */
 /* Get the size required for the buffer */
 SetLastError(0);
 if (!GetPrinter(hPrinter, 2, NULL, 0, &dwNeeded))
 {
 if (GetLastError() != ERROR_INSUFFICIENT_BUFFER)
 goto Fail;
 }

 ppi = (PRINTER_INFO_2 *)malloc(dwNeeded);
 if (!ppi)
 goto Fail;

 /* Get a copy of the printer's configuration */
 if (!GetPrinter(hPrinter, 2, (LPBYTE)ppi, dwNeeded, &dwReturned))
 goto Fail;

 /* change the connection */
 ppi->pPortName = pszRemotePath;

 /* don't set the security information */
 ppi->pSecurityDescriptor = NULL;

 /* Make it so */
 if (!SetPrinter(hPrinter, 2, (LPBYTE)ppi, 0))
 goto Fail;

 /* cleanup */
 free(ppi);

 return TRUE;

 Fail:
 if (ppi)
 free(ppi);
 return FALSE;

 } /* end of function ConnectToRemotePrinter */

Additional reference words: 3.51 4.00 redirection remote print resource
 WNetCancelConnection WNetAddConnection
KBCategory: kbprint kbhowto
KBSubcategory: GdiPrn

How to Convert a Binary SID to Textual Form
PSS ID Number: Q131320

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51

SUMMARY
=======

It may be useful to convert a binary SID (security identifier) to a
readable, textual form, for display or manipulation purposes.

One example of an application that makes use of SIDs in textual form is the
Windows NT Event Viewer. If the Event Viewer cannot look up the name
associated with the SID of a logged event, the Event Viewer displays a
textual representation of the SID.

Windows NT also makes use of textual SIDs when loading user configuration
hives into the HKEY_USERS registry key.

Applications that obtain domain and user names can display the textual SID
representation when the Win32 API LookupAccountSid fails to obtain domain
and user information. Such a failure can occur if the network is down, or
the target machine is unavailable.

Sample Code

The following sample code displays the textual representation of the SID
associated with the current user. This source code converts a SID using the
same algorithm that the Windows NT operating system components use.

/*++

A standardized shorthand notation for SIDs makes it simpler to
visualize their components:

S-R-I-S-S...

In the notation shown above,

S identifies the series of digits as an SID,
R is the revision level,
I is the identifier-authority value,
S is subauthority value(s).

An SID could be written in this notation as follows:
S-1-5-32-544

In this example,

the SID has a revision level of 1,
an identifier-authority value of 5,
first subauthority value of 32,
second subauthority value of 544.
(Note that the above Sid represents the local Administrators group)

The GetTextualSid function will convert a binary Sid to a textual
string.

The resulting string will take one of two forms. If the
IdentifierAuthority value is not greater than 2^32, then the SID
will be in the form:

S-1-5-21-2127521184-1604012920-1887927527-19009
 ^ ^ ^^ ^^^^^^^^^^ ^^^^^^^^^^ ^^^^^^^^^^ ^^^^^
 | | | | | | |
 +-+-+------+----------+----------+--------+--- Decimal

Otherwise it will take the form:

S-1-0x206C277C6666-21-2127521184-1604012920-1887927527-19009
 ^ ^^^^^^^^^^^^^^ ^^ ^^^^^^^^^^ ^^^^^^^^^^ ^^^^^^^^^^ ^^^^^
 | | | | | | |
 | Hexidecimal | | | | |
 +----------------+------+----------+----------+--------+--- Decimal

If the function succeeds, the return value is TRUE.
If the function fails, the return value is FALSE. To get extended
 error information, call the Win32 API GetLastError().

Scott Field (sfield) 11-Jul-95
Unicode enabled

Scott Field (sfield) 15-May-95
--*/

#define RTN_OK 0
#define RTN_ERROR 13

#include <windows.h>
#include <stdio.h>

BOOL GetTextualSid(
 PSID pSid, // binary Sid
 LPSTR TextualSID, // buffer for Textual representaion of Sid
 LPDWORD dwBufferLen // required/provided TextualSid buffersize
);

int main(void)
{
 #define MY_BUFSIZE 256 // all allocations should be dynamic
 HANDLE hToken;
 TOKEN_USER ptgUser[MY_BUFSIZE];
 DWORD cbBuffer=MY_BUFSIZE;
 char szTextualSid[MY_BUFSIZE];

 DWORD cbSid=MY_BUFSIZE;
 BOOL bSuccess;

 //
 // obtain current process token
 //
 if(!OpenProcessToken(
 GetCurrentProcess(), // target current process
 TOKEN_QUERY, // TOKEN_QUERY access
 &hToken // resultant hToken
))
 {
 fprintf(stderr, "OpenProcessToken error! (rc=%lu)\n",
 GetLastError());
 return RTN_ERROR;
 }

 //
 // obtain user identified by current process' access token
 //
 bSuccess=GetTokenInformation(
 hToken, // identifies access token
 TokenUser, // TokenUser info type
 ptgUser, // retrieved info buffer
 cbBuffer, // size of buffer passed-in
 &cbBuffer // required buffer size
);

 // close token handle. do this even if error above
 CloseHandle(hToken);

 if(!bSuccess)
 {
 fprintf(stderr, "GetTokenInformation error! (rc=%lu)\n",
 GetLastError());
 return RTN_ERROR;
 }

 //
 // obtain the textual representaion of the Sid
 //
 if(!GetTextualSid(
 ptgUser->User.Sid, // user binary Sid
 szTextualSid, // buffer for TextualSid
 &cbSid // size/required buffer
))
 {
 fprintf(stderr, "GetTextualSid error! (rc=%lu)\n",
 GetLastError());
 return RTN_ERROR;
 }

 // display the TextualSid representation
 fprintf(stdout,"%s\n", szTextualSid);

 return RTN_OK;
}

BOOL GetTextualSid(
 PSID pSid, // binary Sid
 LPTSTR TextualSid, // buffer for Textual representaion of Sid
 LPDWORD dwBufferLen // required/provided TextualSid buffersize
)
{
 PSID_IDENTIFIER_AUTHORITY psia;
 DWORD dwSubAuthorities;
 DWORD dwSidRev=SID_REVISION;
 DWORD dwCounter;
 DWORD dwSidSize;

 //
 // test if Sid passed in is valid
 //
 if(!IsValidSid(pSid)) return FALSE;

 // obtain SidIdentifierAuthority
 psia=GetSidIdentifierAuthority(pSid);

 // obtain sidsubauthority count
 dwSubAuthorities=*GetSidSubAuthorityCount(pSid);

 //
 // compute buffer length
 // S-SID_REVISION- + identifierauthority- + subauthorities- + NULL
 //
 dwSidSize=(15 + 12 + (12 * dwSubAuthorities) + 1) * sizeof(TCHAR);

 //
 // check provided buffer length.
 // If not large enough, indicate proper size and setlasterror
 //
 if (*dwBufferLen < dwSidSize)
 {
 *dwBufferLen = dwSidSize;
 SetLastError(ERROR_INSUFFICIENT_BUFFER);
 return FALSE;
 }

 //
 // prepare S-SID_REVISION-
 //
 dwSidSize=wsprintf(TextualSid, TEXT("S-%lu-"), dwSidRev);

 //
 // prepare SidIdentifierAuthority
 //
 if ((psia->Value[0] != 0) || (psia->Value[1] != 0))
 {
 dwSidSize+=wsprintf(TextualSid + lstrlen(TextualSid),

 TEXT("0x%02hx%02hx%02hx%02hx%02hx%02hx"),
 (USHORT)psia->Value[0],
 (USHORT)psia->Value[1],
 (USHORT)psia->Value[2],
 (USHORT)psia->Value[3],
 (USHORT)psia->Value[4],
 (USHORT)psia->Value[5]);
 }
 else
 {
 dwSidSize+=wsprintf(TextualSid + lstrlen(TextualSid),
 TEXT("%lu"),
 (ULONG)(psia->Value[5]) +
 (ULONG)(psia->Value[4] << 8) +
 (ULONG)(psia->Value[3] << 16) +
 (ULONG)(psia->Value[2] << 24));
 }

 //
 // loop through SidSubAuthorities
 //
 for (dwCounter=0 ; dwCounter < dwSubAuthorities ; dwCounter++)
 {
 dwSidSize+=wsprintf(TextualSid + dwSidSize, TEXT("-%lu"),
 *GetSidSubAuthority(pSid, dwCounter));
 }

 return TRUE;
}

Additional reference words: Convert LookupAccountSid SID String
KBCategory: kbprg
KBSubcategory: BseSecurity BseMisc CodeSam

How to Convert a File Path to an ITEMIDLIST
PSS ID Number: Q132750

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

When developing an application that interacts with the Windows 95 shell, it
is often necessary to convert an arbitrary path to a file to an ITEMIDLIST.
This can be accomplished using the IShellFolder::ParseDisplayName API.

MORE INFORMATION
================

Here is an example of how to use the IShellFolder interface to convert the
path to the file README.TXT in the current directory to an ITEMIDLIST. The
example is written in C. If the program is written using C++, accessing
member functions through the lpVtbl variable is unnecessary.

LPITEMIDLIST pidl;
LPSHELLFOLDER pDesktopFolder;
char szPath[MAX_PATH];
OLECHAR olePath[MAX_PATH];
ULONG chEaten;
ULONG dwAttributes;
HRESULT hr;

//
// Get the path to the file we need to convert.
//
GetCurrentDirectory(MAX_PATH, szPath);
lstrcat(szPath, "\\readme.txt");

//
// Get a pointer to the Desktop's IShellFolder interface.
//
if (SUCCEEDED(SHGetDesktopFolder(&pDesktopFolder)))
{
 //
 // IShellFolder::ParseDisplayName requires the file name be in Unicode.
 //
 MultiByteToWideChar(CP_ACP, MB_PRECOMPOSED, szPath, -1,
 olePath, MAX_PATH);

 //
 // Convert the path to an ITEMIDLIST.
 //
 hr = pDesktopFolder->lpVtbl->ParseDisplayName(pDesktopFolder,

 NULL,
 NULL,
 olePath,
 &chEaten,
 &pidl,
 &dwAttributes);
 if (FAILED(hr))
 {
 // Handle error...
 }

 //
 // pidl now contains a pointer to an ITEMIDLIST for .\readme.txt. This
 // ITEMIDLIST needs to be freed using the IMalloc allocator returned
 // from SHGetMalloc().
 //

 ...
}

Additional reference words: 4.00 PIDL path file
KBCategory: kbui
KBSubcategory: UsrShell

How to Create 3D Controls in Client Area of Non-Dialog Window
PSS ID Number: Q130763

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

An application that uses standard Windows controls (edit boxes, list boxes,
and so on) as part of a dialog box with the DS_3DLOOK style set, have the
3D look by default. But if an application creates child controls as part of
the main window's client area, these controls do not have the 3D look by
default. Applications should add the WS_EX_CLIENTEDGE style to the list of
styles while creating the child controls to get the new 3D look.

MORE INFORMATION
================

WS_EX_CLIENTEDGE is the new extended style that gives controls (or any
window for that matter) the new 3D look. When controls are created as part
of a dialog box by using a dialog template based in the resource file,
Windows adds the WS_EX_CLIENTEDGE style to the list of styles.

Some applications use controls as child windows in the client area of the
main window. If the WS_EX_CLIENTEDGE style is not specified, these controls
have the Windows version 3.11 user interface (2D look).

Use CreateWindowEx() to create controls in the client area of a non-dialog
window, and make sure you OR in the WS_EX_CLIENTEDGE style. If your
application is using Microsoft Foundation Classes (MFC) version 3.x, you
can override the CreateEx() member function of the CEdit, CList, or any
other standard control class.

Additional reference words: 4.00 95 user
KBCategory: kbui
KBSubcategory: UsrCtl

How to Create a Topmost Window
PSS ID Number: Q81137

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Windows 3.1 introduces the concept of a topmost window that stays
above all the non-topmost windows even when the window is not the
active window.

There are two ways to add the topmost attribute to a window:

1. Use CreateWindowEx to create a new window. Specify WS_EX_TOPMOST as
 the value for the dwExStyle parameter.

2. Call SetWindowPos, specifying an existing non-topmost window and
 HWND_TOPMOST as the value for the hwndInsertAfter parameter.

SetWindowPos can also be used to remove the topmost attribute from a
window. To do so, specify HWND_NOTOPMOST or HWND_BOTTOM as the value
for the hwndInsertAfter parameter.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrWndw

How To Create Hard Symbolic Links in Windows NT
PSS ID Number: Q153181
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), version 3.51, 4.0
--

SUMMARY
=======

Windows NT supports hard symbolic links on NTFS disk volumes for Posix
compatibility. This article describes how to use the two programmatic
approaches that exist for creating hard symbolic links in Windows NT:

1. Write a Posix application that uses the link() call. Use the Posix
 development files included with the Win32SDK to build a Posix
 application.

2. Use the Win32 BackupWrite() API call to construct a hard symbolic link.

Hard symbolic links are only supported on files that span the same NTFS
volume. A link cannot be created that spans volumes.

MORE INFORMATION
================

Sample Code

 /*++

 Copyright (c) 1996 Microsoft Corporation

 Module Name:

 ln.c

 Abstract:

 This module illustrates how to use the Win32 BackupWrite() API to
 create hard symbolic links.

 NOTE: The new link filename path must be supplied to the BackupWrite()
 Win32 API call in Unicode.

 --*/

 #ifndef UNICODE
 #define UNICODE
 #define _UNICODE
 #endif

 #include <windows.h>

 #include <stdio.h>

 #define RTN_OK 0
 #define RTN_USAGE 1
 #define RTN_ERROR 13

 int
 __cdecl
 wmain(
 int argc,
 wchar_t *argv[]
)
 {
 LPTSTR FileSource;
 WCHAR FileLink[MAX_PATH + 1];
 LPWSTR FilePart;

 HANDLE hFileSource;

 WIN32_STREAM_ID StreamId;
 DWORD dwBytesWritten;
 LPVOID lpContext;
 DWORD cbPathLen;
 DWORD StreamHeaderSize;

 BOOL bSuccess;

 if(argc != 3) {
 printf("Usage: %ls <existing_source_file> <link_file>\n",
 argv[0]);
 return RTN_USAGE;
 }

 FileSource = argv[1];

 //
 // open existing file that we link to
 //

 hFileSource = CreateFile(
 FileSource,
 FILE_WRITE_ATTRIBUTES,
 FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
 NULL, // sa
 OPEN_EXISTING,
 0,
 NULL
);

 if(hFileSource == INVALID_HANDLE_VALUE) {
 printf("CreateFile (source) error! (rc=%lu)\n", GetLastError());
 return RTN_ERROR;
 }

 //

 // validate and sanitize supplied link path and use the result
 // the full path MUST be Unicode for BackupWrite
 //

 cbPathLen = GetFullPathNameW(argv[2], MAX_PATH, FileLink, &FilePart
);

 if(cbPathLen == 0) {
 printf("GetFullPathName error! (rc=%lu)\n", GetLastError());
 return RTN_ERROR;
 }

 cbPathLen = (cbPathLen + 1) * sizeof(WCHAR); // adjust for byte
 count

 //
 // it might also be a good idea to verify the existence of the link,
 // (and possibly bail), as the file specified in FileLink will be
 // overwritten if it already exists
 //

 //
 // prepare and write the WIN32_STREAM_ID out
 //

 lpContext = NULL;

 StreamId.dwStreamId = BACKUP_LINK;
 StreamId.dwStreamAttributes = 0;
 StreamId.dwStreamNameSize = 0;
 StreamId.Size.HighPart = 0;
 StreamId.Size.LowPart = cbPathLen;

 //
 // compute length of variable size WIN32_STREAM_ID
 //

 StreamHeaderSize = (LPBYTE)&StreamId.cStreamName - (LPBYTE)&
 StreamId+ StreamId.dwStreamNameSize ;

 bSuccess = BackupWrite(
 hFileSource,
 (LPBYTE)&StreamId, // buffer to write
 StreamHeaderSize, // number of bytes to write
 &dwBytesWritten,
 FALSE, // don't abort yet
 FALSE, // don't process security
 &lpContext
);

 if(bSuccess) {

 //
 // write out the buffer containing the path
 //

 bSuccess = BackupWrite(
 hFileSource,
 (LPBYTE)FileLink, // buffer to write
 cbPathLen, // number of bytes to write
 &dwBytesWritten,
 FALSE, // don't abort yet
 FALSE, // don't process security
 &lpContext
);

 //
 // free context
 //

 BackupWrite(
 hFileSource,
 NULL, // buffer to write
 0, // number of bytes to write
 &dwBytesWritten,
 TRUE, // abort
 FALSE, // don't process security
 &lpContext
);
 }

 CloseHandle(hFileSource);

 if(!bSuccess) {
 printf("BackupWrite error! (rc=%lu)\n", GetLastError());
 return RTN_ERROR;
 }

 return RTN_OK;
 }

Additional reference words: 3.51 4.00 ln link symbolic
KBCategory: kbprg kbhowto
KBSubcategory: BseFileIo BseMisc CodeSam

How to Create Inheritable Win32 Handles in Windows 95
PSS ID Number: Q118605

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Sometimes it is convenient for you to create an object such as a semaphore
or file and then allow a child process to inherit the object's handle. This
provides a means for two or more related processes to easily share an
object.

Although Windows 95 does not have a security system such as the one in
Microsoft Windows NT, Win32 API functions that create objects still use the
SECURITY_ATTRIBUTES structure to determine whether the handle to the newly
created object can be inherited. This article shows how to initialize a
SECURITY_ATTRIBUTES structure to control whether an object handle can be
inherited.

MORE INFORMATION
================

Win32 API functions that create objects require a SECURITY_ATTRIBUTES
parameter to give a newly created object access-control information and to
determine whether the handle to the object can be inherited.

The SECURITY_ATTRIBUTES structure contains the following members:

 Type Name
 ---- ----
 DWORD nLength;
 LPVOID lpSecurityDescriptor;
 BOOL bInheritHandle;

Secure Win32 operating systems such as Microsoft Windows NT use the
lpSecurityDescriptor member to enforce how and by which processes an object
is accessed. Because Windows 95 does not have a security system, it ignores
lpSecurityDescriptor. Like Microsoft Windows NT, Windows 95 uses the
bInheritHandle member to determine whether an object's handle can be
inherited by child processes.

To initialize a SECURITY_ATTRIBUTES structure so that a handle can be
inherited, set bInheritHandle to TRUE. The following code snippet shows how
to create a mutex with an inheritable handle:

 // Set the length of the structure, allow the handle to be
 // inherited, and use the default security descriptor (which
 // Windows 95 will ignore, but Windows NT will use.) Then create

 // a named, initially unowned mutex whose handle can be
 // inherited.

 SECURITY_ATTRIBUTES sa;
 HANDLE hMutex1;

 sa.nLength = sizeof(sa);
 sa.bInheritHandle = TRUE;
 sa.lpSecurityDescriptor = NULL;

 hMutex1 = CreateMutex(&sa, FALSE, "MUTEX1");

To prevent the handle from being inherited, set bInheritHandle to FALSE.
The following code example demonstrates creating a mutex with a
noninheritable handle:

 // Set the length of the structure, do not allow the handle
 // to be inherited, and use the default security descriptor
 // (which Windows 95 will ignore, but Windows NT will use).
 // Create a named, initially unowned mutex whose handle cannot
 // be inherited.

 SECURITY_ATTRIBUTES sa;
 HANDLE hMutex1;

 sa.nLength = sizeof(sa);
 sa.bInheritHandle = FALSE;
 sa.lpSecurityDescriptor = NULL;

 hMutex1 = CreateMutex(&sa, FALSE, "MUTEX1");

You can also prevent a handle to an object from being inherited by
specifying NULL in the call to Win32 object creation API function instead
of specifying a pointer to a SECURITY_ATTRIBUTES structure. This is
equivalent to setting bInheritHandle to FALSE and lpSecurityDescriptor to
NULL. For example:

 // Use NULL instead of pointer to SECURITY_ATTRIBUTES
 // structure to create a named, initially unowned
 // mutex whose handle cannot be inherited. A NULL security
 // descriptor will be used by Windows NT, but ignored by
 // Windows 95.

 HANDLE hMutex1;
 hMutex1 = CreateMutex(NULL, FALSE, "MUTEX1");

Cross-Platform Compatibility Information
--

Keep in mind that while Windows 95 does not have a security system, Windows
NT does. Windows 95 ignores the lpSecurityDescriptor member of the
SECURITY_ATTRIBUTES, but Windows NT uses it. If access to the object needs
to be controlled in a specific way on Windows NT, then the
lpSecurityDescriptor should be initialized by calling the Win32 security

API functions.

Additional reference words: 4.00
KBCategory: kbprg
KBSubcategory: BseSecurity

How to Create Non-rectangular Windows
PSS ID Number: Q125669

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Windows 95 and Windows NT version 3.51 provide a new API called
SetWindowRgn() that makes it easy for applications to create irregularly
shaped windows.

MORE INFORMATION
================

In previous versions of Windows and Windows NT, it was possible to create
only rectangular windows. To simulate a non-rectangular window required a
lot of work on the application developer's part. Besides handling all
drawing for the window, the application was required to perform hit-testing
and force underlying windows to repaint as necessary to refresh the
"transparent" portions of the window.

Windows 95 and Windows NT version 3.51 greatly simplify this by providing
the SetWindowRgn function. An application can now create a region with any
desired shape and use SetWindowRgn to set this as the clipping region
for the window. Subsequent painting and mouse messages are limited to this
region, and Windows automatically updates underlying windows that show
through the non-rectangular window. The application need only paint the
window as desired.

For more information on using SetWindowRgn, see the Win32 API
documentation.

Additional reference words: 4.00
KBCategory: kbui
KBSubcategory: UsrMisc

How to Debug Flat Thunks
PSS ID Number: Q133722

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Debugging flat thunks generated by the thunk compiler can be difficult
because the thunk mechanism is complex and debugging tools capable of
tracing through thunks are difficult to use. This article presents an
overall strategy for debugging flat thunks, several specific debugging
techniques, and a troubleshooting guide that explains how to fix many
common thunking problems.

MORE INFORMATION
================

Limitations on What a Target DLL Can Do

Before you get started debugging thunks, keep in mind that there are some
limitations on what a target DLL can do inside a thunk. This is because a
Win16-based application calling a Win32-based DLL is not a Win32-based
process; likewise, a Win32-based application calling a Win16-based DLL is
not a Win16-based process. Common specific limitations include:

 - You cannot create threads inside a thunk from a Win16-based application
 to a Win32-based DLL.

 - The code inside Win32-based DLLs called by thunks should require little
 stack space because the calling Win16-based processes have much smaller
 stacks than do Win32-based applications.

 - Win16-based DLLs that contain interrupt service routines (ISRs) must
 not thunk to Win32-based DLLs while handling interrupts.

 - Win32-based applications must not pass pointers to data located on the
 stack as parameters of thunks or call Win16-based DLLs that switch
 stacks.

Why Debugging Flat Thunks Can Be Difficult
--

Debugging flat thunks is difficult partly because the flat thunk mechanism
is a complex part of the Windows kernel. Its complexity stems from the fact
that it must transform function calls in 32-bit compiled code into calls
compatible with 16-bit code and vice versa. Because 32-bit code uses
different data types and CPU register sets from 16-bit code, the flat thunk

mechanism must translate function parameters, switch stacks, and translate
return values. It is optimized for speed, yet must allow preemptive Win32
code to call non-preemptive Win16 code. The thunk compiler makes creating
flat thunks much easier than manually creating them, but it isn't
foolproof.

Debugging flat thunks is difficult not only because the mechanism itself is
complex, but also because the necessary debugging tools are more difficult
to master. Application-level debuggers such as the Microsoft Visual C++
debugger and WinDBG cannot trace through thunks because they consist of
both 32-bit and 16-bit code and cause the system to claim or release the
Win16Mutex. To trace through a thunk, you need to use a system-level
debugger such as WDEB386.EXE. The major drawbacks to using WDEB386.EXE are
that you need to know Intel x86 assembly language, know how Intel x86
microprocessors work, and remember many debugger commands.

The Best Strategy to Use

The best strategy for debugging thunks is to divide and conquer because is
relatively easy and eliminates most of the problems before you need to
trace through assembly language code in a system-level debugger. Flat
thunks are composed of a Win32-based DLL and a Win16-based DLL, so it is
possible to test each of these in isolation before testing them together.
Create a Win16-based application to test the Win16-based DLL, and create a
Win32-based application to test the Win32-based DLL. Doing so allows you to
use a wide variety of debugging tools to verify that each side works
properly.

Preliminary Checklist - Before Compiling with the Thunk Compiler
--

Once you've verified that each side works correctly, it's time to put the
two together to test the thunk itself. Before you compile the thunk with
the thunk compiler, make a preliminary check of the following items:

1. In your thunk script, make sure that each function has the correct
 number and types of parameters. Also make sure that the parameter types
 are supported by the thunk compiler. If they aren't, you will have to
 change the parameter somehow to pass the data with a supported type.

2. If you pass any structures as parameters, make sure you use the same
 structure packing in your Win32-based DLL, Win16-based DLL, and thunk
 script. You set structure packing in your C/C++ compiler's command line,
 and in the thunk compiler command line. Note that the thunk compiler's
 packing switch is lowercase for the 16-bit side, and uppercase for the
 32-bit side.

3. Make sure that the functions you're thunking to are exported correctly
 and use the PASCAL calling convention if they're 16-bit, or _stdcall if
 they're 32-bit. The thunk compiler does not support the _cdecl and
 __fastcall calling conventions.

4. Make sure that your Win32-based DLL calls ThunkConnect32() each time its
 DllMain() function is called. Likewise, make sure the Win16-based DLL

 has an exported DllEntryPoint() function, separate from its LibMain(),
 that calls ThunkConnect16() and returns TRUE if ThunkConnect16()
 succeeds.

 NOTE: You actually call XXX_ThunkConnect16() and XXX_ThunkConnect32()
 where XXX is the symbol you define with the thunk compiler's -t switch.
 The code generated by the thunk compiler uses these symbols to generate
 tables that call ThunkConnect16() and ThunkConnect32.

5. Make sure that the value specified in the thunk compiler's command line
 -t switch is the same for both the Win32 and Win16 thunk DLLs. The value
 must also correspond to the prefix of the ThunkConnect calls in your
 Win16-based and Win32-based DLLs (see the note in step 4).

6. Verify that the Win16-based DLL has DLLEntryPoint exported with the
 RESIDENTNAME keyword in its module definition (.DEF) file. Without the
 RESIDENTNAME keyword, the ThunkConnect32/ThunkConnect16 call will fail
 and the DLLs will not load.

7. Verify in your Win16-based DLL's makefile that the resource compiler is
 marking the DLL as 4.0. If it is marked less than 4.0, it won't load and
 the thunk will fail.

8. If your 32-bit to 16-bit thunk function returns a pointer, make sure
 that the base type is the same size on both the 16-bit and 32-bit
 sides of the thunk. If the size of the base type is different, then
 the thunk compiler issues an error message stating, "Cannot return
 pointers to non-identical types." One way to work around this problem
 is to return a pointer to a different, but compatible, data type. For
 example, a thunk cannot return a pointer to an int because an int is
 two bytes on the 16-bit side, but four bytes on the 32-bit side. Change
 the thunk's return type from a pointer to an int to a pointer to a long
 in the thunk script and the source code of the Win16-based and Win32-
 based DLLs.

 If you write a 16-bit to 32-bit thunk that returns a pointer, the thunk
 compiler issues an error message stating, "Pointer types may not be
 returned." The thunk compiler does not allow 16-bit to 32-bit thunks to
 return pointer types because once the thunk has returned from the 32-bit
 function, the pointer will not point to data in the correct Win32-based
 process address space. This is because the address spaces of all Win32-
 based processes use the same range addresses and are preemptively
 context-switched.

9. If the linker reports an "unresolved external" error and the symbol
 is a function name that is spelled consistently throughout all source
 code, module definition files, and the thunk script, make sure that
 all occurrances of its prototype are consistent. On the Win32 side, the
 thunk function must be declared with the __stdcall type; on the Win16
 side, the function must be declared with the PASCAL type. In C++
 projects, be sure to declare and define both sides of the thunk function
 with the extern "C" linkage specifier in addition to the __stdcall or
 the PASCAL type.

Trouble-Shooting Guide - After Compiling with the Thunk Compiler

--

After you check the preliminaries, build your thunk DLLs and try to run
them. If they run, continue with further testing to make sure they're rock
solid. If they don't run, use the following troubleshooting guide to
determine and fix the cause of the problem.

ThunkConnect16() in the Win16 or ThunkConnect32() in the Win32 side fails:

1. Run the debugging versions of the system DLLs. The debugging versions of
 KERNEL32.DLL and KRNL386.EXE contain many diagnostic messages to tell
 you why the thunk did not intialize. To run the debugging versions of
 the system DLLs, use the "Switch to Debug DLLs" icon in the Start Menu
 under Win32 SDK Tools. Use the "Switch to Non-debugging DLLs" to switch
 back to the retail version.

2. Verify that the Win16-based DLL has a call to ThunkConnect16() and the
 Win32-based DLL has a corresponding call to ThunkConnect32(). If one of
 these is missing, then the other will fail, and the thunk DLLs will fail
 to load.

3. Put breakpoints in your Win32 DLL's DllMain(), and in your Win16 DLL's
 DllEntryPoint() and LibMain() functions to see which DLLs are not
 loading.

If your ThunkConnect16() and ThunkConnect32() calls are working properly,
but the thunk still isn't, it is time to simplify your thunk. You can
actually attack this in two ways. First, start by removing parameters from
the thunk one by one and recompiling it. Or, second, create a simple thunk
that works, and build it up until it fails by following these steps:

1. Create a simple thunk and execute it just to make sure you have the
 thunk mechanism set up correctly. A good choice for a simple thunk is a
 function with no return value and no parameters. If even the simple
 thunk doesn't work, run through the preliminary checklist above to make
 sure you have things set up correctly. Then proceed with step 2.

2. Check to make sure the target DLL and any DLLs it relies on can be found
 and loaded. If one is missing, or the loader can't find it, the thunk
 won't work.

3. Make sure your target DLL isn't doing something that it can't in the
 context of a thunk.

Once you have a simplified thunk that works, but your real thunk still
doesn't work, follow these steps:

1. Add parameters to the simple thunk one at a time to determine if a
 parameter is causing the failure. If one is, make sure that the
 parameter is the right type, that the function is declared and defined
 with the same number and types of parameters in both DLLs and in the
 thunk compiler, and that the function is declared as PASCAL or _stdcall.

2. If your target DLL is a Win16-based DLL and it can't access its global
 or static data, make sure you've exported the function correctly. If you

 use the /GD switch with Visual C++, you must declare and define the
 function with the __export keyword in the Win16-based DLL's source code.
 Just listing the function's name in the DLL's module definition (.DEF)
 file is not enough because the compiler does not process the .DEF file,
 so it won't generate the prolog and epilog code that exported functions
 require.

3. If calls to LocalAlloc() in your target Win16-based DLL cause general
 protection (GP) faults, make sure your function is exported as described
 in step 2.

4. If you get a GP fault in KERNEL32 just after your target Win16-based
 function returns, make sure the target function is declared and defined
 as PASCAL. The C calling convention cannot be used. Although uncommon in
 C or C++ code, but more likely in assembly language, make sure that the
 target function didn't modify the DS, SS, BP, SI, or DI registers.

5. If you get a GP fault in your 32-bit thunk DLL or KERNEL32 immediately
 after your Win32-based target function returns, make sure that the
 target function is declared as _stdcall and that it didn't modify the
 DS, ES, FS, SS, EBP, EBX, ESI, or EDI registers. C or C++ code should
 not cause the registers to be modified, but assembly-language code
 should be checked carefully.

6. If your Win16-based target function returns to an invalid location, make
 sure it is declared and defined as FAR. This is especially important for
 small model DLLs; functions in medium and large model DLLs are FAR by
 default.

7. If you experience a GP fault in a Win16-based function when you access
 more than 64K of data from a pointer passed in as a parameter (that is,
 a thunked pointer), you need to allocate an array of tiled selectors, as
 described in the following article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q132005
 TITLE : DOCERR: AllocSelector & FreeSelector Documentation
 Incomplete

 On the Win16 side, thunked pointers always consist of a single selector
 with a limit of 64K, which means you cannot use them as huge pointers.
 The entire original range of data that the pointer addresses is
 accessible to the Win16-based target DLL - but only if it creates an
 array of tiled selectors to reference it, and if it uses huge pointer
 variables to access the data.

8. Make sure you only use a thunked pointer in the context of the thunk.
 Selectors allocated by the thunk compiler for use by Win16-based targets
 are freed as soon as the thunk returns.

9. Put breakpoints at the beginning of your target functions to make sure
 you're getting into them. If you are, and you've debugged the target
 side independently of the thunk, and the error is caused inside the
 target, then chances are good that the target is doing something that
 can't be done in a thunk, or referencing memory that doesn't exist.
 Please see steps 7 and 8.

Additional reference words: 4.00 95 quick
KBCategory: kbprg
KBSubcategory: BseMisc

How To Debug OLE Server Applications Using MSVC
PSS ID Number: Q151074

The information in this article applies to:

 - Microsoft OLE libraries included with:

 - Microsoft Windows NT, version 3.51
 - Microsoft Windows 95, version 4.0

SUMMARY
========

An OLE client application involves interaction with other OLE server
applications. This interaction could be with in-process or out-of-process
servers. The client application may or may not have debugging information.
These combinations make the debugging process of an OLE application
complicated. This article presents some techniques that can be used for
debugging OLE-enabled applications.

MORE INFORMATION
=================

Debugging an In-Process OLE Server Application
--

An OLE client application interacting with an in-process OLE server
application is simply loading an OLE server DLL in the client application
address space. To debug such an in-process server, standard DLL debugging
techniques can be used. For more information, please see the following
article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q85221
 TITLE : Debugging a Dynamic-Link Library (DLL) in Windows

Debugging an Out-of-Process OLE Server Application
--

In an OLE client application interacting with an out-of-process OLE server
application, the debugging involves crossing process spaces, which makes it
much more difficult. Following are few techniques that can be used to debug
out-of-process OLE server applications:

 - Setup a hardcoded breakpoint in the server, and when the breakpoint hits
 in the server code, the Microsoft Visual C++ (MSVC) debugger is
 launched. Then step through server code and add breakpoints at locations
 of interest in server code.

 Add the following line of code in the source code, where a hardcoded
 breakpoint is needed.

 DebugBreak();

 - Setup a breakpoint in the container/client application, then step into
 the code where the server code is called. The action of stepping into
 the code causes a new version of the MVSC debugger to be launched with
 the Server debug information. Then you can step through the server code
 and add breakpoints at locations of interest in the server code. To
 configure this, check in the MSVC option, the Tool Option, the debug
 tab, the Just-in-time debugging, and the OLE RPC debugging checkboxes
 that need to be checked. This technique requires source code and a debug
 version of the client application as well. For more information, please
 see the following article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q122680
 TITLE : Tutorial: Debugging OLE Applications

 - Launch the server application from the client and then find the process
 id of the server application using PView. Launch the MSVC -p <process
 ID>. This launches the MSVC option that attaches itself to the running
 server application. However, this technique is not useful in debugging
 the startup code of the server application. For more information, please
 see the following article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q120707
 TITLE : How to Debug an Active Process in Visual C++ 2.0

 - If the server application has registered the ClassFactory object with
 the system as single use (CoRegisterClassObject with CLS_SINGLEUSE
 flag), you can run the server application from the MSVC option as stand
 alone. To simulate the server being launched from the container/client
 application, you need to specify the /Embedding /Automation program
 arguments as applicable in the MSVC debug options and run the server
 application as stand alone. The /Embedding and /Automation switches do
 the appropriate server initialization, and register the class factory as
 if launched from the container/client application. Because the server's
 class factory is single use and not already connected, when the
 container/client application tries to hook up to the server, the
 container connects to the running server application in the debugger,
 and debugging is easier. For more information, please see the following
 article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q117558
 TITLE : Tutorial: Debugging OLE Client-Server Combinations

 - If the server application registers the ClassFactory object with the
 system as multiple use (CoRegisterClassObject with CLS_MULTIPLEUSE
 flag), run the server application from the MSVC option as stand alone.
 Since such servers register the ClassFactory on startup, you do not need
 to specify /Embedding /Automation program arguments in the MSVC debug
 options. When the container/client application tries to connect to the
 server, it connects to the instance of the server application in the
 debugger because the server's class factory is registered multiple use,
 and debugging is easier.

Additional reference words: 3.50 3.51 4.00
KBCategory: kbole kbtshoot kbhowto
KBSubcategory: LeTwoOth

How to Decipher EMR_SELECTOBJECT Records in Enhanced Meta File
PSS ID Number: Q142319

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)
 versions 3.5, 3.51, 4.0

SUMMARY
=======

The EMR_SELECTOBJECT record in an enhanced metafile can indicate that the
object to be selected is a stock object. It does so by setting the high
order bit in the handle. This article shows how to decipher those records
to get a handle to the stock object.

MORE INFORMATION
================

If an EMR_SELECTOBJECT record is encountered while enumerating the records
in an enhanced metafile, the dParm member of the ENHMETARECORD parameter is
normally an index into the handle table of the object to be selected.

However, if the high order bit of dParm[0] is set, the remaining bits
indicate the index that can be used with GetStockObject() to obtain a
handle to the object of interest.

For example, consider the following enumeration callback function:

int CALLBACK EnumEnhMetafileProc(HDC hDC,
 HANDLETABLE *lpHTable,
 ENHMETARECORD *lpEMFR,
 int nObj, LPARAM lpData)
{
 DWORD dwIndex;
 HGDIOBJ hObj;

 // Which record type is this record?
 switch(lpEMFR->iType)
 {
 case EMR_SELECTOBJECT: // It's a SelectObject() record
 // Is the high order bit set?
 if(lpEMFR->dParm[0] & 0x80000000)
 {
 // High order bit is set - its a stock object
 // Strip the high bit to get the index
 dwIndex = lpEMFR->dParm[0] & 0x7fffffff;
 // Pass the index to GetStockObject()
 hObj = GetStockObject(dwIndex);
 // Select the object into the DC
 SelectObject(hDC, hObj);
 }
 else

 {
 // High order bit wasn't set - not a stock object
 SelectObject(hDC,
 lpHTable->objectHandle[lpEMFR->dParm[0]]);
 }
 break;
 default:
 // Process other records
 PlayEnhMetaFileRecord(hDC, lpHTable, lpEMFR, nObj);
 break;
 }
 // Return non-zero to continue enumeration
 return 1;
}

Note that this information is important only if the application needs to
decipher the record. Simply passing the EMR_SELECTOBJECT record to
PlayEnhMetaFileRecord() is valid independent of whether or not the object
of interest is a stock object.

In Windows 95, optimizations built into the operating system can result in
a stock object record being recorded into the metafile even when a specific
non-stock object is requested. This can happen, for example, when an
application requests a solid brush of color RGB(128,128,128). The operating
system recognizes this as the GRAY_BRUSH stock object and enters the stock
object record into the metafile accordingly.

Additional reference words: Windows 95 4.00 3.50 Enumerate EnumEnhMetaFile
EnhMetaFileProc missing EMR_CREATEBRUSHINDIRECT
KBCategory: kbgraphic kbhowto
KBSubcategory: GdiMeta

How to Delete Keys from the Windows NT Registry
PSS ID Number: Q127990

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.5

There are two ways to delete registry keys: use REGEDT32.EXE or call
RegDeleteKey() from your application.

The documentation for RegDeleteKey() points out that the specified key to
be deleted must not have subkeys. If the key to be deleted does have
subkeys, RegDeleteKey() will fail with access denied. This happens despite
the fact that the machine account has delete privileges and the registry
handle passed to RegDeleteKey() was opened with delete access. The
additional requirement is that the key must have no subkeys.

This limitation does not exist in 16-bit Windows. The difference exists in
Windows NT because of atomicity and security considerations that 16-bit
Windows does not have.

You can select a key with subkeys and delete it with REGEDT32. This is
because REGEDT32 recursively deletes the subkeys for you, making multiple
call to RegDeleteKey(). You should use recursive subkey deletion in your
application as well, if you need to delete keys that have subkeys.

Additional reference words: 3.50
KBCategory: kbprg
KBSubcategory: BseMisc

How to Design Multithreaded Applications to Avoid Deadlock
PSS ID Number: Q126768

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Debugging a multithreaded application that deadlocks is challenging because
the debugger cannot identify for you which thread owns which resource. You
would have to track this information in your code. Because it is difficult
to debug a deadlock situation, it is important to design your application
to avoid deadlock.

This article is a brief introduction to a very complex topic. There are
references at the bottom of this article for additional information.

The key point to keep in mind when designing a multithreaded program is
that resources must always be requested in the same order.

MORE INFORMATION
================

The Win32 API provides WaitForSingleObject() and WaitForMultipleObjects()
for requesting resources with handles. You would use a different method to
request other resources, depending on the resource type.

Many deadlocks occur because resources are not requested in the same order
by the application threads. For example:

 - Thread 1 holds resource A and wants resource B.

 - Thread 2 holds resource B and wants resource A.

Both threads block forever, resulting in deadlock. There are many other
possible scenarios.

To avoid this problem, identify all of your application's critical
resources and order them from least precious to most precious. Design your
code such that if a thread needs several resources, it requests them in
order, starting with the least precious resource. Resources should be freed
in the reverse order and as soon as it is possible. This is not a
requirement to avoid deadlock, but it is good practice.

In the example given above, suppose that resource B is more precious than
resource A. Here's how the code would resolve the situation:

 - Thread 2 already holds B, but because it wants A, it releases

 B and waits for A.

 - Thread 1 grabs B, then begins the task. It releases A when possible.

 - Thread 2 grabs A and waits for B.

 - Thread 1 finishes the task, then releases B.

 - Thread 2 grabs B, finishes the task, then releases A, then releases B.

The reason you should request the least precious resource first is that it
doesn't matter as much if you hold it longer while waiting to acquire all
the resources that you need. If the resource is precious, you want to hold
it for the smallest amount of time possible, so other threads can use it.

REFERENCES
==========

MSDN Development Library, "Detecting Deadlocks in Multithreaded Win32
Applications", by Ruediger Asche.

For more information, refer to a good book on operating system design.

Additional reference words: 3.50 4.00 95 race condition
KBCategory: kbprg
KBSubcategory: BseProcThrd

How to Detect All Program Terminations
PSS ID Number: Q125689

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The processes for detecting program terminations in fall into two
categories:

 - Win32 processes use WaitForSingleObject() or WaitForMultipleObjects()
 to wait for other Win32 processes, Windows 16-bit processes, and
 MS-DOS-based applications to terminate.

 - Windows 16-bit processes, on the other hand, must use the TOOLHELP
 NotifyRegister() function. The 16-bit processes can be notified when
 other 16-bit processes and MS-DOS-based applications exit, but have the
 limitation of not being notified of Win32 process activity.

MORE INFORMATION
================

Win32 processes can use WaitForSingleObject() or WaitForMultipleObjects()
to wait for a spawned process. By using CreateProcess() to launch a Win32
process, 16-bit process, or MS-DOS-based application, you can fill in a
PROCESS_INFORMATION structure. The hProcess field of this structure can be
used to wait until the spawned process terminates. For example, the
following code spawns a process and waits for its termination:

 STARTUPINFO StartupInfo = {0};
 StartupInfo.cb = sizeof(STARTUPINFO);
 if (CreateProcess(NULL, szCommandLine, NULL, NULL, FALSE,
 0, NULL, NULL, &StartupInfo, &ProcessInfo))
 {
 WaitForSingleObject(ProcessInfo.hProcess, INFINITE);
 /* Process has terminated */
 ...
 }
 else
 {
 /* Process could not be started */
 ...
 }

If necessary, you can put this code into a separate thread to allow the
initial thread to continue to execute.

This synchronization method is not available to 16-bit processes. Instead,
they must use the TOOLHELP NotifyRegister function to register a callback
function to be called when a program terminates. This method will detect
the termination of 16-bit processes and MS-DOS-based applications, but not
Win32 processes.

The following code shows how to register a callback function with
NotifyRegister():

 FARPROC lpfnCallback;

 lpfnCallback = MakeProcInstance(NotifyRegisterCallback, ghInst);
 if (!NotifyRegister(NULL, (LPFNNOTIFYCALLBACK)lpfnCallback,
 NF_NORMAL))
 {
 MessageBox(NULL, "NotifyRegister Failed", "Error", MB_OK);
 FreeProcInstance(lpfnCallback);
 }

The next section of code demonstrates the implementation of the callback
function:

 BOOL FAR PASCAL __export NotifyRegisterCallback (WORD wID,
 DWORD dwData)
 {
 HTASK hTask; // task that called the notification callback
 TASKENTRY te;

 // Check for task exiting
 switch (wID)
 {
 case NFY_EXITTASK:
 // Obtain info about the task that is terminating
 hTask = GetCurrentTask();
 te.dwSize = sizeof(TASKENTRY);
 TaskFindHandle(&te, hTask);

 // Check if the task that is terminating is our child task.
 // Also check if the hInstance of the task that is
 // terminating is the same as the hInstance of the task
 // that was WinExec'd by us earlier in the program.

 if (te.hTaskParent == ghtaskParent &&
 te.hInst == ghInstChild)
 PostMessage(ghwnd, WM_USER+509, (WORD)te.hInst, dwData);
 break;

 default:
 break;
 }
 // Pass notification to other callback functions
 return FALSE;
 }

The NotifyRegisterCallback() API is called by the 16-bit TOOLHELP DLL in

the context of the process that is causing the event. Problems arising
because of reentrancy and notification chaining makes the callback function
subject to certain restrictions. For example, operations that cause
TOOLHELP events cannot be done in the callback function. (See the TOOLHELP
NotifyRegister function documentation in your Software Development Kit for
events that cause TOOLHELP callbacks.)

There is no way a 16-bit process can be notified when a Win32 process
exits. However, a 16-bit process can use TaskFirst() and TaskNext() to
periodically walk the task list to determine if a Win32 process is still
executing. This technique also works for 16-bit processes and MS-DOS-based
applications. For example, the following code shows how to check for the
existence of a process:

 BOOL StillExecuting(HINSTANCE hAppInstance)
 {
 TASKENTRY te = {0};

 te.dwSize = sizeof(te);
 if (TaskFirst(&te))
 do
 {
 if (te.hInstance == hAppInstance)
 return TRUE; // process found
 } while (TaskNext(&te));

 // process not found
 return FALSE;
 }

Refer to the TermWait sample for complete details on how to use
NotifyRegister and implement a callback function. For additional
information, please search in the Microsoft Knowledge Base using this word:

 TERMWAIT

Additional reference words: 4.00 95 end exit notification notify spawn
terminate termination
KBCategory: kbprg kbcode
KBSubcategory: BseProcThrd

How to Detect If a Color Is a Dithered Color
PSS ID Number: Q139201
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s versions 1.2, 1.25a, and 1.3
--

SUMMARY
=======

When you use a COLORREF (color) to draw into a display context (DC),
sometimes you need to ensure that the color is a solid color rather than a
dithered color.

MORE INFORMATION
================

If you need to test to see if a particular COLORREF is a solid color, you
can compare the COLORREF against the return value of GetNearestColor() to
see if they are equivalent.

For example, the following function returns TRUE if the COLORREF value that
is passed in exists as a solid color in the specified display context:

BOOL IsSolidColor(HDC hDC, COLORREF crColor)
{
 if (crColor == GetNearestColor(hDC, crColor)) {

 // Color is solid
 return TRUE;

 } else {

 // Color is dithered
 return FALSE;

 }
}

In some operations such as creating a brush, you may want to force GDI to
use a solid color. To be sure that you get a solid color, you can use the
GetNearestColor() function to retrieve the solid color that best matches a
specified logical color. Then use that color to create the solid brush.

For example, CreateSolidBrush(crRGB) will not guarantee a solid brush.
However, CreateSolidBrush(GetNearestColor(hDC, crRGB)) will guarantee a

solid brush for the device for which you passed the DC.

Additional reference words: 1.20 1.30 3.10 4.00 3.50 dither colorref
KBCategory: kbprg kbhowto
KBSubcategory: W32

How to Detect If a Screen Saver Is Running on Windows NT
PSS ID Number: Q150785
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)
--

SUMMARY
=======

In Windows NT, it is useful to determine whether a screen saver is running
on the system. Currently, there is no direct way to detect this state.

However, there is an indirect approach to determine if a screen saver is
running by testing for the existence of a desktop named "screen-saver" that
the winlogon component of Windows NT creates for the screen saver to
execute on. This desktop is created and destroyed when the screen saver is
started and stopped.

When you use the OpenDesktop() Win32 API to attempt to open the desktop
named "screen-saver", three scenarios result that help to determine whether
a screen saver is running:

1. The OpenDesktop() call succeeds: Close the returned desktop handle with
 the CloseDesktop() Win32 API. A screen saver is running.

2. The OpenDesktop() call fails and GetLastError() indicates
 ERROR_ACCESS_DENIED: The screen-saver desktop exists, but the caller
 does not have access to the desktop. A screen saver is running.

3. The OpenDesktop() call fails, and GetLastError() does not indicate
 ERROR_ACCESS_DENIED: If the error is ERROR_FILE_NOT_FOUND, the desktop
 does not exist and a screen saver is not running. Otherwise, an error
 occurred attempting to open the desktop. A screen saver is not running.

WORKAROUND
==========

Sample Code

 /**
 The following sample illustrates how to detect if a screen saver
 is running on Windows NT. This sample works by checking for the
 existence of a desktop named "screen-saver". This desktop is
 created dynamically by winlogon when a screen saver needs to be
 launched.
 **/

 #include <windows.h>
 #include <stdio.h>

 BOOL IsScreenSaverRunning(void);

 int
 __cdecl
 main(
 void
)
 {
 if(IsScreenSaverRunning()) {
 printf("Screen saver is running!\n");
 }
 else {
 printf("Screen saver is NOT running!\n");
 }

 return 0;
 }

 //
 // returns TRUE if a screen saver is running, or FALSE if not.
 //

 BOOL
 IsScreenSaverRunning(
 void
)
 {
 HDESK hDesktop;

 //
 // try to open the desktop that the screen saver runs on. This
 // desktop is created on the fly by winlogon, so it only exists
 // when a screen saver is invoked.
 //

 hDesktop = OpenDesktop(
 TEXT("screen-saver"), // desktop name where screen saver runs
 0,
 FALSE,
 MAXIMUM_ALLOWED // open for all possible access
);

 if(hDesktop == NULL) {

 //
 // if the call fails due to access denied, the screen saver
 // is running because the specified desktop exists - we just
 // don't have any access.
 //

 if(GetLastError() == ERROR_ACCESS_DENIED) return TRUE;

 //
 // otherwise, indicate the screen saver isn't running
 //

 return FALSE;
 }

 //
 // successfully opened the desktop (the screen saver is running)
 //

 CloseDesktop(hDesktop);

 return TRUE;
 }

Additional reference words: 3.50 3.51
KBCategory: kbprg kbhowto
KBSubcategory: GdiScrsav BseMisc CodeSam

How to Detect Slow CPU & Unaccelerated Video Under Windows 95
PSS ID Number: Q131259

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

Under Windows 95, use GetSystemMetrics(SM_SLOWMACHINE) to check for low-end
computers. It returns a nonzero value if the computer has a 386 CPU, is low
on memory, or has a slow display card.

The return values (bit flags) are:

 0x0001 - CPU is a 386
 0x0002 - low memory machine (less than 5 megabytes)

The following is notable for video:

 0x0004 - slow (nonaccerated) display card

Additional reference words: 4.00 win95 system display slow machine
KBCategory: kbui
KBSubcategory: UsrSys

How to Detect the Number of Colors Available in a DC
PSS ID Number: Q139202

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s versions 1.2, 1.25a, and 1.3

SUMMARY
=======

When writing an application that uses the GDI, you may sometimes need to
detect how many colors are available in the current video mode.

MORE INFORMATION
================

If you need to detect the total number of bits that are used to form a
pixel in a given display context, you can use the following algorithm:

int dBitsInAPixel = GetDeviceCaps(hdc, PLANES) *
 GetDeviceCaps(hdc, BITSPIXEL);

To determine how many colors are available, you can raise 2 to the power of
dBitsInAPixel and this will return the maximum number of colors that are
displayable at a given time in the specified display context (DC).

Additional reference words: 1.20 1.30 3.10 4.00 3.50 colorref rgb bpp
KBCategory: kbprg kbhowto
KBSubcategory: W32

How to Determine If a Device Is Palette Capable
PSS ID Number: Q72387

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

On a device that supports the Windows palette management function, an
application can create a logical palette, select the palette into a
device context (DC), and realize the palette, which maps its colors
into the system (hardware) palette. The GetDeviceCaps() API informs
an application whether a given device is capable of performing palette
manipulation and, if so, the size of the palette. This article
discusses the GetDeviceCaps() API and how it is used.

MORE INFORMATION
================

To determine whether a device can perform palette operations, call the
GetDeviceCaps() API with the RASTERCAPS parameter. If the RC_PALETTE bit of
the return is set, the device supports the palette management functions.

To determine how many colors in the system palette are available for the
application to use, the following parameters can be used in a
GetDeviceCaps() call:

 Parameter Description
 --------- -----------

 SIZEPALETTE Total number of entries in the system palette
 NUMRESERVED Number of reserved (static) colors in the system
 palette

This functionality is demonstrated in the MyPal sample code that is
included on the Windows version 3.x Software Development Kit (SDK)
Source Code 2 disk. For a demonstration, start MyPal and click the
right mouse button.

The reserved colors are entries in the system palette that are used by
Windows and cannot be changed by an application [except by using
SetSystemPaletteUse(), which is not recommended]. The reserved colors are
used for the following purposes:

 Active border

 Active caption
 Background color MDI applications
 Desktop background color
 Push button faces
 Push button edges
 Push button text
 Caption text
 Disabled (gray) text
 Highlight color in controls (to highlight items in the control)
 Highlight text color
 Inactive border
 Inactive caption
 Inactive caption text (new to Windows version 3.1)
 Menu background
 Menu text
 Scroll-bar gray area
 Window background
 Window frame
 Window text

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbgraphic
KBSubcategory: GdiPal

How to Determine the Japanese OEM Windows Version
PSS ID Number: Q130054

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 Software Development Kit (SDK) version 3.5
 - Microsoft Win32s version 1.2

SUMMARY
=======

Because of the variety of computer manufacturers (NEC, Fujitsu, IBMJ, and
so on) in Japan, sometimes Windows-based applications need to know which
OEM (original equipment manufacturer) manufactured the computer that is
running the application. This article explains how.

MORE INFORMATION
================

There is no documented way to detect the manufacturer of the computer that
is currently running an application. However, a Windows-based application
can detect the type of OEM Windows by using the return value of the
GetKeyboardType() function.

If an application uses the GetKeyboardType API, it can get OEM ID by
specifying "1" (keyboard subtype) as argument of the function. Each OEM ID
is listed here:

 OEM Windows OEM ID

 Microsoft 00H (DOS/V)
 all AX 01H
 EPSON 04H
 Fujitsu 05H
 IBMJ 07H
 Matsushita 0AH
 NEC 0DH
 Toshiba 12H

Application programs can use these OEM IDs to distinguish the type of OEM
Windows. Note, however, that this method is not documented, so Microsoft
may not support it in the future version of Windows.

As a rule, application developers should write hardware-independent code,
especially when making Windows-based applications. If they need to make a
hardware-dependent application, they must prepare the separated program
file for each different hardware architecture.

Additional reference words: 3.10 1.20 3.50 1.20 kbinf
KBCategory: kbhw
KBSubcategory: wintldev

How to Determine the Type of Handle Retrieved from OpenPrinter
PSS ID Number: Q126258

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

OpenPrinter returns a valid handle when a printer name or a server name is
passed to it. Sometimes it may be necessary to determine if the returned
handle is a handle to a printer because some Win32 spooler functions only
accept printer handles and will fail on server handles. The following code
determines if a handle is a printer handle:

BOOL IsPrinterHandle(HANDLE hPrinter)
{
 DWORD cbNeeded;
 DWORD Error;
 BOOL bRet = FALSE;
 LPPRINTER_INFO_2 pPrinter;
 DWORD cbBuf;
 HANDLE hMem = NULL;

 if(!GetPrinter(hPrinter, 2, (LPBYTE)NULL, cbBuf, &cbNeeded))
 {
 Error = GetLastError();

 if(Error == ERROR_INSUFFICIENT_BUFFER)
 {
 hMem = GlobalAlloc(GHND, cbNeeded);
 if (!hMem) return bRet;
 pPrinter = (LPPRINTER_INFO_2)GlobalLock(hMem);
 cbBuf = cbNeeded;
 if(GetPrinter(hPrinter, 2, (LPBYTE)pPrinter, cbBuf, &cbNeeded))
 {
 bRet = TRUE;
 GlobalUnlock(hMem);
 GlobalFree(hMem);
 }
 else SetLastError(ERROR_INVALID_PRINTER_NAME);
 }
 else if(Error == ERROR_INVALID_HANDLE)
 {
 SetLastError(ERROR_INVALID_PRINTER_NAME);
 }
 }
 return bRet;
}

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprint kbcode

KBSubcategory: GdiPrn

How to Determine Which Version of Win32s Is Installed
PSS ID Number: Q121091

The information in this article applies to:

 - Microsoft Win32s, versions 1.1, 1.15, and 1.2

SUMMARY
=======

The "Win32s Programmer's Reference" describes how to use the
GetWin32sInfo() function in a program to determine which version of Win32s
is installed. This article explains how to determine which version of
Win32s is installed interactively.

MORE INFORMATION
================

Use one of the following two methods to determine interactively which
version of Win32s is installed:

1. Check the WIN32S.INI file in your Windows system directory. The Version
 entry contains the major version and the build number (m.mm.bbb.b). This
 entry should be modified by any Win32-based application which installs a
 later version of Win32s on your Windows machine.

 NOTE: Because it is up to the application vendor to set this value
 when installing Win32s, the value may not be accurate. Microsoft
 strongly urges all independent software vendors (ISVs) to modify the
 WIN32S.INI file so that this information is available to customers.

 -or-

2. If Win32s is installed on top of Windows for Workgroups, select the
 WIN32S16.DLL file from the Windows system directory in File Manager.
 Then from the File menu, choose Properties. The Version line contains
 the major version and the build number.

Version Information

Win32s Release versions and corresponding build numbers:

Win32s Release # Build #
---------------- -------
 1.1 1.1.88
 1.1a 1.1.89
 1.15 1.15.103
 1.15a 1.15.111
 1.2 1.2.123
 1.25 1.2.141
 1.25a 1.2.142
 1.30 1.2.159

 1.30a 1.2.166

OLE versions shipped with corresponding Win32s versions:

Release # OLE32 OLE16
--------- ----- -----
1.2 2.02 2.02
1.25 2.03 2.03
1.25a 2.03a 2.03a
1.30 2.03b 2.03a
1.30a 2.03c 2.03b

Additional reference words: 1.10 1.15 1.20 1.25 1.25a 1.30 1.30a
KBCategory: kbenv
KBSubCategory: W32s

How To Disable Initial RAS Wizard for Phonebook Extensions
PSS ID Number: Q151095
--
The information in this article applies to:

 - Microsoft Remote Access Service for Windows 95
--

SUMMARY
=======

By using Remote Access Service (RAS) phonebook extensions, it is possible
to programmatically create phonebook entries for Windows 95's dial-up
networking applet. However, these APIs do not allow you to disable the
automatic Windows 95 phonebook Entry Wizard. If you do not want Windows 95
to invoke the Connection Wizard to create the first phonebook entry, your
application must modify the registry.

MORE INFORMATION
================

On a fresh installation of Windows 95 with Dial-Up Networking installed,
the RAS phonebook has no entries. When a user opens the Dial-Up Networking
applet for the first time, a Wizard appears, instructing the user to create
the first phonebook entry "My Connection." The Wizard appears even if
another application already created the first phonebook entry.

To disable the initial Connection Wizard on Windows 95 manually, you can
run REGEDIT.EXE and set HKEY_CURRENT_USER\RemoteAccess\Wizard to the
following series of bytes: 80 00 00 00.

The code below shows how to disable the Dial-Up Networking Connection
Wizard programmatically. However, these registry modifications only apply
to Windows 95. Your application must determine the operating system you are
running on. All other versions of Windows and Windows NT, both current and
future, will not support this registry entry. For more information on
version checking, please see the following article in the Microsoft
Knowledge Base:

 ARTICLE-ID: Q92395
 TITLE : Determining System Version from a Win32-based Application

Sample Code

 #include <windows.h>
 #include <stdio.h>

 void main (void)
 {
 LONG rc;
 HKEY hKey;
 DWORD dwVal;

 printf ("Setting HKEY_CURRENT_USER\\RemoteAccess\\Wizard to"
 " 0x00000080.\n This will stop the wizard from appearing "
 "when the dial-up\nnetworking applet is opened.\n");

 //
 // Open the registry key
 //
 rc = RegOpenKeyEx (HKEY_CURRENT_USER, "RemoteAccess",
 0, KEY_SET_VALUE, &hKey);

 if (rc != ERROR_SUCCESS)
 {
 printf ("RegOpenKeyEx failed with return code %i\n", rc);
 return;
 }

 //
 // Modify the key
 //
 dwVal = 0x00000080;
 rc = RegSetValueEx (hKey, "wizard", 0, REG_BINARY,
 (LPVOID) &dwVal, sizeof (dwVal));

 if (rc != ERROR_SUCCESS)
 printf ("RegSetValueEx failed with return code %i\n", rc);

 //
 // Cleanup
 //
 RegCloseKey (hKey);
 }

Additional reference words: 4.00 win95 ras wizard registry remote access
KBCategory: kbprg kbhowto
KBSubcategory: NtwkRAS

How to Disable the Screen Saver Programmatically
PSS ID Number: Q126627

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51

SUMMARY
=======

Under Windows NT, you can disable the screen saver from your application
code. To detect if the screen saver is enabled, use this:

 SystemParametersInfo(SPI_GETSCREENSAVEACTIVE,
 0,
 pvParam,
 0
);

On return, the parameter pvParam will point to TRUE if the screen saver
setting is enabled in the System control panel applet and FALSE if the
screen saver setting is not enabled.

To disable the screen saver setting, call SystemParametersInfo() with this:

 SystemParametersInfo(SPI_SETSCREENSAVEACTIVE,
 FALSE,
 0,
 SPIF_SENDWININICHANGE
);

MORE INFORMATION
================

When the screen saver is activated by the system, it is run on a desktop
other than the user's desktop (similar to the login desktop displayed when
no one is logged in). Therefore, you cannot use FindWindow() to determine
if the screen saver is currently active.

Here are two methods that you can use to detect if the screen saver is
currently running:

1. Get the name of the current screen saver from the registry, parse the PE
 header of the screen saver binary to get the process name, then check
 for an active process with that name in the performance registry.

 -or-

2. Write a screen saver that would be spawned by the system and would in
 turn spawn the "real" screen saver. The first screen saver could notify
 your application when the screen saver has been activated or

 deactivated.

Additional reference words: 3.50
KBCategory: kbgraphic
KBSubcategory: GdiScrsav

How to Display Debugging Messages in Windows 95
PSS ID Number: Q125868

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In Windows 95, 16-bit and 32-bit Windows-based applications may use
OutputDebugString() to display debug messages. Furthermore, the 16-bit and
32-bit system DLLs may also display debug messages. This article describes
how to view these messages during application developement.

MORE INFORMATION
================

It is possible to use the 16-bit DBWIN application to display debug
messages from 16-bit Windows-based applications and from the debugging
versions of system DLLs (such as GDI.EXE, USER.EXE, and KRNL386.EXE). To
receive debug messages via DBWIN, you must install the Windows 95 SDK debug
components.

To receive messages from 32-bit Windows-based applications under Windows
95, you must debug the application with a Win32 debugger such as WinDbg, or
install WDEB386 as a .VxD or in the AUTOEXEC.BAT file. To receive messages
from the debugging versions of the 32-bit system DLLs (KERNEL32.DLL,
USER32.DLL, and GDI32.DLL), you must install the Windows 95 SDK debugging
components, in conjunction with WDEB386.

You can use WDEB386 to display debug messages from both 16-bit and 32-bit
Windows-based applications and from the debugging versions of system
components. Because WDEB386 works over a serial communications port, it is
necessary to use a serial terminal or second computer to operate it. For
more information about configuring and using WDEB386, please search for
articles in the Microsoft Knowledge Base by using this word:

 WDEB386

Alternative system level debuggers, which provide functionality
similiar to WDEB386, may in the future be provided by third-party vendors.

Also, you can write 32-bit application-level debuggers that display debug
messages from the debuggee by handling the DEBUG_EVENT structure member
OUTPUT_DEBUG_STRING_EVENT.

Additional reference words: 3.95 4.00
KBCategory: kbprg
KBSubcategory: BseErrdebug

How to Display Old-Style FileOpen Common Dialog in Windows 95
PSS ID Number: Q131282

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

If you want an application to revert back to the old-style FileOpen or
SaveAs common dialog box, you must either provide a dialog template or a
hook function in addition to not specifying the OFN_EXPLORER flag.

MORE INFORMATION
===============

Windows 95 provides a new flag for the File Open or Save As common dialog
box called OFN_EXPLORER. When set, this flag ensures that the File Open
dialog box displays a user interface that is similar to the Windows
Explorer (or so-called Explorer-style dialog box).

You may want your application to revert to the old Windows version 3.1
style dialog box. For example, you might want to maintain a user interface
consistent with the Windows NT user interface. Windows NT version 3.51
currently does not support the new Explorer-style File Open common dialog
box. The next version of Windows NT, however, should implement this new
feature.)

To display the old-style common dialog box:

 - Don't specify the OFN_EXPLORER value in the OPENFILENAME structure's
 Flags member.

 - Provide a dialog template or a hook. If the application does not have
 either one, a simple hook that always returns FALSE should suffice.

NOTE: When you specify a hook function for the old-style common dialog box
in Windows 95, the hDlg received in the hookProc is the actual handle to
the dialog containing the standard controls. This is not true, however, for
the new Explorer-style common dialog hookProc where the hDlg received is
the handle to a child of the dialog box containing the standard controls.
Therefore, to get a handle to the actual File Open or Save As dialog box,
an application should call GetParent() on the hDlg passed to the hook
procedure.

Additional reference words: 4.00 subdialog
KBCategory: kbui
KBSubcategory: UsrCmnDlg

How to Draw a Custom Window Caption
PSS ID Number: Q99046

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Microsoft Windows draws captions in the caption bar (or title bar) for all
eligible windows in the system. Applications need to specify only the
WS_CAPTION style to take advantage of this facility. The current version of
Microsoft Windows, however, imposes three significant restrictions on the
captions. An application that does not want to be tied by any of these
restrictions may want to draw its own caption. This article lists the
restrictions and the steps required to draw a window caption.

These restrictions also apply to Windows NT, but there are a few
differences for Windows 95.

It is important to note that an application should not draw its own caption
unless it has very good reasons to do so. A window caption is a user
interface object, and rendering it in ways different from other windows in
the system may obstruct the user's conceptual grasp of the Microsoft
Windows user interface.

MORE INFORMATION
================

Windows and Windows NT

The three important restrictions imposed by Microsoft Windows version 3.1
and Microsoft Windows NT on the caption for a window are:

- It consists of text only; graphics are not allowed.
- All text is centered and drawn with the system font.
- The length of the displayed caption is limited to 78 characters
 even when there is space on the caption bar to accommodate extra
 characters.

An application can essentially render its own caption consisting of any
graphic and text with the standard graphics and text primitives by painting
on the nonclient area of the window. The application should draw in
response to the WM_NCPAINT, WM_NCACTIVATE, WM_SETTEXT, and WM_SYSCOMMAND
messages. When processing these messages, an application should first pass
on the message to DefWindowProc() for default processing, then render its

caption before returning from the message. This ensures that Microsoft
Windows can properly draw the nonclient area. Because drawing the caption
is part of DefWindowProc()'s nonclient area processing, an application
should specify an empty window title to avoid any Windows-initiated drawing
in the caption bar. The following steps indicate the computations needed to
determine the caption drawing area:

1. Get the current window's rectangle using GetWindowRect(). This
 includes client plus nonclient areas and is in screen coordinates.

2. Get a device context (DC) to the window using GetWindowDC().

3. Compute the origin and dimensions of the caption bar. One needs to
 account for the window decorations (frame, border) and window
 bitmaps (min/max/system boxes). Remember that different window
 styles will result in different decorations and a different number of
 min/max/system boxes. Use GetSystemMetrics() to compute the
 dimensions of the frame, border, and the system bitmap dimensions.

4. Render the caption within the boundaries of the rectangle computed
 in step 3. Remember that the user can change the caption bar color
 any time by using the Control Panel. Some components of the caption,
 particularly text backgrounds, may need to be changed based on the
 current caption bar color. Use GetSysColor to determine the current
 color.

The following code sample draws a left-justified caption for a window
(the code sample applies only to the case where the window is active):

Sample Code

 case WM_NCACTIVATE:
 if ((BOOL)wParam == FALSE)
 {
 DefWindowProc(hWnd, message, wParam, lParam);
 // Add code here to draw caption when window is inactive.

 return TRUE;
 }
 // Fall through if wParam == TRUE, i.e., window is active.

 case WM_NCPAINT:
 // Let Windows do what it usually does. Let the window caption
 // be empty to avoid any Windows-initiated caption bar drawing

 DefWindowProc(hWnd, message, wParam, lParam);
 hDC = GetWindowDC(hWnd);
 GetWindowRect(hWnd, (LPRECT)&rc2);

 // Compute the caption bar's origin. This window has a system box
 // a minimize box, a maximize box, and has a resizeable frame

 x = GetSystemMetrics(SM_CXSIZE) +
 GetSystemMetrics(SM_CXBORDER) +

 GetSystemMetrics(SM_CXFRAME);
 y = GetSystemMetrics(SM_CYFRAME);
 rc1.left = x;
 rc1.top = y;

 // 2*x gives twice the bitmap+border+frame size. Since there are
 // only two bitmaps, two borders, and one frame at the end of the
 // caption bar, subtract a frame to account for this.

 rc1.right = rc2.right - rc2.left - 2*x -
 GetSystemMetrics(SM_CXFRAME);
 rc1.bottom = GetSystemMetrics(SM_CYSIZE);

 // Render the caption. Use the active caption color as the text
 // background.

 SetBkColor(hDC, GetSysColor(COLOR_ACTIVECAPTION));
 DrawText(hDC, (LPSTR)"Left Justified Caption", -1,
 (LPRECT)&rc1, DT_LEFT);
 ReleaseDC(hWnd, hDC);
 break;

Windows 95

On Windows 95, the text is not centered and the user can choose the Font.
In addition, your application might want to monitor the WM_WININICHANGED
message, because the user can change titlebar widths, and so forth,
dynamically. When this happens, the application should take the new system
metrics into account, and force a window redraw.

Additional reference words: 3.00 3.10 3.50 4.00 minimum maximum
KbCategory: kbui kbcode
KbSubCategory: UsrPnt

How to Draw a Gradient Background
PSS ID Number: Q128637

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

This article provides source code for drawing a gradient background pattern
similar to the one used in Microsoft Setup applications. The code will
compile and run on Windows version 3.1, Win32s, and Windows 95.

MORE INFORMATION
================

WARNING: ANY USE BY YOU OF THE CODE PROVIDED IN THIS ARTICLE IS AT YOUR
OWN RISK. Microsoft provides this code "as is" without warranty of any
kind, either express or implied, including but not limited to the implied
warranties of merchantability and/or fitness for a particular purpose.

/***
* *
* DrawBackgroundPattern() *
* *
* Purpose: This function draws a gradient pattern that *
* transitions between blue and black. This is *
* similar to the background used in Microsoft *
* setup programs. *
* *
***/
void DrawBackgroundPattern(HWND hWnd)
{
 HDC hDC = GetDC(hWnd); // Get the DC for the window
 RECT rectFill; // Rectangle for filling band
 RECT rectClient; // Rectangle for entire client area
 float fStep; // How large is each band?
 HBRUSH hBrush;
 int iOnBand; // Loop index

 // How large is the area you need to fill?
 GetClientRect(hWnd, &rectClient);

 // Determine how large each band should be in order to cover the
 // client with 256 bands (one for every color intensity level)
 fStep = (float)rectClient.bottom / 256.0f;

 // Start filling bands
 for (iOnBand = 0; iOnBand < 256; iOnBand++) {

 // Set the location of the current band
 SetRect(&rectFill,
 0, // Upper left X
 (int)(iOnBand * fStep), // Upper left Y
 rectClient.right+1, // Lower right X
 (int)((iOnBand+1) * fStep)); // Lower right Y

 // Create a brush with the appropriate color for this band
 hBrush = CreateSolidBrush(RGB(0, 0, (255 - iOnBand)));

 // Fill the rectangle
 FillRect(hDC, &rectFill, hBrush);

 // Get rid of the brush you created
 DeleteObject(hBrush);
 };

 // Give back the DC
 ReleaseDC(hWnd, hDC);
}

Additional reference words: 3.00 3.10 3.50 4.00 GRADIENT BACKGROUND DITHER
KBCategory: kbgraphic kbcode
KBSubcategory: GdiMisc

How to Examine the Use of Process Memory Under Win32s
PSS ID Number: Q129599

The information in this article applies to:

 - Microsoft Win32s, version 1.2

SUMMARY
=======

Under Windows, tools like HeapWalk and PWalk can be used to examine memory
use of 16-bit code. However, these tools cannot be used to look at memory
use of 32-bit code. This article discusses how to look at process memory
use under Win32s.

MORE INFORMATION
================

If you run the debug version of Win32s and kernel debugger WDEB386, you can
break into the debugger at any point by pressing CTRL+C and using debug
information from the Win32s VxD. Use the command .w32s to get the list of
information types available.

 #.w32s
 W32S debug routines:

 A - General Info
 B - Print Free LS ranges
 C - Print RRD & Section lists
 D - Print Modules list
 E - Toggle SwapOut trace
 F - Toggle PageFault trace
 G - count present alias pages
 H - List RRD Commit List
 I - Toggle Virtual Alloc/Free trace
 J - Toggle Mapped Section trace
 K - List Locked Pages
 [ESC] Exit W32S Debug Routines

Option C gives you information about the sparse memory usage.

The memory for .EXE and .DLL files is allocated in the sparse memory.
Here's an example printout using option C:

RRD List:
Index Start Size Owner #Commits CommSize #PresPg
00000000 87AA0000 0000E000 00000000 - VIEW - - VIEW - - VIEW -
00000001 87A90000 00001000 00001F37 00000001 00001000 00000001
00000002 87A50000 00040000 00000000 00000000 00000000 00000000
00000003 87A40000 00002000 00000000 - VIEW - - VIEW - - VIEW -
00000004 87A30000 00009000 00000000 - VIEW - - VIEW - - VIEW -
00000005 87A20000 00002000 00000000 - VIEW - - VIEW - - VIEW -
00000006 87A10000 00002000 00000000 - VIEW - - VIEW - - VIEW -

00000007 87910000 00100000 00001F37 00000001 00001000 00000001
00000008 878F0000 00020000 00001F37 00000001 00020000 00000002
00000009 878C0000 00021000 00001F37 00000001 00021000 00000001
0000000A 878B0000 00005000 00000000 00000001 00005000 00000005
0000000B 87860000 00043000 00000000 00000001 00043000 00000031
0000000C 87830000 0002D000 00000000 00000001 0002D000 0000000C
0000000D 87810000 00011000 00000000 00000001 00011000 0000000E
0000000E 80869000 00001000 00001F37 00000001 00001000 00000000
0000000F 87800000 00002000 00001F37 00000001 00002000 00000001
00000010 80635000 00001000 00001F37 00000001 00001000 00000000
 ======== ======== ========
Total 00229000 000CD000 00000056

Sections List:
SecIndex hFile SecSize #Ref #Views CommSize #PresPg
00000001 00000004 00002000 00000000 00000001 00002000 00000001
00000002 00000005 00002000 00000000 00000001 00002000 00000001
00000003 00000006 00009000 00000000 00000001 00009000 00000003
00000004 00000007 00002000 00000000 00000001 00002000 00000001
00000005 00000008 0000E000 00000000 00000001 0000E000 00000001
 ======== ======== ========
Total 0001D000 0001D000 00000007

G. Total 000EA000 0000005D

The Size column contains the reserved size and the CommSize column contains
the committed size. The addresses are zero-based (ring 0), not based on
0xffff0000 (ring 3). Therefore, you must add 0x10000 to the addresses you
see in the list in order to get the ring 3 addresses.

Option D gives you the list of modules and where they reside in memory.
These addresses are zero-based addresses as well, as is any information
that you get from the VxD.

Another way to get information indicating where things are placed in memory
is to set the verbose loader flag (0x20) in the Win32sDebug variable in the
[386Enh] section of the SYSTEM.INI file.

NOTE: Do not add the 0x, just write Win32sDebug=20. The loader then will
print in the debug terminal information about each loaded module. For
example:

Open file D:\WIN32APP\FREECELL\FREECELL.EXE in mode 0xa0
LELDR: allocating 0x11000
LELDR: Module D:\WIN32APP\FREECELL\FREECELL.EXE [1] loaded at 0x87820000
LELDR: obj 1 loaded @ 0x87821000, 0x 5c00 bytes .text,flags=0x60000020
LELDR: obj 2 loaded @ 0x87827000, 0x 0 bytes .bss,flags=0xc0000080
LELDR: obj 3 loaded @ 0x87828000, 0x 200 bytes .rdata,flags=0x40000040
LELDR: obj 4 loaded @ 0x87829000, 0x a00 bytes .data,flags=0xc0000040
LELDR: obj 5 loaded @ 0x8782a000, 0x 2400 bytes .rsrc,flags=0x40000040
LELDR: obj 6 loaded @ 0x8782d000, 0x 200 bytes .CRT,flags=0xc0000040
LELDR: obj 7 loaded @ 0x8782e000, 0x a00 bytes .idata,flags=0x40000040
LELDR: obj 8 loaded @ 0x8782f000, 0x 1e00 bytes .reloc,flags=0x42000040
File D:\WIN32APP\FREECELL\FREECELL.EXE is closed

The addresses here are ring 3 addresses.

REFERENCES
==========

Please see the "Win32s Programmer's Reference" included in the Win32 SDK
for more information about the debugging features. This information is not
included in the version of the Win32s documentation distributed with Visual
C++.

Additional reference words: 1.20
KBCategory: kbprg
KBSubcategory: W32s

How to Extract the Profile Path from a Gina in Windows NT
PSS ID Number: Q142790
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.5, 3.51
--

SUMMARY
=======

This article explains how to get a profile path to return from a GINA in
Windows NT.

MORE INFORMATION
================

In a standard Windows NT system, interactively logged-on users are given a
profile. A profile is a registry hive that is tailored to a particular
user. The profile is typically used to save user-specific information such
as screen appearance, mouse click speeds, whether there is a screen saver,
whether the screen saver is secure, and so on. This profile, referenced
using the special registry key HKEY_CURRENT_USER, is loaded by Winlogon
during the interactive boot process.

The interface between Winlogon and GINA DLLs includes information passed
back from GINA that allows Winlogon to locate and load the logged-on user's
profile. The WlxLoggedOutSAS() pProfile parameter is used to return a
pointer to a structure of type WLX_PROFILE_V1_0.

The WLX_PROFILE_V1_0 structure is currently used to support remote and
mandatory profiles, which can be configured with User Manager for Domains
(usrmgr) | User properties | Profile | User Profile Path. This action can
be performed programmatically through the Windows NT LAN Manager API
NetUserSetInfo() at info-level 3.

If a NULL pointer is returned from WlxLoggedOutSAS() as the pProfile
parameter, Winlogon will handle the loading (and creation) of the user
profile. In this case, the optional, administrator-defined profile path
will be ignored for the logon.

Step-by-Step Procedure

Based on the supplied username and domain name, the following steps can
be used to determine if and what the administrator-defined profile path
is set to:

1. Determine the current domain name, with a call to the Windows NT LAN
 Manager API NetUserModalsGet() at info level 2. The returned
 USER_MODALS_INFO_2 structure member usrmod2_domain_name will contain
 the domain name. This call need only be made once, during the first
 logon attempt. Store the result of the first call in a global variable.

 The current domain name is needed for comparison against the logon
 domain name, in order to determine where to look up account information.

2. If the supplied domain name is not equal to the current domain name,
 get the computer name of the domain controller associated with the
 supplied domain. Use the Win32 API lstrcmpiW() for string comparison
 and the Windows NT LAN Manager API NetGetDCName() to obtain the
 computer name of the domain controller.

3. Use the Windows NT LAN Manager API NetUserGetInfo() at info-level 3
 to acquire the user account information for the specified user. When
 calling NetUserGetInfo(), target the approriate machine -- either the
 local machine by way of NULL, or the domain controller computer name
 acquired from NetGetDCName().

4. If the USER_INFO_3 structure member usri3_profile returned by
 NetUserGetInfo() is an empty string, no profile was defined by an
 administrator. In this case, WlxLoggedOutSAS() can return a NULL
 pointer as the pProfile parameter, and no further actions need to be
 performed; otherwise continue.

5. Copy the USER_INFO_3 structure member usri3_profile to storage
 allocated by HeapAlloc(GetProcessHeap()...). The following source
 code illustrates this point:

 HeapAlloc(GetProcessHeap(), 0,
 (lstrlenW(usri3_profile) + 1) * sizeof(WCHAR) // string + NULL
);

6. Allocate a block of memory of size WLX_PROFILE_V1_0. The following
 source code illustrates this point:

 HeapAlloc(GetProcessHeap(), 0, sizeof(WLX_PROFILE_V1_0));

7. Set the dwType member of the WLX_PROFILE_V1_0 structure to
 WLX_PROFILE_TYPE_V1_0.

8. Set the pszProfile member of the WLX_PROFILE_V1_0 structure to
 point to the copy of the USER_INFO_3 usri3_profile structure member.

9. Return a pointer to the allocated WLX_PROFILE_V1_0 structure from
 WlxLoggedOutSAS() as the pProfile parameter.

NOTE: The Windows NT LAN Manager APIs are Unicode only. Strings passed to
these API must be in Unicode form. Gina is also Unicode only, so this is
not usually an issue.

NOTE: It is important to free buffers allocated by the Windows NT LAN
Manager API. The Windows NT Lan Manager API NetApiBufferFree() can be used
for this purpose.

Windows NT Version Specific Information

In Windows NT 3.51 and above, Microsoft recommends that you call the Win32

API LogonUser() to obtain an access token representing the supplied
username and domain name. This API does not return information specific to
any authentication package, such as the user profile path. For this reason,
it is necessary to follow the steps outlined in this article.

In Windows NT 3.5, the LsaLogonUser() must be used to obtain an access
token representing the supplied username and domain name. This API does
return a profile path, so the steps outlined in this article do not apply.
However, the interface to LsaLogonUser() is subject to change in future
versions of Windows NT; LogonUser() should be used when possible.

Sample Code

/*
 The following function illustrates a WlxLoggedOutSAS() which obtains
 the user profile path, and returns the result if a profile path is
 found. This function is a modified version of WlxLoggedOutSAS() taken
 from the Win32 SDK version 3.51 gina sample, found in
 Mstools/Samples/Win32/Winnt/Gina on the MSDN CD-ROM.
*/

int
WINAPI
WlxLoggedOutSAS(
 PVOID pWlxContext,
 DWORD dwSasType,
 PLUID pAuthenticationId,
 PSID pLogonSid,
 PDWORD pdwOptions,
 PHANDLE phToken,
 PWLX_MPR_NOTIFY_INFO pMprNotifyInfo,
 PVOID * pProfile
)
{
 int result;
 PWLX_PROFILE_V1_0 pWlxProfile;
 PWSTR szProfile;
 // PMiniAccount pAccount;
 PGlobals pGlobals;

 pGlobals = (PGlobals) pWlxContext;

 result = pWlxFuncs->WlxDialogBoxParam(
 hGlobalWlx,
 hDllInstance,
 (LPTSTR) MAKEINTRESOURCE(IDD_LOGON_DIALOG),
 NULL,
 LogonDlgProc,
 (LPARAM) pGlobals);

 if (result == WLX_SAS_ACTION_LOGON)
 {
 result = AttemptLogon(pGlobals, pGlobals->pAccount,
 pLogonSid, pAuthenticationId);

 if (result == WLX_SAS_ACTION_LOGON)
 {
 *pdwOptions = 0;
 *phToken = pGlobals->hUserToken;

 if(!GetUserProfilePath(
 pGlobals->pAccount->pszUsername,
 pGlobals->pAccount->pszDomain,
 &szProfile
)) {
 //
 // error occurred acquiring profile path. Log error
 // here if appropriate. Default is to not provide
 // profile information as szProfile will be NULL
 // which causes *pProfile to be set to NULL
 //
 }

 //
 // if no profile is specified in the userinfo, let winlogon
 // handle locating the registry hive
 //
 if(szProfile == NULL) {
 *pProfile = NULL;
 }
 else {
 pWlxProfile = (PWLX_PROFILE_V1_0)HeapAlloc(
 GetProcessHeap(), 0, sizeof(WLX_PROFILE_V1_0));

 if(pWlxProfile == NULL) {
 //
 // error occurred allocating memory. Log error
 // here if appropriate. Free memory associated
 // with the acquired profile path. Default is to
 // not provide profile information by supplying
 // NULL as pProfile.
 //
 HeapFree(GetProcessHeap(), 0, szProfile);
 *pProfile = NULL;
 }
 else {
 //
 // the allocation succeeded -- fill in the profile
 // information
 //
 pWlxProfile->dwType = WLX_PROFILE_TYPE_V1_0;
 pWlxProfile->pszProfile = szProfile;
 *pProfile = pWlxProfile;
 }
 }

 pMprNotifyInfo->pszUserName =
 DupString(pGlobals->pAccount->pszUsername);
 pMprNotifyInfo->pszDomain =

 DupString(pGlobals->pAccount->pszDomain);
 pMprNotifyInfo->pszPassword =
 DupString(pGlobals->pAccount->pszPassword);
 pMprNotifyInfo->pszOldPassword = NULL;
 }
 }
 return(result);
}

/*
 The following function obtains the profile path for the supplied user
 on the supplied domain.

 If the function succeeds, the return value is TRUE.
 If the function fails, the return value is FALSE, and the ProfilePath
 is set to NULL.

 If no profile path exists for the supplied user, the ProfilePath
 parameter will be set to NULL. If ProfilePath is non-NULL, the caller
 is responsible for freeing the string via HeapFree(GetProcessHeap...).

 This source code relies on the lm.h header file and the netapi32.lib
 import library.
*/
BOOL
GetUserProfilePath(
 IN LPWSTR UserName, // UserName to retrieve profile path
 IN LPWSTR Domain, // Domain user resides on
 OUT LPWSTR *ProfilePath // result profile path. NULL == no profile
)
{
 LPWSTR wTargetComputer;
 PUSER_INFO_3 ui3 = NULL;
 PUSER_MODALS_INFO_2 umi2 = NULL;
 NET_API_STATUS nas;
 BOOL bSuccess = FALSE; // assume this function will fail

 *ProfilePath = NULL;

 //
 // get the local domain name.
 // NOTE: in a gina, it would be wise to retrieve this only once,
 // in DllMain during DLL_PROCESS_ATTACH. The pointer could be
 // saved in a global variable and then compared against below.
 //
 nas=NetUserModalsGet(NULL, 2, (LPBYTE *)&umi2);
 if(nas != NO_ERROR) {
 return FALSE;
 }

 __try {

 //
 // determine if you need to look up at the domain controller
 //

 if(lstrcmpiW(Domain, umi2->usrmod2_domain_name) == 0) {
 //
 // target computer is local machine
 //
 wTargetComputer = NULL;
 }
 else {
 //
 // target computer is the PDC computer name for the specified
 // domain
 //
 nas=NetGetDCName(NULL, Domain, (LPBYTE *)&wTargetComputer);
 if(nas != NO_ERROR) {
 __leave;
 }
 }

 //
 // fetch the info for the user on the appropriate machine
 //
 nas=NetUserGetInfo(
 wTargetComputer,
 UserName, // user name
 3, // info-level
 (LPBYTE *) &ui3
);

 if(nas != NO_ERROR) {
 __leave;
 }

 //
 // if there is no profile, indicate success.
 // Note that *ProfilePath will be a NULL pointer
 //
 if(*ui3->usri3_profile == L'\0') {
 bSuccess = TRUE;
 __leave;
 }

 //
 // allocate storage for profile string
 //
 *ProfilePath = HeapAlloc(GetProcessHeap(), 0,
 (lstrlenW(ui3->usri3_profile) + 1) * sizeof(WCHAR));

 if(*ProfilePath == NULL) __leave;

 //
 // copy the appropriate structure memory to allocated storage
 //
 if(lstrcpyW(*ProfilePath, ui3->usri3_profile) != NULL)
 bSuccess = TRUE; // indicate success if the copy succeeded

 } // try

 __finally {

 //
 // free the allocated buffers
 //
 if(umi2 != NULL)
 NetApiBufferFree(umi2);

 if(ui3 != NULL)
 NetApiBufferFree(ui3);

 if(wTargetComputer != NULL)
 NetApiBufferFree(wTargetComputer);

 if(!bSuccess) {
 if(*ProfilePath != NULL) {
 HeapFree(GetProcessHeap(), 0, *ProfilePath);
 *ProfilePath = NULL;
 }
 }

 } // finally

 return bSuccess;
}

Additional reference words: 3.50 LogonUser LsaLogonUser
KBCategory: kbprg kbhowto kbcode
KBSubcategory: BseSecurity CodeSam

How to Find Out Which Listview Column Was Right-Clicked
PSS ID Number: Q125694

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

You can use the technique described in this article to find out which
column was clicked after right-clicking the listview column header.

MORE INFORMATION
================

LVN_COLUMNCLICK notifies a listview's parent window when a column is
clicked using the left mouse button, but no such notification occurs when a
column is clicked with the right mouse button.

Windows 95 sends an NM_RCLICK notification to the listview's parent window
when a column is clicked with the right mouse button, but the message sent
does not contain any information as to which column was clicked, especially
if the window is sized so that the listview is scrolled to the right.

The correct way to determine which column was clicked with the right mouse
button, regardless of whether the listview is scrolled, is to send the
header control an HDM_HITTEST message, which returns the index of the
column that was clicked in the iItem member of the HD_HITTESTINFO struct.
In sending this message, make sure the point passed in the HD_HITTESTINFO
structure is relative to the header control's client coordinates. Do not
pass it a point relative to the listview's client coordinates; if you do,
it will return an incorrect column index value.

The header control in this case turns out to be a child of the listview
control of LVS_REPORT style.

The following code demonstrates this method. Note that while the code
processes the NM_RCLICK notification on a WM_NOTIFY message, you also
process the WM_CONTEXTMENU message, which is also received as a
notification when the user clicks the right mouse button.

case WM_NOTIFY:
{
 if ((((LPNMHDR)lparam)->code == NM_RCLICK))
 {
 HWND hChildWnd;
 POINT pointScreen, pointLVClient, pointHeader;
 DWORD dwpos;

 dwPos = GetMessagePos();

 pointScreen.x = LOWORD (dwPos);
 pointScreen.y = HIWORD (dwPos);

 pointLVClient = pointScreen;

 // Convert the point from screen to client coordinates,
 // relative to the listview
 ScreenToClient (ghwndLV, &pointLVClient);

 // Because the header turns out to be a child of the
 // listview control, we obtain its handle here.
 hChildWnd = ChildWindowFromPoint (ghwndLV, pointLVClient);

 // NULL hChildWnd means R-CLICKED outside the listview.
 // hChildWnd == ghwndLV means listview got clicked: NOT the
 // header.
 if ((hChildWnd) && (hChildWnd != ghwndLV))
 {
 char szClass [50];

 // Verify that this window handle is indeed the header
 // control's by checking its classname.
 GetClassName (hChildWnd, szClass, 50);
 if (!lstrcmp (szClass, "SysHeader32"))
 {
 HD_HITTESTINFO hdhti;
 char szBuffer [80];

 // Transform to client coordinates
 // relative to HEADER control, NOT the listview!
 // Otherwise, incorrect column number is returned.

 pointHeader = pointScreen;
 ScreenToClient (hChildWnd, &pointHeader);

 hdhti.pt = pointHeader;
 SendMessage (hChildWnd,
 HDM_HITTEST,
 (WPARAM)0,
 (LPARAM) (HD_HITTESTINFO FAR *)&hdhti);
 wsprintf (szBuffer, "Column %d got clicked.\r\n", hdhti.iItem);

 MessageBox (NULL, szBuffer, "Test", MB_OK);
 }
 }
 }
 return 0L;
}

Additional reference words: 4.00
KBCategory: kbui kbcode
KBSubcategory: UsrCtl

How to Find the Available Keyboard Layouts Under Windows NT
PSS ID Number: Q139571

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In some applications, you may want to find out what keyboard layouts are
currently available under Windows NT, so that the application can present a
list of the available keyboard layouts to the user.

The list of keyboard layouts that are currently available is in the
registry:

 HKEY_LOCAL_MACHINE, "system\currentcontrolset\control\keyboard layout"

You can use RegEnumKeyEx() to enumerate the subkeys (available keyboard
layouts). The data value for each subkey is the file name for the keyboard
layout.

MORE INFORMATION
================

The return value of LoadKeyboardLayout() tells you whether or not one
particular keyboard layout is available. The return value is 0 when the
keyboard layout is not available. However, LoadKeyboardLayout is not
working correctly on Japanese Windows NT version 3.51. It returns 0 even
when the requested keyboard layout is available.

Additional reference words: 4.00
KBCategory: kbprg kbhowto
KBSubcategory: wintldev

How to Find the Version Number of Win32s
PSS ID Number: Q125014
--
The information in this articles applies to:

 - Microsoft Win32s, versions 1.0, 1.1, and 1.2
--

SUMMARY
=======

This article describes how to obtain the version number information for
Win32s installed on a Windows 3.1 machine from one of the following places:

 - From an end user perspective, on either Windows for Workgroups 3.11 or
 Windows NT 3.5
 - A 16-bit application running on Windows 3.1
 - A 32-bit application running on Windows 3.1

The following section describes in more details how to obtain this
information in all the above situations.

MORE INFORMATION
================

From an End User Perspective

Because Win32s does not have a user interface, there is no obvious way to
get the version number information for Win32s that is installed on Windows
3.1. However, end users have the following two options:

 - Read the <windir>\SYSTEM\WIN32S.INI file, which has an entry for version
 information. Because this .INI file can be updated by the Setup program
 of any Win32s application, this information is not completely reliable.

 - From File Manager on Windows for Workgroups 3.11 or Windows NT 3.5,
 select the WIN32S16.DLL and choose Properties from the File menu. This
 method yields a dialog box with version information on Win32s. Remember
 that WIN32S16.DLL is a 16-bit DLL; however, File Manager on Windows NT
 3.5 can still read this version resource information.

From a 16-Bit Application

To get version number information for Win32s from a 16-bit application, use
the Win32s specific function, GetWin32sInfo(), which is documented in the
Win32s Programmer's Reference. This function is exported by the 16-bit
W32SYS.DLL file in Win32s 1.1 and later. The GetWin32sInfo() function fills
a specified structure with the information from Win32s VxD. Usually a 16-
bit Windows setup program should use this function to determine if Win32s
is already installed before continuing installation. Note that a 16-bit
program must use LoadLibrary and GetProcAddress to call the function
because the function did not exist in Win32s version 1.0.

The following example on using GetWin32sInfo() is extracted from the Win32s
Programmer's Reference:

// Example of a 16-bit application that indicates whether Win32s is
// installed, and the version number if Win32s is loaded and VxD is
// functional.

BOOL FAR PASCAL IsWin32sLoaded(LPSTR szVersion)
{
 BOOL fWin32sLoaded = FALSE;
 FARPROC pfnInfo;
 HANDLE hWin32sys;
 WIN32SINFO Info;

 hWin32sys = LoadLibrary("W32SYS.DLL");

 if (hWin32sys > HINSTANCE_ERROR) {
 pfnInfo = GetProcAddress(hWin32sys, "GETWIN32SINFO");
 if (pfnInfo) {
 // Win32s version 1.1 is installed
 if (!(*pfnInfo)((LPWIN32SINFO) &Info)) {

 fWin32sLoaded = TRUE;
 wsprintf(szVersion, "%d.%d.%d.0",
 Info.bMajor, Info.bMinor, Info.wBuildNumber);
 } else
 fWin32sLoaded = FALSE; // Win32s VxD not loaded.
 } else {
 // Win32s version 1.0 is installed.
 fWin32sLoaded = TRUE;
 lstrcpy(szVersion, "1.0.0.0");
 }
 FreeLibrary(hWin32sys);
 } else // Win32s not installed.
 fWin32sLoaded = FALSE;

 return fWin32sLoaded;
}

From a 32-Bit Application

To determine if Win32s is installed, use the function GetVersion(); to then
get the version of Win32s use the function, GetVersionEx(). This function
fills a specified structure with version information of Win32s on Windows
3.1. The following is an example illustrating the use of this function:

// Example of a 32-bit code that determines the operating system installed
// and the version number on all platforms: Windows NT, Windows 95, Win32s.

typedef BOOL (*LPFNGETVERSIONEX) (LPOSVERSIONINFO);

BOOL IsWin32sLoaded(char *szVersion)

{
 BOOL fWin32sLoaded = FALSE;
 DWORD dwGetVer;
 HMODULE hKernel32;
 OSVERSIONINFO ver;
 LPFNGETVERSIONEX lpfnGetVersionEx;

 // First, check if Win32s is installed
 dwGetVer = GetVersion();
 if (!(dwGetVer & 0x80000000))
 {
 // Windows NT is loaded
 // Note, GetVersion will also return version number on Windows NT

 return;
 }
 else if (LOBYTE(LOWORD(dwVersion))< 4)
 {
 // Win32s is loaded
 fWin32sLoaded = TRUE;
 }
 else {
 // Windows 95 is loaded
 // Note, GetVersion will also return version number on Windows 95

 return;
 }

 // Now, let's find the version number of Win32s
 hKernel32 = GetModuleHandle("Kernel32");
 if (hKernel32)
 {
 lpfnGetVersionEx = (LPFNGETVERSIONEX)GetProcAddress(hKernel32,
"GetVersionExA");
 if (lpfnGetVersionEx)
 {
 // Win32s version 1.15 or later is installed
 ver.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);
 if (!(*lpfnGetVersionEx)((LPOSVERSIONINFO) &ver))
 DisplayError("GetVersionEx");
 else
 wsprintf(szVersion, "%d.%d.%d - %s", ver.dwMajorVersion,
ver.dwMinorVersion,
 ver.dwBuildNumber, PlatformName(ver.dwPlatformId));
 }
 else
 {
// This failure could mean several things
// 1. On an NT system, it indicates NT version 3.1 because GetVersionEx()
// is only implemented on NT 3.5.
// 2. On Windows 3.1 system, it means either Win32s version 1.1 or 1.0 is
// installed. You can distinguish between 1.1 and 1.0 in two ways:
// a. Get version info from WIN32S16.DLL like File Manager on NT does.
// b. Thunk to 16-bit side and call GetWin32sInfo.

 }
 }

 return (fWin32sLoaded);
}

NOTE: In general, 32-bit applications that use Win32s should always ship
with the latest version of Win32s. Therefore the detection code above can
be greatly simplified if determination of previous versions of Win32s is
not needed.

Additional reference words: 3.10 win32s w32s win32 wfw
KBCategory: kbenv
KBSubcategory: W32s

How to Force a ScreenSaver to Close Once Started in Windows NT
PSS ID Number: Q140723
--
The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included
 with Microsoft Windows NT versions 3.1, 3.5, 3.51
--

SUMMARY
=======

Sometimes applications need to terminate a screensaver that is already
running. In Windows 3.1 or Windows 95, a screensaver could be terminated
easily by posting a WM_CLOSE message to the currently active screensaver
window as in this example:

 PostMessage (GetActiveWindow(), WM_CLOSE, 0, 0L);

Windows NT, however, introduces the concept of separate desktops, so that
applications can run on one, and screen savers can run on another. This
makes screensaver termination under Windows NT a bit more difficult.

MORE INFORMATION
================

Under Windows NT, obtaining a handle to the currently active screensaver
window is not as straightforward as it is in Windows 3.1 and Windows 95.
Calling GetForegroundWindow() returns NULL because the screensaver is
running on a different desktop than the calling application. Similarly,
calling FindWindow ("WindowsScreenSaverClass", NULL) to determine if the
screen saver is currently active won't work either.

The way to do it is to get a handle to the screen saver's desktop,
enumerate that desktop's windows, and then post a WM_CLOSE to the screen
saver window.

The following code demonstrates how to do this. Note that if a screen saver
password is set, the following code brings up the password dialog box,
prompts the user for a password, and then actually terminating the screen
saver application.

 BOOL CALLBACK KillScreenSaverFunc(HWND hwnd, LPARAM lParam)
 {
 PostMessage(hwnd, WM_CLOSE, 0, 0);
 return TRUE;
 }

 HDESK hdesk;

 hdesk = OpenDesktop(TEXT("Screen-saver"),
 0,
 FALSE,
 DESKTOP_READOBJECTS | DESKTOP_WRITEOBJECTS);

 if (hdesk)
 {
 EnumDesktopWindows(hdesk, KillScreenSaverFunc, 0);
 CloseDesktop(hdesk);
 }

Note that terminating a screensaver that is already running as demonstrated
above is totally separate from disabling the screen saver altogether,
so that no screen saver starts after the designated time period expires.
This can be done easily using:

 SystemParametersInfo(SPI_SETSCREENSAVEACTIVE,
 FALSE,
 0,
 SPIF_SENDWININICHANGE
);

This method works well for terminating the currently running screen saver.
However, one problem that you might encounter is that the system will not
restart the screen saver unless the user moves the mouse or presses a key.
If you need the screen saver to start up again, you'll need to reinitialize
the time-out period. Do this by:

 - Calling SystemParametersInfo(SPI_SETSCREENSAVEACTIVE, TRUE, 0,
 SPIF_SENDWININICHANGE).

 -or-

 - Using SetCursorPos() to simulate user input.

Both of these methods will cause the system to restart the time-out counter
for the screen saver.

Additional reference words: 3.10 3.50 deactivate disable stop running
turn off
KBCategory: kbgraphic kbhowto kbcode
KBSubcategory: GdiScrSav

How to Get and Set the Default Printer in Windows
PSS ID Number: Q135387

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In all versions of Windows, the appropriate way to get the default printer
is to use GetProfileString, and the appropriate way to set the default
printer is to use WriteProfileString. This works whether the default
printer information is stored in the WIN.INI file or in the registry.

MORE INFORMATION
================

Notes to Keep in Mind

 - The Device value you get or set actually contains three elements
 separated by commas as follows:

 <printer name>,<driver name>,<port>

 For example:

 My Printer,HPPCL5MS,lpt1:

 - When setting the default printer, you must specify valid names for these
 elements. That is, you must specify a valid printer, driver, and port.
 If not, programs such as Print Manager may set the printer back to the
 previous valid printer, and other programs may become very confused.

 - Windows 95 and Windows NT map most .INI file references to the registry.
 Because of this mapping, GetProfileString and WriteProfileString still
 function as they do under 16-bit Windows (Microsoft Windows and Windows
 for Workgroups).

 - After setting the default printer, notify all other applications of the
 change by broadcasting the WM_WININICHANGE message.

Sample Code

Under Windows NT, the default printer does not change based on this code,

this code will change only the default printer for this process. Another
application will still default to the original printer driver set as the
default.

// This code uses a sample profile string of "My Printer,HPPCL5MS,lpt1:"
// To get the default printer for Windows 3.1, Windows 3.11,
// Windows 95, and Windows NT use:
GetProfileString("windows", "device", ",,,", buffer, sizeof(buffer));

// To set the default printer for Windows 3.1 and Windows 3.11 use:
WriteProfileString("windows", "device", "My Printer,HPPCL5MS,lpt1:");
SendMessage(HWND_BROADCAST, WM_WININICHANGE, 0, 0L);

// To set the default printer for Windows 95 use:
WriteProfileString("windows", "device", "My Printer,HPPCL5MS,lpt1:");
SendMessage(HWND_BROADCAST, WM_WININICHANGE, 0L,
(LPARAM)(LPCTSTR)"windows");

// To set the default printer for Windows NT use:
/* Note printer driver is usually WINSPOOL under Windows NT */
WriteProfileString("windows", "device", "My Printer,WINSPOOL,lpt1:");
SendMessage(HWND_BROADCAST, WM_WININICHANGE, 0L, 0L);

There are two circumstances where the code won't work:

1. If the customer leaves out the SendMessage, no other application will
 recognize the change in the .INI settings.

2. If a different 32-bit application does not handle the WIN.INI change
 message, then it will appear to that application as if the default
 printer has not been changed. The user will need to exit and re-enter
 Windows 95 to have the other application recognize the printer change.

This is the preferred method of changing the printer if the code is to be
platform independent; this method will work on Windows 3.1, Windows 95 and
Windows NT.

For additional information, please see the following article(s) in the
Microsoft Knowledge Base:

 ARTICLE-ID: Q140560
 TITLE : How to Set the Default Printer Programmatically in Windows
 95

Additional reference words: 3.10 4.00 3.50 3.11 3.51
KBCategory: kbprint kbcode
KBSubcategory: GdiPrn

How to Get Message Text from Networking Error Codes
PSS ID Number: Q149409
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)
 for Windows NT version 3.51
--

SUMMARY
=======

In Windows NT, it is sometimes necessary to display error text associated
with error return codes returned from networking related API functions. For
example, this is needed with the family of functions that may return
networking specific error codes in the Windows NT Lan Manager API set.

The error text for these messages is found in the message table file named
Netmsg.dll, which is found in %systemroot%\system32. This file contains
error messages in the range NERR_BASE (2100) through MAX_NERR
(NERR_BASE+899). These error codes are defined in the Windows NT Lan
Manager header file Lmerr.h.

MORE INFORMATION
================

The LoadLibrary() and LoadLibraryEx() Win32 API functions can be used to
load Netmsg.dll. The FormatMessage() Win32 API can be used to map an error
code to message text given a module handle to the Netmsg.dll file.

Sample Code

/*
 The following sample illustrates how to display error text
 associated with Networking related error codes, in addition
 to displaying error text associated with system related error
 codes.

 This sample relies on the following import library:
 User32.lib

*/

#include <windows.h>
#include <stdio.h>

#include <lmerr.h>

void
DisplayErrorText(
 DWORD dwLastError
);

int
__cdecl
main(
 void
)
{
 //
 // display a networking related error string
 //
 printf("Network related error string follows:\n");
 DisplayErrorText(2226);

 //
 // display a system related error string
 //
 printf("\nSystem related error string follows:\n");
 SetLastError(ERROR_FILE_NOT_FOUND);
 DisplayErrorText(GetLastError());

 return 0;
}

void
DisplayErrorText(
 DWORD dwLastError
)
{
 HMODULE hModule = NULL; // default to system source
 LPSTR MessageBuffer;
 DWORD dwBufferLength;

 //
 // if dwLastError is in the network range, load the message source
 //
 if(dwLastError >= NERR_BASE && dwLastError <= MAX_NERR) {
 hModule = LoadLibraryEx(
 TEXT("netmsg.dll"),
 NULL,
 LOAD_LIBRARY_AS_DATAFILE
);
 }

 //
 // call FormatMessage() to allow for message text to be acquired
 // from the system or the supplied module handle
 //
 if(dwBufferLength = FormatMessageA(
 FORMAT_MESSAGE_ALLOCATE_BUFFER |
 FORMAT_MESSAGE_IGNORE_INSERTS |
 FORMAT_MESSAGE_FROM_SYSTEM | // always consider system table
 ((hModule != NULL) ? FORMAT_MESSAGE_FROM_HMODULE : 0),
 hModule, // module to get message from (NULL == system)
 dwLastError,
 MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), // default language
 (LPSTR) &MessageBuffer,

 0,
 NULL
))
 {
 DWORD dwBytesWritten;

 //
 // Output message string on stderr
 //
 WriteFile(
 GetStdHandle(STD_ERROR_HANDLE),
 MessageBuffer,
 dwBufferLength,
 &dwBytesWritten,
 NULL
);

 //
 // free the buffer allocated by the system
 //
 LocalFree(MessageBuffer);
 }

 //
 // if you loaded a message source, unload it
 //
 if(hModule != NULL)
 FreeLibrary(hModule);
}

Additional reference words: error string LanMan
KBCategory: kbprg kbhowto kbcode
KBSubcategory: NtwkMisc BseMisc CodeSam

How to Get Smallest Bounding Rectangle for Drawing Functions
PSS ID Number: Q139217

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Windows maintains an accumulated bounding rectangle for each application.
An application can retrieve this bounding rectangle by calling
GetBoundsRect, and it can set this rectangle by calling SetBoundsRect. But
this rectangle may not be the smallest bounding rectangle if your drawing
functions contain functions doing text output such as TextOut. GDI does not
calculate ahead of time how far across the TextOut functions are going to
draw. GDI just sets the right side of the bounding rectangle to a large
number.

MORE INFORMATION
================

To get an accurate and smallest bounding rectangle, call LockWindowUpdate
and pass the handle of the window to which you are going to draw. Then
Windows records the extent of any attempted operations in a bounding
rectangle without doing the actual drawing. When the window is unlocked by
LockWindowUpdate(NULL), you can either use GetUpdateRect or intercept the
rcPaint member of the PAINTSTRUCT in your WM_PAINT message handler to
retrieve this smallest bounding rectangle.

Additional reference words: 3.50 4.00 GetUpdateRect
KBCategory: kbgrahpic kbhowto
KBSubcategory: GdiDrw GdiMisc

How to Get Windows NT PolyDraw() Functionality in Windows 95
PSS ID Number: Q135059

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

This article shows by example how to get the functionality provided by the
Win32 function PolyDraw() in Windows 95.

MORE INFORMATION
================

The Windows NT PolyDraw() function draws a set of line segments and Bezier
curves. PolyDraw() can be used in place of consecutive calls to the
MoveToEx(), LineTo(), and PolyBezierTo() functions to draw disjoint
figures. The lines and curves are drawn using the current pen, and figures
are not filled. If there is an active path started by calling BeginPath(),
then PolyDraw() adds to the path. The points contained in the lppt array
and in the lpbTypes array indicate whether each point is part of a
MoveToEx(), LineTo(), or PolyBezierTo() operation. It is also possible to
close figures.

Code Sample

The following function enables you to get the functionality of the Windows
NT PolyDraw() function in Windows 95:

/**
 * *
 * FUNCTION: PolyDraw95(HDC, LPPOINT, LPBYTE, int) *
 * *
 * PURPOSE: Draws the points returned from a call to GetPath() *
 * to an HDC *
 * *
 * NOTES: This function is similar to the Windows NT PolyDraw *
 * function, which draws a set of line segments and Bezier *
 * curves. Because PolyDraw is not supported in Windows 95 *
 * this PolyDraw95 function is used instead. *
 * *
 ***/
BOOL PolyDraw95(HDC hdc, // handle of a device context
 CONST LPPOINT lppt, // array of points
 CONST LPBYTE lpbTypes, // line and curve identifiers
 int cCount) // count of points
{
 int i;

 for (i=0; i<cCount; i++)
 switch (lpbTypes[i]) {
 case PT_MOVETO :
 MoveToEx(hdc, lppt[i].x, lppt[i].y, NULL);
 break;

 case PT_LINETO | PT_CLOSEFIGURE:
 case PT_LINETO :
 LineTo(hdc, lppt[i].x, lppt[i].y);
 break;

 case PT_BEZIERTO | PT_CLOSEFIGURE:
 case PT_BEZIERTO :
 PolyBezierTo(hdc, &lppt[i], 3);
 i+=2;
 break;
 }

 return TRUE;
}

Additional reference words: 95 4.00 PolyDraw Draw Poly Stones Win95 GDI
KBCategory: kbgraphic kbcode
KBSubcategory: GdiMisc

How to Gracefully Fail at Service Start
PSS ID Number: Q115829

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51

SUMMARY
=======

If an error occurs while your service is running or initializing
(SERVICE_START_PENDING) and you need to stop the service process, do the
following:

1. Clean up any resources that are being used (threads, memory, and so
 forth). You should start sending a SERVICE_STOP_PENDING status if the
 clean up process is lengthy. Be sure to update the Service Control
 Manager as demonstrated in the Win32 SDK SERVICE sample.

2. Send out a SERVICE_STOPPED status from the last thread to terminate
 before it calls ExitThread().

3. Set SERVICE_STATUS.dwWin32ExitCode and/or
 SERVICE_STATUS.dwServiceSpecificExitCode to values that indicate why the
 service is stopping. If you return a value for the
 dwServiceSpecificErrorCode field, then the dwWin32ExitCode field should
 be set to ERROR_SERVICE_SPECIFIC_ERROR.

 The reason for setting these values is that if a service fails its
 operation, but returns an exit code of 0, the following error message is
 returned by default:

 Error 2140: An internal Windows NT error occurred

MORE INFORMATION
================

When the last service in the process has terminated (you may have multiple
services in the service process), the StartServiceCtrlDispatcher() call
in the main thread returns. The main routine should call ExitProcess()
because all of the services have terminated.

REFERENCES
==========

There is a termination sample in the "Win32 Programmer's Reference," in the
"Services" overview section (58.2.2), "Writing a ServiceMain Function."
This is a simple situation where the service process only consists of one
thread. This thread returns when it is ready to terminate, instead of
calling ExitThread().

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseService

How to Handle Data Types Correctly with the Thunk Compiler
PSS ID Number: Q142564
--
The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included
 with Microsoft Windows 95, version 4.0
--

SUMMARY
=======

The thunk compiler supports most of the built-in and user-defined types
that the C or C++ languages support. It also supports a subset of the
calling conventions that the Microsoft Visual C++ compiler supports. To
handle situations where you need to pass or return data of an unsupported
type, you need to massage the data into a type that the thunk compiler does
recognize. This article explains how to do so for commonly used types
supported by the C and C++ languages but not by the thunk compiler.

MORE INFORMATION
================

There are several strategies for handling data types and function calling
conventions that the thunk compiler does not support. These strategies
generally rely on substitution and pre- or post-processing the data, and
require an understanding of how the thunk compiler translates data. The
thunk compiler uses the following rules to translate data:

 - Automatically translate 32-bit pointers into 16-bit far pointers and
 vice-versa.

 - Pass signed and unsigned scalar types (varieties of char, int, and long)
 unmodified with the exception of int. Because the type int is 32 bits
 wide in 32-bit code and 16 bits wide in 16-bit code, truncate int values
 on the 16-bit side, and sign-extend them on the 32-bit side.

These two translation rules make thunks handle parameters as expected in C
or C++. A pointer is a pointer on both sides, and a scalar value is the
same on both sides too. These rules come in handy when you need to use the
Generic Thunk API functions in combination with flat thunks.

Before delving into how to handle specific data types, you need to consider
the general principles for substituting function calling conventions and
data types. These are simple:

 - Write wrapper functions around the thunk to handle unsupported calling
 conventions.

 - Substitute supported types for unsupported types in the thunk scripts.
 The supported type must be the same length as the unsupported type, and
 generally should not be a pointer type.

 - If the unsupported type is larger than eight bytes, then it usually

 should be handled by passing a pointer to it and then manually
 interpreting it on the other side of the thunk. Unions and arrays of
 structures fall into this category.

 - To handle unsupported types in return values, write wrapper functions
 for both sides of the thunk and where necessary, give the actual thunk
 function an extra parameter that points to a dynamically-allocated
 buffer.

Function Calling Conventions

The Windows 95 thunk compiler supports a subset of the calling conventions
supported by the Microsoft Visual C++ compiler. Only __stdcall is supported
on the 32-bit side of a thunk; on the 16-bit side, only __pascal is
supported. __cdecl and __fastcall are not supported calling conventions for
either the 16-bit or 32-bit sides of the thunk. Although the thunk must use
__pascal and __stdcall calling conventions, the thunk may call or be called
by other functions that use any calling convention.

To thunk to a function that uses the __cdecl or __fastcall calling
convention, you must create your thunk function with the supported calling
conventions and have the target side of the thunk call the real function.
Here is an example that shows how a Win32 application might call a 16-bit
__cdecl function:

/*---
Code inside Win32 application or DLL
---*/

/*
 Declaration for benefit of the 32-bit side of thunk, note
 that in Win32 programs, PASCAL is defined as __stdcall,
 and FAR is defined as nothing.
*/
void FAR PASCAL C_Function16 (int x);

/*
 MyCFunction is a C calling convention function to interface
 with rest of the Win32 application. It calls the thunk,
 which is __stdcall.
*/
void MyCFunction (int x)
{
 C_Function16 (x);
}

/*---
Code inside Win16 DLL (target of thunk)
---*/

// Declaration for the real C function
void Real_C_Function (int x);

/*

 C_Function16 is the 16-bit side of the thunk. In a 32->16
 thunk, it is the target. Here, it calls the real C function
 that the Win32 application wanted to call in the first
 place. The FAR macro and the __export keyword are used to
 make sure the function is exported correctly from the 16-bit
 DLL.
*/
void FAR PASCAL __export C_Function16 (int x)
{
 Real_C_Function (x);
}

/*---
Thunk script
---*/
enablemapdirect3216 = true;

void C_Function16 (int x)
{
}

If you try to build a thunk and don't use the __stdcall or __pascal calling
conventions, you will get "unresolved external" errors from the linker when
building because the function names produced by the C/C++ compiler don't
match the names in the code produced by the thunk compiler.

Return Values

The thunk compiler does not support all types as return values that the C
and C++ languages support. The limitations stem from the problems of
translating addresses from 32-bit address spaces to 16-bit address spaces
and vice-versa.

The thunk compiler supports returning all integral types. The signed and
unsigned varieties of char, short int, and long int are the same size on
both sides of a thunk and thus are returned unmodified. The values of the
int type will be truncated to 16-bits upon return from a 16->32 thunk, and
will be sign-extended to 32-bits on return from a 32->16 thunk.

Structures may be returned if they do not require repacking. A structure
does not require repacking if the types of all members of the structure are
the same size in 16-bit and 32-bit code and the structure is packed with
the same alignment on both sides of the thunk. Use #pragma pack to pack the
structure with the same value in the 32-bit and 16-bit source code, and
specify the same packing on the thunk compiler command line.

Thunks from 16-bit code to 32-bit code cannot return pointers because the
context of the 32-bit address space is not global. The 32-bit address space
for the Win32 target DLL is mapped between 4 megabytes and 2 gigabytes, and
it is context-switched as are all other Win32 process address spaces. This
means that a Win16 application or DLL could not use a pointer returned by a
16->32 thunk without causing a general protection (GP) fault. You can work
around this limitation by writing a wrapper function for the 16-bit side of

the thunk that allocates memory and passes it to the thunk function as an
extra parameter. The 32-bit side of the thunk should also be a wrapper
around the real function to handle the extra parameter and copy the data to
the memory allocated by the 16-bit wrapper function.

Pointers are supported as return types in 32->16 thunks as long as the base
type requires the same number of bytes on both sides of the thunk and does
not require repacking. If the size of the base type of a pointer differs
between the Win16 and Win32 sides, the thunk compiler generates an error.
For example, a char is one byte on both sides of the thunk, and thus a
pointer to a char is supported as a return type. A pointer to an int cannot
be returned because an int is 16 bits on the 16-bit side of the thunk, but
32 bits on the 32-bit side. A pointer to a structure may be returned if the
structure does not need to be repacked.

To return a pointer to a data type whose size is different on the 16-bit
and 32-bit sides of a 32->16 thunk, you should write a wrapper function
that returns the real type, and have the wrapper pass a buffer to the thunk
function as an extra parameter. The target side of the thunk should put the
return value into this buffer, and then the wrapper on the calling side
should return the data from the buffer once the target side of the thunk
returns.

The thunk compiler has one special type (bool) that is not found in C or
C++ compilers. You should use this type in your thunk scripts for functions
that return boolean values when the TRUE result is any non-zero value.

Floating-Point Data Types

The thunk compiler does not support any floating point types. There are
three floating point types to consider, and how you approach them depends
on which you need to use.

A float is four bytes long on both the 16-bit and 32-bit sides of a thunk.
A float can be passed to a thunk function by declaring it as a DWORD
(unsigned long) in the thunk script. This makes the thunk compiler pass a
four byte value without translating its value.

A double is eight bytes long on both the 16-bit and 32-bit sides of the
thunk. To pass a double to a thunk function, declare a struct containing
two DWORDs (unsigned longs) in the thunk script, and pass the struct into
the function in the thunk script. Here is an example 32->16 thunk:

/*---
Code on Win32 side of thunk
---*/

/*
 Declaration for the benefit of the 32-bit side of thunk,
 note that in Win32 programs, PASCAL is defined as __stdcall,
 and FAR is defined as nothing.
*/
double FAR PASCAL sqr16 (double x);

double sqr32 (double x)
{
 return(sqr16 (x));
}

/*---
Code inside Win16 DLL (target of thunk)
---*/

/*
 sqr16() is the 16-bit side of the thunk. In a 32->16 thunk,
 it is the target. The FAR macro and the __export keyword
 are used to make sure it is exported correctly from the 16-bit
 DLL.
*/
double FAR PASCAL __export sqr16 (double x)
{
 return (x * x);
}

/*---
Thunk script
---*/
typedef unsigned long DWORD;
typedef struct _MYDOUBLE
{
 DWORD dwLow;
 DWORD dwHigh;
} MYDOUBLE;

enablemapdirect3216 = true;

MYDOUBLE sqr16 (MYDOUBLE x)
{
}

In 16-bit code, a long double is a native 80-bit type of the floating point
processors in the Intel x86 microprocessor family. Because RISC processors
do not have a native 80-bit floating point type, C and C++ compilers for
Win32 platforms such as Microsoft Visual C++ implement this type as a
64-bit double. If you cannot tolerate the loss of precision of converting
80-bit long doubles to 64-bit doubles, then you should pass the 80-bit
value as a structure consisting of two DWORDs (unsigned longs) and a WORD
(unsigned short), and you will have to handle the value manually on the
32-bit side of the thunk.

Pointers

The thunk compiler automatically translates pointers to most types. It
properly handles pointers to the following data types:

 - All scalar data types
 - Structures
 - Pointers within structures if the object pointed to does not require
 repacking (such as the int type).

Pointers to pointers are translated partially. The "outside" pointer is
translated, but the pointer it points to -- the "inside" pointer-- is not
translated.

The thunk compiler does not handle all cases of pointers used in aggregate
types, such as arrays of pointers.

Finally, the thunk compiler places limitations on pointers as return values
as described in the "Return Values" section earlier in this article.

There may be times when you want to pass an address without having it
translated. Because the thunk compiler automatically translates pointers,
you should use the DWORD type instead of a pointer type to pass addresses
that you don't want translated. Then, you can use the untranslated address
on the target side of the thunk, possibly in calls to the Generic Thunk
APIs. However, keep in mind that addresses that have not been translated
will cause an access violation if dereferenced on the target side of the
thunk.

Unions and C++ Classes

Unions are not supported by the thunk compiler because it cannot determine
which type the union will actually hold at run time. For example, the
following union must be treated differently by the thunk compiler depending
on which member the application was actually using when it made the thunk
call:

 union
 {
 DWORD dwIntegerValue;
 LPSTR szFileName;
 }

The problem the thunk compiler has with this union is whether it should
generate code to pass the value unchanged, assuming that the dwIntegerValue
member will be used, or to translate the value as a pointer, assuming that
szFileName will be used. Because the thunk compiler cannot make this
determination, it cannot generate the correct code to handle this union.
You should handle union types in thunks by declaring a structure in the
thunk script large enough to hold the union, and then handle the union's
data manually on both sides of the thunk.

Do not thunk C++ objects. Objects are not supported by the thunk compiler
because there isn't any way to reliably pass them as parameters to thunks.
In addition to specifying the object's physical layout, a class may also
define a vtable which contains addresses of all the class's virtual
functions. Because all objects of a class share a single vtable, there is
no way to translate the vtable so that it can be used by some objects that
have been thunked and others that haven't.

Linked Lists and other Dynamic Data Structures
--

Although the thunk compiler supports structures with pointers, it does not
provide a way to handle linked lists and other dynamic structures. This is
because the thunk compiler must know the size of the data it translates at
compile time, but the number of elements that dynamically-allocated
structures contain is indeterminate at compile time.

REFERENCES
==========

Thunk Compiler reference in the Microsoft Win32 SDK Documentation
Generic Thunk API reference in the Microsoft Win32 SDK Documentation

Additional reference words: 4.00 GPF
KBCategory: kbprg kbhowto kbcode
KBSubcategory: BseMisc

How to Handle FNERR_BUFFERTOOSMALL in Windows 95
PSS ID Number: Q131462

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

When an application uses the Open File common dialog with the
OFN_ALLOWMULTISELECT flag, there is a danger that the buffer passed to the
common dialog in the OPENFILENAME.lpstrFile field will be too small. In
this situation, GetOpenFileName() will return an error value and
CommDlgExtendedError() will return FNERR_BUFFERTOOSMALL.

To work around this problem, watch for the Open or OK button to be pressed
in the dialog hook; then reallocate the buffer if necessary.

This technique works on Windows version 3.1, Windows NT, and Windows 95,
but the implementation details are different when dealing with Windows 95
Explorer-type dialog boxes versus traditional Open and Save common dialog
boxes. This article explains how to do it in Windows 95.

MORE INFORMATION
================

With the introduction of the new common dialogs for Windows 95, a new way
of handling the FNERR_BUFFERTOOSMALL error was developed. It is still
necessary to watch for the Open button to be pressed and reallocate the
buffer if needed, but the way to watch for the OK is much different.

When you install a hook on the Open File common dialog in Windows 95 using
the OPENFILENAME.lpfnHook member, the dialog you are hooking is a child of
the main Open File dialog. Therefore, to intercept the OK button, you need
to subclass the parent dialog. To do this, you can install the hook
procedure and watch for the CDN_INITDONE notification. The Open File dialog
will send this as part of a WM_NOTIFY message when the initialization for
the dialog is complete. For example:

LRESULT CALLBACK DialogHook(HWND hwnd, UINT uMsg, WPARAM wParam,
 LPARAM lParam)
{
 static HWND hwndParentDialog;
 LPOFNOTIFY lpofn;

 switch (uMsg)
 {
 case WM_INITDIALOG:
 // You need to use a copy of the OPENFILENAME struct used to
 // create this dialog. You can store a pointer to the

 // OPENFILENAME struct in the ofn.lCustData so you can retrieve
 // it here in the lParam. Once you have it, you need to hang on
 // to it. Using window properties provides a good thread safe
 // solution to using a global variable.

 SetProp(hwnd, "OFN", lParam);
 return (0);

 case WM_NOTIFY:
 // The OFNOTIFY struct is passed in the lParam of this message.

 lpofn = (LPOFNOTIFY) lParam;

 switch (lpofn->hdr.code)
 {
 CDN_INITDONE:
 // Subclass the parent dialog to watch for the OK
 // button.

 hwndParentDialog = GetParent(hwnd);
 g_lpfnDialogProc =
 (FARPROC) SetWindowLong(hwndParentDialog,
 DWL_DLGPROC,
 OpenFileSubclassProc);
 break;

 }
 return (0);

 case WM_DESTROY:
 // Need to clean up the subclassing we did on the dialog.
 SetWindowLong(hwndParentDialog, DWL_DLGPROC, g_lpfnDialogProc);

 // Also need to free the property with the OPENFILENAME struct
 RemoveProp(hwnd, "OFN");
 return (0);
 }
 return (0);
}

Once the parent dialog is subclassed, the program can watch for the actual
Open button. When the program gets the Open button command, it needs to
check to see if the buffer originally allocated is large enough to handle
all the files selected. The CommDlg_OpenSave_GetFilePath() API will return
the length needed. Here is an example of the subclass procedure:

LRESULT CALLBACK OpenFileSubclassProc(HWND hwnd, UINT uMsg, WPARAM wParam,
 LPARAM lParam)
{
 LPTSTR lpsz;
 WORD cbLength;

 switch (uMsg)
 {
 case WM_COMMAND:

 switch (LOWORD(wParam))
 {
 case IDOK:
 // Need to verify the original buffer size is large
 // enough to handle the files selected. The
 // CommDlg_OpenSave_GetFilePath() API will return the
 // length needed for this buffer.

 cbLength = CommDlg_OpenSave_GetFilePath(hwnd, NULL, 0);

 // OFN_BUFFER_SIZE is the size of the buffer originally
 // used in the OPENFILENAME.lpszFile member.

 if (OFN_BUFFER_SIZE < cbLength)
 {
 // The buffer is too small, so allocate a
 // new buffer.
 lpsz = (LPTSTR) HeapAlloc(GetProcessHeap(),
 HEAP_ZERO_MEMORY,
 cbLength);
 if (lpsz)
 {
 // The OFN struct is stored in a property of
 // the dialog window.

 lpofn = (LPOPENFILENAME) GetProp(hwnd, "OFN");

 lpofn->lpstrFile = lpsz;
 lpofn->nMaxFile = cbLength;
 }
 }

 // Now let the dialog handle the message normally.
 break;
 }
 break;
 }

 return (CallWindowProc(g_lpfnDialogProc, hwnd, uMsg, wParam, lParam));
}

The dialog should now return without error. Be aware that the buffer
allocated in the subclass procedure needs to be freed once the dialog
returns.

Finally, this technique only works for 32-bit applications that are using
the Explorer-type common dialogs. For 32-bit applications that don't use
the OFN_EXPLORER flag, Windows 95 thunks to the 16-bit common dialog and
the hook function only gets a copy of the OPENFILENAME structure.

Additional reference words: 4.00
KBCategory: kbui kbcode
KBSubcategory: UsrCmnDlg

How to Ignore WM_MOUSEACTIVATE Message for an MDI Window
PSS ID Number: Q62068

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

In order to make an MDI window to become active and have the caret be in
the same position as when the window was last active you need to process
the WM_MOUSEACTIVATE message and return MA_ACTIVATEANDEAT for the first
time. Therefore, you need to set a Boolean flag in the WM_MDIACTIVATE
message so that the return is set only once. The sample code below can be
used to modify the MULTIPAD sample application. Also, the following is
documentation on MA_ACTIVATE* messages, taken from the Windows 3.0 final
SDK README.WRI file:

 WM_MOUSEACTIVATE

 Return Value The return value specifies whether the window
 should be activated and whether the mouse event
 should be discarded. It must be one of the
 following values:

 Value Meaning
 ----- -------

 MA_ACTIVATE Activate the window.
 MA_NOACTIVATE Do not activate the window.
 MA_ACTIVATEANDEAT Activate the window and
 discard the mouse event.

SAMPLE CODE

/* --- multipad.c MPMDIWndProc section --- */

 case WM_MOUSEACTIVATE: // added
 if (bEatMessage) {
 bEatMessage = FALSE;
 return (LONG)MA_ACTIVATEANDEAT ;
 }
 /* else break */
 break;

 case WM_MDIACTIVATE:
 /* If we're activating this child, remember it */
 if (wParam){
 hwndActive = hwnd;

 hwndActiveEdit = (HWND)GetWindowWord (hwnd, GWW_HWNDEDIT);
 bEatMessage = TRUE; // added
 }
 else{
 hwndActive = NULL;
 hwndActiveEdit = NULL;
 }
 break;

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrMdi

How to Implement a Recursive RegDeleteKey for Windows NT
PSS ID Number: Q142491

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for
 Microsoft Windows NT version 3.51

SUMMARY
=======

In Windows 95, the RegDeleteKey function not only deletes the particular
key specified but also any subkey descendants. In contrast, the Windows NT
version of this function deletes only the particular key specified and will
not delete any key that has subkey descendants.

To delete a key and all of its subkeys in Windows NT, a recursive delete
function is implemented using RegEnumKeyEx and RegDeleteKey. This recursive
delete function works by: (1) traversing down each subkey branch, one
branch at a time, enumerating each key at each subkey level, until the last
subkey leaf is reached and (2) individually deleting each subkey in reverse
succession, one branch at a time, until even the particular key specified
is deleted.

MORE INFORMATION
================

Starting at the particular key specified, each key is traversed by using
RegEnumKeyEx, which determines if there are any subkeys. If so, the
subkey's name is passed to the recursive delete function in order to
traverse to the next subkey. This process is repeated for all subkey
descendants. When RegEnumKeyEx reports that there are no more subkeys (that
is, ERROR_NO_MORE_ITEMS) for the current key, a subkey leaf has been
reached.

Once the subkey leaf is deleted using RegDeleteKey, the recursive delete
function re-examines the parent key for any remaining subkeys. If a subkey
does exist, it is also traversed until a subkey leaf is reached and deleted
allowing the recursive delete function to re-examine the parent key. The
process is repeated for each subkey branch until no subkey branches remain.
Then the particular key specified may itself be deleted.

A point to remember when enumerating and deleting subkeys is to always
enumerate subkey index zero (that is, DWORD iSubkey = 0). Because keys are
reindexed after each key is deleted, the use of a non-zero subkey index
would result in keys not being deleted. This in turn would result in the
failure of the RegDeleteKey function when an attempt is made to delete the
subkey's parent key.

Partial Deletions

Failure to fully delete the particular key specified can be the result of

'partial deletions' (the failure to delete all available subkeys). Although
partial deletions can result from several situations, one possible cause is
individual key protection.

To protect against partial deletions caused by protected keys, you should
test each individual key to ensure that it is not protected from deletion.
To test if the current user has deletion rights on all the keys to be
deleted, you must traverse, enumerate, and open all subkeys with DELETE
privilege requested:

 RegOpenKeyEx(
 hStartKey,pKeyName, 0,
 KEY_ENUMERATE_SUB_KEYS | DELETE,
 &hKey))

If, however, between the time of the delete privilege test and the actual
attempt to delete, the key protection is altered, the recursive delete
function will still fail.

To truly protect the registry against partial deletion, you need to follow
a two-step process. First, prior to the deletion attempt, save the initial
state of the registry path to be deleted. Then, to recover from a partial
deletion, you could restore the registry to its former state using the
information already saved. If partial deletions are acceptable, however,
failure to delete a key could trigger the recursive delete function to fail
or the key to be skipped.

Sample Code

// The sample code makes no attempt to check or recover from partial
// deletions.
//
// A registry key that is opened by an application can be deleted
// without error by another application in both Windows 95 and
// Windows NT. This is by design.

DWORD RegDeleteKeyNT(HKEY hStartKey , LPTSTR pKeyName)
{
 DWORD dwRtn, dwSubKeyLength;
 LPTSTR pSubKey = NULL;
 TCHAR szSubKey[MAX_KEY_LENGTH]; // (256) this should be dynamic.
 HKEY hKey;

 // do not allow NULL or empty key name
 if (pKeyName && lstrlen(pKeyName))
 {
 if((dwRtn=RegOpenKeyEx(hStartKey,pKeyName,
 0, KEY_ENUMERATE_SUB_KEYS | DELETE, &hKey)) == ERROR_SUCCESS)
 {
 while (dwRtn == ERROR_SUCCESS)
 {
 dwSubKeyLength = MAX_KEY_LENGTH;
 dwRtn=RegEnumKeyEx(
 hKey,

 0, // always index zero
 szSubKey,
 &dwSubKeyLength,
 NULL,
 NULL,
 NULL,
 NULL
);

 if(dwRtn == ERROR_NO_MORE_ITEMS)
 {
 dwRtn = RegDeleteKey(hStartKey, pKeyName);
 break;
 }
 else if(dwRtn == ERROR_SUCCESS)
 dwRtn=RegDeleteKeyNT(hKey, szSubKey);
 }
 RegCloseKey(hKey);
 // Do not save return code because error
 // has already occurred
 }
 }
 else
 dwRtn = ERROR_BADKEY;

 return dwRtn;
}

Additional reference words:
KBCategory: kbusage kbprg kbhowto kbcode
KBSubcategory: BseMisc

How to Implement Context-Sensitive Help in Windows 95 Dialogs
PSS ID Number: Q125670

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In Windows versions 3.x, applications implement context-sensitive help for
dialog boxes by installing either a message filter hook, or a task-specific
keyboard hook that monitors the WM_KEYDOWN message and responds to F1 key
presses.

Windows 95 makes it easier because it provides a new WM_HELP message that
gets sent each time the user presses the F1 key, giving the application
a chance to bring up help information on the control that has the keyboard
focus or on the dialog box itself. This new WM_HELP message is not limited
to dialog boxes alone, as it gets sent to any window that has keyboard
focus or to the currently active window.

MORE INFORMATION
================

Windows 95 also provides a new dialog style, DS_CONTEXTHELP that adds a
question mark button to the dialog box's caption bar. This button, when
clicked, changes the cursor to a question mark with a pointer. When the
user clicks any control in the dialog box, Windows 95 sends a WM_HELP
message for that control. The dialog procedure should process the WM_HELP
message as follows:

 // Define an array of dword pairs,
 // where the first of each pair is the control ID,
 // and the second is the context ID for a help topic,
 // which is used in the help file.
 static const DWORD aMenuHelpIDs[] =
 {
 edt1, IDH_EDT1 ,
 lst1, IDH_LST1 ,
 lst2, IDH_LST2 ,
 0, 0
 };

 case WM_HELP:
 {
 LPHELPINFO lphi;

 lphi = (LPHELPINFO)lparam;
 if (lphi->iContextType == HELPINFO_WINDOW) // must be for a control
 {

 WinHelp (lphi->hItemHandle,
 "GEN32.HLP",
 HELP_WM_HELP,
 (DWORD)(LPVOID)aMenuHelpIDs);
 }
 return TRUE;
 }

Calling WinHelp() with the HELP_WM_HELP parameter as demonstrated above
displays the help topic in a pop-up window.

In addition to the WM_HELP message, Windows 95 provides a new
WM_CONTEXTMENU message that gets sent each time the user right-clicks a
window. Typically this message is processed by displaying a context menu
using the TrackPopupMenu() function. However, this message can be processed
to bring up help information by calling the WinHelp() function to display
the help topic in a pop-up window, as in this example:

 case WM_CONTEXTMENU:
 {
 WinHelp ((HWND)wparam,
 "GEN32.HLP",
 HELP_CONTEXTMENU,
 (DWORD)(LPVOID)aSampleMenuHelpIDs);
 return TRUE;
 }

NOTE: Look at the third parameter (HELP_CONTEXTMENU) passed to WinHelp()
this time. This causes a pop-up menu to come up that displays "What's
This?" text. It then displays the help topic in a pop-up window when the
menu item is selected.

Additional reference words: 4.00
KBCategory: kbui kbcode
KBSubcategory: UsrDlgs

How to Increase Windows NT System and Desktop Heap Sizes
PSS ID Number: Q125752

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.5

SUMMARY
=======

Sometimes, it may be necessary to increase the amount of memory that
Windows NT will make available for the system and desktop heaps. This can
be accomplished by editing an entry in the registration database. System
heap items are things like desktops and one-time-allocated items like
system metrics. The items that come out of the desktop heap are items such
as windows, menus, hook structures, queues, and some thread information.

MORE INFORMATION
================

The entry to be edited is under:

HKEY_LOCAL_MACHINE\
 System\
 CurrentControlSet\
 Control\
 Session Manager\
 SubSystems\
 Windows

Under this entry, you will find a string similar to the following (the
slash (/) is a line continuation charater):

%SystemRoot%\system32\csrss.exe /
 ObjectDirectory=\Windows /
 SharedSection=1024,512 /
 Windows=On /
 SubSystemType=Windows /
 ServerDll=basesrv,1 /
 ServerDll=winsrv:GdiServerDllInitialization,4 /
 ServerDll=winsrv:UserServerDllInitialization,3 /
 ServerDll=winsrv:ConServerDllInitialization,2 /
 ProfileControl=Off /
 MaxRequestThreads=16

By changing the SharedSection values, you can affect the heap sizes. The
first number (1024 as shown above) is the maximum size of the system wide
heap in kilobytes. The second number (512 as shown above) is the maximum
size of the per desktop heap in kilobytes. A desktop value of 512K can
support approximately 2,500 windows.

The memory you allocate needs to be backed up by paging space. It should
not have much effect on performance if you create the same number of items
with different heap sizes. The main effect is overhead in heap management
and initialization.

Additional reference words: 3.50
KBCategory: kbui
KBSubcategory: UsrWndw

How to Install TAPI Service Providers with TELEPHON.CPL
PSS ID Number: Q132190

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.51, 4.0
 - Microsoft Windows Telephony Software Development Kit (TAPI SDK)
 version 1.0

SUMMARY
=======

TAPI Service Providers (TSPs) must have version information to be displayed
in the 'Add Driver' dialog in the Telephony Control Panel Applet (CPL).

MORE INFORMATION
================

The Telephony CPL reads the version information from all TSPs in the
Windows System directory to get the strings displayed in the Add Driver
dialog box. If any particular TSP doesn't include the necessary version
information, it isn't included as an installable Telephony Driver. The ATSP
sample demonstrates how to include the version information.

This is not an issue with Windows 95. Under Windows 95, Telephony CPL uses
the filename of the TSP if the TSP doesn't include version information.
However, Microsoft recommends that version information still be included so
that the user can use a friendly name rather than the filename when
installing the TSP.

Additional reference words: 1.00 1.30 1.40 4.00 95
KBCategory: kbprg
KBSubcategory: TAPI

How to Keep a Window Iconic
PSS ID Number: Q66244

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

Normally, when an application's main window is being represented by an
icon ("iconic"), you can restore it to an open window by
double-clicking the icon or by choosing the Restore option from the
System menu.

Opening the window can be prevented by placing code into the
application that processes the WM_QUERYOPEN message by returning
FALSE.

If it is necessary to perform processing before the iconic window is
opened, the processing should be done in response to the WM_QUERYOPEN
message. After processing is complete the program can return TRUE and
the window will be opened.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrWndw

How to Keep an MDI Window Always on Top
PSS ID Number: Q108315

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

When creating a multiple document interface (MDI) window, there are no
styles available to have the new window stay on top of the other MDI
windows. Alternatively, two methods are available to achieve this
functionality:

 - Process the WM_WINDOWPOSCHANGED message and call SetWindowPos() to
 change the Z-order of the window.

 - Install a timer for the MDI windows and reset the Z-order of the window
 when processing the WM_TIMER message.

MORE INFORMATION
================

MDICREATESTRUCT has the field "style", which can be set with the styles for
the new MDI window. Extended styles, such as WS_EX_TOPMOST, are not
available in MDI windows. This field of MDICREATESTRUCT is passed to
CreateWindowEx() in the dwStyle parameter. The dwExStyle field is set to
0L. The two methods shown below cannot be used at the same time in the same
application.

Method 1: Process the WM_WINDOWPOSCHANGED message and call SetWindowPos()
to change the Z-order of the window.

Sample Code

LRESULT CALLBACK MdiWndProc (HWND hWnd, UINT message, WPARAM wParam,
 LPARAM lParam)
{
 static HWND hWndAlwaysOnTop = 0;
 switch (message)
 {
 case WM_CREATE :
 if (!hWndAlwaysOnTop)
 {
 SetWindowText (hWnd, "Always On Top Window");
 hWndAlwaysOnTop = hWnd;

 }
 break;
 case WM_WINDOWPOSCHANGED :
 if (hWndAlwaysOnTop)
 {
 WINDOWPOS FAR* pWP = (WINDOWPOS FAR*)lParam;
 if (pWP->hwnd != hWndAlwaysOnTop)
 SetWindowPos (hWndAlwaysOnTop, HWND_TOP, 0, 0, 0, 0,
 SWP_NOACTIVATE | SWP_NOMOVE | SWP_NOSIZE);
 }
 break;
 //
 // Other Messages to process here.
 //
 case WM_CLOSE :
 if (hWndAlwaysOnTop == hWnd)
 hWndAlwaysOnTop = NULL;
 default :
 return DefMDIChildProc (hWnd, message, wParam, lParam);
 }
 return 0L;
}

Method 2: Install a timer for the MDI windows and reset the Z-order of
the window when processing the WM_TIMER message.

Sample Code

LRESULT CALLBACK MdiWndProc (HWND hWnd, UINT message, WPARAM wParam,
 LPARAM lParam)
{
 static HWND hWndAlwaysOnTop = 0;
 switch (message)
 {
 case WM_CREATE :
 SetTimer (hWnd, 1, 200, NULL);
 if (!hWndAlwaysOnTop)
 {
 SetWindowText (hWnd, "Always On Top Window");
 hWndAlwaysOnTop = hWnd;
 }
 break;
 case WM_TIMER :
 if (hWndAlwaysOnTop)
 {
 SetWindowPos (hWndAlwaysOnTop, HWND_TOP, 0, 0, 0, 0,
 SWP_NOACTIVATE | SWP_NOMOVE | SWP_NOSIZE);
 }
 break;
 case WM_DESTROY:
 KillTimer (hWnd, 1) ;
 break;
 //
 // Other Messages to process here.

 //
 case WM_CLOSE :
 if (hWndAlwaysOnTop == hWnd)
 hWndAlwaysOnTop = NULL;
 default :
 return DefMDIChildProc (hWnd, message, wParam, lParam);
 }
 return 0L;
}

For additional information on changing the Z-order of child pop-up windows,
please see the following article(s) in the Microsoft Knowledge Base:

 ARTICLE-ID: Q66943
 TITLE : Determining the Topmost Pop-Up Window

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrWndw

How to License the MS LineDraw TrueType Font
PSS ID Number: Q150641
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1

 - Microsoft Win32 Application Programming Interface included with:
 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s version 1.3
--

SUMMARY
=======

Some Microsoft applications, including Microsoft Word, are shipped with a
TrueType font named MS LineDraw. This font is located in the "linedraw.ttf"
font file and contains glyphs for the line drawing characters of the
extended ASCII character set. Many earlier MS-DOS applications use the
extended ASCII MS LineDraw characters to produce text-based graphics.

Windows application developers have expressed interest in the MS LineDraw
font as a means of maintaining some form of backward compatibility with
their previous MS-DOS-based applications. Developers can use the MS
LineDraw font in their applications by licensing it from Monotype. To
license MS LineDraw, contact Wade Farrell at Monotype:

 Telephone: 1-800-MONOTYPE, (312)855-1440

 - or -

 E-mail: oemsales@monotypeusa.com

MORE INFORMATION
================

An alternative to licensing MS LineDraw is to use the GDI functions of the
Windows SDK to directly draw any graphics required by the application. By
using GDI, developers eliminate the potentially troublesome task of
aligning glyphs on various and differing devices. Backward compatibility is
achieved by converting the data to the representative characters from the
extended ASCII character set when it is interchanged with the MS-DOS-based
applications.

Additional reference words: 3.10 3.11 3.50 3.51 4.00
KBCategory: kbgraphic kbother kbref kbhowto
KBSubcategory: GdiFnt GdiTt

How to Limit Virtual Memory for a Win32s Application
PSS ID Number: Q147434
--
The information in this article applies to:

 - Microsoft Win32s version 1.3c
--

SUMMARY
=======

It is possible to limit the amount of virtual memory that a 32-bit
application running under Win32s version 1.3c can use. This could be a
potential requirement for some 32-bit applications that do not want to swap
data out to the pagefile at all.

MORE INFORMATION:
================

In your Win32s application, you can call VirtualAlloc() to allocate all the
required memory at one time and then use only this memory.

To do this, you need to adjust the working set size of your 32-bit process.
Win32s partially supports the Win32 functions GetProcessWorkingSet() and
SetProcessWorkingSet(). Although the hProcess and dwMinimumWorkingSetSize
parameters are ignored, you can call SetProcessWorkingSet(), and set the
dwMaximumWorkingSetSize to the total number of pages that your 32-bit
application needs to lock in memory. This number is system wide in the
Windows 3.x environment; it is not a per-process number as in Windows NT.

Next, you need to call VirtualLock() to lock the allocated pages. This way
the memory will not be swapped out. Note that VirtualLock() is supported in
Win32s even though the Win32 documentation says otherwise. It is also
important to note that unlike in Win32, the dwMaximumWorkingSetSize
parameter of SetProcessWorkingSet() function does not limit the working set
size of Win32s applications. It only sets the limit on how many pages can
be locked in memory (by calling VirtualLock()).

Additional reference words: 1.30c kbinf noswap pagefile virtual memory
KBCategory: kbprg kbdocerr kbhowto
KBSubcategory: w32s

How to Look Up a User's Full Name
PSS ID Number: Q119670
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5
--

SUMMARY
=======

Windows NT workstations can be organized into a domain, which is a
collection of computers on a Windows NT Advanced Server network. The domain
administrator maintains centralized user and group account information.

MORE INFORMATION
================

To find the full name of a user if you have the user name and domain name:

1. Convert the user name and domain name to Unicode, if they are not
 already Unicode strings. This is a requirement of the ported LAN
 Manager APIs that are used in the following steps.

2. Look up the name of the domain controller (DC) for the domain name
 by calling NetServerEnum().

3. Look up the user name by calling NetUserGetInfo()

4. Convert the full user name to ANSI, unless the program is expecting
 to work with Unicode strings.

The sample code below is a function that takes a user name and a domain
name as the first two arguments and returns the user's full name in the
third argument.

For information on how to get the current user and domain, please see the
following article in the Microsoft Knowledge Base:

ARTICLE-ID: Q111544
TITLE : Looking Up the Current User and Domain

Sample Code

 #include <windows.h>
 #include <lm.h>
 #include <stdio.h>

 /**\
 * Function: GetFullName(char *UserName, char *Domain, char *dest); *
 * *
 * Parameters: *

 * UserName: the user name *
 * Domain : the domain to which the user belongs *
 * dest : receives the user's full name *
 * *
 **/

 BOOL GetFullName(char *UserName, char *Domain, char *dest)
 {
 WCHAR wszUserName[256]; // Unicode user name
 WCHAR wszDomain[256];
 LPBYTE ComputerName;

 struct _SERVER_INFO_100 *si100; // Server structure
 struct _USER_INFO_2 *ui; // User structure

 // Convert ASCII user name and domain to Unicode.

 MultiByteToWideChar(CP_ACP, 0, UserName,
 strlen(UserName)+1, wszUserName, sizeof(wszUserName));
 MultiByteToWideChar(CP_ACP, 0, Domain,
 strlen(Domain)+1, wszDomain, sizeof(wszDomain));

 // Get the computer name of a DC for the specified domain.

 NetGetDCName(NULL, wszDomain, &ComputerName);

 // Look up the user on the DC.

 if(NetUserGetInfo((LPWSTR) ComputerName,
 (LPWSTR) &wszUserName, 2, (LPBYTE *) &ui))
 {
 printf("Error getting user information.\n");
 return(FALSE);
 }

 // Convert the Unicode full name to ASCII.

 WideCharToMultiByte(CP_ACP, 0, ui->usri2_full_name,
 -1, dest, 256, NULL, NULL);

 return(TRUE);
 }

Additional reference words: 3.10 3.50
KBCategory: kbnetwork kbnetwork
KBSubcategory: NtwkLmapi

How to Make an Application Display Real Units of Measurement
PSS ID Number: Q127152

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Sometimes you need an application to display things in terms of a real unit
of measurement such as an inch or millimeter. When dealing with a printer,
resolution is usually given in dots per inch (DPI), which makes it easy to
convert pixels to real inches. However, on a video display, resolution is
given only in pixels. A given video mode will be some X pixels wide with no
information as to the real dimensions of the display area.

Because there is no way to programmatically determine the real dimensions
of the viewable area on a video display, it is impossible for a program to
determine real output dimensions. Two manual methods for determining real
output dimensions are given in this article.

MORE INFORMATION
================

When output is destined for a printer, the application can call
GetDeviceCaps() using LOGPIXELSX and LOGPIXELSY to determine dots per real
inch. However, for a video display, LOGPIXELSX and LOGPIXELSY are defined
by the video driver and may vary wildly. These numbers define a logical
inch, which is almost never equal to a real inch.

Applications that need to output real sizes to the video display can use
one of the following two methods for determining output size:

1. The application can ask the user what size monitor is attached. Using
 this value, an application can approximate the actual viewable area, and
 given the resolution of the output (GetDeviceCaps, HORZRES, VERTRES),
 the application can approximate real inches. This solution gives only an
 approximation of a real inch. Several factors can introduce errors into
 this approximation including the size adjustments on digital monitors.

2. The application can ask the user to hold a measuring device to the
 screen and measure a given line. This is the only way to guarantee that
 output on a video display is exactly the expected size, and
 recalibration would be necessary after any adjustment to the monitor.

Additional reference words: 3.10 3.50 4.00 95

KBCategory: kbgraphic
KBSubcategory: GdiDisplay

How to Manage Computer Accounts Programmatically in Windows NT
PSS ID Number: Q136867

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.51

SUMMARY
=======

The ability to manage Windows NT computer accounts can be accomplished by
using the Windows NT server manager utility. The server manager (srvmgr)
can be used to create and delete various computer accounts, including the
following account types:

 - Windows NT Workstation
 - Windows NT Server (non domain controller)
 - Windows NT Backup domain controller

Furthermore, Windows NT user manager for domains (usrmgr) provides the
ability to manage trust relationships with domains. The management of
interdomain trust accounts "permitted to trust this domain" will be
addressed by this article.

The list of trusted domains can be managed programmatically with the
Windows NT LSA (local security authority) API. This procedure will not be
discussed in this article.

This article describes how to manage Windows NT computer accounts
programmatically by using Win32 API calls from Windows NT. It is assumed
that you already have an understanding of the various computer account
types in Windows NT.

MORE INFORMATION
================

Considerations for Managing Computer Accounts

 - Computer account management should take place on the primary domain
 controller for the target domain.

 - The computer account name should be all uppercase for consistency with
 Windows NT account management utilities.

 - A computer account name always has a trailing dollar sign ($). Any APIs
 used to manage computer accounts must build the computer name such that
 the last character of the computer account name is a dollar sign ($).
 For interdomain trust, the account name is TrustingDomainName$.

 - The maximum computer name length is MAX_COMPUTERNAME_LENGTH (15). This
 length does not include the trailing dollar sign ($).

 - The password for a new computer account should be the lowercase
 representation of the computer account name, without the trailing dollar
 sign ($). For interdomain trust, the password can be an arbitrary value
 that matches the value specified on the trust side of the relationship.

 - The maximum password length is LM20_PWLEN (14). The password should be
 truncated to this length if the computer account name exceeds this
 length.

 - The password provided at computer-account-creation time is valid only
 until the computer account becomes active on the domain. A new pasword
 is established during trust relationship activation.

 - The user that calls the account management functions must have
 Administrator privilege on the target computer. In the case of existing
 computer accounts, the creator of the account can manage the account,
 regardless of administrative membership.

 - The SeMachineAccountPrivilege can be granted on the target computer to
 give specified users the ability to create computer accounts. This gives
 non-administrators the ability to create computer accounts. The caller
 needs to enable this privilege prior to adding the computer account.

 - The Windows NT Lan Manager APIs are currently implemented as Unicode
 only. The caller must insure that strings passed to these functions are
 in Unicode form.

Machine account types are defined by the following flags:

 UF_SERVER_TRUST_ACCOUNT (Backup domain controller)
 UF_WORKSTATION_TRUST_ACCOUNT (Workstation and server)
 UF_INTERDOMAIN_TRUST_ACCOUNT (Interdomain trust account)

The following list of APIs can be used to manage computer accounts in
the target domain:

 - NetGetDCName can be used to obtain the computer name of the primary
 domain controller.

 - NetUserAdd can be used for creating a new computer account.

 - NetUserDel can be used to delete an existing computer account.

 - NetUserSetInfo can be used to modify the password of an existing
 computer account. This is useful for resetting a computer account to a
 known state.

 - NetUserEnum can be used to enumerate existing computer accounts. This
 API can return a list of accounts based on account type through the use
 of the filter parameter.

Sample Code

// works compiled ansi or unicode

#define UNICODE
#define _UNICODE

#define RTN_OK 0
#define RTN_USAGE 1
#define RTN_ERROR 13

/*++

The following sample code adds the specified workstation computer account
to the specified domain. If no domain is specified, the computer account is
created on the local computer.

If the computer account creation fails with GetLastError ==
ERROR_ACCESS_DENIED, the sample attempts to enable the
SeMachineAccountPrivilege for the caller. If the privilege is enabled
successfully, the computer account add operation is re-tried.

The following import libraries are required:

 netapi32.lib
 advapi32.lib

--*/

#include <windows.h>
#include <stdio.h>
#include <lm.h>

BOOL
AddMachineAccount(
 LPWSTR wTargetComputer,
 LPWSTR MachineAccount,
 DWORD AccountType
);

BOOL SetCurrentPrivilege(
 LPWSTR TargetComputer, // target of privilege operation
 LPCWSTR Privilege, // Privilege to enable/disable
 BOOL bEnablePrivilege // to enable or disable privilege
);

int wmain(int argc, wchar_t *argv[])
{
 LPWSTR wMachineAccount;
 LPWSTR wPrimaryDC;
 LPWSTR wMachineAccountPrivilege = L"SeMachineAccountPrivilege";
 DWORD dwError;
 BOOL bSuccess;

 if (argc < 2)
 {
 fprintf(stderr, "Usage: %ls <machineaccountname> [domain]\n",
 argv[0]);
 return RTN_USAGE;

 }

 wMachineAccount = argv[1];

 //
 // default will operate on local machine. Non-NULL wPrimaryDC will
 // cause buffer to be freed
 //
 wPrimaryDC = NULL;

 //
 // if a domain name was specified, fetch the computer name of the
 // primary domain controller
 //
 if (argc == 3) {

 dwError = NetGetDCName(NULL, argv[2], (LPBYTE *)&wPrimaryDC);

 if(dwError != NO_ERROR) {
 fprintf(stderr,"NetGetDCName error! (rc=%lu)\n", dwError);
 return RTN_ERROR;
 }
 }

 bSuccess=AddMachineAccount(
 wPrimaryDC, // primary DC computer name
 wMachineAccount, // computer account name
 UF_WORKSTATION_TRUST_ACCOUNT // computer account type
);

 if(!bSuccess && GetLastError() == ERROR_ACCESS_DENIED) {

 //
 // try to enable the SeMachineAccountPrivilege
 //
 if(SetCurrentPrivilege(
 wPrimaryDC, wMachineAccountPrivilege, TRUE)) {

 //
 // enabled the privilege. retry the add operation
 //
 bSuccess=AddMachineAccount(
 wPrimaryDC,
 wMachineAccount,
 UF_WORKSTATION_TRUST_ACCOUNT
);

 //
 // disable the privilege
 //
 SetCurrentPrivilege(
 wPrimaryDC, wMachineAccountPrivilege, FALSE);
 }
 }

 //
 // free the buffer allocated for the PDC computer name
 //
 if(wPrimaryDC) NetApiBufferFree(wPrimaryDC);

 if(!bSuccess)
 {
 fprintf(stderr,"AddMachineAccount error! (rc=%lu)\n",
 GetLastError());
 return RTN_ERROR;
 }

 return RTN_OK;
}

BOOL
AddMachineAccount(
 LPWSTR wTargetComputer,
 LPWSTR MachineAccount,
 DWORD AccountType
)
{
 LPWSTR wAccount;
 LPWSTR wPassword;
 USER_INFO_1 ui;
 DWORD cbAccount;
 DWORD cbLength;
 DWORD dwError;

 //
 // ensure a valid computer account type was passed
 // TODO SetLastError
 //
 if (AccountType != UF_WORKSTATION_TRUST_ACCOUNT &&
 AccountType != UF_SERVER_TRUST_ACCOUNT &&
 AccountType != UF_INTERDOMAIN_TRUST_ACCOUNT
) {
 SetLastError(ERROR_INVALID_PARAMETER);
 return FALSE;
 }

 //
 // obtain number of chars in computer account name
 //
 cbLength = cbAccount = lstrlenW(MachineAccount);

 //
 // ensure computer name doesn't exceed maximum length
 //
 if(cbLength > MAX_COMPUTERNAME_LENGTH) {
 SetLastError(ERROR_INVALID_ACCOUNT_NAME);
 return FALSE;
 }

 //

 // allocate storage to contain Unicode representation of
 // computer account name + trailing $ + NULL
 //
 wAccount=(LPWSTR)HeapAlloc(GetProcessHeap(), 0,
 (cbAccount + 1 + 1) * sizeof(WCHAR) // Account + '$' + NULL
);

 if(wAccount == NULL) return FALSE;

 //
 // password is the computer account name converted to lowercase
 // you will convert the passed MachineAccount in place
 //
 wPassword = MachineAccount;

 //
 // copy MachineAccount to the wAccount buffer allocated while
 // converting computer account name to uppercase.
 // convert password (inplace) to lowercase
 //
 while(cbAccount--) {
 wAccount[cbAccount] = towupper(MachineAccount[cbAccount]);
 wPassword[cbAccount] = towlower(wPassword[cbAccount]);
 }

 //
 // computer account names have a trailing Unicode '$'
 //
 wAccount[cbLength] = L'$';
 wAccount[cbLength + 1] = L'\0'; // terminate the string

 //
 // if the password is greater than the max allowed, truncate
 //
 if(cbLength > LM20_PWLEN) wPassword[LM20_PWLEN] = L'\0';

 //
 // initialize USER_INFO_x structure
 //
 ZeroMemory(&ui, sizeof(ui));

 ui.usri1_name = wAccount;
 ui.usri1_password = wPassword;

 ui.usri1_flags = AccountType | UF_SCRIPT;
 ui.usri1_priv = USER_PRIV_USER;

 dwError=NetUserAdd(
 wTargetComputer, // target computer name
 1, // info level
 (LPBYTE) &ui, // buffer
 NULL
);

 //

 // free allocated memory
 //
 if(wAccount) HeapFree(GetProcessHeap(), 0, wAccount);

 //
 // indicate whether it was successful
 //
 if(dwError == NO_ERROR)
 return TRUE;
 else {
 SetLastError(dwError);
 return FALSE;
 }
}

BOOL SetCurrentPrivilege(
 LPWSTR TargetComputer, // target of privilege operation
 LPCWSTR Privilege, // Privilege to enable/disable
 BOOL bEnablePrivilege // to enable or disable privilege
)
{
 HANDLE hToken;
 TOKEN_PRIVILEGES tp;
 LUID luid;
 TOKEN_PRIVILEGES tpPrevious;
 DWORD cbPrevious=sizeof(TOKEN_PRIVILEGES);
 BOOL bSuccess=FALSE;

 if(!LookupPrivilegeValueW(TargetComputer, Privilege, &luid))
 return FALSE;

 if(!OpenProcessToken(
 GetCurrentProcess(),
 TOKEN_QUERY | TOKEN_ADJUST_PRIVILEGES,
 &hToken
)) return FALSE;

 //
 // first pass. get current privilege setting
 //
 tp.PrivilegeCount = 1;
 tp.Privileges[0].Luid = luid;
 tp.Privileges[0].Attributes = 0;

 AdjustTokenPrivileges(
 hToken,
 FALSE,
 &tp,
 sizeof(TOKEN_PRIVILEGES),
 &tpPrevious,
 &cbPrevious
);

 if(GetLastError() == ERROR_SUCCESS) {
 //

 // second pass. set privilege based on previous setting
 //
 tpPrevious.PrivilegeCount = 1;
 tpPrevious.Privileges[0].Luid = luid;

 if(bEnablePrivilege) {
 tpPrevious.Privileges[0].Attributes |=
 (SE_PRIVILEGE_ENABLED);
 }
 else {
 tpPrevious.Privileges[0].Attributes ^=
 (SE_PRIVILEGE_ENABLED &
 tpPrevious.Privileges[0].Attributes);
 }

 AdjustTokenPrivileges(
 hToken,
 FALSE,
 &tpPrevious,
 cbPrevious,
 NULL,
 NULL
);

 if (GetLastError() == ERROR_SUCCESS) bSuccess=TRUE;
 }

 CloseHandle(hToken);

 return bSuccess;
}

Additional reference words: computer account server workstation trust
KBCategory: kbnetwork kbcode
KBSubcategory: BseSecurity NtWkLmapi CodeSam

How to Manage Trusted Domains Programmatically in Windows NT
PSS ID Number: Q145697
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.51
--

SUMMARY
=======

The ability to manage domain trust in a Windows NT environment can be
accomplished by using the "Windows NT User Manager for Domains" utility
(usrmgr). By choosing Trust Relationships on the Policies menu, a user can
manage both sides ("Trusted Domains" and "Permitted to trust this domain")
of the domain trust relationship on a domain.

This article illustrates the programmatic manipulation of the "Trusted
Domains" side of the domain trust relationship, at the domain controller
level. This article does not address management of "Trusted Domains" at the
workstation level, which is used for managing workstation domain
membership.

To understand this article, you need to understand how the domain trust
relationship affects the behavior of Windows NT. It is assumed that you
have this understanding.

MORE INFORMATION
================

The management of interdomain trust accounts ("permitted to trust this
domain") is be addressed by this article. For information about managing
the "permitted to trust this domain" side of the domain trust relationship,
please see the following article in the Microsoft Knowledge Base:

ARTICLE-ID: Q136867
TITLE :How to Manage Computer Accounts Programmatically in Windows NT

You can manage trusted domains and associated passwords programmatically by
using the Windows NT LSA (local security authority) API. Use the Windows NT
LAN Manager API to obtain information necessary to manage trusted domains.

Considerations for Managing Trusted Domains

 - Trusted domain updates must take place on the primary domain controller
 for the target domain.

 - The trusted domain name should be all uppercase for consistency with
 Windows NT account management utilities.

 - The maximum domain name length is MAX_COMPUTERNAME_LENGTH (15).

 - The maximum trusted domain password length is LM20_PWLEN (14).

 - The password provided at trust-creation time is valid only until the
 trust has become active on the domain. A new password is established
 during trust relationship activation.

 - The user who calls the LSA trust management functions must have
 Administrator privilege on the target domain.

 - The Windows NT LSA API and Windows NT LAN Manager API are currently
 implemented as Unicode only. The caller must ensure that strings
 passed to these functions are in Unicode form.

 - LsaSetTrustedDomainInformation does not verify the validity or
 existence of the supplied domain Sid. The caller of these API is
 responsible for ensuring that a valid Sid is provided to the API.
 You can use NetUserModalsGet at info level 2 against the domain
 controller for the trusted domain for this purpose.

 - Do not set TrustedPosixOffsetInformation info level with
 LsaSetTrustedDomainInformation(). This information is managed by
 the LSA, so it should not be set.

 - Do not set a domain to trust itself; the trusted domain name should
 not match the domain name where the policy update takes place.

List of APIs That Can Be Used to Manage Trusted Domains

NetGetDCName can be used to obtain the computer name of the primary domain
controller associated with a domain name.

NetUserModalsGet at info level 2 can be used to obtain the Sid representing
the trusted domain, in addition to the domain name of the specified
computer. The target machine is a domain controller for the trusted domain.
The resultant domain Sid is supplied to LSA API calls that require the
Domain Sid of the trusted domain to manage.

NetServerGetInfo at info level 101 can be used to determine if the target
of the policy object update is a domain controller or a workstation. This
article does not address the workstation case, so this determination is
necessary.

NetApiBufferFree is used to free buffers allocated by Windows NT LAN
Manager APIs that return information.

LsaOpenPolicy is used to open the policy object on the computer where the
trusted domain update is taking place. The target computer is a primary
domain controller.

LsaDeleteTrustedDomain is used to delete a trusted domain.

LsaQueryTrustedDomainInfo at info level TrustedPasswordInformation is used
to determine if the trusted domain object already exists, and if so, what
the current Password is.

LsaSetTrustedDomainInformation at info level TrustedDomainNameInformation
is used to create the trusted domain object if the object does not yet
exist.

LsaSetTrustedDomainInformation at info level TrustedPasswordInformation is
used to set the new password associated with the trusted domain object. If
the specified trust existed after the call to LsaQueryTrustedDomainInfo,
set the OldPassword on the trusted domain object to the previous password
obtained from the Query operation.

LsaFreeMemory should be used if memory was allocated by the LSA for the
caller. An example of this is data provided by LsaQueryTrustedDomainInfo.

LsaCloseHandle is used to close an open policy handle when it is no longer
needed.

Steps to Verify That the Trust Exists

Prior to creating a new trusted domain, it may be useful to verify that the
"permitted to trust this domain" side of the trust relationship exists and
is consistent with the new trusted domain. If the trust does not exist or
is inconsistent, the user could be alerted to take action in order to
complete the trust relationship.

The trust can be verified by attempting to establish a connection to the
trusted domain and specifying a username, domain name, and password
corresponding to the trust account and trusted domain password.
The following steps should be used to verify the trust:

1. Obtain the domain controller computer name for the trusted domain by
 calling NetGetDCName(). This domain name is also used as the domain name
 associated with the trust account.

2. Build a UNC path containing the trusted domain computer name and the
 Interprocess communication share. An example UNC path is:

 \\WINBASE\IPC$.

3. Build a user name consisting of the domain name, which is "permitted
 to trust," with a "$" appended. An example user name is:

 MYDOMAIN$

4. Call NetUseAdd() at info level 2 to specify the domain name, UNC path,
 user name, and password associated with the trust.

If the trust is successfully verified, the connection attempt fails with
ERROR_NOLOGON_INTERDOMAIN_TRUST_ACCOUNT. In this case, the supplied
credentials were validated, but the account type does not allow a network
style logon.

If NetUseAdd succeeds with NERR_Success, the specified trust account does
not exist, because the specified account does not exist on the target

computer, and default credentials were used to establish the connection.
Use NetUseDel to delete the connection.

If NetUseAdd fails with ERROR_LOGON_FAILURE, the supplied password does not
match the password on the trust account.

If NetUseAdd fails with ERROR_SESSION_CREDENTIAL_CONFLICT, a connection
already exists to the specified domain controller, which uses credentials
that differ from the credentials supplied with NetUseAdd. The existing
connection must be deleted to verify the trust.

NOTE: This method of trust verification is advisory and may be specific to
versions of Windows NT versions 3.1 through 4.0.

Sample Code

/*++

 This sample illustrates how to manage Windows NT trusted domains at the
 domain controller level.

 The first command line argument indicates the name of the new or existing
 trusted domain to create or modify.

 The second command line argument indicates the new password for the
 trusted domain specified in the first argument.

 The optional third argument indicates the domain name that is the target
 of the trusted domain update operation. If this argument is not specified,
 the update will occur on the local domain. Note that this sample will not
 allow a trusted domain update to occur on a non-domain controller.

 This sample requires header files found on the Windows NT 3.51 SDK CD-ROM
 compact disc in the \Mstools\Security directory.

 This sample works correctly compiled ANSI or Unicode. Note that LAN
 Manager NetXxx API are Unicode only, and Windows NT LSA API are Unicode
 only.

 The following import libraries are required:

 Netapi32.lib
 Advapi32.lib

--*/

#ifndef UNICODE
#define UNICODE
#define _UNICODE
#endif

#include <windows.h>
#include <lm.h> // for NetXxx API
#include "ntsecapi.h" // \Mstools\Security\Ntsecapi.h

#include <stdio.h>

#define RTN_OK 0
#define RTN_USAGE 1
#define RTN_ERROR 13

//
// if you have the DDK, include Ntstatus.h
//
#ifndef STATUS_SUCCESS
#define STATUS_SUCCESS ((NTSTATUS)0x00000000L)
#define STATUS_OBJECT_NAME_NOT_FOUND ((NTSTATUS)0xC0000034L)
#define STATUS_INVALID_SID ((NTSTATUS)0xC0000078L)
#endif

void
InitLsaString(
 PLSA_UNICODE_STRING LsaString,
 LPWSTR String
);

NTSTATUS
OpenPolicy(
 LPWSTR ServerName,
 DWORD DesiredAccess,
 PLSA_HANDLE PolicyHandle
);

BOOL
GetDomainSid(
 LPWSTR DomainName, // domain name to acquire Sid of
 PSID *pDomainSid // points to allocated Sid on success
);

NTSTATUS
SetTrustedDomainInfo(
 LSA_HANDLE PolicyHandle,
 PSID DomainSid, // Sid of domain to manipulate
 LPWSTR TrustedDomainName, // trusted domain name to add/update
 LPWSTR Password // new trust password for trusted domain
);

BOOL
VerifyTrustRelationship(
 LPWSTR TargetDomainName, // domain name to verify trust at
 LPWSTR TrustAccountToVerify, // trusted domain name to verify
 LPWSTR Password, // password associated with trust
 LPBOOL bTrustVerified // indicates if trust was verified
);

void
DisplayNtStatus(
 LPSTR szAPI, // ANSI string containing API name
 NTSTATUS Status

);

void
DisplayError(
 LPSTR szAPI, // pointer to failed API name
 DWORD dwLastError
);

//
// Unicode entry point and argv
//
int
__cdecl
wmain(
 int argc,
 wchar_t *argv[]
)
{
 BOOL bAllocTargetDomain; // did you allocate memory for target?
 LSA_HANDLE PolicyHandle;
 LPWSTR TargetDomainName; // target domain of policy update
 LPWSTR DomainController; // computer name where policy update
 PSID DomainSid; // allocated Sid representing domain to trust
 LPWSTR TrustedDomainName;
 LPWSTR Password;
 BOOL bTrustVerified;
 NET_API_STATUS nas;
 NTSTATUS Status;

 if(argc < 3) {
 fprintf(stderr,
 "Usage: %ls <NewTrustedDomain> <Password> [TargetDomain]\n",
 argv[0]);
 return RTN_USAGE;
 }

 TrustedDomainName = argv[1]; // existing or new TrustedDomain
 Password = argv[2]; // new password for TrustedDomain

 //
 // if a TargetDomain was specified, point to that.
 // if not, set TargetDomain to the current domain if a DC.
 //
 if(argc == 4 && *argv[3] != L'\0') {
 TargetDomainName = argv[3]; // domain to update trust at
 bAllocTargetDomain = FALSE; // no memory allocated
 }
 else {
 PSERVER_INFO_101 si101;
 DWORD Type;
 PUSER_MODALS_INFO_2 umi2;

 //
 // ensure that the local computer is a DC. This operation is only
 // appropriate against a domain controller.

 //
 nas = NetServerGetInfo(NULL, 101, (LPBYTE *)&si101);
 if(nas != NERR_Success) {
 DisplayError("NetServerGetInfo", nas);
 return RTN_ERROR;
 }

 Type = si101->sv101_type;
 NetApiBufferFree(si101);

 if(!(Type & SV_TYPE_DOMAIN_CTRL) &&
 !(Type & SV_TYPE_DOMAIN_BAKCTRL)) {
 printf("Error: Specify a TargetDomain; this operation"
 " is only valid against a domain.\n");
 return RTN_ERROR;
 }

 //
 // obtain the local computer's domain name
 //
 nas = NetUserModalsGet(NULL, 2, (LPBYTE *)&umi2);

 if(nas != NERR_Success) {
 DisplayError("NetUserModalsGet", nas);
 return RTN_ERROR;
 }

 //
 // copy the domain name to new storage
 //
 TargetDomainName = (LPWSTR)HeapAlloc(GetProcessHeap(), 0,
 (lstrlenW(umi2->usrmod2_domain_name) + 1) * sizeof(WCHAR));

 if(TargetDomainName != NULL) {
 lstrcpyW(TargetDomainName, umi2->usrmod2_domain_name);
 bAllocTargetDomain = TRUE; // we allocated memory
 }

 NetApiBufferFree(umi2); // free memory allocated by NetXxx

 //
 // if an error occurred allocating memory, exit
 //
 if(TargetDomainName == NULL) {
 DisplayError("HeapAlloc", 0);
 return RTN_ERROR;
 }
 }

 //
 // do not allow a Domain to trust itself
 //
 if(lstrcmpiW(TargetDomainName, TrustedDomainName) == 0) {
 fprintf(stderr,"Error: Domain %ls cannot trust itself.\n",
 TargetDomainName);

 return RTN_ERROR;
 }

 //
 // ensure Password and TrustedDomainName are the correct length
 //
 if(lstrlenW(Password) > LM20_PWLEN)
 Password[LM20_PWLEN] = L'\0'; // truncate

 if(lstrlenW(TrustedDomainName) > MAX_COMPUTERNAME_LENGTH)
 TrustedDomainName[MAX_COMPUTERNAME_LENGTH] = L'\0'; // truncate

 //
 // obtain the primary DC computer name from the specified
 // TargetDomainName
 //
 nas = NetGetDCName(
 NULL, TargetDomainName, (LPBYTE *)&DomainController);

 if(nas != NERR_Success) {
 DisplayError("NetGetDCName", nas);
 return RTN_ERROR;
 }

 //
 // verify the trust relationship
 //
 if(!VerifyTrustRelationship(
 TrustedDomainName,
 TargetDomainName, // trust account to verify
 Password,
 &bTrustVerified
)) {
 //
 // an error occurred during trust relationship verification
 //
 DisplayError("VerifyTrustRelationship", GetLastError());
 }
 else {
 //
 // inform the user if the trust was not verified
 //
 if(!bTrustVerified) {
 DWORD dwTrustVerifyFailReason = GetLastError();

 //
 // You could exit here, but this is optional. Reasons for
 // trust verification failure could be non-existent
 // "permitted to trust" on the verified domain (rc=1317),
 // wrong password (rc=1326), etc
 //
 printf("Warning: ");

 switch(dwTrustVerifyFailReason) {

 case ERROR_NO_SUCH_USER:
 printf("%ls not permitted-to-trust on %ls\n",
 TargetDomainName, TrustedDomainName);
 break;

 case ERROR_LOGON_FAILURE:
 printf("Trust %ls has incorrect password on %ls\n",
 TrustedDomainName, TargetDomainName);
 break;

 default:
 DisplayError("Trust was not verified. Non-fatal",
 dwTrustVerifyFailReason);
 } // switch
 }
 }

 //
 // fetch the DomainSid of the domain to trust
 //
 if(!GetDomainSid(TrustedDomainName, &DomainSid)) {
 DisplayError("GetDomainSid", GetLastError());
 return RTN_ERROR;
 }

 //
 // open the policy on the target domain
 //
 Status = OpenPolicy(
 DomainController,
 POLICY_CREATE_SECRET | // for password set operation
 POLICY_TRUST_ADMIN, // for trust creation
 &PolicyHandle
);

 if(Status != STATUS_SUCCESS) {
 DisplayNtStatus("OpenPolicy", Status);
 return RTN_ERROR;
 }

 //
 // Update TrustedDomainInfo to reflect the specified trust.
 //
 Status = SetTrustedDomainInfo(
 PolicyHandle,
 DomainSid,
 TrustedDomainName,
 Password
);

 if(Status != STATUS_SUCCESS) {
 DisplayNtStatus("SetTrustedDomainInfo", Status);
 return RTN_ERROR;
 }

 //
 // if you allocated memory for TargetDomainName, free it
 //
 if(bAllocTargetDomain)
 HeapFree(GetProcessHeap(), 0, TargetDomainName);

 //
 // free the Sid which was allocated for the TrustedDomain Sid
 //
 FreeSid(DomainSid);

 //
 // close the policy handle
 //
 LsaClose(PolicyHandle);

 if(DomainController != NULL)
 NetApiBufferFree(DomainController);

 return RTN_OK;
}

void
InitLsaString(
 PLSA_UNICODE_STRING LsaString,
 LPWSTR String
)
{
 DWORD StringLength;

 if(String == NULL) {
 LsaString->Buffer = NULL;
 LsaString->Length = 0;
 LsaString->MaximumLength = 0;

 return;
 }

 StringLength = lstrlenW(String);
 LsaString->Buffer = String;
 LsaString->Length = (USHORT) StringLength * sizeof(WCHAR);
 LsaString->MaximumLength = (USHORT) (StringLength + 1) *
 sizeof(WCHAR);
}

NTSTATUS
OpenPolicy(
 LPWSTR ServerName,
 DWORD DesiredAccess,
 PLSA_HANDLE PolicyHandle
)
{
 LSA_OBJECT_ATTRIBUTES ObjectAttributes;
 LSA_UNICODE_STRING ServerString;
 PLSA_UNICODE_STRING Server = NULL;

 //
 // Always initialize the object attributes to all zeroes
 //
 ZeroMemory(&ObjectAttributes, sizeof(ObjectAttributes));

 if(ServerName != NULL) {
 //
 // Make a LSA_UNICODE_STRING out of the LPWSTR passed in
 //
 InitLsaString(&ServerString, ServerName);

 Server = &ServerString;
 }

 //
 // Attempt to open the policy
 //
 return LsaOpenPolicy(
 Server,
 &ObjectAttributes,
 DesiredAccess,
 PolicyHandle
);
}

/*++
 This function retrieves the Sid representing the specified DomainName.

 If the function succeeds, the return value is TRUE and pDomainSid will
 point to the Sid representing the specified DomainName. The caller
 should free the memory associated with this Sid with the Win32 API
 FreeSid() when the Sid is no longer needed.

 If the function fails, the return value is FALSE, and pDomainSid will
 be set to NULL.

--*/

BOOL
GetDomainSid(
 LPWSTR DomainName, // domain name to acquire Sid of
 PSID *pDomainSid // points to allocated Sid on success
)
{
 NET_API_STATUS nas;
 LPWSTR DomainController;
 PUSER_MODALS_INFO_2 umi2 = NULL;
 DWORD dwSidSize;
 BOOL bSuccess = FALSE; // assume this function will fail

 *pDomainSid = NULL; // invalidate pointer

 //
 // obtain the PDC computer name of the supplied domain name

 //
 nas = NetGetDCName(NULL, DomainName, (LPBYTE *)&DomainController);
 if(nas != NERR_Success) {
 SetLastError(nas);
 return FALSE;
 }

 __try {

 //
 // obtain the domain Sid from the PDC
 // NOTE: this may fail if the credentials of the caller are not
 // recognized or valid on the target computer. In this case, it
 // is necessary to first establish a connection via NetUseAdd()
 // at info-level 2 to the remote IPC$, specifying EMPTY
 // credentials.
 //
 nas = NetUserModalsGet(DomainController, 2, (LPBYTE *)&umi2);
 if(nas != NERR_Success) __leave;

 //
 // if the Sid is valid, obtain the size of the Sid
 //
 if(!IsValidSid(umi2->usrmod2_domain_id)) __leave;
 dwSidSize = GetLengthSid(umi2->usrmod2_domain_id);

 //
 // allocate storage and copy the Sid
 //
 *pDomainSid = (PSID)HeapAlloc(GetProcessHeap(), 0, dwSidSize);
 if(*pDomainSid == NULL) __leave;

 if(!CopySid(dwSidSize, *pDomainSid, umi2->usrmod2_domain_id))
 __leave;

 bSuccess = TRUE; // indicate success

 } // try
 __finally {

 //
 // free allocated memory
 //
 NetApiBufferFree(DomainController);

 if(umi2 != NULL)
 NetApiBufferFree(umi2);

 if(!bSuccess) {
 //
 // if the function failed, free memory and indicate result code
 //

 if(*pDomainSid != NULL) {
 FreeSid(*pDomainSid);

 *pDomainSid = NULL;
 }

 if(nas != NERR_Success) {
 SetLastError(nas);
 }
 }

 }
 return bSuccess;
}

/*++
 This function manipulates the trust associated with the supplied
 DomainSid.

 If the domain trust does not exist, it is created with the
 specified password. In this case, the supplied PolicyHandle must
 have been opened with POLICY_TRUST_ADMIN and POLICY_CREATE_SECRET
 access to the policy object.

 If the domain trust exists, the password is updated with the
 password specified by the Password parameter. The trust OldPassword
 is set to the previous password.

 If DomainName and Password are NULL, the trusted domain specified by
 DomainSid is deleted.

--*/

NTSTATUS
SetTrustedDomainInfo(
 LSA_HANDLE PolicyHandle,
 PSID DomainSid, // Sid of domain to manipulate
 LPWSTR TrustedDomainName, // trusted domain name to add/update
 LPWSTR Password // new trust password for trusted domain
)
{
 PTRUSTED_PASSWORD_INFO tpi;
 PTRUSTED_DOMAIN_NAME_INFO tdni;
 LSA_UNICODE_STRING LsaPassword;
 TRUSTED_PASSWORD_INFO Newtpi;
 BOOL bTrustExists = TRUE; // assume trust exists
 NTSTATUS Status;

 //
 // Make sure you were passed a valid Sid
 //
 if(DomainSid == NULL || !IsValidSid(DomainSid))
 return STATUS_INVALID_SID;

 //
 // if TristedDomainName and Password is NULL (or emptry strings),
 // delete the specified trust
 //

 if((TrustedDomainName == NULL || *TrustedDomainName == L'\0') &&
 (Password == NULL || *Password == L'\0')) {
 return LsaDeleteTrustedDomain(PolicyHandle, DomainSid);
 }

 //
 // query the current password, which is used to update the
 // OldPassword. If the trust doesn't exist, indicate this so that the
 // trust will be created.
 //
 Status = LsaQueryTrustedDomainInfo(
 PolicyHandle,
 DomainSid,
 TrustedPasswordInformation,
 &tpi);

 if(Status != STATUS_SUCCESS) {
 if(Status == STATUS_OBJECT_NAME_NOT_FOUND) {
 bTrustExists = FALSE; // indicate trust does not exist
 }
 else {
 DisplayNtStatus("LsaQueryTrustedDomainInfo", Status);
 return Status;
 }
 }

 InitLsaString(&LsaPassword, Password);

 //
 // set the new password to the supplied password
 //
 Newtpi.Password = LsaPassword;

 if(bTrustExists) {
 //
 // if the trust already existed, set OldPassword to the
 // current password...
 //
 Newtpi.OldPassword = tpi->Password;
 }
 else {
 LSA_UNICODE_STRING LsaDomainName;
 DWORD cchDomainName; // number of chars in TrustedDomainName

 //
 // if the trust did not exist, set OldPassword to the
 // supplied password...
 //
 Newtpi.OldPassword = LsaPassword;

 InitLsaString(&LsaDomainName, TrustedDomainName);

 //
 // ...convert TrustedDomainName to uppercase...
 //

 cchDomainName = LsaDomainName.Length / sizeof(WCHAR);
 while(cchDomainName--) {
 LsaDomainName.Buffer[cchDomainName] =
 towupper(LsaDomainName.Buffer[cchDomainName]);
 }

 //
 // ...create the trusted domain object
 //
 Status = LsaSetTrustedDomainInformation(
 PolicyHandle,
 DomainSid,
 TrustedDomainNameInformation,
 &LsaDomainName
);

 if(Status != STATUS_SUCCESS) return Status;
 }

 //
 // update TrustedPasswordInformation for the specified trust
 //
 Status = LsaSetTrustedDomainInformation(
 PolicyHandle,
 DomainSid,
 TrustedPasswordInformation,
 &Newtpi
);

 //
 // if a trust already existed, free the memory associated with
 // the retrieved information
 //
 if(bTrustExists) LsaFreeMemory(tpi);

 return Status;
}

/*++

 This function verifies that the "permitted to trust" side of the
 trust relationship has been established and that the specified
 password matches the "permitted to trust" password.

 If the function fails, the return value is FALSE, and bTrustVerified
 is undefined.

 If the function succeeds, the trust verification succeeded, and
 bTrustVerified is set to the result of the verification.

 If bTrustVerified is TRUE, the trust relationship is verfied.

 If bTrustVerified is FALSE, the trust was not verified. Call
 GetLastError() to get extended error information.

 ERROR_NO_SUCH_USER indicates that the "permitted to trust"
 UF_INTERDOMAIN_TRUST_ACCOUNT does not exist on the specified domain.

 ERROR_LOGON_FAILURE indicates that the supplied password does
 not match the password in the "permitted to trust"
 UF_INTERDOMAIN_TRUST_ACCOUNT.

 NOTE: if a connection exists to the domain controller of the
 TargetDomainName prior to calling this function, this function will
 fail due to a credential conflict (WinError == 1219).

--*/

BOOL
VerifyTrustRelationship(
 LPWSTR TargetDomainName, // domain name to verify trust at
 LPWSTR TrustAccountToVerify, // trusted domain name to verify
 LPWSTR Password, // password associated with trust
 LPBOOL bTrustVerified // indicates if trust was verified
)
{
 NET_API_STATUS nas;
 USE_INFO_2 ui2;
 LPWSTR DomainController;
 LPWSTR szIpc = L"\\IPC$";
 LPWSTR RemoteResource = NULL;
 LPWSTR UserName = NULL;
 BOOL bSuccess = FALSE; // assume this function will fail

 //
 // fetch the computer name of the domain you try to connect to
 //
 nas = NetGetDCName(
 NULL, TargetDomainName, (LPBYTE *)&DomainController);
 if(nas != NERR_Success) {
 SetLastError(nas);
 return FALSE;
 }

 __try {

 //
 // build the \\<DCName>\ipc$ as the remote resource
 //
 RemoteResource = (LPWSTR)HeapAlloc(GetProcessHeap(), 0,
 (lstrlenW(DomainController) + lstrlenW(szIpc) + 1) *
 sizeof(WCHAR)
);

 if(RemoteResource == NULL) __leave;

 if(lstrcpyW(RemoteResource, DomainController) == NULL) __leave;
 if(lstrcatW(RemoteResource, szIpc) == NULL) __leave;

 //

 // build the user name as <TrustAccountToVerify>$
 //
 UserName = (LPWSTR)HeapAlloc(GetProcessHeap(), 0,
 (lstrlenW(TrustAccountToVerify) + 1 + 1) * sizeof(WCHAR)
);

 if(UserName == NULL) __leave;

 if(lstrcpyW(UserName, TrustAccountToVerify) == NULL) __leave;
 if(lstrcatW(UserName, L"$") == NULL) __leave;

 ZeroMemory(&ui2, sizeof(ui2));

 ui2.ui2_local = NULL;
 ui2.ui2_remote = RemoteResource;
 ui2.ui2_asg_type = USE_IPC;
 ui2.ui2_password = Password;
 ui2.ui2_username = UserName;
 ui2.ui2_domainname = TargetDomainName;

 //
 // Attempt to establish a connection to the target domain.
 // If the result is ERROR_NOLOGON_INTERDOMAIN_TRUST_ACCOUNT,
 // this illustrates the supplied Password matches an existing
 // trust account because the credentials were validated but
 // a logon is not allowed for this account type.
 //
 nas = NetUseAdd(NULL, 2, (LPBYTE)&ui2, NULL);

 if(nas == ERROR_NOLOGON_INTERDOMAIN_TRUST_ACCOUNT) {
 *bTrustVerified = TRUE; // indicate trust verified
 }
 else {
 *bTrustVerified = FALSE; // indicate trust not verified

 //
 // if the connection succeeded, the UF_INTERDOMAIN_TRUST_ACCOUNT
 // does not exist, because the supplied credentials aren't
 // recognized by the remote (default credentials are applied).
 // Delete the connection and indicate the "permitted to trust"
 // account is non-existent.
 //
 if(nas == NERR_Success) {
 NetUseDel(NULL, RemoteResource, 0);
 nas = ERROR_NO_SUCH_USER;
 }
 }

 bSuccess = TRUE; // indicate this function succeeded

 } // try
 __finally {

 //
 // free allocated memory

 //
 NetApiBufferFree(DomainController);

 if(RemoteResource != NULL) {
 HeapFree(GetProcessHeap(), 0, RemoteResource);
 }

 if(UserName != NULL) {
 HeapFree(GetProcessHeap(), 0, UserName);
 }

 //
 // if you succeeded, but trust could not be verified, indicate why
 //
 if(bSuccess == TRUE && *bTrustVerified == FALSE) {
 SetLastError(nas);
 }

 }

 return bSuccess;
}

void
DisplayNtStatus(
 LPSTR szAPI, // ANSI string containing API name
 NTSTATUS Status
)
{
 //
 // convert the NTSTATUS to Winerror and display the result
 //
 DisplayError(szAPI, LsaNtStatusToWinError(Status));
}

void
DisplayError(
 LPSTR szAPI, // pointer to failed API name
 DWORD dwLastError
)
{
 LPSTR MessageBuffer;
 DWORD dwBufferLength;

 fprintf(stderr,"%s error! (rc=%lu)\n", szAPI, dwLastError);

 if(dwBufferLength=FormatMessageA(
 FORMAT_MESSAGE_ALLOCATE_BUFFER |
 FORMAT_MESSAGE_FROM_SYSTEM,
 NULL,
 dwLastError,
 GetUserDefaultLangID(),
 (LPSTR) &MessageBuffer,
 0,
 NULL

))
 {
 DWORD dwBytesWritten;

 //
 // Output message string on stderr
 //
 WriteFile(
 GetStdHandle(STD_ERROR_HANDLE),
 MessageBuffer,
 dwBufferLength,
 &dwBytesWritten,
 NULL
);

 //
 // free the buffer allocated by the system
 //
 LocalFree(MessageBuffer);
 }
}

Additional reference words: lsa machine account server workstation trust
KBCategory: kbprg kbhowto kbcode
KBSubcategory: BseSecurity NtWkLmapi CodeSam

How to Manage User Privileges Programmatically in Windows NT
PSS ID Number: Q132958

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51

SUMMARY
=======

In Windows NT, privileges are used to provide a means of access control
that differs from discretionary access control. A system manager uses
privileges to control which users/groups are able to manipulate various
aspects of the system. An application may use privileges when it changes a
system resource, such as the system time, or when it shuts down the system.

The User Manager tool can be used to grant and revoke privileges from
accounts.

Windows NT 3.51 provides functionality which allows the developer to manage
privileges programmatically. This functionality is made available through
LSA (Local Security Authority).

An example of an application that would benefit from LSA is a service
install program. If the service is configured to run under a user account,
it is necessary for that account to have the SeServiceLogonRight "logon as
a service" privilege. This article discusses how to take advantage of LSA
to grant and revoke privileges from users and groups.

MORE INFORMATION
================

Managing user privileges can be achieved programmatically using the
following steps:

1. Open the policy on the target machine with LsaOpenPolicy(). To grant
 privileges, open the policy with POLICY_CREATE_ACCOUNT and
 POLICY_LOOKUP_NAMES access. To revoke privileges, open the policy with
 POLICY_LOOKUP_NAMES access.

2. Obtain a SID (security identifier) representing the user/group of
 interest. The LookupAccountName() and LsaLookupNames() APIs can obtain a
 SID from an account name.

3. Call LsaAddAccountRights() to grant privileges to the user(s)
 represented by the supplied SID.

4. Call LsaRemoveAccountRights() to revoke privileges from the user(s)
 represented by the supplied SID.

5. Close the policy with LsaClose().

To successfully grant and revoke privileges, the caller needs to be an
administrator on the target system.

The LSA API LsaEnumerateAccountRights() can be used to determine which
privileges have been granted to an account.

The LSA API LsaEnumerateAccountsWithUserRight() can be used to determine
which accounts have been granted a specified privilege.

Documentation and header files for these LSA APIs is provided in the
Windows 32 SDK in the MSTOOLS\SECURITY directory.

NOTE: These LSA APIs are currently implemented as Unicode only.

This sample will grant the privilege SeServiceLogonRight to the account
specified on argv[1].

This sample is dependant on these import libs

 advapi32.lib (for LsaXxx)
 user32.lib (for wsprintf)

This sample will work properly compiled ANSI or Unicode.

Sample Code

/*++

You can use domain\account as argv[1]. For instance, mydomain\scott will
grant the privilege to the mydomain domain account scott.

The optional target machine is specified as argv[2], otherwise, the
account database is updated on the local machine.

The LSA APIs used by this sample are Unicode only.

Use LsaRemoveAccountRights() to remove account rights.

Scott Field (sfield) 12-Jul-95
--*/

#ifndef UNICODE
#define UNICODE
#endif // UNICODE

#include <windows.h>
#include <stdio.h>

#include "ntsecapi.h"

NTSTATUS
OpenPolicy(
 LPWSTR ServerName, // machine to open policy on (Unicode)

 DWORD DesiredAccess, // desired access to policy
 PLSA_HANDLE PolicyHandle // resultant policy handle
);

BOOL
GetAccountSid(
 LPTSTR SystemName, // where to lookup account
 LPTSTR AccountName, // account of interest
 PSID *Sid // resultant buffer containing SID
);

NTSTATUS
SetPrivilegeOnAccount(
 LSA_HANDLE PolicyHandle, // open policy handle
 PSID AccountSid, // SID to grant privilege to
 LPWSTR PrivilegeName, // privilege to grant (Unicode)
 BOOL bEnable // enable or disable
);

void
InitLsaString(
 PLSA_UNICODE_STRING LsaString, // destination
 LPWSTR String // source (Unicode)
);

void
DisplayNtStatus(
 LPSTR szAPI, // pointer to function name (ANSI)
 NTSTATUS Status // NTSTATUS error value
);

void
DisplayWinError(
 LPSTR szAPI, // pointer to function name (ANSI)
 DWORD WinError // DWORD WinError
);

#define RTN_OK 0
#define RTN_USAGE 1
#define RTN_ERROR 13

//
// If you have the ddk, include ntstatus.h.
//
#ifndef STATUS_SUCCESS
#define STATUS_SUCCESS ((NTSTATUS)0x00000000L)
#endif

int _cdecl
main(int argc, char *argv[])
{
 LSA_HANDLE PolicyHandle;
 WCHAR wComputerName[256]=L""; // static machine name buffer
 TCHAR AccountName[256]; // static account name buffer
 PSID pSid;

 NTSTATUS Status;
 int iRetVal=RTN_ERROR; // assume error from main

 if(argc == 1)
 {
 fprintf(stderr,"Usage: %s <Account> [TargetMachine]\n",
 argv[0]);
 return RTN_USAGE;
 }

 //
 // Pick up account name on argv[1].
 // Assumes source is ANSI. Resultant string is ANSI or Unicode
 //
 wsprintf(AccountName, TEXT("%hS"), argv[1]);

 //
 // Pick up machine name on argv[2], if appropriate
 // assumes source is ANSI. Resultant string is Unicode.
 //
 if(argc == 3) wsprintfW(wComputerName, L"%hS", argv[2]);

 //
 // Open the policy on the target machine.
 //
 if((Status=OpenPolicy(
 wComputerName, // target machine
 POLICY_CREATE_ACCOUNT | POLICY_LOOKUP_NAMES,
 &PolicyHandle // resultant policy handle
)) != STATUS_SUCCESS) {
 DisplayNtStatus("OpenPolicy", Status);
 return RTN_ERROR;
 }

 //
 // Obtain the SID of the user/group.
 // Note that we could target a specific machine, but we don't.
 // Specifying NULL for target machine searches for the SID in the
 // following order: well-known, Built-in and local, primary domain,
 // trusted domains.
 //
 if(GetAccountSid(
 NULL, // default lookup logic
 AccountName,// account to obtain SID
 &pSid // buffer to allocate to contain resultant SID
)) {
 //
 // We only grant the privilege if we succeeded in obtaining the
 // SID. We can actually add SIDs which cannot be looked up, but
 // looking up the SID is a good sanity check which is suitable for
 // most cases.

 //
 // Grant the SeServiceLogonRight to users represented by pSid.
 //

 if((Status=SetPrivilegeOnAccount(
 PolicyHandle, // policy handle
 pSid, // SID to grant privilege
 L"SeServiceLogonRight", // Unicode privilege
 TRUE // enable the privilege
)) == STATUS_SUCCESS)
 iRetVal=RTN_OK;
 else
 DisplayNtStatus("AddUserRightToAccount", Status);
 }
 else {
 //
 // Error obtaining SID.
 //
 DisplayWinError("GetAccountSid", GetLastError());
 }

 //
 // Close the policy handle.
 //
 LsaClose(PolicyHandle);

 //
 // Free memory allocated for SID.
 //
 if(pSid != NULL) HeapFree(GetProcessHeap(), 0, pSid);

 return iRetVal;
}

void
InitLsaString(
 PLSA_UNICODE_STRING LsaString,
 LPWSTR String
)
{
 DWORD StringLength;

 if (String == NULL) {
 LsaString->Buffer = NULL;
 LsaString->Length = 0;
 LsaString->MaximumLength = 0;
 return;
 }

 StringLength = wcslen(String);
 LsaString->Buffer = String;
 LsaString->Length = (USHORT) StringLength * sizeof(WCHAR);
 LsaString->MaximumLength=(USHORT)(StringLength+1) * sizeof(WCHAR);
}

NTSTATUS
OpenPolicy(
 LPWSTR ServerName,
 DWORD DesiredAccess,

 PLSA_HANDLE PolicyHandle
)
{
 LSA_OBJECT_ATTRIBUTES ObjectAttributes;
 LSA_UNICODE_STRING ServerString;
 PLSA_UNICODE_STRING Server = NULL;

 //
 // Always initialize the object attributes to all zeroes.
 //
 ZeroMemory(&ObjectAttributes, sizeof(ObjectAttributes));

 if (ServerName != NULL) {
 //
 // Make a LSA_UNICODE_STRING out of the LPWSTR passed in
 //
 InitLsaString(&ServerString, ServerName);
 Server = &ServerString;
 }

 //
 // Attempt to open the policy.
 //
 return LsaOpenPolicy(
 Server,
 &ObjectAttributes,
 DesiredAccess,
 PolicyHandle
);
}

/*++
This function attempts to obtain a SID representing the supplied
account on the supplied system.

If the function succeeds, the return value is TRUE. A buffer is
allocated which contains the SID representing the supplied account.
This buffer should be freed when it is no longer needed by calling
HeapFree(GetProcessHeap(), 0, buffer)

If the function fails, the return value is FALSE. Call GetLastError()
to obtain extended error information.

Scott Field (sfield) 12-Jul-95
--*/

BOOL
GetAccountSid(
 LPTSTR SystemName,
 LPTSTR AccountName,
 PSID *Sid
)
{
 LPTSTR ReferencedDomain=NULL;
 DWORD cbSid=128; // initial allocation attempt

 DWORD cbReferencedDomain=16; // initial allocation size
 SID_NAME_USE peUse;
 BOOL bSuccess=FALSE; // assume this function will fail

 __try {

 //
 // initial memory allocations
 //
 if((*Sid=HeapAlloc(
 GetProcessHeap(),
 0,
 cbSid
)) == NULL) __leave;

 if((ReferencedDomain=HeapAlloc(
 GetProcessHeap(),
 0,
 cbReferencedDomain
)) == NULL) __leave;

 //
 // Obtain the SID of the specified account on the specified system.
 //
 while(!LookupAccountName(
 SystemName, // machine to lookup account on
 AccountName, // account to lookup
 *Sid, // SID of interest
 &cbSid, // size of SID
 ReferencedDomain, // domain account was found on
 &cbReferencedDomain,
 &peUse
)) {
 if (GetLastError() == ERROR_INSUFFICIENT_BUFFER) {
 //
 // reallocate memory
 //
 if((*Sid=HeapReAlloc(
 GetProcessHeap(),
 0,
 *Sid,
 cbSid
)) == NULL) __leave;

 if((ReferencedDomain=HeapReAlloc(
 GetProcessHeap(),
 0,
 ReferencedDomain,
 cbReferencedDomain
)) == NULL) __leave;
 }
 else __leave;
 }

 //

 // Indicate success.
 //
 bSuccess=TRUE;

 } // finally
 __finally {

 //
 // Cleanup and indicate failure, if appropriate.
 //

 HeapFree(GetProcessHeap(), 0, ReferencedDomain);

 if(!bSuccess) {
 if(*Sid != NULL) {
 HeapFree(GetProcessHeap(), 0, *Sid);
 *Sid = NULL;
 }
 }

 } // finally

 return bSuccess;
}

NTSTATUS
SetPrivilegeOnAccount(
 LSA_HANDLE PolicyHandle, // open policy handle
 PSID AccountSid, // SID to grant privilege to
 LPWSTR PrivilegeName, // privilege to grant (Unicode)
 BOOL bEnable // enable or disable
)
{
 LSA_UNICODE_STRING PrivilegeString;

 //
 // Create a LSA_UNICODE_STRING for the privilege name.
 //
 InitLsaString(&PrivilegeString, PrivilegeName);

 //
 // grant or revoke the privilege, accordingly
 //
 if(bEnable) {
 return LsaAddAccountRights(
 PolicyHandle, // open policy handle
 AccountSid, // target SID
 &PrivilegeString, // privileges
 1 // privilege count
);
 }
 else {
 return LsaRemoveAccountRights(
 PolicyHandle, // open policy handle
 AccountSid, // target SID

 FALSE, // do not disable all rights
 &PrivilegeString, // privileges
 1 // privilege count
);
 }
}

void
DisplayNtStatus(
 LPSTR szAPI,
 NTSTATUS Status
)
{
 //
 // Convert the NTSTATUS to Winerror. Then call DisplayWinError().
 //
 DisplayWinError(szAPI, LsaNtStatusToWinError(Status));
}

void
DisplayWinError(
 LPSTR szAPI,
 DWORD WinError
)
{
 LPSTR MessageBuffer;
 DWORD dwBufferLength;

 //
 // TODO: Get this fprintf out of here!
 //
 fprintf(stderr,"%s error!\n", szAPI);

 if(dwBufferLength=FormatMessageA(
 FORMAT_MESSAGE_ALLOCATE_BUFFER |
 FORMAT_MESSAGE_FROM_SYSTEM,
 NULL,
 WinError,
 GetUserDefaultLangID(),
 (LPSTR) &MessageBuffer,
 0,
 NULL
))
 {
 DWORD dwBytesWritten; // unused

 //
 // Output message string on stderr.
 //
 WriteFile(
 GetStdHandle(STD_ERROR_HANDLE),
 MessageBuffer,
 dwBufferLength,
 &dwBytesWritten,
 NULL

);

 //
 // Free the buffer allocated by the system.
 //
 LocalFree(MessageBuffer);
 }
}

Additional reference words: Privilege User Right
KBCategory: kbprg
KBSubcategory: BseSecurity CodeSam

How to Minimize Memory Allocations for New TreeView Control
PSS ID Number: Q130697

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)
 versions 3.51 and 4.0

SUMMARY
=======

You can use the new TreeView Common Control to display a hierarchical list
of items. This new control is available for Win32-based applications
running under Windows NT or Windows 95. Applications typically use this
control to display a list of items like directories or files on a given
drive. Each node in a TreeView control allocates about 40 bytes. If the
TreeView control displays a lot of items, applications can easily consume
large amounts of memory, which slows down other applications.

Below are some techniques applications can use to minimize memory
allocations for TreeView controls.

MORE INFORMATION
================

TreeView controls maintain internal data structures for every node added to
the control. This data structure along with image lists associated with
items and text strings for items can drain the physical memory available on
the system.

Applications that need to display thousands of items or nodes in the
TreeView control can be more proficient about memory allocations by doing
the following:

1. When inserting an item into a TreeView control, ensure that the pszText
 member of the TV_ITEM is not the actual string that needs to be
 displayed, but is the value LPSTR_TEXTCALLBACK. If a string pointer is
 passed, the control stores that string internally by allocating memory
 for it. When this flag is specified, the parent window of the control is
 responsible for storing the name (string). The string in most cases can
 be generated dynamically. In this case, the TreeView control sends the
 parent window a TVN_GETDISPINFO notification message when it needs the
 item text for displaying, sorting, or editing and sends a
 TVN_SETDISPINFO notification message when the item text changes.

2. Fill the TreeView nodes on demand. One way to really minimize memory
 usage in a TreeView control is to fill in only the visible nodes. The
 TV_ITEM struct's cChildren member can be put to good use for this
 purpose. This is used as a flag to indicate whether the item has
 associated child items. It is 1 if the item has one or more child items;
 otherwise, it is 0 (zero). When inserting visible items into the
 TreeView control, set this cChildren member to 1 if that node will have
 child items under it. Do not insert the child items. When the user

 clicks the node, the application receives a TVN_ITEMEXPANDING with
 NM_TREEVIEW.action set to TVE_EXPAND. Insert the child items at that
 point. Then when the user clicks the same node again (to collapse the
 node), the applciation receives a TVN_ITEMEXPANDED with
 NM_TREEVIEW.action set to TVE_COLLAPSE. At that time, collapse the node
 and all its child items by calling TreeView_Expand (hWndTrevview, hItem,
 TVE_COLLAPSE|TVE_COLLAPSERESET). This frees up the memory used up by all
 the children or child items.

3. If the application uses different icons for each child item in the
 TreeView control, specify the I_IMAGECALLBACK value for the iImage and
 iSeletedImage members of the TV_ITEM Structure. This way, the control
 doesn't have to store these images for every child item - thereby
 reducing the memory requirements for the control as a whole.

Additional reference words: 4.00 usage user styles
KBCategory: kbprg
KBSubcategory: TreeView

How to Modify Executable Code in Memory
PSS ID Number: Q127904

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

Follow the steps in this article to create self-modifying code; that is, to
modify code pages while they are in memory and execute them there.

NOTE: Self-modifying code is not advised, but there are cases where you may
wish to use it.

Step-by-Step Example

1. Call VirtualProtect() on the code pages you want to modify, with the
 PAGE_WRITECOPY protection.

2. Modify the code pages.

3. Call VirtualProtect() on the modified code pages, with the PAGE_EXECUTE
 protection.

4. Call FlushInstructionCache().

All four steps are required. The reason for calling FlushInstructionCache()
is to make sure that your changes are executed. As processors get faster,
the instruction caches on the chips get larger. This allows more out of
order prefetching to be done. If you modify your code, but do not call
FlushInstructionCache(), the previous instructions may already be in the
cache and your changes will not be executed.

Additional reference words: 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseMm

How to Modify Printer Settings by Using SetPrinter
PSS ID Number: Q140285

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.5,
 3.51, 4.0

SUMMARY
=======

SetPrinter is a new API for Windows 95 and Windows NT that allows
applications to change various printer attributes. However, as the code in
this article demonstrates, a certain amount of preparation is necessary in
order to call SetPrinter correctly.

MORE INFORMATION
================

The parameters to SetPrinter() are as follows:

hPrinter

The first parameter is a handle to the printer whose settings are to be
changed. This should be retrieved from OpenPrinter().

dwLevel

The second parameter specifies the structure of the data being passed to
SetPrinter(). For Windows 95, this can be 0, 2, 3, 4, or 5. For Windows NT,
this can be 0, 2, or 3. These numbers correspond to the data type
(PRINTER_INFO_n) passed via the third parameter.

lpbPrinter

The third parameter is a PRINTER_INFO_n structure where n corresponds to
the number in the second parameter. This structure can cause confusion
because it isn't simply a buffer of the size of the structure. These
structures contain device-independent information but are immediately
followed in memory by some variable amount of device-dependent information,
which is given by the device driver. Therefore, a little work is involved
to determine how big this buffer should be. This is achieved by calling
GetPrinter(), which will set pcbNeeded to the total size needed.

Also, the buffer typically has a large amount of device-independent and
device-dependent information in it. Your application is not going to know
or care about the values in most of these structure members. So, when you
make the changes in which you are interested, you must plug in the correct
values for all of these other pieces of data. These other pieces of data
are set when you call GetPrinter() a second time.

dwCommand

The fourth parameter is used to pause printing, resume printing, or
clear all print jobs. This is typically not used at the same time as
lpbPrinter is used. This article is not concerned with setting the printer
state, so the sample code sets this parameter to zero.

About DEVMODE

Often, an element of the DEVMODE structure pointed to by pDevMode will be
modified (instead of an element of PRINTER_INFO_n). When this is the case,
the pDevMode->dmFields flags will tell the application which fields can be
changed. Because this is given to you by GetPrinter(), you can check the
dmFields flag before attempting the change.

Also, because modifying fields in the device-independent part of DEVMODE
may also effect changes in the device-dependent part, you need to call
DocumentProperties() before calling SetPrinter() in order to make a
consistent DEVMODE structure for SetPrinter().

Sample Code

HGLOBAL hGlobal = NULL;
HANDLE hPrinter = NULL;
DWORD dwNeeded = 0;
PRINTER_INFO_2 *pi2 = NULL;
PRINTER_DEFAULTS pd;
BOOL bFlag;
LONG lFlag;

/* Open printer handle (in Windows NT, you need full-access because you
 will eventually use SetPrinter) */

ZeroMemory(&pd, sizeof(pd));
pd.DesiredAccess = PRINTER_ALL_ACCESS;
bFlag = OpenPrinter("My Printer", &hPrinter, &pd);
if (!bFlag || (hPrinter== NULL))
 goto ABORT;

/* The first GetPrinter() tells you how big the buffer should be in order
 to hold all of PRINTER_INFO_2. Note that this will usually return FALSE,
 which only means that the buffer (the third parameter) was not filled
 in. You don't want it filled in here. */

GetPrinter(hPrinter, 2, 0, 0, &dwNeeded);
if (dwNeeded == 0)
 goto ABORT;

/* Allocate enough space for PRINTER_INFO_2. */

hGlobal = GlobalAlloc(GHND, dwNeeded);

if (hGlobal == NULL)
 goto ABORT;
pi2 = (PRINTER_INFO_2 *)GlobalLock(hGlobal);
if (pi2 == NULL)
 goto ABORT;

/* The second GetPrinter() fills in all the current settings, so all you
 need to do is modify what you'r interested in. */

bFlag = GetPrinter(hPrinter, 2, (LPBYTE)pi2, dwNeeded, &dwNeeded);
if (!bFlag)
 goto ABORT;

/* Set orientation to Landscape mode if the driver supports it. */

if ((pi2->pDevMode != NULL) && (pi2->pDevMode->dmFields & DM_ORIENTATION))
{
 /* Change the devmode. */
 pi2->pDevMode->dmOrientation = DMORIENT_LANDSCAPE;

 /* Make sure the driver-dependent part of devmode is updated as
 necessary. */
 lFlag = DocumentProperties(hwnd, hPrinter,
 "My Printer",
 pi2->pDevMode, pi2->pDevMode,
 DM_IN_BUFFER | DM_OUT_BUFFER);
 if (lFlag != IDOK)
 goto ABORT;

 /* Update printer information. */
 bFlag = SetPrinter(hPrinter, 2, (LPBYTE)pi2, 0);
 if (!bFlag)
 /* The driver supported the change but wasn't allowed due to some
 other reason (probably lack of permission). */
 goto ABORT;
}
else
 /* The driver doesn't support changing this. */
 goto ABORT;

/* Clean up. */
ABORT: if (pi2 != NULL)
 GlobalUnlock(hGlobal);
 if (hGlobal != NULL)
 GlobalFree(hGlobal);
 if (hPrinter != NULL)
 ClosePrinter(hPrinter);

Additional reference words: 3.50 3.51 4.00 print settings
KBCategory: kbgraphic kbcode kbhowto
KBSubcategory: GdiPrn

How to Modify the Width of the Drop Down List in a Combo Box
PSS ID Number: Q131845

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s version 1.3

SUMMARY
=======

The Windows combo box contains a list box (of the ComboLBox class) within
it. In the standard combo box, this list box has exactly the same width as
the combo box. However, you can make the width of the list box wider or
narrower than the width of the combo box. You may have seen combo box lists
like this in Microsoft Word and Microsoft Excel. This article shows by
example how to subclass a standard combo box class to achieve this
functionality.

MORE INFORMATION
================

The combo box in Windows is actually a combination of two or more controls;
that's why it's called a "combo" box. For more information about the parts
of a combo box and how they relate to each other, please see the following
article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q65881
 TITLE : The Parts of a Windows Combo Box and How They Relate

To make the combo box list wider or narrower, you need the handle of the
list box control within the combo box. This task is difficult because the
list box is actually a child of the desktop window (for CBS_DROPDOWN and
CBS_DROPDOWNLIST styles). If it were a child of the ComboBox control,
dropping down the list box would clip it to the parent, and it wouldn't
display.

A combo box receives WM_CTLCOLOR messages for its component controls when
they need to be painted. This allows the combo box to specify a color for
these controls. The HIWORD of the lParam in this message is the type of the
control. In case of the combo box, Windows sends it a WM_CTLCOLOR message
with the HIWORD set to CTLCOLOR_LISTBOX when the list box control needs to
be painted. The LOWORD of the lParam contains the handle of the list box
control.

In 32-bit Windows, the WM_CTLCOLOR message has been replaced with multiple
messages, one for each type of control (WM_CTLCOLORBTN). For more
information about this, please see the following article in the Microsoft

Knowledge Base:

 ARTICLE-ID: Q81707
 TITLE : WM_CTLCOLOR Processing for Combo Boxes of All Styles

Once you obtain the handle to the list box control window, you can resize
the control by using the MoveWindow API.

The following code sample demonstrates how to do this. This sample assumes
that you have placed the combo box control in a dialog box.

Sample Code

// Global declarations.

LRESULT CALLBACK NewComboProc (HWND hWnd, UINT message, WPARAM
 wParam, LPARAM lParam); // prototype for the combo box subclass proc

HANDLE hInst; // Current app instance
BOOL bFirst; // a flag

// Dialog procedure for the dialog containing the combo box.

BOOL __export CALLBACK DialogProc(HWND hDlg, UINT message, WPARAM wParam,
 LPARAM lParam)
{
 FARPROC lpfnNewComboProc;

 switch (message)
 {
 case WM_INITDIALOG:

 bFirst = TRUE; // set flag here - see below for usage

 // subclass the combo box

 lpfnOldComboProc = (FARPROC) SetWindowLong (
 GetDlgItem (hDlg, IDC_COMBO1),
 GWL_WNDPROC,
 (LONG)NewComboProc);
 break;

 case WM_DESTROY:
 (FARPROC) SetWindowLong (GetDlgItem (hDlg, IDC_COMBO1),
 GWL_WNDPROC,
 (LONG)lpfnOldComboProc);
 break;
 default:
 break;
 }

 return FALSE;

} // end dialog proc

// Combobox subclass proc.

LRESULT CALLBACK NewComboProc (HWND hWnd, UINT message, WPARAM
 wParam, LPARAM lParam);

{
 static HWND hwndList;
 static RECT rectList;

#ifdef WIN16
 if (WM_CTLCOLOR == message) // combo controls are to be painted.
#else
 if (WM_CTLCOLORLISTBOX == message) // 32 bits has new message.
#endif
 {
 // is this message for the list box control in the combo?
#ifdef WIN16
 if (CTLCOLOR_LISTBOX==HIWORD (lParam)) // need only for 16 bits
 {
#endif
 // Do only the very first time, get the list
 // box handle and the list box rectangle.
 // Note the use of GetWindowRect, as the parent
 // of the list box is the desktop window

 if (bFirst)
 {
#ifdef WIN16
 hwndList = LOWORD (lParam);
#else
 hwndList = (HWND) lParam ; // HWND is 32 bits
#endif
 GetWindowRect (hwndList, &rectList);
 bFirst = FALSE;
 }

 // Resize listbox window cx by 50 (use your size here)

 MoveWindow (hwndList, rectList.left, rectList.top,
 (rectList.right - rectList.left + 50),
 rectList.bottom - rectList.top, TRUE);
#ifdef WIN16
 }
#endif
 }

 // Call original combo box procedure to handle other combo messages.

 return CallWindowProc (lpfnOldComboProc, hWnd, message,
wParam, lParam);
}

Additional reference words: 1.20 3.10 3.50 4.00 95
KBCategory: kbui kbcode
KBSubcategory: UsrCtl

How to Move Files That Are Currently in Use
PSS ID Number: Q140570

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface included with:

 - Microsoft Windows NT versions 3.1, 3.5, 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Sometimes Win32 applications need to delete, rename, or move files that are
currently being used by the system. One common example is that setup
programs need to remove themselves from the user's hard disk when they are
finished setting up a software package. Sometimes, they also need to move
device drivers that are currently being used by the system. Applications
need help from the operating system to delete or move these files.

Windows 95 and Windows NT each provide a unique method for helping
applications to remove, replace, or rename files and directories that are
in use. Although the two platforms differ in how they implement these
methods, both share an overall strategy where the application specifies
which files to process, and the system processes them when it reboots. This
article explains how applications can use the method provided by each
Windows platform.

MORE INFORMATION
================

Moving Files in Windows NT

Win32-based applications running in Windows NT should use MoveFileEx() with
the MOVEFILE_DELAY_UNTIL_REBOOT flag to move, replace, or delete files and
directories currently being used. The next time the system is rebooted, the
Windows NT bootup program will move, replace, or delete the specified files
and directories.

To move or replace a file or directory that is in use, an application must
specify both a source and destination path on the same volume (for example,
drive C:). If the destination path is an existing file, it will be
overwritten. If the destination path is an existing directory, it will not
be overwritten and both the source and destination paths will remain
unchanged. Here is an example call to move or replace a file or move a
directory:

 // Move szSrcFile to szDstFile next time system is rebooted
 MoveFileEx(szSrcFile, szDstFile, MOVEFILE_DELAY_UNTIL_REBOOT);

To delete a file or directory, the application must set the destination
path to NULL. If the source path is a directory, it will be removed only if

it is empty. Note that if you must use MoveFileEx() to remove files from a
directory, you must reboot the computer before you can call MoveFileEx() to
remove the directory. Here is an example of how to delete a file or empty a
directory:

 // Delete szSrcFile next time system is rebooted
 MoveFileEx(szSrcFile, NULL, MOVEFILE_DELAY_UNTIL_REBOOT);

Moving Files in Windows 95

Windows 95 does not implement MoveFileEx() but does provide an alternate
way for all Win32-based, 16-bit Windows-based, and MS-DOS-based
applications to move, replace, or delete files (but not directories) that
are currently in use. This capability is implemented through the [rename]
section of a file named Wininit.ini. If Wininit.ini is present in the
Windows directory, Wininit.exe processes it when the system boots. Once
Wininit.ini has been processed, Wininit.exe renames it to Wininit.bak.

The syntax of the [rename] section is:

 DestinationFileName=SourceFileName

DestinationFileName and SourceFileName must be short (8.3) file names
because Wininit.ini is processed before the protected mode disk system is
loaded, and long file names are only available when the protected mode disk
system is running. Destination and source files specified in Wininit.ini
with long file names are ignored.

The [rename] section can have multiple lines with one file per line. To
delete a file, specify NUL as the DestinationFileName. Here are some
example entries:

 [rename]
 NUL=C:\TEMP.TXT
 C:\NEW_DIR\EXISTING.TXT=C:\EXISTING.TXT
 C:\NEW_DIR\NEWNAME.TXT=C:\OLDNAME.TXT
 C:\EXISTING.TXT=C:\TEMP\NEWFILE.TXT

The first line causes Temp.txt to be deleted. The second causes
Existing.txt to be moved to a new directory. The third causes Oldname.txt
to be moved and renamed. The fourth causes an existing file to be
overwritten by Newfile.txt.

Applications should not use WritePrivateProfileString() to write entries to
the [rename] section because there can be multiple lines with the same
DestinationFileName, especially if DestinationFileName is "NUL." Instead,
they should add entries by parsing Wininit.ini and appending the entries to
the end of the [rename] section.

NOTE: Always use a case-insensitive search to parse Wininit.ini because the
title of the [rename] section and the file names inside it may have any
combination of uppercase and lowercase letters.

Applications that use Wininit.ini should check for its existence in the

Windows directory. If Wininit.ini is present, then another application has
written to it since the system was last restarted. Therefore, the
application should open it and add entries to the [rename] section. If
Wininit.ini isn't present, the application should create it and add to the
[rename] section. Doing so ensures that entries from other applications
won't be deleted accidentally by your application.

To undo a file rename operation before the system is rebooted, you must
remove the corresponding line from the [rename] section of the Wininit.ini
file.

Additional reference words: 3.51 4.00 update install setup
KBCategory: kbprg kbhowto
KBSubcategory: BseFileio

How to Obtain a Handle to Any Process with SeDebugPrivilege
PSS ID Number: Q131065

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51

SUMMARY
=======

In Windows NT, you can retrieve a handle to any process in the system by
enabling the SeDebugPrivilege in the calling process. The calling process
can then call the OpenProcess() Win32 API to obtain a handle with
PROCESS_ALL_ACCESS.

MORE INFORMATION
================

This functionality is provided for system-level debugging purposes. For
debugging non-system processes, it is not necessary to grant or enable this
privilege.

This privilege allows the caller all access to the process, including the
ability to call TerminateProcess(), CreateRemoteThread(),
and other potentially dangerous Win32 APIs on the target process.

Take great care when granting SeDebugPrivilege to users or groups.

Sample Code

The following source code illustrates how to obtain SeDebugPrivilege
in order to get a handle to a process with PROCESS_ALL_ACCESS. The
sample code then calls TerminateProcess on the resultant process
handle.

/*++

The SeDebugPrivilege allows you to open any process for debugging purposes.
After enabling the privilege, you can open a target process by using
OpenProcess() with PROCESS_ALL_ACCESS.

By default, this privilege is granted only to SYSTEM and the local
Administrators group.

User Manager | Policies | User Rights | Show Advanced User Rights | Debug
Programs can be used to grant or revoke this privilege to arbitrary users
or groups.

WARNING: This privilege allows all access to a process. A malevolent user
could open a system process, create a remote thread in the system process,

and execute code in the system security context. Great care must be used
when giving out this privilege

--*/

#define RTN_OK 0
#define RTN_USAGE 1
#define RTN_ERROR 13

#include <windows.h>
#include <stdio.h>

BOOL SetPrivilege(
 HANDLE hToken, // token handle
 LPCTSTR Privilege, // Privilege to enable/disable
 BOOL bEnablePrivilege // TRUE to enable. FALSE to disable
);

void DisplayError(LPTSTR szAPI);

int main(int argc, char *argv[])
{
 HANDLE hProcess;
 HANDLE hToken;
 int dwRetVal=RTN_OK; // assume success from main()

 // show correct usage for kill
 if (argc != 2)
 {
 fprintf(stderr,"Usage: %s [ProcessId]\n", argv[0]);
 return RTN_USAGE;
 }

 if(!OpenProcessToken(
 GetCurrentProcess(),
 TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY,
 &hToken
)) return RTN_ERROR;

 // enable SeDebugPrivilege
 if(!SetPrivilege(hToken, SE_DEBUG_NAME, TRUE))
 {
 DisplayError("SetPrivilege");

 // close token handle
 CloseHandle(hToken);

 // indicate failure
 return RTN_ERROR;
 }

 // open the process
 if((hProcess = OpenProcess(
 PROCESS_ALL_ACCESS,
 FALSE,

 atoi(argv[1]) // PID from commandline
)) == NULL)
 {
 DisplayError("OpenProcess");
 return RTN_ERROR;
 }

 // disable SeDebugPrivilege
 SetPrivilege(hToken, SE_DEBUG_NAME, FALSE);

 if(!TerminateProcess(hProcess, 0xffffffff))
 {
 DisplayError("TerminateProcess");
 dwRetVal=RTN_ERROR;
 }

 // close handles
 CloseHandle(hToken);
 CloseHandle(hProcess);

 return dwRetVal;
}

BOOL SetPrivilege(
 HANDLE hToken, // token handle
 LPCTSTR Privilege, // Privilege to enable/disable
 BOOL bEnablePrivilege // TRUE to enable. FALSE to disable
)
{
 TOKEN_PRIVILEGES tp;
 LUID luid;
 TOKEN_PRIVILEGES tpPrevious;
 DWORD cbPrevious=sizeof(TOKEN_PRIVILEGES);

 if(!LookupPrivilegeValue(NULL, Privilege, &luid)) return FALSE;

 //
 // first pass. get current privilege setting
 //
 tp.PrivilegeCount = 1;
 tp.Privileges[0].Luid = luid;
 tp.Privileges[0].Attributes = 0;

 AdjustTokenPrivileges(
 hToken,
 FALSE,
 &tp,
 sizeof(TOKEN_PRIVILEGES),
 &tpPrevious,
 &cbPrevious
);

 if (GetLastError() != ERROR_SUCCESS) return FALSE;

 //

 // second pass. set privilege based on previous setting
 //
 tpPrevious.PrivilegeCount = 1;
 tpPrevious.Privileges[0].Luid = luid;

 if(bEnablePrivilege) {
 tpPrevious.Privileges[0].Attributes |= (SE_PRIVILEGE_ENABLED);
 }
 else {
 tpPrevious.Privileges[0].Attributes ^= (SE_PRIVILEGE_ENABLED &
 tpPrevious.Privileges[0].Attributes);
 }

 AdjustTokenPrivileges(
 hToken,
 FALSE,
 &tpPrevious,
 cbPrevious,
 NULL,
 NULL
);

 if (GetLastError() != ERROR_SUCCESS) return FALSE;

 return TRUE;
}

void DisplayError(
 LPTSTR szAPI // pointer to failed API name
)
{
 LPTSTR MessageBuffer;
 DWORD dwBufferLength;

 fprintf(stderr,"%s() error!\n", szAPI);

 if(dwBufferLength=FormatMessage(
 FORMAT_MESSAGE_ALLOCATE_BUFFER |
 FORMAT_MESSAGE_FROM_SYSTEM,
 NULL,
 GetLastError(),
 GetSystemDefaultLangID(),
 (LPTSTR) &MessageBuffer,
 0,
 NULL
))
 {
 DWORD dwBytesWritten;

 //
 // Output message string on stderr
 //
 WriteFile(
 GetStdHandle(STD_ERROR_HANDLE),
 MessageBuffer,

 dwBufferLength,
 &dwBytesWritten,
 NULL
);

 //
 // free the buffer allocated by the system
 //
 LocalFree(MessageBuffer);
 }
}

Additional reference words: 3.10 3.50 3.51 OpenProcess TerminateProcess
KBCategory: kbprg kbcode
KBSubcategory: BseSecurity BseMisc CodeSam

How to Obtain Filename and Path from a Shell Link or Shortcut
PSS ID Number: Q130698
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.51 and 4.0
--

SUMMARY
=======

The shortcuts used in Microsoft Windows 95 provide applications and users
a way to create shortcuts or links to objects in the shell's namespace.
The IShellLink OLE Interface can be used to obtain the path and filename
from the shortcut, among other things.

MORE INFORMATION
================

A shortcut allows the user or an application to access an object from
anywhere in the namespace. Shortcuts to objects are stored as binary
files. These files contain information such as the path to the object,
working directory, the path of the icon used to display the object,
the description string, and so on.

Given a shortcut, applications can use the IShellLink interface and
its functions to obtain all the pertinent information about that
object. The IShellLink interface supports functions such as GetPath(),
GetDescription(), Resolve(), GetWorkingDirectory(), and so on.

Sample Code

The following code shows how to obtain the filename or path and
description of a given link file:

 #include <windows.h>
 #include <shlobj.h>

 // GetLinkInfo() fills the filename and path buffer
 // with relevant information.
 // hWnd - calling application's window handle.
 //
 // lpszLinkName - name of the link file passed into the function.
 //
 // lpszPath - the buffer that receives the file's path name.
 //
 // lpszDescription - the buffer that receives the file's
 // description.
 HRESULT
 GetLinkInfo(HWND hWnd,
 LPCTSTR lpszLinkName,
 LPSTR lpszPath,
 LPSTR lpszDescription)

 {

 HRESULT hres;
 IShellLink *pShLink;
 WIN32_FIND_DATA wfd;

 // Initialize the return parameters to null strings.
 *lpszPath = '\0';
 *lpszDescription = '\0';

 // Call CoCreateInstance to obtain the IShellLink
 // Interface pointer. This call fails if
 // CoInitialize is not called, so it is assumed that
 // CoInitialize has been called.
 hres = CoCreateInstance(&CLSID_ShellLink,
 NULL,
 CLSCTX_INPROC_SERVER,
 &IID_IShellLink,
 (LPVOID *)&pShLink);

 if (SUCCEEDED(hres))
 {
 IPersistFile *ppf;

 // The IShellLink Interface supports the IPersistFile
 // interface. Get an interface pointer to it.
 hres = pShLink->lpVtbl->QueryInterface(pShLink,
 &IID_IPersistFile,
 (LPVOID *)&ppf);
 if (SUCCEEDED(hres))
 {
 WORD wsz[MAX_PATH];

 // Convert the given link name string to a wide character string.
 MultiByteToWideChar(CP_ACP, 0,
 lpszLinkName,
 -1, wsz, MAX_PATH);
 // Load the file.
 hres = ppf->lpVtbl->Load(ppf, wsz, STGM_READ);
 if (SUCCEEDED(hres))
 {
 // Resolve the link by calling the Resolve() interface function.
 // This enables us to find the file the link points to even if
 // it has been moved or renamed.
 hres = pShLink->lpVtbl->Resolve(pShLink, hWnd,
 SLR_ANY_MATCH | SLR_NO_UI);
 if (SUCCEEDED(hres))
 {
 // Get the path of the file the link points to.
 hres = pShLink->lpVtbl->GetPath(pShLink, lpszPath,
 MAX_PATH,
 &wfd,
 SLGP_SHORTPATH);

 // Only get the description if we successfully got the path

 // (We can't return immediately because we need to release ppf &
 // pShLink.)
 if(SUCCEEDED(hres))
 {
 // Get the description of the link.
 hres = pShLink->lpVtbl->GetDescription(pShLink,
 lpszDescription,
 MAX_PATH);
 }
 }
 }
 ppf->lpVtbl->Release(ppf);
 }
 pShLink->lpVtbl->Release(pShLink);
 }
 return hres;
 }

Additional reference words: 4.00
KBCategory: kbprg kbcode kbole
KBSubcategory: IShellLink

How to Obtain Fonts, ToolTips, and Other Non-Client Metrics
PSS ID Number: Q130764

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The SystemParametersInfo() API under Windows 95 has been expanded to
include a new set of FLAGS to set or get system-wide parameters. One such
flag is the SPI_GET/SETNONCLIENTMETRICS flag and the NONCLIENTMETRICS
structure. This flag and the related structure when used with the
SystemsParametersInfo() API can provide applications with a plethora of
information on the non-client metrics system wide.

MORE INFORMATION
================

Windows 95 provides users with the ability to change the fonts used
(displayed) by menus and message boxes and change the height of caption
bars of windows by simply changing the settings in the Appearance property
sheet. They need only right click the desktop to bring up the Display
properties dialog box; then they can choose the Appearance page. This was
not possible under Windows version 3.1.

Windows 95 applications can programatically change these features with the
help of the SystemParametersInfo() function and the NONCLIENTMETRICS
structure. Windows 95 applications should not randomly change these system
settings unless absolutely necessary because system-wide changes occur.

To obtain the fonts used by message boxes, menus, status bars, and
captions, applications can call SystemParametersInfo() with the
SPI_GETNONCLIENTMETRICS flag, passing the address of the NONCLIENTMETRICS
structure as the third parameter. The system then fills this structure with
all sorts of information. The lfMessageFont, lfMenuFont, lfStatusFont
members of the NONCLIENTMETRICS structure have the font information.

Similarly, applications can change the font used by menus, message boxes,
status bars, and captions by calling SystemParametersInfo() with the
SPI_SETNONCLIENTMETRICS flag. When this flag is spcified, a
NONCLIENTMETRICS structure is filled with the appropriate values if its
address is passed in as the third parameter. Once again, the changes made
this way are reflected system wide, so application designers should use
this flag sparingly.

Additional reference words: 4.00 user controls styles
KBCategory: kbui
KBSubcategory: UsrSys

How to Obtain Icon Information from an .EXE in Windows 95
PSS ID Number: Q131500

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

SHGetFileInfo is a new API that Windows 95 provides to allow an application
to extract icon information from a particular file. With the introduction
of large (32x32) and small (16x16) icons in Windows 95, SHGetFileInfo
provides this information as well by filling in the appropriate members of
the SHFILEINFO structure.

MORE INFORMATION
================

In Windows version 3.1, an application can use the ExtractIcon() to
retrieve the handle of an icon associated with a specified executable file,
dynamic link library, or icon file.

Windows 95 provides a new function, SHGetFileInfo(), which, among other
things, provides this icon information when using the SHGFI_ICON flag. When
the function returns, the handle to the icon is returned in the hIcon
member of the SHFILEINFO structure, and the index of the icon within the
system image list is returned in the iIcon member of the same structure.

The code below demonstrates how to retrieve the Gen32 sample's icon and
associates that icon with a dialog box's button:

 HICON hGen32Icon;
 SHFILEINFO shfi;

 if (SHGetFileInfo ((LPCSTR)"C:\\MySamplesDir\\Gen32\\Gen32.Exe",
 0,
 &shfi,
 sizeof (SHFILEINFO),
 SHGFI_ICON))
 {
 hGen32Icon = shfi.hIcon;

 // Note that this button has been defined in the .RC file
 // to be of BS_ICON style
 SendDlgItemMessage (hDlg,
 IDC_BUTTON,
 BM_SETIMAGE,
 (WPARAM)IMAGE_ICON,
 (LPARAM)(HICON)hGen32Icon);
 }

 else
 {
 // SHGetFileInfo failed...
 }

Windows 95 also introduces the concept of large and small icons associated
with applications where the large icon is displayed when the application
is minimized and the small icon is displayed in the upper-left corner of
the application. This small icon, when clicked, drops down the
application's system menu.

SHGetFileInfo() provides the file's large and small icon information as
well, using the SHGFI_LARGEICON and SHGFI_SMALLICON flags respectively.
SHGFI_LARGEICON returns the handle of the system image list containing the
large icon images, whereas SHGFI_SMALLICON returns that of the system image
list containing the small icon images. These flags, when OR'ed with the
SHGFI_SYSICONINDEX flag, return the icon index within the appropriate
system image list in the iIcon member of the SHFILEINFO struct.

The code sample below demonstrates how to retrieve the small icon
associated with the same GEN32 sample.

 HICON hGen32Icon;
 HIMAGELIST hSysImageList;
 SHFILEINFO shfi;

 hSysImageList = SHGetFileInfo
((LPCSTR)"C:\\MySamplesDir\\Gen32\\Gen32.Exe",
 0,
 &shfi,
 sizeof (SHFILEINFO),
 SHGFI_SYSICONINDEX | SHGFI_SMALLICON);
 if (hSysImageList)
 {
 hGen32Icon = ImageList_GetIcon (hSysImageList,
 shfi.iIcon,
 ILD_NORMAL);
 }
 else
 {
 // SHGetFileInfo failed...
 }

Before closing, the application must call DestroyIcon() to free system
resources associated with the icon returned by ImageList_GetIcon().

NOTE: The SHGetFileInfo() API will be supported in the next release of
Windows NT that supports the new shell interface very similar to Windows
95. This API is not supported in Windows NT version 3.51.

Additional reference words: DLL EXE ICO 32 x 32 16 x 16
KBCategory: kbui kbcode
KBSubcategory: UsrRsc

How to Obtain MIDI Specifications
PSS ID Number: Q140203

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 Software Development Kit (SDK) version 3.5
 - Microsoft Win32s version 1.2

SUMMARY
=======

The Musical Instrument Digital Interface (MIDI) specifications are
published by and copyrighted material of the MIDI Manufacturers Association
(MMA). Certain of these specifications are useful to Windows developers who
author MIDI files for playback or who write software to record MIDI data or
play it back without relying on Windows MCI support. However, the
specifications are not available from Microsoft. They must be obtained from
the MMA or its distributors.

As of November 1995, the MMA provides all MIDI specifications (including
several more specialized ones not listed in this article) in a single
document. It may be obtained by ordering item #3535 from the Mix Bookshelf,
which can be contacted at 800-233-9604. For current information and other
questions, please contact the MMA at the following address or phone
numbers:

MIDI Manufacturers Association
PO Box 3173
La Habra, CA 90632-3173

voice: 310-947-8689
fax: 310-947-4569

MORE INFORMATION
================

Following are several of the specifications that are of the greatest
general interest to multimedia application developers. The term "low-level
MIDI" refers to the midiXXX functions, as opposed to MCI services.

Knowledge of these specifications is not necessary to implement playback of
MIDI files using MCI services because the MCI driver shields applications
from these details.

MIDI Detailed Specification (for Low-Level MIDI Development)
--

The MIDI Detailed Specification explains the MIDI hardware and software
protocols and is of interest to developers of multimedia applications that
implement MIDI support using low-level MIDI APIs to record, edit, or play
MIDI data.

Standard MIDI Files 1.0 (for Low-Level MIDI Development)
--

The Standard MIDI Files specification defines a way to interchange time-
stamped MIDI data between different applications on the same or different
hardware platforms. This is useful to developers writing applications that
read and parse disk files containing MIDI data or that write MIDI data
files to disk.

General MIDI System - Level 1 (for MIDI File Authoring)

The General MIDI (GM) specification defines a minimum MIDI configuration of
a "General MIDI System" consisting of a certain class of MIDI playback
devices. It is of interest to multimedia developers who author MIDI files.
Most PC sound cards and MIDI synthesizers manufactured today are compatible
with the GM specification. MIDI files that are authored to the GM
specification should generally sound like they were intended to sound no
matter which GM-compatible device they are played on.

Additional reference words: IMA 3.10 4.00 3.50
KBCategory: kbmm kbprg
KBSubcategory: MMMidi

How to Obtain the Video for Windows Version
PSS ID Number: Q140067

The information in this article applies to:

 - Microsoft Video for Windows Development Kit version 1.1
 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 Software Development Kit (SDK) versions 3.51, 4.0

SUMMARY
=======

This article explains how to obtain the version number for Video for
Windows.

MORE INFORMATION
================

Using the GetVersionEx() Function

Video for Windows has been incorporated into Windows 95 and Windows NT
version 3.51. Therefore, 32-bit applications should call the GetVersionEx()
function to determine the version of the operating system and consequently
the version of the multimedia system that is installed. GetVersionEx()
returns extended information about the version of the operating system that
is currently running.

Using the VideoForWindowsVersion() Function

16-bit applications (for example, those compiled with Visual C++ version
1.5x) should call the VideoForWindowsVersion() function to determine the
version of Video for Windows that is installed. The
VideoForWindowsVersion() function is not documented in the Video for
Windows Development Kit. However, many of the samples from the kit use this
function, and it is defined in the multimedia header files. The function is
exported by Msvideo.dll, which is usually located in the Windows\System
directory.

This function may be used to retrieve the major and minor versions of the
currently installed Video for Windows system under Windows 3.x. For
example, the following code fragment verifies that Video for Windows
version 1.1 or higher is currently running:

WORD wVer;

// First make sure you are running version 1.1 or later
wVer = HIWORD(VideoForWindowsVersion());
if (wVer < 0x010a)
{
 // oops, too old
 MessageBox(NULL, "Video for Windows version is too old",

 "Error", MB_OK | MB_ICONSTOP);
 return FALSE;
}

NOTE: As stated in the Win32 SDK, this function is obsolete in Windows
NT and Windows 95. The GetVersion() or GetVersionEx() functions should
be used on these platforms rather than VideoForWindowsVersion().

Here is an excerpt from the Win32 SDK "Multimedia, Introduction,
Multimedia Possibilities, Version Checking" documentation:

 You may need to check the installed version of the multimedia
 system, particularly if your application takes advantage of
 features that were not available in previous releases. Although
 the multimedia header files contain two version-checking functions,
 they are obsolete. These obsolete functions are mmsystemGetVersion
 and VideoForWindowsVersion. Your application should rely on the
 standard Windows functions, GetVersion or GetVersionEx, instead.

Using the MCI String

The Multimedia Control Interface (MCI) string "info avivideo version"
should not be used to determine the installed version of Video for Windows.
This string is only meant to be displayed; it is not meant to be used for
version comparison. It will become obsolete in the future.

Additional reference words: win16sdk 1.10 3.10 4.00
KBCategory: kbmm kbprg kbdocerr kbhowto
KBSubcategory: MMVideo

How To Open Volumes Under Windows 95
PSS ID Number: Q125712

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Windows 95 does not support opening disk drives or disk partitions with
CreateFile(), as Windows NT does. Windows 95 also does not support the
DeviceIoControl() IOCTL APIs, as Windows NT does. Instead, low-level disk
access in Windows 95 can be achieved through DeviceIoControl() calls to the
VWIN32 VxD.

MORE INFORMATION
================

Windows NT supports obtaining a handle to a disk drive or disk partition
by using CreateFile() and specifying the name of the drive or partition
as the filename (e.g. "\\.\PHYSICALDRIVE0" or "\\.\C:"). This handle can
then be used in the DeviceIoControl() Win32 API.

Windows 95 differs in the following ways:

1. Obtaining a disk drive or disk partition handle is not supported.
 The call to CreateFile() will fail, and GetLastError() will return
 error code 2, ERROR_FILE_NOT_FOUND.

2. The DeviceIoControl IOCTL functions (such as IOCTL_DISK_FORMAT_TRACKS)
 are not supported. These IOCTLs require the handle to a disk drive or
 disk partition and thus can't be used.

3. DeviceIoControl() is called using a handle to a VxD rather than a
 handle to a disk drive or disk partition. Obtain a handle to
 VWIN32.VXD by using CreateFile("\\\\.\\VWIN32", ...). Use this
 handle in calls to DeviceIoControl() to perform volume locking
 (Int 21h Function 440Dh, Subfunctions 4Ah and 4Bh), and then to
 perform BIOS calls (Int 13h), Absolute Disk Reads/Writes (Int 25h
 and 26h), or MS-DOS IOCTL functions (Int 21h Function 440Dh).

REFERENCES
==========

For information on using DeviceIoControl() in Windows 95 and the IOCTL
functions supported by the VWIN32 VxD, please see the help file "Windows 95
Guide to Programming". Go to "Using Windows 95 features" and select "Using
Device I/O Control."

For information on using CreateFile() to obtain disk drive or disk

partition handles under Windows NT, see the description for CreateFile()
in the Microsoft Windows Programmer's Reference, Volume 3.

For information on Windows 95 extensions to the MS-DOS interrupts, please
see the help file "Windows 95 Guide to Programming." Go to "Using Microsoft
MS-DOS Extensions" and select "Exclusive Volume Locking", then "About
Exclusive Volume Locking", then "Exclusive Use Lock".

For a complete list of IOCTLs, see the description of the DeviceIoControl()
function in the Microsoft Windows Programmer's Reference, Volume 3.

Additional reference words: 4.00
KBCategory: kbprg
KBSubcategory: BseFileio

How to Overlay Images Using Image List Controls
PSS ID Number: Q125629

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

One of the more interesting controls Windows 95 provides as part of its
new common controls is the image list. Image lists provide an easy way
to manage a group of bitmaps and draw them on the screen, without having
to worry about calling CreateCompatibleDC(), SelectObject(), BitBlt(),
StretchBlt(), and so on.

One interesting feature that image lists provide through the
ImageList_Draw() API is the ability to overlay images -- that is, to draw
an image transparently over another image. Calling ImageList_Draw() with
the last parameter set to an index to an overlay mask instructs the image
list to draw an image, and draw the overlay mask on top of it.

MORE INFORMATION
================

To overlay images correctly using image lists, follow these steps:

1. Create a bitmap that will have the images you want to draw as well as
 the overlay images you want drawn on top of these images.

 For example, say you have a bitmap of four 16x16 images:

 - a green circle.
 - a red circle.
 - a panda.
 - a frog.

2. Create an image list out of the bitmap you've created in step 1 by using
 ImageList_LoadImage() as shown here:

 hImageList = ImageList_LoadImage (hInst,
 "MyBitmap",
 16,
 4,
 RGB (255,0,0),
 IMAGE_BITMAP,
 0);

3. Decide which images you want to specify as overlay masks, and tag them
 as such by using the ImageList_SetOverlayImage() function. The following

 code specifies the panda and the frog (with 0-based index, this comes
 out to image 2 and 3) as overlay masks 1 and 2.

 NOTE: You can only specify up to four overlay masks per image list.

 ImageList_SetOverlayImage (hImageList,
 2, // 0-based index to image list
 1); // 1-based index to overlay mask.

 ImageList_SetOverlayImage (hImageList,
 3, // 0-based index to image list
 2); // 1-based index to overlay mask.

4. Draw the image. The following code draws the green circle (or image 0 in
 the example image list). Then it draws the panda (overlay image 1 in the
 example) on top of it.

 ImageList_Draw (hImageList,
 0, // 0-based index to imageList of image to draw
 hDC, // handle to a DC
 16, 16 // (x,y) location to draw
 INDEXTOOVERLAYMASK (1)); // Overlay image #1

Additional reference words: 4.00
KBCategory: kbui
KBSubcategory: UsrCtl

How to Override Full Drag
PSS ID Number: Q121541

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

Windows NT version 3.5 introduces full drag, which allows you to see the
entire window moving or resizing instead of seeing just an outline of the
window moving or resizing. You can enable full drag by running the Desktop
Control Panel applet and selecting the Full Drag checkbox.

When you resize a window with full drag enabled, the application will
receive numerous messages indicating that the window is resizing. (You can
verify this with Spy.) If this has undesirable effects on your application,
you will need to override the full drag feature in your application.

When the moving or resizing starts, the application receives this message:

 WM_ENTERSIZEMOVE (0231)

When the moving or resizing finishes, the application receives this
message:

 WM_EXITSIZEMOVE (0232)

The above messages act as a notification that the window is entering and
exiting a sizing or moving operation. If you want, you can use these
notifications to set a flag to prevent the program from handling a WM_PAINT
message during the move or size operation to override full drag.

Additional reference words: 3.50 3.51 4.00 95
KBCategory: kbui kbtool
KBSubcategory: UsrWndw

How to Pass Large Memory Block Through Win32s Universal Thunk
PSS ID Number: Q126708

The information in this article applies to:

 - Microsoft Win32s version 1.2

SUMMARY
=======

You can pass a memory address to a thunk routine. The pointer address is
translated via the universal thunk (UT). However, the translated pointer
is only guaranteed for 32K. This article describes ways to pass a larger
memory block through the universal thunk.

MORE INFORMATION
================

GlobalAlloc()

You can call GlobalAlloc() to allocate a larger memory block on the 32-bit
side of the thunk, copy the data into this memory block, send the handle
to the 16-bit side, and lock the handle on the 16-bit side with
GlobalLock().

VirtualAlloc()

If you allocate the memory using VirtualAlloc(), it will be aligned on a
64K boundary, so that you can address the entire memory block. HeapAlloc()
allocates large memory blocks using VirtualAlloc() as well. NOTE: You
are still limited to 64K of memory, due to the selector tiling.

Allocate a selector

To use this method, get the 32-bit offset used by the Win32-based
application and the selector base for the data selector returned by
GetThreadSelectorEntry(), then calculate the linear address of the memory
block. With this linear address, you can use AllocSelector(),
SetSelectorBase(), and SetSelectorLimit() to access the memory block from
the 16-bit side of the thunk.

NOTE: Sparse memory will cause problems in the general case. Make sure that
the memory range has been not only reserved, but also committed.

Additional reference words: 1.20
KBCategory: kbprg
KBSubcategory: W32s

How To Pass Numbers to a Named Range in Excel through DDE
PSS ID Number: Q45714

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

To send an array to Excel via DDE, you must send the array in TEXT,
CSV, or BIFF clipboard format.

For example, if you want to send three numbers for one ROW in CSV
format, use 1,2,3 (where each number is separated by a comma). If you
want to place three numbers in one COLUMN in CSV format, place the
CR/LF (Od 0a) (carriage return/line feed) characters after each number
in the set.

If you would like to send the numbers via the TEXT format separated into
columns, place the CR/LF characters between each number in the set. To
organize the numbers into one row, place a TAB (09) character between
each number.

In order to send an array of data into a named range, use the following
steps:

1. Highlight the appropriate cells in Excel
2. Set up your typical hot link from Excel, for example:

 =Service|Topic!Item

3. Instead of hitting Enter after typing the above, hit Ctrl+Shift+Enter.
 This will cause your data to come in as an array, rather than as a
 single item.

 NOTE: To do the reverse of this, that is, for a client application to
 POKE data to Excel, the client will have to specify an item name of say,
 "R1C1:R1C2" to poke an array of data to the range R1C1..R1C2.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrDde

How to Perform Auto Repeat as Media Player Does
PSS ID Number: Q124185

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0
 - Microsoft Video for Windows Development Kit (DK) version 1.1

The Media Player (MPLAYER.EXE) included with Microsoft Windows and
Microsoft Windows NT (MPLAY32.EXE) provides an auto-repeat option that
automatically repeats the playback of a multimedia file. You can
incorporate this functionality into your application on Digital Video
devices by using an extension to the standard Media Control Interface (MCI)
commands as follows:

 - When calling the mciSendString() function, add the word "repeat" to the
 play command, as in this example:

 mciSendString("play mov notify repeat", NULL, 0, hWnd);

 - When calling the mciSendCommand() function, set the play flag
 MCI_DGV_PLAY_REPEAT. For example, to add auto repeat functionality to
 the MOVPLAY sample included with the Video for Windows DK, add the
 following line to the playMovie() function in MOVPLAY1.C, right before
 the mciSendCommand() function call:

 dwFlags |= MCI_DGV_PLAY_REPEAT;

"Digital Video Command Set for the Media Control Interface" documents the
Digital Video MCI extensions. It is available on the Microsoft Developer
Network (MSDN) CD. Look for it in the Specifications section of the CD
contents, under "Digital Video MCI Specification." You can also search the
CD using the word MCI_DGV_PLAY_REPEAT for more information about that flag.

Additional reference words: 3.10 3.50 4.00 95 Video for Windows MCIAVI
MCI_PLAY AVI loop continuous play
KBCategory: kbmm kbprg kbdocerr
KBSubcategory: MMVideo

How to Port a 16-bit DLL to a Win32 DLL
PSS ID Number: Q125688

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

There are several significant differences between Win16 DLLs and Win32
DLLs. These differences require more than just a simple recompilation to
turn your Win16 DLL into a Win32 DLL. In this article we will show you how
to port your Win16 DLL to a Win32 DLL.

MORE INFORMATION
================

The first major difference is that the Win32 DLL entry point is called with
every process attach and detach. Secondly, you must account for the fact
that processes can be multithreaded and as such your DLL entry point will
be called with thread attach and detach messages. You need to ensure that
your DLL is "thread-safe" by using multithreaded libraries and mutual
exclusion for functions in your DLL that would otherwise cause data
corruption when preempted and reentered. This requires that you use Win32
synchronization methods to guard critical resources. Finally, each Win32
process gets its own copy of the Win32 DLL's data.

Step One for Porting Your DLL

The first step in porting a DLL from 16-bit Windows to 32-bit Windows is
moving code from your LibMain (or LibEntry) and _WEP (or WEP) to the new
DLL initialization function. The new DLL initialization function is called
DllMain. You might code your DllMain like this:

BOOL WINAPI DllMain (HANDLE hModule, DWORD fdwReason, LPVOID lpReserved)
{
 switch (fdwReason)
 {
 case DLL_PROCESS_ATTACH:
 /* Code from LibMain inserted here. Return TRUE to keep the
 DLL loaded or return FALSE to fail loading the DLL.

 You may have to modify the code in your original LibMain to
 account for the fact that it may be called more than once.
 You will get one DLL_PROCESS_ATTACH for each process that
 loads the DLL. This is different from LibMain which gets
 called only once when the DLL is loaded. The only time this
 is critical is when you are using shared data sections.

 If you are using shared data sections for statically
 allocated data, you will need to be careful to initialize it
 only once. Check your code carefully.

 Certain one-time initializations may now need to be done for
 each process that attaches. You may also not need code from
 your original LibMain because the operating system may now
 be doing it for you.
 */
 break;

 case DLL_THREAD_ATTACH:
 /* Called each time a thread is created in a process that has
 already loaded (attached to) this DLL. Does not get called
 for each thread that exists in the process before it loaded
 the DLL.

 Do thread-specific initialization here.
 */
 break;

 case DLL_THREAD_DETACH:
 /* Same as above, but called when a thread in the process
 exits.

 Do thread-specific cleanup here.
 */
 break;

 case DLL_PROCESS_DETACH:
 /* Code from _WEP inserted here. This code may (like the
 LibMain) not be necessary. Check to make certain that the
 operating system is not doing it for you.
 */
 break;
 }

 /* The return value is only used for DLL_PROCESS_ATTACH; all other
 conditions are ignored. */
 return TRUE; // successful DLL_PROCESS_ATTACH
}

DllMain Called with Flags

There are several conditions where DllMain is called with the
DLL_PROCESS_ATTACH, DLL_PROCESS_DETACH, DLL_THREAD_ATTACH, or
DLL_THREAD_DETACH flags.

The DLL_PROCESS_ATTACH flag is sent when a DLL is loaded into the address
space of a process. This occurs in both situations where the DLL is loaded
with LoadLibrary, or implicitly during application load. When the DLL is
implicitly loaded, DllMain is executed with DLL_PROCESS_ATTACH before the
processes enter WinMain. When the DLL is explicitly loaded, DllMain is
executed with DLL_PROCESS_ATTACH before LoadLibrary returns.

The DLL_PROCESS_DETACH flag is sent when a process cleanly unloads the DLL
from its address space. This occurs during a call to FreeLibrary, or if the
DLL is implicitly loaded, a clean process exit. When a DLL is detaching
from a process, the individual threads of the process do not call the
DLL_THREAD_DETACH flag.

The DLL_THREAD_ATTACH flag is sent when a new thread is being created in a
process already attached to the DLL. Threads in existence before the
process attached to a DLL will not send the DLL_THREAD_ATTACH flag. The
first thread to attach to the DLL does not send the DLL_THREAD_ATTACH flag;
it sends the DLL_PROCESS_ATTACH flag instead.

The DLL_THREAD_DETACH flag is sent when a thread is exiting cleanly. There
is a situation when DllMain may be called when the thread did not first
send the DLL_THREAD_ATTACH flag. This can happen if there are other threads
still running and the original thread exits cleanly. The thread originally
called DllMain with the DLL_PROCESS_ATTACH flag and later calls DllMain
with the DLL_THREAD_DETACH flag. You may also have DllMain being called
with DLL_THREAD_DETACH if a thread exits but was running in the process
before the call to LoadLibrary.

Situations Where DllMain is Not Called or Is Bypassed

DllMain may not be called at all in dire situations where a thread or
process was killed by a call to TerminateThread or TerminateProcess. These
functions bypass calling DllMain. They are recommended only as a last
resort. Data owned by the thread or process is at risk of loss because the
process or thread could not shut itself down properly.

DllMain may be bypassed intentionally by a process if it calls
DisableThreadLibraryCalls. This function (available with Windows 95 and
Windows NT versions 3.5 and later) disables all DLL_THREAD_ATTACH and
DLL_THREAD_DETACH notifications for a DLL. This enables a process to reduce
its code size and working set. For more information on this function, see
the SDK documentation on DisableThreadLibraryCalls.

Step Two for Porting Your DLL

The second step of porting your DLL involves changing functions that were
declared with __export and included in the module definition (.DEF) file
EXPORTS section. The proper export declaration for the Microsoft Visual C++
32-bit compiler and linker is __declspec(dllexport). This declaration
should be used when prototyping and declaring functions. You do not have to
explicitly declare an exported function in the DEF file for the proper LIB
and EXP files to be created; __declspec(dllexport) will do this for you.
Here's an example of an exported function:

// prototype in DLL is necessary
__declspec(dllexport) DWORD WINAPI DLLFunc1(LPSTR);

// function
__declspec(dllexport) DWORD WINAPI DLLFunc1(LPSTR lpszIn)

{
 DWORD dwRes;

 /* DLL function logic */

 return dwRes;
}

To include the function in an application, prototype the above function in
the application with the __declspec(dllimport) modifier.
__declspec(dllimport) is not necessary, but does improve the speed of your
code that implements the function call. Here's an example:

 __declspec(dllimport) DWORD WINAPI DLLFunc1(LPSTR);

Then, link the DLL's import library (.LIB) file with the application
makefile or project.

Some sections of your DEF file will be ignored by the 32-bit linker because
of architectural differences between Win16 and Win32. You may still use the
EXPORTS section of your DEF if you wish to include ordinals for exported
functions, or to rename exported functions. See your linker documentation
for more information about what is acceptable in a DEF file for a Win32
DLL. Users of other 32-bit compilers and linkers will have to refer to
their documentation for more information on exporting functions.

Applications that link to your DLL may be multithreaded. This possibility
means that you should always build your Win32 DLL as multithreaded to
support preemption and reentrancy. If you use runtime library functions in
your DLL, they may be preempted and reentered. That would cause problems
for a normal runtime library. If you use C runtime or some other runtime
library, you should use a multithreaded version of the runtime library.
Microsoft Visual C++ users should link with the /MT option and include
LIBCMT.LIB. This will include the multithreaded C runtime library.
Optionally, you can select the Multithreaded Run-time Library option in the
project settings in the Visual Workbench. If you are using another runtime
library and cannot get a multithreaded version of the library, you must
protect calls to the library from reentrancy using a mutex or critical
section synchronization object. Information later in this article discusses
this issue.

Other Design Issues You Should Consider

One of the most significant changes to DLLs in 32-bit Windows operating
systems is that each process executes in its own private address space.
This means that a DLL cannot directly share dynamically-allocated memory
between processes. Addresses are 32-bit offsets in a process's address
space. Passing them between processes is possible, but won't work as in
Win16 because each process has its own address space. In another process,
this pointer may address unknown data, or invalid memory space.

"DS != SS" issues common to 16-bit DLLs no longer apply. A Win32 process
executes in its own private address space and there is no segmentation of
this address space. In a Win32 DLL, all functions are called using the

calling thread's stack and all pointers are 32-bit linear addresses. In a
Win32 process or DLL, a FAR pointer is the same as a near pointer. In other
words, a pointer is just a pointer.

If you must share data, you can specify certain global variables to be
shared among processes by using a shared data section in the DLL. For more
information on shared data sections, please search the Microsoft Knowledge
Base using the following words:

 #pragma data_seg

or:

 sections share dll

You can also use a file-mapping object to share memory by sharing the
system page file. This will allow two different processes to share dynamic
memory. For more information on file mapping objects, please search the
Microsoft Knowledge Base using these words:

 shared memory

Another significant change in the behavior of Win32 DLLs from Win16 DLLs is
the inclusion of synchronization. The Win32 API provides synchronization
objects that allow the programmer to implement correct synchronization. You
should be aware that your 32-bit DLL may be preempted and called again from
a different thread in the process. For example, if a thread executing a DLL
function accesses global data and is preempted and another function
modifies the same data, the original thread will resume but will be using
modified data. You'll need to use synchronization objects to resolve this
situation.

Your Win32 DLL may also be preempted by a thread in a different process.
This situation becomes important if the functions use shared data sections
or file mappings. You will need to examine the functions in a DLL to
determine if this will cause problems. If so, you will have to control
access to data or sections of code that are sensitive to this problem.
Mutexes and critical sections are well suited for DLL synchronization. For
more information on synchronization, please search the Microsoft Knowledge
Base using these words:

 synchronization objects

For additional information, please search the Microsoft Knowledge Base
using these words:

 Win32 DLL

Additional reference words: 4.00 LibEntry LibMain Port WEP _WEP Win32
KBCategory: kbprg
KBSubcategory: BseDll

How to Print a Document
PSS ID Number: Q139652

The information in this article applies to:

- Microsoft Win32 Application Programming Interface (API)
 included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

This article describes each of the seven steps required to print a document
to a printer in Windows programming.

MORE INFORMATION
================

1. Obtain a Printer Device Context

To draw graphics or text on the printer device, an application needs to
obtain a printer device context. The PrintDlg() function can be used to
obtain the printer DC. PrintDlg() can display a Print Dialog box to allow
the user to select a printer, or it can return information about the
default printer. In addition to other information about the printer,
PrintDlg() will return a printer device context in the PRINTDLG structure
when PD_RETURNDC is specified as one of the flags. This device context
matches the selections the user made in the dialog box. The GetPrinterDC
function in the sample code at the end of this article illustrates the use
of PrintDlg() to obtain a printer DC.

If you want to create a printer DC without displaying the Print dialog box,
then you need to specify PD_RETURNDEFAULT | PD_RETURNDC flags as shown in
the sample code in this article. The PD_RETURNDEFAULT flag is used to
retrieve information about the default printer without displaying the Print
dialog box. PD_RETURNDC flag is used to direct PrintDlg to automatically
create a device or information context for the printer.

2. Set Up the Abort Function

An application must use the SetAbortProc function to set the application-
defined abort function that allows a print job to be canceled during
spooling. In the AbortProc function, the abort procedure can check the
error code to see if an error occured while printing. The error code is
zero if no error has occured.

3. Use StartDoc() to Start the Print Job
--

The StartDoc function starts a print job. A DOCINFO structure is
initialized and passed to the StartDoc function. It is a good idea to
initialize the DOCINFO structure by filling it with zeros. For more
information, please see the following article in the Microsoft Knowledge
Base:

 ARTICLE-ID: Q135119
 TITLE : PRB: StartDoc() Fails with Non-Zeroed DOCINFO

The InitDocStruct function illustrated later in this article performs this
initialization.

4. Call StartPage()

The StartPage function prepares the printer driver to accept data. For
example:

 StartPage(hDC);

5. Draw on the Device Context

Draw graphics or text on the printer device. For example, DrawStuff()
illustrates how to draw text on the printer DC.

6. Call EndPage()

The EndPage function informs the device that the application has finished
writing to a page. This function is typically used to direct the device
driver to advance to a new page. To print multiple pages, Steps 4, 5, and 6
must be used for every page of the document as in this example:

for(i = START_PAGE; i <= END_PAGE; i++)
 {
 StartPage();
 DrawStuff();
 EndPage();
 }

7. Call EndDoc()

The EndDoc function ends a print job. For additional information on this
topic, please refer to the Win32 SDK documentation Overviews section.

Sample Code

The following PrintStuff() function illustrates the printing process.

/*==*/
/* Sample code : Typical printing process */
/* ===*/

void PrintStuff(HWND hWndParent)
{
 HDC hDC;
 DOCINFO di;

 // Need a printer DC to print to
 hDC = GetPrinterDC();

 // Did you get a good DC?
 if(!hdc)
 {
 MessageBox(NULL, "Error creating DC", "Error",
 MB_APPLMODAL | MB_OK);
 return;
 }

 // You always have to use an AbortProc()
 if(SetAbortProc(hDC, AbortProc) == SP_ERROR)
 {
 MessageBox(NULL, "Error setting up AbortProc",
 "Error", MB_APPLMODAL | MB_OK);
 return;
 }

 // Init the DOCINFO and start the document
 InitDocStruct(&di, "MyDoc");
 StartDoc(hDC, &di);

 // Print one page
 StartPage(hDC);
 DrawStuff(hDC);
 EndPage(hDC);

 // Indicate end of document
 EndDoc(hDC);

 // Clean up
 DeleteDC(hDC);
}

/*===============================*/
/* Obtain printer device context */
/* ==============================*/
HDC GetPrinterDC(void)
{
 PRINTDLG pdlg;

 // Initialize the PRINTDLG structure
 memset(&pdlg, 0, sizeof(PRINTDLG));
 pdlg.lStructSize = sizeof(PRINTDLG);
 // Set the flag to return printer DC
 pdlg.Flags = PD_RETURNDEFAULT | PD_RETURNDC;

 // Invoke the printer dialog box

 PrintDlg(&pdlg);
 // hDC member of the PRINTDLG structure contains
 // the printer DC
 return pdlg.hDC;
}

/*===============================*/
/* The Abort Procudure */
/* ==============================*/
BOOL CALLBACK AbortProc(HDC hDC, int Error)
{
 MSG msg;
 while(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 return TRUE;
}

/*===============================*/
/* Initialize DOCINFO structure */
/* ==============================*/
void InitDocStruct(DOCINFO* di, char* docname)
{
 // Always zero it before using it
 memset(di, 0, sizeof(DOCINFO));
 // Fill in the required members
 di->cbSize = sizeof(DOCINFO);
 di->lpszDocName = docname;
}

/*===============================*/
/* Drawing on the DC */
/* ==============================*/
void DrawStuff(HDC hdc)
{
 // This is the function that does draws on a given DC
 // Here, you are printing text
 TextOut(hdc, 0,0, "Test Printing", lstrlen("Test Printing"));
}

Additional reference words: 3.50 4.00 Windows 95
KBCategory: kbprint kbcode kbhowto
KBSubcategory: GdiPrn

How to Program Keyboard Interface for Owner-Draw Menus
PSS ID Number: Q121623

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

You can implement the keyboard interface for owner-draw menus, which allow
a user to access a menu by typing a menu mnemonic, by processing the
WM_MENUCHAR message.

MORE INFORMATION
================

Menus other than owner-draw menus can specify a menu mnemonic by inserting
an underscore next to a character in the menu string so that the user can
select the menu by typing ALT+<menu mnemonic character>. But in owner-draw
menus, you cannot specify a menu mnemonic in this manner. Instead, you must
process the WM_MENUCHAR message to provide owner-draw menus with menu
mnemnoics.

WM_MENUCHAR is sent when the user types a menu mnemonic that does not
match any of the predefined mnemonics of the current menu. wParam
specifies the ASCII character that corresponds to the key the user
pressed together with the ALT key. The low-order word of lParam
specifies the type of the selected menu and contains:

 - MF_POPUP if the cuurent menu is a popup menu.
 - MF_SYSMENU if the menu is the system menu.

The high-order word of lParam contains the menu handle of the current menu.
The window with the owner-draw menus can process WM_MENUCHAR as follows:

 case WM_MENUCHAR:
 nIndex = Determine index of menu item to be selected from
 character that was typed and handle of the current
 menu.
 return MAKELRESULT(nIndex, 2);

The 2 in the high-order word of the return value informs Windows that
the low-order word of the return value contains the zero-based index
of the menu item to be selected by Windows.

Windows 95 defines four new constants that correspond to the possible
return values from the WM_MENUCHAR message:

Constant Value Meaning

MNC_IGNORE 0 Informs Windows that it should discard the character
 the user pressed and create a short beep on the system
 speaker.
MNC_CLOSE 1 Informs Windows that it should close the active menu.
MNC_EXECUTE 2 Informs Windows that it should choose the item
 specified in the low-order word of the return value.
 The owner window receives a WM_COMMAND message.
MNC_SELECT 3 Informs Windows that it should select the item
 specified in the low-order word of the return value.

Additional reference words: 3.10 3.50 4.00
KBCategory: kbui
KBSubcategory: UsrMen

How to Reference Colors in a DIB Section by Index
PSS ID Number: Q138256

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5,
 3.51, 4.0

SUMMARY
=======

When using the GDI with DIB sections (HBITMAPs returned by a call to
CreateDIBSection()), you may need a way to reference the colors in the
color table of the DIB section by index rather than by RGB value. This
article shows you how.

MORE INFORMATION
================

To reference a color table value by index, use the DIBINDEX macro defined
in Mmsystem.h. It allows you to index the colors in the color table of a
DIB section in a manner similar to the way PALETTEINDEX indexes a color in
a logical palette. In other words, you can create COLORREFs that reference
a DIB section's color table rather than the logical palette in the DC that
the DIB section is selected into. Because DIBINDEX references values in a
color table, it only works on DCs where you have a DIB section selected.

The DIBINDEX macro accepts an index to a color table entry and returns a
color table specifier consisting of a 32-bit COLORREF value that specifies
the color associated with the given index. An application using a display
context with a DIB section selected into it can pass this specifier,
instead of an explicit red, green, blue (RGB) value, to GDI functions that
expect a color. This allows the function to use the color at the specified
color table index.

LONG DIBINDEX(
 WORD wColorTableIndex // index to color table entry
);

Parameters
 wColorTableIndex - Specifies an index to the palette entry containing
 the color to be used for a graphics operation.

Return Value
 The return value is a color table index specifier.

Remarks
 DIBINDEX is defined as:

 #define DIBINDEX(n) MAKELONG((n),0x10FF)

NOTE: DIBINDEX also works with 16-bit WinGBitmaps and WinGDCs.

Additional reference words: 3.10 3.50 4.00 Windows 95 COLORTABLE HBITMAP
BRUSH COLORREF PEN DIBSECTION
KBCategory: kbprg kbhowto kbcode
KBSubcategory: W32

How to Remotely Debug a Win32s Application
PSS ID Number: Q133061
--
The information in this article applies to:

- Microsoft Win32s, version 1.25
--

This article describes how to remotely debug a Win32s application. Before
you can start remote debugging your application, you must make sure you
have a valid connection between the two machines you are using. One way you
can test this functionality is by using the terminal emulator found in the
Accessories group. If you can send text over the serial line then you have
a valid connection. If you do not have a valid connection, make sure the
correct COM ports are selected, and verify the baud speed is the same on
both machines.

NOTE: You must use a null modem cable to create a valid connection between
the two machines.

The following steps can be used to set up remote debugging to work over a
serial line:

1. Make sure Win32s is loaded on the Windows 3.11 machine.

2. Make sure you have the following files in your Window 3.11 System
 subdirectory:

 Wdbg32s.exe
 Dm32s.dll
 Tlser32s.dll

 These files can be placed in one subdirectory. You can install these
 files by using the Microsoft Windows version 3.11 Software Development
 Kit (SDK), or by copying them from your Windows NT machine if you have
 installed Windbg.exe from the Windows SDK.

3. Place the executable and debug information that you want to debug on
 your Windows 3.11 machine. Note the path to the executable because
 this information is used in step 4.

4. On your Windows NT machine, click Open on the Program menu from the
 Windbg.exe program. Click New in the dialog box, and DO NOT BROWSE FOR
 THE FILE. In the Edit box, type the path that you noted in step 3.
 Windbg.exe needs the path of your remote executable because Windbg.exe
 looks for a remote executable.

5. Select the appropriate serial connection on both machines. For example,
 ser96 means use COM1 at 9600 baud. You can modify this information if
 you need to change these parameters by clicking the Change button
 located at the bottom right of the dialog box. Refer to either the
 Windebug.exe or Windbg.exe help file for more information on modifying
 the default COM port and baud rates.

6. On your Windows NT machine, change the default transport DLL, which is
 most likely Tlserr.dll, to Tlser32.dll. Use this DLL (Tlser32.dll) when
 you are remotely debugging a Win32s application. This is done by
 clicking the Change button with the Transport Layer edit box
 highlighted. An edit box labeled PATH with the name of the DLL is
 displayed. Verify it contains Tlser32.dll. When executing Wdbg32s on
 your Windows 3.11 machine, make sure the transport DLL is Tlser32s.dll.
 You can select this DLL by clicking "Transport DLL..." in the Options
 menu of Winddbgrm.exe.

7. On the Windows 3.11 machine, make sure the connection settings are
 correct (COM port and baud speed settings should be the same that you
 entered in step 5 for the Windows NT machine.) Click Connect. The
 Connect option should be dimmed and the Disconnect menu option
 should be highlighted.

8. On your Windows NT machine, click Go on the Run menu.

You can now start remotely debugging your Win32s application.

Additional reference words: 3.50
KBCategory: kbtool
KBSubcategory: TlsDbgWin TlsDbg

How to Remove Win32s
PSS ID Number: Q120486
--
The information in this article applies to:

 - Microsoft Win32s versions 1.0, 1.1, 1.15, 1.2, and 1.30A
--

SUMMARY
=======

To remove Win32s:

1. Remove the following line from the [386Enh] section in the
 SYSTEM.INI file:

 device=<WINDOWS>\<SYSTEM>\win32s\w32s.386

 where <WINDOWS> and <SYSTEM> are where the Windows and System
 directories are, respectively.

2. Modify the following line from the [BOOT] section in the
 SYSTEM.INI file:

 drivers=mmsystem.dll winmm16.dll

 to the following (remove winmm16.dll):

 drivers=mmsystem.dll

3. Delete the following files from the <WINDOWS>\<SYSTEM> subdirectory or
 from the SYSTEM directory in network installations:

 WINMM16.DLL
 W32SYS.DLL
 WIN32S16.DLL
 WIN32S.INI
 WINHLP32.EXE
 WINDOWS.HLP
 WINHLP32.HLP
 WINHLP32.CNT
 *
 * MSINTERNAL:
 * The following files are created by WINHLP32.EXE and they might exist
 * in the WINDOWS\SYSTEM directory:
 *
 * winhlp32.fts
 * winhlp32.ftg
 * winhlp32.gid
 *
 * WINHLP32.GID file is a hidden file; you have to change its attribute
 * to not hidden before you can delete it. You may choose not to confuse
 * customers with these additional files, especially because the files
 * may not even exist. Per Boaz Feldbaum Oct. 8, 1995.

 Note: It may not be possible to delete W32SYS.DLL while Windows is
 running. This occurs if you ran some Win32 application. It is
 recommended that you remove Win32s while in MS-DOS, not from an MS-DOS
 box.

4. Delete all the files in the <WINDOWS>\<SYSTEM>\WIN32S subdirectory
 or the <SYSTEM>\WIN32S subdirectory in network installations.
 Then delete subdirectory itself.

5. Restart Windows.

NOTE: <WINDOWS> refers to the windows installation directory. On a
networked Windows installation, the system directory may be located on a
remote share. If you are only removing Win32s from your machine, then you
do not need to remove the shared files (in <SYSTEM> and <SYSTEM>\WIN32S).
Before removing these files from the network share, make sure that all
users that use Win32s have removed the references to Win32s from the
SYSTEM.INI file.

MORE INFORMATION
================

This information can be found in the Win32s Programmer's Reference
help file.

Additional reference words: 1.00 1.10 1.15 1.20 1.30A
KBCategory: kbsetup kbprg
KBSubcategory: W32s

How to Restart the Windows Shell Programmatically
PSS ID Number: Q137572

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SUMMARY
=======

Creating and updating shell extensions in Windows requires that the shell
be restarted. This may be accomplished by having the user manually perform
this task; however, in many cases, you may find it is better to do it
programmatically.

MORE INFORMATION
================

To restart the shell programmatically, find the shell window, post it a
quit message, and then call WinExec() with explorer.exe. For Example:

 HWND hwndShell = FindWindow("Progman", NULL);
 PostMessage(hwndShell, WM_QUIT, 0, 0L);
 WinExec("Explorer.exe",SW_SHOW);

Additional reference words: 4.00 Windows 95
KBCategory: kbprg kbcode
KBSubcategory: UsrShell

How to Right-Justify Menu Items in Windows 95
PSS ID Number: Q125675

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In Windows 95, right-justify (right-align) a menu item by using the
MFT_RIGHTJUSTIFY type in MENUITEMINFOSTRUCTURE.

MORE INFORMATION
================

There is a new menu type in Windows 95, MFT_RIGHTJUSTIFY type, which you
can use to right justify a menu item. The Windows version 3.1 method of
prefixing the string with "\a" or "\b" will no longer work.

To right justify a menu item in Windows 95:

1. Get the menu handle of the original menu.

2. Get the original menu item information stored in the MENUITEMINFO
 structure.

3. Change the menu item type to include MFT_RIGHTJUSTIFY by or'ing
 the original value with MFT_RIGHTJUSTIFY.

4. Set the new menu item information.

For example, to create a right-justified menu item, add the following code
to WM_CREATE:

 HMENU hMenu;
 MENUITEMINFO mii;
 char szBuffer [80];

 hMenu = GetMenu (hwnd);

 // Get the original value of mii.fType first
 // and OR that with MFT_RIGHTJUSTIFY
 mii.cbSize = sizeof (MENUITEMINFO);
 mii.fMask = MIIM_TYPE;
 mii.dwTypeData= szBuffer;
 mii.cch = sizeof (szBuffer);

 GetMenuItemInfo(hMenu, 1, TRUE, &mii);

 // OR in MFT_RIGHTJUSTIFY type

 mii.fMask = MIIM_TYPE;
 mii.fType = mii.fType | MFT_RIGHTJUSTIFY;

 // Right justify the specified item and all those following it
 SetMenuItemInfo(hMenu, 1, TRUE, &mii);

 return 0;

REFERENCES
==========

For additional information on right justifying menus in Windows 3.1,
please see the following article in the Microsoft Knowledge Base:

ARTICLE-ID: Q67063
TITLE : Inserting Right Justified Text in a Menu in Windows

Additional reference words: 4.00 alignment align
KBCategory: kbui
KBSubcategory: UsrMen

How to Run Name Service API-Based RPC Apps in Windows 95
PSS ID Number: Q140016

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows 95

SUMMARY
=======

A Win32 RPC application that calls name service RPC APIs cannot run without
adding or configuring certain registry entries.

MORE INFORMATION
================

RPC Server and client applications relying on the services of Microsoft RPC
locator service fail with errors 0x6BF(1727 - A renote procedure call
failed and did not execute), and 0x6E2(1762 - The name service is
unavailable) on calls to RpcNsBindingExport() and RpcNsBindingImportBegin()
APIs, respectively.

This is due to the fact that Windows 95 presently does not have a Microsoft
RPC locator component available. For these applications to work correctly,
the user must modify the Windows 95 system registry, so that these RPC
calls can be redirected to the a locator service running on a Windows NT
server or a Windows NT workstation.

Adding the following registry keys in the specified path solves this
problem:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc\NameService\DefaultSyntax
REG_SZ "3"

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc\NameService\Endpoint
REG_SZ "\pipe\locator"

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc\NameService\NetworkAddress
REG_SZ "\\NTSERVER"

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc\NameService\Protocol
REG_SZ "ncacn_np"

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Rpc\NameService\ServerNetworkAddress
REG_SZ "\\NTSERVER"

Here, NTSERVER is the computer name of the Windows NT server or workstation
where the RPC locator service is already running. A Microsoft locator
component is not currently available for Windows 95 because of the fact
that the Microsoft locator uses named pipes to communicate, and Windows 95
does not support server-side named pipes.

Additional reference words: 4.00

KBCategory: kbprg kbnetwork
KBSubCategory: NtwkRpc

How to Search for Win32 SDK Articles by KB Subcategory
PSS ID Number: Q115696

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5,
 3.51, and 4.0

SUMMARY
=======

The Microsoft Knowledge Base (KB) is categorized by using keywords. This
article lists the category and subcategory keywords specific to articles in
the Microsoft Win32 Software Development Kit (SDK) for Windows NT and
Windows 95 Collection.

MORE INFORMATION
================

Microsoft Win32 SDK KBSubcategory Major and Minor Keywords
--

Each KB article in the Win32 SDK collection may contain one or more product-
specific subcategory keywords (called KBSubcategory keywords) that places
the article in an appropriate Win32 SDK category. Each KBSubcategory word
is composed of the concatenation of a major topic keyword and a minor topic
keyword. For example, you can find all the BASE DLL articles by using
BseDll as the keyword when you query the Microsoft Knowledge Base.

Use the asterisk (*) wildcard to find articles that fall into the general
categories or into an intermediate subcategory. For example, to find all
the articles that apply to GDI issues, query on Gdi*. An article usually
has only one subcategory keyword, but it may have more.

Here are the topics and the corresponding KBSubcategory keywords. The minor
topics are in the indented list under each major topic.

Major Topic
 Minor Topic KBSubcategory Keyword

BASE (Bse)
 Base Misc BseMisc
 Comm APIs BseCommapi
 Console BseCon
 Cryptography BseCrypt
 DLLs BseDll
 Error Debug BseErrdebug
 Exception Handling BseExcept
 Disk/File I/O BseDskFileio
 File I/O BseFileio
 Floating Point BseFltpt
 IPC BseIpc

 Memory Management BseMm
 Procedure Threads BseProcThrd
 Security BseSecurity
 Service BseService
 Synchronization BseSync
 Registry BseRegistry
 Object Store BseObjStore
 Notifications BseNotify
 Thunks BseThunks
 Remote SPI BseRemoteAPI

GDI (Gdi)
 Bitmaps GdiBmp
 Brushes/Pens GdiPnbr
 Cursors/Icons GdiCurico
 DCs GdiDc
 Display GdiDisplay
 Drawing GdiDrw
 Fonts GdiFnt
 GDI Misc GdiMisc
 Metafiles GdiMeta
 OpenGL GdiOpenGL
 Palettes/Colors GdiPal
 Printing GdiPrn
 Screen Saver GdiScrsav
 TrueType GdiTt

MAPI
 Address Book Provider MAPIIAB
 Client Extensibility EXCHEXT
 EDKAPI EDKAPI
 Extended MAPI Client EMAPI
 MAPI Forms MAPIFORM
 OLE Messaging OLEMSG
 Simple MAPI CMC SMAPICMC
 Store Provider MAPIIMS
 Transport Provider MAPIIXP

PMAIL
 Transport Provider PMAILTrans

PIM
 Address Book PIMAddr

MISC
 International Issues WIntlDev
 Setup/Install Setins
 Subsystems SubSys

MULTIMEDIA
 ActiveMovie MMActiveMovie
 CD-ROM MMCDROM
 DirectInput MMDirectInput
 DirectSound MMDirectSound
 Joystick MMJoy

 MediaView MMMediaView
 Midi MMMidi
 Miscellaneous MMMisc
 Multimedia Timers MMTimer
 MM File I/O Services MMIO
 Sound Card Mixer Control MMMixer
 Speech SDK MMSpeech
 Video for Windows (VFW) MMVideo
 Waveform Audio MMWave

NETWORKING (Ntwk)
 LAN Manager APIs NtwkLmapi
 NetBIOS NtwkNetbios
 Networking Misc NtwkMisc
 RAS APIs NtwkRAS
 RPC NtwkRpc
 SNMP NtwkSnmp
 TC/PIP NtwkTcpip
 WNet APIs NtwkWinnet
 Windows Sockets NtwkWinsock

PEN Wpen*
 Video Drivers WpenVideoDrv
 Pen Drivers WpenTbltDrv
 OAK WpenOemOak
 Recognizer WpenRcgnzr
 Dictionary WpenDict
 Visual Basic WpenVB
 Training WpenTrain
 RC WpenRc
 RCRESULT WpenRcResult
 SYG WpenSyg
 SYV WpenSyv
 SYC WpenSyc
 SYE WpenSye
 Ink WpenInk
 Setup WpenSetup
 Pen applets WpenApps
 control panel apps WpenCpl
 PEN UI WpenPenUI
 Gestures WpenGestures
 Keyboard WpenKeyboard
 Pen Misc WpenMisc

TAPI
 Telephony API Tapi

TOOLS (Tls)
 Dialog Editor TlsDlg
 Font Editor TlsFnt
 Headers TlsHdr
 Help Compiler TlsHlp
 Image Editor TlsImg
 MEP TlsMep
 Misc TlsMisc

 MS Setup TlsMss
 Porting Tool TlsPort
 Profiler TlsPrf
 Resource Compiler TlsRc
 Spy TlsSpy
 WinDbg TlsWindbg
 Pegasus Loader TlsLoad
 HTML Help TlsHelp

USER (Usr)
 Classes UsrCls
 Clipboard UsrClp
 Common Dialogs UsrCmnDlg
 Controls UsrCtl
 DDE UsrDde
 Dialog/Message Boxes UsrDlgs
 Drag & Drop UsrDnd
 Extension Libraries UsrExt
 Hooks UsrHks
 Input-Mouse/Keyboard UsrInp
 Localization/Intntl. UsrLoc
 MDI UsrMdi
 Menus/Accelerators UsrMen
 Network DDE UsrNetDde
 New Shell issues UsrShell
 NLS UsrNls
 Owner Draw UsrOwn
 Resources UsrRes
 Strict UsrStrict
 User Misc UsrMisc
 Window Manager UsrWndw

WIN32S
 Win32s W32s
 Win32s Thunk W32sThunk
 Win32s Setup Issues W32sSetup

Product-Specific Keywords

You can use the KBSubcategory keywords to organize Win32 SDK articles or to
search for specific groups of Win32 SDK articles. For information about
KBSubcategory keywords for other Microsoft developer products, please query
the Microsoft Knowledge Base using these keywords:

 dskbguide and kbkeyword

KB-Wide Keywords

Each article in the Win32 SDK collection also contains at least one
generic, KB-wide category keyword (called a KBCategory keyword). The
KBCategory keywords are standard throughout the Microsoft Knowledge Base,
appearing in all KB articles, regardless of product. You can use the
KBCategory keywords to organize all KB articles or to search for articles

across several Microsoft products. For more information about these
KBCategory keywords, please see the following article in the Microsoft
Knowledge Base:

 ARTICLE-ID: Q94671
 TITLE : Categories and Keywords for All Knowledge Base Articles

Additional reference words: 3.10 3.50 4.00
KBCategory: kbref kbkeyword
KBSubcatgory: GenSDK

How to Secure Performance Data in Windows NT
PSS ID Number: Q146906
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for
 Windows NT version 3.51
--

SUMMARY
=======

Windows NT provides access to a variety of performance data that
collectively represents the state of the computer. This performance data is
stored in the registry key HKEY_PERFORMANCE_DATA. The default configuration
of Windows NT gives everyone the ability to query this performance data,
including remote users.

In some environments, you may want to restrict access to this performance
data because some performance data may be considered sensitive. An example
of potentially sensitive performance data is the list of running processes
in the system. This article describes how to regulate access to this
performance data programmatically by using the Win32 API.

MORE INFORMATION
================

The security on the following registry key dictates which users or groups
can gain access to the performance data:

HKEY_LOCAL_MACHINE\
 SOFTWARE\
 Microsoft\
 Windows NT\
 CurrentVersion\
 Perflib

In order for users to query performance data, they must have KEY_READ
access to the above registry key. An example of reasonable security on the
performance data would be to grant Administrators KEY_ALL_ACCESS access and
Interactive (users logged onto the workstation interactively) KEY_READ
access. This particular configuration would prevent non-administrator
remote users from querying performance data.

Note that this operation can be performed by using the registry editor
utility (Regedt32.exe).

Sample Code

/*
 This sample illustrates how to regulate access to the performance data
 provided by the registry key HKEY_PERFORMANCE_DATA.

 The security on the following registry key dictates which users or groups
 can gain access to the performance data:

 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Perflib

 This sample opens the registry key for WRITE_DAC access, which allows
 for a new Dacl to be applied to the registry key.

 A Dacl is then built, which grants the following users access:

 Administrators are granted full control to allow for future updates to the
 security on the key and to allow for querying performance data.

 Interactively logged on users, through the well-known Interactive Sid,
 are granted KEY_READ access, which allows for querying performance
 data.

 The new Dacl is then applied to the registry key using the
 RegSetKeySecurity() Win32 API.

 This sample relies on the import library Advapi32.lib.
 Note that not all errors will cause an information message to be
 displayed.

 */

#include <windows.h>
#include <stdio.h>

#define RTN_OK 0
#define RTN_USAGE 1
#define RTN_ERROR 13

int
__cdecl
main(
 void
)
{
 SID_IDENTIFIER_AUTHORITY sia = SECURITY_NT_AUTHORITY;
 PSID pInteractiveSid = NULL;
 PSID pAdministratorsSid = NULL;
 SECURITY_DESCRIPTOR sd;
 PACL pDacl = NULL;
 DWORD dwAclSize;
 HKEY hKey;
 LONG lRetCode;
 BOOL bSuccess = FALSE; // assume this function fails

 //
 // open the performance key for WRITE_DAC access
 //
 lRetCode = RegOpenKeyEx(
 HKEY_LOCAL_MACHINE,
 TEXT("SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\Perflib"),

 0,
 WRITE_DAC,
 &hKey
);

 if(lRetCode != ERROR_SUCCESS) {
 fprintf(stderr, "RegOpenKeyEx error! (rc=%lu)\n", lRetCode);
 return RTN_ERROR;
 }

 //
 // prepare a Sid representing any Interactively logged-on user
 //
 if(!AllocateAndInitializeSid(
 &sia,
 1,
 SECURITY_INTERACTIVE_RID,
 0, 0, 0, 0, 0, 0, 0,
 &pInteractiveSid
)) goto cleanup;

 //
 // preprate a Sid representing the well-known admin group
 //
 if(!AllocateAndInitializeSid(
 &sia,
 2,
 SECURITY_BUILTIN_DOMAIN_RID,
 DOMAIN_ALIAS_RID_ADMINS,
 0, 0, 0, 0, 0, 0,
 &pAdministratorsSid
)) goto cleanup;

 //
 // compute size of new acl
 //
 dwAclSize = sizeof(ACL) +
 2 * (sizeof(ACCESS_ALLOWED_ACE) - sizeof(DWORD)) +
 GetLengthSid(pInteractiveSid) +
 GetLengthSid(pAdministratorsSid) ;

 //
 // allocate storage for Acl
 //
 pDacl = (PACL)HeapAlloc(GetProcessHeap(), 0, dwAclSize);
 if(pDacl == NULL) goto cleanup;

 if(!InitializeAcl(pDacl, dwAclSize, ACL_REVISION))
 goto cleanup;

 //
 // grant the Interactive Sid KEY_READ access to the perf key
 //
 if(!AddAccessAllowedAce(
 pDacl,

 ACL_REVISION,
 KEY_READ,
 pInteractiveSid
)) goto cleanup;

 //
 // grant the Administrators Sid GENERIC_ALL access to the perf key
 //
 if(!AddAccessAllowedAce(
 pDacl,
 ACL_REVISION,
 KEY_ALL_ACCESS,
 pAdministratorsSid
)) goto cleanup;

 if(!InitializeSecurityDescriptor(&sd, SECURITY_DESCRIPTOR_REVISION))
 goto cleanup;

 if(!SetSecurityDescriptorDacl(&sd, TRUE, pDacl, FALSE)) {
 fprintf(stderr, "SetSecurityDescriptorDacl error! (rc=%lu)\n",
 GetLastError());
 goto cleanup;
 }

 //
 // apply the security descriptor to the registry key
 //
 lRetCode = RegSetKeySecurity(
 hKey,
 (SECURITY_INFORMATION)DACL_SECURITY_INFORMATION,
 &sd
);

 if(lRetCode != ERROR_SUCCESS) {
 fprintf(stderr, "RegSetKeySecurity error! (rc=%lu)\n",
 lRetCode);
 goto cleanup;
 }

 bSuccess = TRUE; // indicate success

cleanup:

 RegCloseKey(hKey);
 RegCloseKey(HKEY_LOCAL_MACHINE);

 //
 // free allocated resources
 //
 if(pDacl != NULL)
 HeapFree(GetProcessHeap(), 0, pDacl);

 if(pInteractiveSid != NULL)
 FreeSid(pInteractiveSid);

 if(pAdministratorsSid != NULL)
 FreeSid(pAdministratorsSid);

 if(!bSuccess) return RTN_ERROR;

 return RTN_OK;
}

Additional reference words: perfmon performance
KBCategory: kbprg kbhowto kbcode
KBSubcategory: BseSecurity BseMisc CodeSam

How to Select a Listview Item Programmatically in Windows 95
PSS ID Number: Q131284

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s version 1.3

SUMMARY
=======

Selecting a listview item in Windows 95 is not as easy as selecting a list
box item was in Windows version 3.1. To select a list box item in Windows
version 3.1, an application sends an LB_SETCURSEL or LB_SETSEL to a single-
or multiple-selection list box respectively. To select a listview item in
Windows 95, an application sends an LVM_SETITEMSTATE message or calls the
ListView_SetItemState() macro.

MORE INFORMATION
================

An application can force a selection of a listview item. You might want the
application to do this when a user clicks a column other than the first
column of a listview of multiple subitems or columns.

Currently, a listview item is selected only when the user clicks the first
column of that item. However, you many want the application to select the
item regardless of which column in the listview is clicked.

Windows 95 does not provide a separate message or function to set the
current selection in a listview. Instead, it defines item states or LVIS_*
values that determine the listview item's appearance and functionality.
LVIS_FOCUSED and LVIS_SELECTED in particular are the states that determine
a listview item's selection state.

To select a listview item programmatically, an application sets the
listview item's state as follows:

 ListView_SetItemState (hWndListView, // handle to listview
 iWhichItem, // index to listview item
 LVIS_FOCUSED | LVIS_SELECTED, // item state
 0x000F); // mask

Note that the last parameter passed to this macro is a mask specifying
which bits are about to change. LVIS_FOCUSED and LVIS_SELECTED are defined
in <commctrl.h> as 0x0001 and 0x0002 respectively, so you need to set the
last four bits of the mask.

The same principle applies to selecting a treeview item programmatically.
The only difference is that an application sends a TVM_SETITEM message or

calls the TreeView_SetItem() macro.

Because listviews allow multiple selection by default, you can program an
application to select multiple items by simulating a CTRL keydown (or SHIFT
keydown event) prior to setting the item state. For example, the following
code simulates the pressing of the CTRL key:

 BYTE pbKeyState [256];

 GetKeyboardState ((LPBYTE)&pbKeyState);
 pbKeyState[VK_CONTROL] |= 0x80;
 SetKeyboardState ((LPBYTE)&pbKeyState);

Note that if an application simulates a keypress, it must also be
responsible for releasing it by resetting the appropriate bit. For example,
the following code simulates the release of a CTRL key:

 BYTE pbKeyState [256];

 GetKeyboardState ((LPBYTE)&pbKeyState);
 pbKeyState[VK_CONTROL] = 0;
 SetKeyboardState ((LPBYTE)&pbKeyState);

Similarly, retrieving the currently selected item in a listview control
in Windows 95 is not as easy as sending an LB_GETCURSEL message to a
listbox control was in Windows version 3.1.

For listviews, call the ListView_GetNextItem() function with the
LVNI_SELECTED flag specified:

 iCurSel = ListView_GetNextItem (ghwndLV, -1, LVNI_SELECTED);

For treeviews, retrieve the currently selected item by calling the
TreeView_GetNextItem() function with the TVGN_CARET flag
specified or by calling the TreeView_GetSelection() macro directly:

 iCurSel = TreeView_GetNextItem (ghwndTV, NULL, TVGN_CARET);
 or
 iCurSel = TreeView_GetSelection (ghwndTV);

Additional reference words: 4.00 1.30
KBCategory: kbui kbcode
KBSubcategory: UsrCtl

How to Send Raw Data to a Printer by Using the Win32 API
PSS ID Number: Q138594
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.5
--

SUMMARY
=======

It is sometimes necessary to send printer-specific data directly to a
printer, bypassing the driver. The Win32 API provides a do it that works on
local and networked printers. This method can be used to replace the
PASSTHROUGH escape and SpoolFile() methods used in previous versions of the
Windows API.

MORE INFORMATION
================

You can use the following code to send raw data directly to a printer in
Windows NT or Windows 95.

// RawDataToPrinter - sends binary data directly to a printer
//
// Params:
// szPrinterName - NULL terminated string specifying printer name
// lpData - Pointer to raw data bytes
// dwCount - Length of lpData in bytes
//
// Returns: TRUE for success, FALSE for failure
//
BOOL RawDataToPrinter(LPSTR szPrinterName, LPBYTE lpData, DWORD dwCount)
{
 HANDLE hPrinter;
 DOC_INFO_1 DocInfo;
 DWORD dwJob;
 DWORD dwBytesWritten;

 // Need a handle to the printer
 if(! OpenPrinter(szPrinterName, &hPrinter, NULL))
 return FALSE;

 // Fill in the structure with info about this "document"
 DocInfo.pDocName = "My Document";
 DocInfo.pOutputFile = NULL;
 DocInfo.pDatatype = "RAW";
 // Inform the spooler the document is beginning
 if((dwJob = StartDocPrinter(hPrinter, 1, (LPSTR)&DocInfo)) == 0)
 {
 ClosePrinter(hPrinter);
 return FALSE;
 }
 // Start a page

 if(! StartPagePrinter(hPrinter))
 {
 EndDocPrinter(hPrinter);
 ClosePrinter(hPrinter);
 return FALSE;
 }
 // Send the data to the printer
 if(! WritePrinter(hPrinter, lpData, dwCount, &dwBytesWritten))
 {
 EndPagePrinter(hPrinter);
 EndDocPrinter(hPrinter);
 ClosePrinter(hPrinter);
 return FALSE;
 }
 // End the page
 if(! EndPagePrinter(hPrinter))
 {
 EndDocPrinter(hPrinter);
 ClosePrinter(hPrinter);
 return FALSE;
 }
 // Inform the spooler that the document is ending
 if(! EndDocPrinter(hPrinter))
 {
 ClosePrinter(hPrinter);
 return FALSE;
 }
 // Tidy up the printer handle
 ClosePrinter(hPrinter);
 // Check to see if correct number of bytes writen
 if(dwBytesWritten != dwCount)
 return FALSE;
 return TRUE;
}

Additional reference words: 4.00 RAW.DRV binary
KBCategory: kbprint kbcode kbhowto
KBSubcategory: GdiPrn

How to Set Foreground/Background Responsiveness in Code
PSS ID Number: Q125660

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.5

SUMMARY
=======

In Windows NT version 3.5, you can set foreground/background responsiveness
by using the System Control Panel in Program Manager. Chose Tasking, then
select one of the following through the dialog that is displayed:

 - Best Foreground Application Response Time.

 - Foreground Application More Responsive than Background.

 - Foreground and Background Applications Equally Responsive.

This article describes how to achieve the same thing by using code in a
program. It also explains how to override this setting by using code in a
program.

MORE INFORMATION
================

You can use the Registry APIs to set foreground/background responsiveness.
The following registry key allows you to specify the priority to give to
the application running in the foreground:

 HKEY_LOCAL_MACHINE\SYSTEM
 CurrentControlSet\
 Control\
 PriorityControl\
 Win32PrioritySeparation

The following values are supported:

 Value Meaning

 0 Foreground and background applications equally responsive
 1 Foreground application more responsive than background
 2 Best foreground application response time

These values correspond to the choices offered in the Tasking dialog
described in the "Summary" section of this article.

To override the setting from your application, use SetPriorityClass() to
change your application's priority class and SetThreadPriority() to set
the priority for a given thread.

NOTE: The thread priority together with the priority class for the process
determine the thread's base priority.

Additional reference words: 3.50
KBCategory: kbprg
KBSubcategory: BseProcThrd

How To Set MCI Wave Audio Recording Format
PSS ID Number: Q152180
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK), version 3.1

 - Microsoft Win32 Software Development Kit for
 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Pegasus (Beta) 1.0
--

SUMMARY
=======

All parameters in the MCI_WAVE_SET_PARMS struct that apply to recording
wave audio should be set at the same time. If some recording parameters are
set at one time and the balance of the recording parameters are set at a
later time, recording will proceed at a default setting of 8-bits per
sample, mono, and 11-kHz sampling.

MORE INFORMATION
================

The members of the MCI_WAVE_SET_PARMS struct that pertain to recording are
wFormatTag, wBitsPerSample, nChannels, nSamplesPerSec, nAvgBytesPerSec, and
nBlockAlign. All of these should be set in a single call to mciSendCommand
in order to achieve recording under the desired settings.

Because nBlockAlign is usually computed using information from
wBitsPerSample and nChannels, it may not seem necessary to set any members
other than wFormatTag, wBitsPerSample, and nChannels in conjunction with
the setting of nBlockAlign. Leaving the other two pertinent members,
nSamplesPerSec and nAvgBytesPerSec, to be set later, however, results in an
error message at both the initial setting and the later setting of
parameters. The error message states "The parameter is out of range for the
specified command." Recording will then proceed at a default setting of
8-bits per sample, mono, and 11-kHz sampling.

Following is a sample of setting all the recording members of the
MCI_WAVE_SET_PARMS struct properly at once to get the desired 16-bit stereo
recording accomplished at 44-kHz sampling:

 //#include <mmsystem.h> at the beginning of the program.
 //Link with mmsystem.lib for 16-bit code, or
 //link with winmm.lib for 32-bit code.

 MCI_WAVE_SET_PARMS set_parms;
 MCI_OPEN_PARMS open_parms;
 DWORD dwReturn;
 UINT wave_device_id;
 char buffer[128];

 // Open the wave audio device.
 open_parms.lpstrDeviceType = "waveaudio";
 open_parms.lpstrElementName = "";

 if (dwReturn = mciSendCommand(0, MCI_OPEN, MCI_OPEN_TYPE |
 MCI_OPEN_ELEMENT, (DWORD) (LPVOID) &open_parms))
 {
 mciGetErrorString(dwReturn, buffer, sizeof (buffer));
 MessageBox(NULL, buffer, "MCI_OPEN",
 MB_ICONEXCLAMATION | MB_OK);
 }
 else
 {
 MessageBox(NULL, "Open Succeeded", "MCI_OPEN",
 MB_ICONEXCLAMATION | MB_OK);
 }

 // Note the wave audio device ID
 wave_device_id = open_parms.wDeviceID;

 // Set PCM format of recording.
 set_parms.wFormatTag = WAVE_FORMAT_PCM;
 set_parms.wBitsPerSample = 16;
 set_parms.nChannels = 2;
 set_parms.nSamplesPerSec = 44100;
 set_parms.nAvgBytesPerSec = ((set_parms.wBitsPerSample)/8) *
 set_parms.nChannels *
 set_parms.nSamplesPerSec;
 set_parms.nBlockAlign = ((set_parms.wBitsPerSample)/8) *
 set_parms.nChannels;

 if (dwReturn = mciSendCommand(wave_device_id, MCI_SET, MCI_WAIT |
 MCI_WAVE_SET_FORMATTAG |
 MCI_WAVE_SET_BITSPERSAMPLE |
 MCI_WAVE_SET_CHANNELS |
 MCI_WAVE_SET_SAMPLESPERSEC |

 MCI_WAVE_SET_AVGBYTESPERSEC |
 MCI_WAVE_SET_BLOCKALIGN,
 (DWORD)(LPVOID)&set_parms))
 {
 mciGetErrorString(dwReturn, buffer, sizeof(buffer));
 MessageBox(NULL, buffer, "MCI_SET",
 MB_ICONEXCLAMATION | MB_OK);
 }
 else
 {
 MessageBox(NULL, "MCI_WAVE_SET Succeeded", "MCI_SET",
 MB_ICONEXCLAMATION | MB_OK);
 }

 //Close the wave device.
 if (dwReturn = mciSendCommand(wave_device_id, MCI_CLOSE,
 (DWORD)NULL, (DWORD)NULL))
 {

 mciGetErrorString(dwReturn, buffer, sizeof (buffer));
 MessageBox(NULL, buffer, "MCI_CLOSE",
 MB_ICONEXCLAMATION | MB_OK);
 }
 else
 {
 MessageBox(NULL, "MCI_CLOSE Succeeded", "MCI_CLOSE",
 MB_ICONEXCLAMATION | MB_OK);
 }

Following is behavior that will result in a default recording of 8-bits per
sample, mono, and 11-kHz sampling, because the settings of the recording
parameters are done in two parts:

 // Set PCM format recording, Part 1.
 set_parms.wFormatTag = WAVE_FORMAT_PCM;
 set_parms.wBitsPerSample = 16;
 set_parms.nChannels = 2;
 set_parms.nBlockAlign = ((set_parms.wBitsPerSample)/8) *
 set_parms.nChannels;

 if (dwReturn = mciSendCommand(wave_device_id, MCI_SET, MCI_WAIT |
 MCI_WAVE_SET_FORMATTAG |
 MCI_WAVE_SET_BITSPERSAMPLE |
 MCI_WAVE_SET_CHANNELS |
 MCI_WAVE_SET_BLOCKALIGN,
 (DWORD)(LPVOID)&set_parms))
 {
 mciGetErrorString(dwReturn, buffer, sizeof(buffer));
 MessageBox(NULL, buffer, "MCI_WAVE_SET_1", MB_OK);
 }
 else
 }
 MessageBox(NULL, "MCI_WAVE_SET-1 Succeeded", "MCI_SET",
 MB_OK);
 }

 // Set PCM format recording, Part 2.
 set_parms.nSamplesPerSec = 44100;
 set_parms.nAvgBytesPerSec = ((set_parms.wBitsPerSample)/8) *
 set_parms.nChannels *
 set_parms.nSamplesPerSec;

 if (dwReturn = mciSendCommand(wave_device_id, MCI_SET, MCI_WAIT |
 MCI_WAVE_SET_SAMPLESPERSEC |
 MCI_WAVE_SET_AVGBYTESPERSEC,
 (DWORD)(LPVOID)&set_parms))
 {
 mciGetErrorString(dwReturn, buffer, sizeof(buffer));
 MessageBox(NULL, buffer, "MCI_WAVE_SET_2", MB_OK);
 }
 else
 {
 MessageBox(NULL, "MCI_WAVE_SET_2 Succeeded", "MCI_SET",
 MB_OK);

 }

Additional reference words: 3.11 4.00 3.51
KBCategory: kbmm kbsound kbhowto
KBSubcategory: MMWave

How to Set the Current Normal Vector in an OpenGL Application
PSS ID Number: Q131130

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.5

SUMMARY
=======

In a Microsoft Win32 OpenGL application, it is common practice to construct
objects with the glBegin function followed by several calls to glVertex.
For example, to create a flat polygon in three-dimensional space, you could
write this code:

 glBegin(GL_POLYGON);
 glVertex3f(.....);
 glVertex3f(.....);
 glVertex3f(.....);
 . . .
 . . .
 glEnd();

Now, if you want to implement a light source or multiple light sources in
your OpenGL application, it is important that you include a call to the
glNormal function between the calls to glBegin and glEnd so that the normal
vector can be used by OpenGL when calculating the color to use when filling
the polygon.

You can perform a vector cross product on two vectors to obtain a third
vector that is perpendicular to the plane containing the two vectors. Using
a vector cross product, you can calculate the vector normal to the polygon
and use that value in your call to glNormal.

MORE INFORMATION
================

Using cross product math on two vectors of a polygon, you can obtain a
vector that is perpendicular to the polygon. Two sides of a polygon
describe two vectors in the plane of the polygon. With those two vectors,
you can calculate a vector that is perpendicular to the polygon. The length
of the normal vector calculated will not be unit length, and the normal
vector needs to be unit length. Therefore, you need to call
glEnable(GL_NORMALIZE) when you initialize your OpenGL application, so that
normal vectors specified with glNormal are scaled to unit length after
transformation.

Code Sample

You can use the following function to calculate a normal vector for a

polygon. You need to give it three points of the polygon and the points
should be given in clock-wise order when you are facing the front of the
polygon:

//***
// Function: CalculateVectorNormal
//
// Purpose: Given three points of a 3D plane, this function calculates
// the normal vector of that plane.
//
// Parameters:
// fVert1[] == array for 1st point (3 elements are x, y, and z).
// fVert2[] == array for 2nd point (3 elements are x, y, and z).
// fVert3[] == array for 3rd point (3 elements are x, y, and z).
//
// Returns:
// fNormalX == X vector for the normal vector
// fNormalY == Y vector for the normal vector
// fNormalZ == Z vector for the normal vector
//
// Comments:
//
// History: Date Author Reason
// 3/22/95 GGB Created
//***

GLvoid CalculateVectorNormal(GLfloat fVert1[], GLfloat fVert2[],
 GLfloat fVert3[], GLfloat *fNormalX,
 GLfloat *fNormalY, GLfloat *fNormalZ)
 {
 GLfloat Qx, Qy, Qz, Px, Py, Pz;

 Qx = fVert2[0]-fVert1[0];
 Qy = fVert2[1]-fVert1[1];
 Qz = fVert2[2]-fVert1[2];
 Px = fVert3[0]-fVert1[0];
 Py = fVert3[1]-fVert1[1];
 Pz = fVert3[2]-fVert1[2];

 *fNormalX = Py*Qz - Pz*Qy;
 *fNormalY = Pz*Qx - Px*Qz;
 *fNormalZ = Px*Qy - Py*Qx;
}

Code to Call and Use the CalculateVectorNormal Function

Here is an example of how you might call and use the function:

 glBegin(GL_POLYGON);
 glVertex3fv(fVert1);
 glVertex3fv(fVert2);
 glVertex3fv(fVert3);
 glVertex3fv(fVert4);

 // Calculate the vector normal coming out of the 3D polygon.
 CalculateVectorNormal(fVert1, fVert2, fVert3, &fNormalX,
 &fNormalY, &fNormalZ);
 // Set the normal vector for the polygon
 glNormal3f(fNormalX, fNormalY, fNormalZ);
 glEnd();

Additional reference words: 3.50 graphics
KBCategory: kbgraphic kbcode
KBSubcategory: GdiOpenGL

How to Set Up and Run the RNR Sample Included in the Win32 SDK
PSS ID Number: Q131505

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.5, 3.51

SUMMARY
=======

This article explains how to set up and operate the Service Registration
and Resolution (RNR) sample over the TCP and SPX network protocols. The RNR
sample comes with the Microsoft Win32 (SDK) versions 3.5 and 3.51. It
illustrates the use of the service registration and resolution APIs.

MORE INFORMATION
================

How to Set Up the RNR Sample

Run rnrsetup /ADD on each client and on the server to call the SetService
API with SERVICE_ADD_TYPE. This call stores the service name type, its
associated GUID, and relevant addressing information for the specified name
spaces in the registry path:

 \HKEY_LOCAL_MACHINE
 \CurrentControlSet
 \Control
 \ServiceProvider
 \ServiceTypes

This information is then retrieved by GetTypeByName() and
GetAddressByName() calls respectively to identify the server's address.

How to Operate the RNR Sample

1. Start rnrsrv on one machine. After setting listening ports on the
 available protocols, the RNR server executes the SetService() call with
 the SERVICE_REGISTER flag to register the network service with the
 specified name spaces. For example, it enables advertising the
 EchoExample service name on the SAP protocol.

2. On the other machine, start rnrclnt using the following syntax:

 rnrclnt /?

 Usage: rnrclnt [/name:SVCNAME] [/type:TYPENAME] [/size:N]
 [/count:N] [/rcvbuf:N] [/sndbuf:N]

 - TYPENAME is initially passed to GetTypeByName() call to return
 the GUID value. The GUID value and SVCNAME is then passed to

 GetAddressByName() to return the address of the server that
 the client can connect to. TYPENAME is defined as EchoExample
 for the RNR sample.

 - SVCNAME specifies which EchoExample server to connect to. If
 SVCNAME is specified as the server name in the Internet domain,
 the TCP protocol will be used. If SVCNAME is specified as
 EchoServer (the RNR service name advertised on SAP), the SPX
 protocol will be used.

 - The other parameters to the rnrclnt have appropriate default
 values and are self explanatory.

Additional reference words: 3.50 3.51
KBCategory: kbnetwork kbnetwork
KBSubcategory: NtwkWinsock

How to Shade Images to Look Like Windows 95 Active Icon
PSS ID Number: Q128786

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

This article shows by example how to display an image or an icon in a
shaded state, as Windows 95 does for the active icon.

MORE INFORMATION
================

Step-by-Step Procedure

To obtain the shaded look for your image or icon, follow these six steps:

1. Create a compatible DC and bitmap.

2. Create a monochrome pattern brush with every other pixel on.

3. Fill the memory image with the pattern.

4. BitBlt the source image over the pattern using SRCAND so that only the
 'on' destination pixels are transferred.

5. Color the destination with the pattern, using the highlight color for
 the 'off' pixels and using black for the 'on' pixels.

6. Copy the filtered original from the memory DC to the destination using
 SRCPAINT so that only the 'on' pixels are transferred.

This results in the destination having the original image with every other
pixel colored with the highlight color.

Sample Code

The following function implements these six steps to shade a rectangular
area on a device context:

// ShadeRect
// hDC : the DC on which the area is to be shaded
// lpRect : the coordinates within which to shade
BOOL ShadeRect(HDC hDC, LPRECT lpRect)
{

 COLORREF crHighlightColor, crOldBkColor, crOldTextColor;
 HBRUSH hBrush, hOldBrush;
 HBITMAP hBitmap, hBrushBitmap, hOldMemBitmap;
 int OldBkMode, nWidth, nHeight;
 HDC hMemDC;
 RECT rcRect = { 0, 0, 0, 0};
 // The bitmap bits are for a monochrome "every-other-pixel"
 // bitmap (for a pattern brush)
 WORD Bits[8] = { 0x0055, 0x00aa, 0x0055, 0x00aa,
 0x0055, 0x00aa, 0x0055, 0x00aa };

 // The Width and Height of the target area
 nWidth = lpRect->right - lpRect->left + 1;
 nHeight = lpRect->bottom - lpRect->top + 1;

 // Need a pattern bitmap
 hBrushBitmap = CreateBitmap(8, 8, 1, 1, &Bits);
 // Need to store the original image
 hBitmap = CreateCompatibleBitmap(hDC, nWidth, nHeight);
 // Need a memory DC to work in
 hMemDC = CreateCompatibleDC(hDC);
 // Create the pattern brush
 hBrush = CreatePatternBrush(hBrushBitmap);

 // Has anything failed so far? If so, abort!
 if((hBrushBitmap==NULL) || (hBitmap==NULL) ||
 (hMemDC==NULL) || (hBrush==NULL))
 {
 if(hBrushBitmap != NULL) DeleteObject(hBrushBitmap);
 if(hBitmap != NULL) DeleteObject(hBitmap);
 if(hMemDC != NULL) DeleteDC(hMemDC);
 if(hBrush != NULL) DeleteObject(hBrush);
 return FALSE;
 }

 // Select the bitmap into the memory DC
 hOldMemBitmap = SelectObject(hMemDC, hBitmap);

 // How wide/tall is the original?
 rcRect.right = nWidth;
 rcRect.bottom = nHeight;

 // Lay down the pattern in the memory DC
 FillRect(hMemDC, &rcRect, hBrush);

 // Fill in the non-color pixels with the original image
 BitBlt(hMemDC, 0, 0, nWidth, nHeight, hDC,
 lpRect->left, lpRect->top, SRCAND);

 // For the "Shutdown" look, use black or gray here instead
 crHighlightColor = GetSysColor(COLOR_HIGHLIGHT);

 // Set the color scheme
 crOldTextColor = SetTextColor(hDC, crHighlightColor);
 crOldBkColor = SetBkColor(hDC, RGB(0,0,0));

 SetBkMode(hDC, OPAQUE);

 // Select the pattern brush
 hOldBrush = SelectObject(hDC, hBrush);
 // Fill in the color pixels, and set the others to black
 FillRect(hDC, lpRect, hBrush);
 // Fill in the black ones with the original image
 BitBlt(hDC, lpRect->left, lpRect->top, nWidth, nHeight,
 hMemDC, 0, 0, SRCPAINT);

 // Restore target DC settings
 SetBkMode(hDC, OldBkMode);
 SetBkColor(hDC, crOldBkColor);
 SetTextColor(hDC, crOldTextColor);

 // Clean up
 SelectObject(hMemDC, hOldMemBitmap);
 DeleteObject(hBitmap);
 DeleteDC(hMemDC);
 DeleteObject(hBrushBitmap);
 SelectObject(hDC, hOldBrush);
 DeleteObject(hBrush);

 return TRUE;
}

Additional reference words: 4.00 hatch darken shadow
KBCategory: kbgraphic kbcode
KBSubcategory: GdiMisc

How to Share Data Between Different Mappings of a DLL
PSS ID Number: Q125677

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Under certain circumstances, 32-bit DLLs might have to share data with
other 32-bit DLLs loaded by a different application or with different
mappings of the same DLL. Because 32-bit DLLs are mapped into the the
calling process's address space, which is private, sharing data with other
DLLs mapped into the address spaces of different applications involves
creating shared data section(s) or using memory mapped files. This article
discusses the former -- creating shared data sections by using the #pragma
statement. Typically, system-wide hooks installed in a DLL need to share
some common data among different mappings.

MORE INFORMATION
================

Each Win32-based application runs in its own private address space. If a 32-
bit application installs a system-wide hook with the hook callback function
in a DLL, this DLL is mapped into the address space of every application
for which the hook event occured.

Every application that the DLL gets mapped into, gets its own set of
variables (data). Often there will be a scenario where hook callback
functions mapped into different application or process address spaces need
to share some data variables -- such as HHOOK or a Window Handle -- among
all mappings of the DLL.

Because each application's address space is private, DLLs with hook
callback functions mapped into one application's address spaces cannot
share data (variables) with other hook callback functions mapped into a
different application's address space unless a shared data SECTION exists
in the DLL.

Every 32-bit DLL (or EXE) is composed of a collection of sections. Each
section name begins with a period. The section of interest in this article
is the data section. These sections can have one of the following
attributes: READ, WRITE, SHARED, and EXECUTE.

DLLs that need to share data among different mappings can use the #pragma
pre-processor command in the DLL source file to create a shared data
section that contains the data to be shared.

The following sample code shows by example how to define a named-data

section (.sdata) in a DLL.

Sample Code

#pragma data_seg(".sdata")
int iSharedVar = 0;
#pragma data_seg()

The first line directs the compiler to place all the data declared in this
section into the .sdata data segment. Therefore, the iSharedVar variable is
stored in the MYSEC segment. By default, data is not shared. Note that you
must initialize all data in the named section. The data_seg pragma applies
only to initialized data. The third line, #pragma data_seg(), resets
allocation to the default data section.

If one application makes any changes to variables in the shared data
section, all mappings of this DLL will reflect the same changes, so you
need to be carefule when dealing with shared data in applications or DLLs.

You must also tell the linker that the variables in the section you defined
are to be shared by modifying your .DEF file to include a SECTIONS section
or by specifying /SECTION:.sdata, RWS in your link line. Here's an example
SECTIONS section:

 SECTIONS
 .sdata READ WRITE SHARED

In the case of a typical hook DLL, the HHOOK, HINSTDLL, and other variables
can go into the shared data section.

Additional reference words: 4.00 95
KBCategory: kbprg
KBSubcategory: BseMisc

How to Simulate Changing the Font in a Message Box
PSS ID Number: Q68586

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

To simulate changing the font in a message box, create a dialog box that
uses the desired font. Specify the style and contents of the dialog box to
reflect the style of the desired message box. The application can also draw
a system icon in the dialog box.

MORE INFORMATION
================

The message box is a unique object in Windows. Its handle is not available
to an application; therefore, it cannot be modified. An application can
simulate a message box with a different font by creating a dialog box that
looks like a message box.

To change the font in a dialog box, use the optional statement FONT in the
dialog statement of the resource script (.RC) file. For example, resource
file statements for a dialog box displaying an error in Courier point size
12 would be as follows:

 FontError DIALOG 45, 17, 143, 46
 CAPTION "Font Error"
 FONT 12, "Courier"
 STYLE WS_CAPTION | WS_SYSMENU | DS_MODALFRAME
 BEGIN
 CTEXT "Please select the right font", -1, 0, 7, 143, 9
 DEFPUSHBUTTON "OK" IDOK, 56, 25, 32, 14, WS_GROUP
 END

To center the dialog box in the screen, use GetWindowRect() to retrieve the
dimensions of the screen and MoveWindow() to place the dialog box
appropriately. The following code demonstrates this procedure:

 case WM_INITDIALOG:
 GetWindowRect(hDlg, &rc);
 x = GetSystemMetrics(SM_CXSCREEN);
 y = GetSystemMetrics(SM_CYSCREEN);
 MoveWindow (hDlg,
 (x - (rc.right - rc.left)) >> 1, /* x position */
 (y - (rc.bottom - rc.top)) >> 1, /* y position */

 rc.right - rc.left, /* x size */
 rc.bottom - rc.top, /* y size */
 TRUE); /* paint the window */
 return TRUE;

To display a system icon in the dialog box, call the DrawIcon() function
during the processing of a WM_PAINT message. After drawing the desired
icon, the dialog procedure passes control back to the dialog manager by
returning FALSE. The code to paint the exclamation point icon (used in
warning messages) is as follows:

 case WM_PAINT:
 hIcon = LoadIcon(NULL, IDI_EXCLAMATION);
 hDC = GetDC(hDlg);
 DrawIcon(hDC, 20, 40, hIcon);
 ReleaseDC(hDlg, hDC);
 return FALSE;

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbui
KBSubcategory: UsrCtl

How to Spawn a Console App and Redirect Standard Handles
PSS ID Number: Q126628

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

This article discusses spawning a console application with CreateProcess()
and redirecting its output. The standard handles are controlled with the
STARTUPINFO fields hStdInput, hStdOutput, and hStdError.

In Windows NT version 3.1, if a windowed application spawned a console
application, you could:

 - Redirect none of its standard handles (don't use STARTF_USESTDHANDLES).

 -or-

 - Redirect all of its standard handles (use STARTF_USESTDHANDLES).

For example, if you redirected hStdInput and hStdOutput, but left hStdError
as 0 or INVALID_HANDLE_VALUE, the console application would fail if it
tried to write to stderr. This is not a problem for a console application
spawning another console application.

In Windows NT version 3.5 and later and in Windows 95, if you set any of
these fields to INVALID_HANDLE_VALUE, Windows NT will assign the default
value to that handle in the console application, rather than leaving it an
invalid value. Therefore, if you set STARTF_USESTDHANDLES, but fail to set
one of the handle fields, this will not cause a problem for the console
application. You can now redirect standard input, but not standard output,
and so forth.

Additional reference words: 3.50 4.00
KBCategory: kbprg
KBSubcategory: BseProcThrd

How to Specify a Full Path in the ExecProgram Macro
PSS ID Number: Q86477
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.51 and 4.0
--

SUMMARY
=======

Windows help files (.HLP files) can be written such that selecting a
designated topic executes a Windows-based application. This is done with
the ExecProgram() macro. If the desired application does not reside in the
same directory as the .HLP file, a full path to the .EXE must be
specified. An invalid path produces an error.

SYMPTOMS
========

Attempting to execute an application with a full path causes Windows to
display the following Help message box:

 Unable to Run Specified File.

CAUSE
=====

A common mistake is to incorrectly specify the subdirectory delimiters in
the path description.

RESOLUTION
==========

The Windows Help Compiler can recognize escape sequences expressed using
the backslash (\) character. When using the ExecProgram() macro, four
backslashes (\\\\) separate each directory in a full path description:

 ExecProgram("c:\\\\winapps\\\\excel\\\\excel", 0)

With HC31.EXE version 3.10.505 and HCW.EXE version 4.0, you would use only
two backslashes:

 ExecProgram("c:\\winapps\\excel\\excel", 0)

Additional reference words: 3.00 3.10 4.00 95
KBCategory: kbtool
KBSubcategory: TlsHlp

How to Specify Filenames/Paths in Viewer/WinHelp Commands
PSS ID Number: Q120251

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

Both WinHelp and Viewer have commands such as JumpId() that take a filename
as a parameter. Depending on the circumstances under which such commands
are called, the number of backslashes (\) included in the filename as part
of the path may have to be doubled for the command to work correctly. For
example, if JumpId() is called from a HotSpot, you need to use two
backslashes to separate the subdirectory names as in this example:

 JumpId("C:\\MYAPP\\HLPFILE\\MYHLP.HLP","topicx")

But if JumpId() is used as the command associated with a menu item, you
need to use four backslashes to separate the subdirectory names within the
JumpId command, which is itself part of an InsertItem() command. For
example:

 InsertItem("MNU_FILE","my_id","Jump",
 "JumpId('C:\\\\MYAPP\\\\HLPFILE\\\\MY HLP.HLP','topicx')",0)

To avoid having to modify the filename parameter depending on how the
function is called, Microsoft recommends that you use a single forward
slash (/) to separate subdirectory names within the filename. For example:

 JumpId("C:/MYAPP/HLPFILE/MYHLP.HLP","topicx")

A single forward slash will work regardless of how the command is called.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsHlp

How to Specify Shared and Nonshared Data in a DLL
PSS ID Number: Q89817

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

To have both shared and nonshared data in a dynamic-link library (DLL)
which is built with a 32-bit Microsoft C compiler, you need to use the
#pragma data_seg directive to set up a new named section. You then must
specify the correct sharing attributes for this new named data section in
your .DEF file.

The system will try to load the shared memory block created by #pragma
data_seg at the same address in each process. However, if the block cannot
be loaded into the same memory address, the system allocates a new block of
memory for that process and the memory is not shared. No run time warnings
are given when this happens. Using memory-mapped files backed by pagefile
(named shared memory) is a safer option than using #pragma data_seg,
because the APIs will return an error when the mapping fails.

MORE INFORMATION
================

Below is a sample of how to define a named data section in your DLL. The
first line directs the compiler to include all the data declared in this
section in the .MYSEC data segment. This means that the iSharedVar variable
would be considered part of the .MYSEC data segment. By default, data will
be nonshared.

Note that you must initialize all data in your named section. The data_seg
pragma only applies to initialized data.

The third line, "#pragma data_seg()", directs the compiler to reset
allocation to the default data section.

 #pragma data_seg(".MYSEC")
 int iSharedVar = 0;
 #pragma data_seg()

Below is a sample of the .DEF file that supports the shared and nonshared
segments. This definition will set the default section .MYSEC to be shared.
The default data section is by default non-shared, so any data not in
section .MYSEC will be non-shared.

 LIBRARY MyDll
 SECTIONS

 .MYSEC READ WRITE SHARED
 EXPORTS
 ...

NOTE: All section names must begin with a period character ('.') and
must not be longer than 8 characters, including the period character.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseDll

How to Start a Control Panel Applet in Windows 95
PSS ID Number: Q135068

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In Windows 95, the Control Panel application (Control.exe) is just a 16-bit
application stub that calls into the shell to start the Control Panel. To
debug a control panel applet, the programmer needs to invoke the Control
Panel as the calling application, but Control.exe is a 16-bit application,
so the debugger cannot load it. To invoke a control panel applet in Windows
95, a program can call into the shell directly.

MORE INFORMATION
================

There's a utility shipped with Windows 95 called RunDLL32 that allows you
to invoke a function exported from a DLL. The Windows 95 shell doesn't call
Control.exe when you start the control panel, instead it invokes a
Control_RunDLL function in Shell32.DLL. With this information, you can use
with the following command line to invoke a control panel applet:

 rundll32.exe shell32.dll,Control_RunDLL mycontrol.cpl

This starts the first control panel applet in Mycontrol.cpl. If you have
multiple control panel applets in Mycontrol.cpl, you need to add to the
line as shown here:

 rundll32.exe shell32.dll,Control_RunDLL mycontrol.cpl,@1

Here @1 specifies the second (zero-based) applet in the .cpl file. If you
don't specify this parameter, @0 is used as the default.

There's one more parameter you can add. It serves as the command line
parameters passed to the control panel applet in the CPL_STARTWPARM
notification. For example, a lot of the system's control panel applets take
the page number (one based, not zero based) as the command line parameter.
For example, if you want to start the Add/Remove Programs applet at the
Windows Setup page, so you can instruct the user to add extra system
components, you can use this code:

 rundll32.exe shell32.dll,Control_RunDLL appwiz.cpl,@0,2

NOTE: If you put a space after the comma in the commands above, you will
get the error:

 Error in shell32.dll

 Missing entry.

Additional reference words: Windows 95 4.00 debug CPL
KBCategory: kbui
KBSubcategory: UsrExt

How to Start an Application at Boot Time Under Windows 95
PSS ID Number: Q125714

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Windows NT supports a Win32-based application type known as a Service. A
Service may be started at boot time, automatically, by a user with the
Service Control Manager facility or by Win32-based applications that use
the service-related Win32 APIs. The Service Control subsystem and the
associated Win32 APIs are not supported in Windows 95. In place of
services, Windows 95 has two registry keys that will allow users to run
applications before a user logs in when the system first starts up.

MORE INFORMATION
================

Microsoft recognizes the value that Services and the Service Control
manager have, therefore, we have implemented a smaller version of the
Service Control Manager in Windows 95 so that applications can run before a
user logs in. At boot time, the system checks two new registry keys:
"RunServices" and "RunServicesOnce".

 HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion
 RunServices [key]
 bubba95=service.exe /params [string value]

 ...

 RunServicesOnce [key]

 ...

The value names are arbitrary. The value data is the command line passed to
CreateProcess(). Values under the key RunServicesOnce are deleted after the
application is launched. Because these applications are started before the
user logs onto the system, the user has not been validated and the
applications cannot assume that they have particular networking permissions
enabled. Windows 95, unlike Windows NT, only has one security context for
the entire system. Therefore, don't assume that any application that starts
has access to a particular network resource because a particular user has
access to this network resource.

Applications started by the RunServices and RunServicesOnce keys will be
closed when the user selects "Close all programs and log on as a different
user" from the Shutdown dialog on the Start Menu. A Win32-based application
can prevent itself or any other Win32-based application from being closed

when the user logs off by calling RegisterServiceProcess(). Win32-based
applications registered in this manner close only when the system is shut
down. However, the application must consider that different user can be
logged on at different times during its execution. The application can
distinguish between a user logging off and the system shutting down by
examining the lParam of WM_QUERYENDSESSION and WM_ENDSESSION. If the system
is being shut down, lParam is NULL. If the user is logging off, lParam is
set to EWX_REALLYLOGOFF.

To access RegisterServiceProcess, retrieve a function pointer using
GetProcAddress() on KERNEL32.DLL.

RegisterServiceProcess

DWORD RegisterServiceProcess(
 DWORD dwProcessId, // process identifier
 DWORD dwServiceType // type of service
);

Parameters:

 - dwProcessId: Specifies the identifier of the process to register as a
 service process or NULL to register the current process. An
 application receives the process ID when it uses CreateProcess() to
 start the application.

 - dwServiceType: One of the following values:

 Define Value Meaning
 RSP_SIMPLE_SERVICE 0x00000001 Registers the process as a
 simple service process.

 RSP_UNREGISTER_SERVICE 0x00000000 Unregisters the process as a
 service process.

Return Value:

The return value is 1 if successful or 0 if an error occurs.

Additional reference words: 3.95 4.00
KBCategory: kbprg
KBSubcategory: BseService

How to Stop a Journal Playback
PSS ID Number: Q98486

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

To stop a "journal playback" when a specified key is pressed, the
filter function must determine whether the key was pressed and then
call the UnhookWindowsHookEx function to remove the WH_JOURNALPLAYBACK
hook.

MORE INFORMATION
================

To determine the state of a specified key, the filter function must
call the GetAsyncKeyState function when the nCode parameter equals
HC_SKIP. The HC_SKIP hook code notifies the WH_JOURNALPLAYBACK filter
function that Windows is done processing the current event.

The GetAsyncKeyState function determines whether a key is up or down
at the time the function is called, and whether the key was pressed
after a previous call to the GetAsyncKeyState function. If the most
significant bit of the return value is set, the key is down; if the
least significant bit is set, the key was pressed after a preceding
GetAsyncKeyState call.

If the filter function calls the GetAsyncKeyState function after the
specified key was pressed and released, then the most significant bit
will not be set to reflect a key-down. Thus, a test to check whether
the specified key is down fails. Therefore, the least significant bit
of the return value must be checked to determine whether the specified
key was pressed after a preceding call to GetAsyncKeyState function.
Using this technique of checking the least significant bit requires a
call to the GetAsyncKeyState function before setting the
WH_JOURNALPLAYBACK hook. For example:

// When setting the journal playback hook.
 .
 .
 .
 // Reset the lease significant bit.
 GetAsyncKeyState(VK_CANCEL);

 // Set a system-wide journal playback hook.

 g_hJP = SetWindowsHookEx(WH_JOURNALPLAYBACK,
 FilterFunc,
 g_hInstDLLModule,
 NULL);
 .
 .
 .

// Inside the filter function
 .
 .
 .
 if (nCode == HC_SKIP)
 if (GetAsyncKeyState(VK_CANCEL))
 UnhookWindowsHookEx(g_hJP);
 .
 .
 .

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrHks

How to Subclass a Window in Windows 95
PSS ID Number: Q125680

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

While subclassing windows within the same application in Windows 95 is
unchanged from Windows version 3.1, subclassing windows belonging to other
applications is somewhat more complicated in Windows 95. This article
explains the process.

MORE INFORMATION
================

For a 16-bit application, subclassing methods are the same as they were in
Windows version 3.1. However, Windows 95 performs some behind-the-scenes
magic to make it possible for a 16-bit window to subclass a 32-bit window.

Usually, a subclass consists of saving one window procedure and
substituting another in its place. However, this could present a problem
when a 16-bit application tries to call a 32-bit window procedure. Windows
95 works around this potential problem by providing 32-bit windows with a
16-bit window procedure. All 32-bit windows will have the same selector for
their wndProcs that references code in KRNL386.EXE where the 16-bit
wndProcs for all 32-bit windows are stored. Eventually, each of these
16-bit wndProcs will jump to the real 32-bit window procedure.

Subclassing windows belonging to another process, either 16-bit or 32-bit,
from a 32-bit process or application works as it does in Windows NT. The
difficulty is that each 32-bit process has its own private address space.
Hence, a window procedure's address in one process is not valid in another.
To get a window procedure from one process into another, you need to inject
the subclass procedure code into the other process's address space. There
are a number of ways to do this.

Three Ways to Inject Code Into Another Process's Address Space
--

Method 1: Windows 95 and Windows NT

You can use the registry, hooks, or remote threads and the
WriteProcessMemory() API to inject code into another process's address
space.

Method 2: Windows NT Only

If you use the registry, the code that needs to be injected should reside
in a DLL. By either running REGEDIT.EXE or using the registry APIs, add the
\HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\AppInit_DLLs key to the
registry if it does not exist. Set its value to a string containing the
DLL's pathname. This key may contain more than one DLL pathname separated
by single spaces. This has the effect, once the machine is restarted, of
loading the library with DLL_PROCESS_ATTACH into every process at its
creation time. While this method is very easy, it also has several
disadvantages. For example, the computer must be restarted before it takes
effect, and the DLL will last the lifetime of the process.

Method 3: Windows 95 and Windows NT

You can also use hooks to inject code into another process's address space.
When a window hooks another thread belonging to a different process, the
system maps the DLL containing the hook procedure into the address space of
the hooked thread. Windows will map the entire DLL, not just the hook
procedure. So to subclass a window in another process, install a
WH_GETMESSAGE hook or another such hook on the thread that owns the window
to be subclassed. In the DLL that contains the hook procedure, include the
subclass window procedure. In the hook procedure, call SetWindowLong() to
enact the subclass. It is important to leave the hook in place until the
subclass is no longer needed, so the DLL remains in the target window's
address space. When the subclass is removed, the hook would be unhooked,
thus unmapping the DLL.

A third way to inject a DLL into another address space involves the use of
remote threads and the WriteProcessMemory() API. It is more flexible and
significantly more complicated than the previously mentioned methods, and
is described in the following reference.

REFERENCES
==========

"Load Your 32-bit DLL into Another Process's Address Space Using
INJLIB" by Jeffrey Richter, MSJ May 1994.

Additional reference words: 4.00
KBCategory: kbui
KBSubcategory: UsrWndw

How to Support Language Independent Strings in Event Logging
PSS ID Number: Q125661

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

Insertion strings in the event log entries are language-independent.
Instead of using string literals as the insertion string, use "%%n" as the
insertion string.

MORE INFORMATION
================

When the event viewer sees "%%n", it looks up the ParameterMessageFile
value in the registry, under the source of the event, as in this example:

 HKEY_LOCAL_MACHINE\SYSTEM\
 CurrentControlSet\
 Services\
 EventLog\
 Security\
 ...

 -or-

 HKEY_LOCAL_MACHINE\SYSTEM\
 CurrentControlSet\
 Services\
 EventLog\
 System\
 Service Control Manager

It then calls the LoadLibrary() function of the ParameterMessageFile. Then
it calls FormatMessage() using "n" as the ID.

For example, suppose an event log entry has the source "Service Control
Manager" and the description is "Failed to start the service due
to the following error: %%245."

In the registry, you find:

 HKEY_LOCAL_MACHINE\SYSTEM\
 CurrentControlSet\
 Services\
 EventLog\
 System\
 Service Control Manager

 EventMessageFile...
 ParameterMessageFile REG_SZ kernel32.dll
 TypesSupported...
 ...

Therefore, you need to follow these steps:

1. Use LoadLibrary() with KERNEL32.DLL.

2. Call FormatMessage() using the module handle obtained in step 1 and a
 string ID of 245.

3. Replace %%245 in the description with the string obtained in step 2.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseMisc

How to Test Autorun.inf Files
PSS ID Number: Q136214

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SUMMARY
=======

AutoPlay is enabled by the new 32-bit, protected-mode driver architecture
in Windows 95. Because the operating system can now detect the insertion of
media in a CD-ROM drive, it has the opportunity to do some intelligent
processing whenever this occurs.

By default, Windows 95 only checks for an Autorun.inf file when a CD-ROM
disc is inserted into the CD-ROM drive. However, you may want to test for
syntax and logic errors before burning a CD-ROM disc. This article explains
how.

MORE INFORMATION
================

In Windows 95, whenever a CD-ROM disc is inserted, the shell immediately
checks to see if the CD-ROM disc has a PC filesystem. If it does, Windows
95 looks for a file named Autorun.inf. If the file exists, Windows 95
follows the instructions contained in the file, which usually
involves running a setup application of some sort.

However, by changing a setting in the Windows 95 registry, you can have the
Shell use AutoPlay on any media, including shared network drives and floppy
disks.

The registry key that needs to be modified is:

HKEY_CURRENT_USER\
 Software\
 Microsoft\
 Windows\
 CurrentVersion\
 Policies\
 Explorer\
 "NoDriveTypeAutoRun"

This key, which is of type REG_BINARY, consists of four bytes. The first
byte is a bitmask defining which drive types should be AutoRun. The
other three bytes should be set to zero (0).

The bits in the bitmask correspond to these constants:

Type Bit

DRIVE_UNKNOWN 0

DRIVE_NO_ROOT_DIR 1
DRIVE_REMOVABLE 2
DRIVE_FIXED 3
DRIVE_REMOTE 4
DRIVE_CDROM 5
DRIVE_RAMDISK 6

Setting a bit in the bitmask prevents you from using AutoPlay with the
corresponding drive type. By default, the value in the registry is 0x95.
Bits 0, 2, 4 and 7 are therefore set, which means that drive types
DRIVE_UNKNOWN, DRIVE_REMOVEABLE, and DRIVE_REMOTE don't use AutoPlay
information. (Bit 7 is set to cover future device types.) Altering this
registry value thus allows you to test Autorun.inf files from a floppy disk
(DRIVE_REMOVEABLE), network drive (DRIVE_REMOTE), and so on. For example,
to be able to test AutoPlay from a floppy disk, set the value of the first
byte to 0x91 to enable AutoPlay for floppy disks.

NOTE: Most floppy disk drive controllers do not currently recognize when a
floppy disk has been inserted. To test AutoPlay on a floppy disk, first
alter the registry setting so that bit DRIVE_REMOVEABLE is not set, start
the Windows Explorer, insert the floppy disk, and press the F5 key to
refresh the display.

To test the Autorun.inf file on a given disk, using the right mouse button,
click the icon for the drive in the Windows Explorer. The effects of the
Autorun.inf file should be visible in the context menu.

Additional reference words: 4.00
KBCategory: kbmm
KBSubcategory: MMCDROM

How to Toggle the NUM LOCK, CAPS LOCK, and SCROLL LOCK Keys
PSS ID Number: Q127190

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The documentation for SetKeyboardState() correctly says that you cannot
use this API to toggle the NUM LOCK, CAPS LOCK, and SCROLL LOCK keys.

You can use keybd_event() to toggle the NUM LOCK, CAPS LOCK, and SCROLL
LOCK keys under Windows NT. The same technique works for toggling CAPS LOCK
and SCROLL LOCK under Windows 95, but it does not work for NUM LOCK.

MORE INFORMATION
================

The following sample program turns the NUM LOCK light on if it is off. The
SetNumLock function defined here simulates pressing the NUM LOCK key, using
keybd_event() with a virtual key of VK_NUMLOCK. It takes a boolean value
that indicates whether the light should be turned off (FALSE) or on (TRUE).

The same technique can be used for the CAPS LOCK key (VK_CAPITAL) and the
SCROLL LOCK key (VK_SCROLL).

Sample Code

/* Compile options needed:
*/

#include <windows.h>

void SetNumLock(BOOL bState)
{
 BYTE keyState[256];

 GetKeyboardState((LPBYTE)&keyState);
 if((bState && !(keyState[VK_NUMLOCK] & 1)) ||
 (!bState && (keyState[VK_NUMLOCK] & 1)))
 {
 // Simulate a key press
 keybd_event(VK_NUMLOCK,
 0x45,
 KEYEVENTF_EXTENDEDKEY | 0,
 0);

 // Simulate a key release
 keybd_event(VK_NUMLOCK,
 0x45,
 KEYEVENTF_EXTENDEDKEY | KEYEVENTF_KEYUP,
 0);
 }
}

void main()
{
 SetNumLock(TRUE);
}

Additional reference words: 3.50 4.00 95
KBCategory: kbui kbcode
KBSubcategory: UsrInp

How to Troubleshoot Win32s Installation Problems
PSS ID Number: Q106715
--
The information in this article applies to:

 - Microsoft Win32s versions 1.1, 1.15, 1.2, 1.25a
--

SUMMARY
=======

The installation guide for Win32s that is included in the Win32 SDK
recommends running Freecell to verify that the installation was successful.
This article discusses some of the errors that may occur when trying to run
Freecell on an unsuccessful installation. The article also contains a list
of corrective actions to help you reinstall Win32s.

MORE INFORMATION
================

Possible Symptoms

One of the following may occur when running Freecell if the installation is
not successful:

 - File Error: Cannot find Olecli.dll

 -or-

 - Win32s - Error:
 Improper installation. Win32s requires Win32s.exe and Win32s16.dll to
 run. Reinstall Win32s.

 -or-

 - Win32s - Error:
 Improper installation. Windows requires W32s.386 in order to run.
 Reinstall Win32s.

 -or-

 - Error: Cannot find file Freecell.exe (or one of its components)...

 -or-

 - The display is corrupted as soon as you run FreeCell.

 -or-

 - Win32s Error:
 One of the System Components is out of date. Please re-install the
 application.

Possible Step-by-Step Solution

Use the following steps when Win32s does not install correctly:

1. If you are having video problems, check to see if you have an S3 video
 card. Certain S3 drivers do not work with Win32s. Either use the generic
 drivers shipped with Windows or contact your video card manufacturer for
 an updated driver. For additional information on the S3 driver and
 Win32s, please see the following article in the Microsoft Knowledge
 base:

 ARTICLE-ID: Q117153
 TITLE : PRB: Display Problems with Win32s and the S3 Driver

2. Make sure the following line is in your System.ini file:

 device=*vmcpd

3. If you have a printer driver by LaserMaster, delete it or change it into
 a comment; it interferes with installing Win32s. Then reboot the
 computer so the changes will take effect. After you successfully
 reinstall Win32s, reinstall the driver or remove the comment characters.

 The driver interferes with installing Win32s because the LaserMaster
 drivers create a WINSPOOL device. The extension is ignored when the
 file name portion of a path matches a device name. As a result, when
 Setup tries to write to Winspool.drv, it fails. It fails because it
 attempts to write to WINSPOOL. In fact, any Win32-based application that
 tries to link to Winspool.drv also fails; however, most Win32-based
 applications that print under Win32s do not use the WINSPOOL application
 programming interfaces (APIs) because they are not supported in Win32s.
 As a result, you can usually just disable this driver while installing
 Win32s, and then reenable it afterwards. To disable the driver, you need
 to turn the following three lines in the [386ENH] of the System.ini file
 into comments.

 device = lmharold.386
 device = lmmi
 device = lmcap

4. Delete the \Win32s directory, the \Win32app directory, W32sys.dll,
 w32s16.dll, and Win32s.exe from your hard drive before installing.
 Although it is possible to install Win32s on top of an old installation
 of Win32s, it is better to remove the old files before installing the
 new ones.

 Edit the Win32s.ini file on your hard drive. Change SETUP = 1 to read
 SETUP = 0. Reboot your computer and reinstall Win32s.

5. Make sure that paging is enabled. From the Control Panel, select the 386
 Enhanced icon, choose Virtual Memory, and choose Change. Verify that the
 drive type is not set to none. The type can be set to either temporary
 or permanent.

6. If you are using SHARE (not Vshare.386, which Windows for Workgroups
 uses), make sure that SHARE is enabled. Edit the Autoexec.bat file, and
 add the following line if it is not already there:

 C:\Dos\Share.exe

What to Do If the Previous Steps Don't Solve the Problem
--

If you still receive errors when running Freecell, compare the binaries on
your hard drive with those on the CD-ROM. Use the MS-DOS program
Filecomp.exe, Comp.exe, or Fc.exe and do a binary compare. For example, if
you have the Win32 SDK CD-ROM, type the following:

 fc /b <system>\win32s\w32s.386 <cd>:\mstools\win32s\nodebug\w32s.386

If you have the 32-bit Visual C++ CD-ROM, type the following:

 fc /b <system>\win32s\w32s.386 <cd>:\msvc32s\win32s\retail\w32s.386

The results of the compare will be "FC: no differences encountered" if
the binaries were correctly installed. If the binaries are not the same,
you might have a bad copy of the files or a bad compact disc.

As a last resort, you can try reinstalling Win32s that shipped in the
Visual C++ 32-bit edition. There seems to be a slight difference between
the Setup.exe program on the Win32 SDK CD-ROM and the Setup.exe on the
Visual C++ CD-ROM. If you try installing from the 32-bit Visual C++ CD-ROM,
don't remove the \Win32app or \Freecell directory or any of the Freecell
files. The Visual C++ CD-ROM does not contain Freecell.

NOTE: Using Freecell Help will generate errors, including "Routine Not
Found" or "Help Topic Does Not Exist." The generation of these errors has
nothing to do with whether or not Win32s is installed correctly.

Freecell.hlp was meant to be used with Winhlp32.exe. Freecell.hlp uses the
advanced features of WINHLP32 for full-text searching. Winhelp.exe, which
runs under Windows version 3.1, does not support this. As a result, each
time Freecell.hlp tries to bind the Find button to the full-text searching
APIs, it fails, and Windows Help displays the message box. You can still
read the information in the help file, and you can use the Search button to
do keyword searches.

If you are getting the Win32s Error "One of the System Components is out of
date. Please re-install the application," you might be installing from the
Win32s Upgrade (Pw1118.exe). The Setup.exe program that comes with
Pw1118.exe is meant to be run ONLY under the retail version of Win32s. If
you have switched to the debug version of Win32s in the past by using
Switch.bat file in the Win32s\Bin directory and then tried to run the
Setup.exe program from Pw1118.exe, Win32s will not be installed properly on
your computer. This is because some of the Win32s files will not be
replaced correctly.

Similary, the Switch.bat program in the Win32s\Bin directory cannot be used
to upgrade your previous installation of Win32s.

There are two solutions for this problem:

 - Switch to the retail version of Win32s first by using the Switch.bat
 file in the Win32s\Bin directory. Then run the Setup.exe program from
 Pw1118.exe.

 -or-

 - Remove your previous installation of Win32s as described in this
 article, and then run the Setup.exe program from Pw1118.exe. For more
 information on how to delete the previous version of Win32s from your
 computer, please see the following article in the Microsoft Knowledge
 Base:

 ARTICLE-ID: Q120486
 TITLE : How to Remove Win32s

Additional reference words: 1.10 1.20
KBCategory: kbsetup kbtshoot kbwebcontent
KBSubcategory: W32s

How to Update the List of Files in the Common Dialogs
PSS ID Number: Q109696

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.5

SUMMARY
=======

Sometimes it is necessary to update the list of files, without terminating
the dialog box, when using the File Open or Save As common dialog box. This
can be done by simulating a double-click on the list box of directories.
Although the message can be posted from any application, a hook procedure
should be used to post the message to the dialog box window.

MORE INFORMATION
================

The common dialog box functions that update the list of files and
directories are internal to the common dialog boxes and are not accessible
by applications using the common dialog box routines. The functions are
invoked and the list boxes are updated only when the user double-clicks a
list box.

Sample Code

The following code uses the Cancel button of the common dialog boxes to
update the list boxes:

BOOL CALLBACK __export FileOpenHook (HWND hDlg, UINT message,
 WPARAM wParam, LPARAM lParam)
{
 switch (message)
 {
 case WM_COMMAND:
 switch(wParam)
 {
 // This simulates a double-click on the list of directories,
 // effectively forcing the common dialogs to re-read the current
 // directory of files and to refresh the list of files.
 case IDCANCEL :
 PostMessage(hDlg, WM_COMMAND, lst2,
 MAKELPARAM(GetDlgItem(hDlg, lst2), LBN_DBLCLK);
 return TRUE;
 }
 break;
 }

 return FALSE;
}

If the application targets Win32, the notification message to the list box
is sent differently; here is the PostMessage for Win32 applications:

PostMessage (hDlg, WM_COMMAND, MAKEWPARAM (lst2,LBN_DBLCLK),
 (LPARAM)GetDlgItem (hDlg, lst2));

Applications using the IDs of the common dialog box's controls must include
the DLGS.H file.

The templates for the common dialog boxes are in the \SAMPLES\COMMDLG
directory or in the \INCLUDE directory of the Windows SDK installation.

Additional reference words: 3.10 3.50 refresh redraw
KBCategory: kbui
KBSubcategory: UsrCmnDlg

How to Use 32-bit StampResource() Function in Windows NT 3.51
PSS ID Number: Q133699
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.51
--

SUMMARY
=======

The 32-bit setup toolkit function, StampResource(), is used to write string
table resource data into binary (executable) files. This function is useful
for customizing installed files with installation-specific resource data,
such as a user's name, company, and so on. This article discusses issues
specific to using this function in the 32-bit Setup Toolkit for Windows NT
version 3.51.

MORE INFORMATION
================

StampResource() is prototyped in the 32-bit Setup Toolkit as follows:

 VOID StampResource(LPSTR szSect, LPSTR szKey, LPSTR szDst,
 int wResType, int wResId, LPSTR szData, int cbData);

Notice that the szData argument is prototyped as LPSTR. All string resource
data in Windows NT must be stored in UNICODE(tm) form. Therefore, because
StampResource() is writing directly into a binary file, you must convert
the string data for StampResource() into wide-character format. That means
you must make your szData string parameter type LPWSTR. The following
example shows how this can be done:

 INT size;
 TCHAR buf[80], szName[40],szCompany[20],szProductID[20];
 LPWSTR wUnicodeString;

 lstrcpy(szName,"Bob Smith");
 lstrcpy(szCompany,"Microsoft");
 lstrcpy(szProductID,"123-45-6789");
 wsprintf(buf,"%c%s%c%s%c%s",lstrlen(szName),szName,lstrlen(szCompany),
 szCompany,lstrlen(szProductID),szProductID);
 size=MultiByteToWideChar(CP_ACP,MB_PRECOMPOSED,buf,-1,NULL,0);
 wUnicodeString=(LPWSTR)GlobalAlloc(GMEM_FIXED,sizeof(WCHAR)*size);
 MultiByteToWideChar(CP_ACP,MB_PRECOMPOSED,buf,-1,wUnicodeString,size);
 StampResource("Extra Files","Config","d:\\setup32\\stamp\\disks\\disk1",
 6,0x451,(LPSTR)wUnicodeString,sizeof(WCHAR)*size);
 GlobalFree((HGLOBAL)wUnicodeString);

In this example, the code performs these steps:

1. Convert the ASCII string "buf" to wide-character format by using the
 Win32 MultiByteToWideChar() function. This first call to this function
 retrieves the size, in wide characters, needed to store the resultant

 wide-character string.

2. Allocate memory for the resultant wide-character string and perform the
 actual conversion by calling MultiByteToWideChar() again.

3. Cast the wide-character string "wUnicodeString" to type LPSTR during the
 call to StampResource() to avoid a type mismatch warning message.

NOTE: this information does not apply to Windows 95. The 32-bit
StampResource() function does not currently work in Windows 95
because it makes use of a Win32 API function that is not supported by
Windows 95.

REFERENCES
==========

For more information on the other parameters of StampResource(), or how
StampResource() works in general, please see the following article in the
Microsoft Knowledge Base:

 ARTICLE-ID: Q92525
 TITLE : Using the Setup Toolkit Function StampResource

Additional reference words: 3.51
KBCategory: kbtool
KBSubcategory: tlsmss

How to Use a DIB Stored as a Windows Resource
PSS ID Number: Q67883

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Device-independent bitmaps (DIBs) are a very useful tool for displaying
graphic information in a variety of device environments. With the
appropriate device drivers, Windows can display a DIB with varying results
on any video display or on a graphics printer.

This article discusses the differences between two methods that can be
used to access a DIB from a resource.

MORE INFORMATION
================

Bitmaps retrieved from resources are very similar to those stored in
.BMP files on disk. The header information is the same for each type of
bitmap. However, depending upon the method used to retrieve the bitmap
from the resource, the bitmap may be a device-independent bitmap (DIB)
or a device-dependent bitmap (DDB).

When the LoadBitmap() function is used to obtain a bitmap from a
resource, the bitmap is converted to a DDB. Typically, the DDB will be
selected into a memory device context (DC) and blt'ed to the screen
for display.

NOTE: If a 256-color bitmap with a palette is loaded from a resource, some
colors will be lost. To display a bitmap with a palette correctly, the
palette must be selected into the destination DC before the image is
transferred to the DC. LoadBitmap() cannot return the palette associated
with the bitmap; therefore, this information is lost. Instead, the colors
in the bitmap are mapped to colors available in the default system palette,
and a bitmap with the system default color depth is returned.

For example, if LoadBitmap() loads a 256-color image into an application
running on a VGA display, the 256 colors used in the bitmap will be mapped
to the 16 available colors, and a 4 bits-per-pixel bitmap will be returned.
When the display is a 256-color 8514 unit, the same action will map the 256
bitmap colors into the 20 reserved system colors, and an 8 bits-per-pixel
bitmap will be returned.

If, instead of calling LoadBitmap(), the application calls FindResource()
(with RT_BITMAP type), LoadResource(), and LockResource(), a pointer to a
packed DIB will be the result. A packed DIB is a BITMAPINFO structure
followed by an array of bytes containing the bitmap bits.

NOTE: If the resource was originally stored as a DDB, the bitmap returned
will be in the DDB format. In other words, no conversion is done.

The BITMAPINFO structure is a BITMAPINFOHEADER structure and an array of
RGBQUADs that define the colors used in the DIB. The pointer to the packed
DIB may be used in the same manner as a bitmap read from disk.

NOTE: The BITMAPFILEHEADER structure is NOT present in the packed DIB;
however, it is present in a DIB read from disk.

REFERENCES
==========

For sample code demonstrating how to use FindResource() with RT_BITMAP,
LoadResource(), and LockResource(), please see the following article in the
Microsoft Knowledge Base:

 ARTICLE-ID: Q124947
 TITLE : Retrieving Palette Information from a Bitmap Resource

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbgraphic
KBSubcategory: GdiBmp

How to Use a File Created by an Apple Macintosh in Windows NT
PSS ID Number: Q147438
--
The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API)
 included with Microsoft Windows NT, versions 3.5 and 3.51
--

NOTE: Some products mentioned in this article are manufactured by vendors
independent of Microsoft; we make no warranty, implied or otherwise,
regarding these products' performance or reliability.

SUMMARY
=======

Windows NT Server has a set of services named "Services For Macintosh
(SFM)" that allow Apple Macintosh computers to transparently gain access to
shared files and printers that reside on Windows NT servers. Windows NT
Server also allows PC clients to gain access to these same shared files and
printers. When Macintosh clients connect to a shared directory on a Windows
NT server, SFM presents the files as though they were native to Macintosh
computers. Likewise, when PC clients connect to the shared directory, the
Windows NT server presents the files as though they were native to PC
computers.

The file system used by the Macintosh Operating System is very different
from file systems supported by Windows NT. As a result, file naming
conventions and the structure of files differ considerably between these
two systems. This article shows how SFM and Windows NT work together to
hide some of these details, and explains how Win32 applications can
properly handle files native to Macintosh clients.

MORE INFORMATION
================

File Server for Macintosh (FSM), which is part of SFM, allows Windows and
Macintosh clients to create and open files on the same share by presenting
the files to the clients with the naming conventions used by their
operating systems. That is, regardless of which client actually created a
file, it appears as a Macintosh file to Macintosh clients and a Windows
file to Windows clients.

File Names

Some file names cannot be represented exactly when viewed by applications
from both Macintosh and Windows systems because the Macintosh and Windows
operating systems use different code pages to represent character strings
and different file naming conventions. File Server for Macintosh works with
NTFS to preserve the file semantics used by both systems by translating
illegal characters in file names so that both Macintosh and Windows clients
may access the same files.

Regardless of which type of client creates a file, NTFS stores its file
name on disk in UNICODE format. When a Macintosh client creates a file on a
share, FSM translates characters in the file name that are invalid on NTFS
into equivalent characters in the user-defined range of the UNICODE
character set so that the file name is legal on NTFS.

When a Macintosh client uses a file that it or another Macintosh client
created on an NTFS share, it will see the original name. File Server for
Macintosh maps the characters on disk from the UNICODE user-defined range
back into their original Macintosh-specific characters.

When a Macintosh client gains access to a file created by a Windows client
and that file doesn't follow the Macintosh file-naming standards, FSM maps
the invalid characters into the equivalent characters in the Macintosh code
page. The Macintosh client will then see the file with substituted
characters in its name.

UNICODE-enabled Win32 applications will see file names with characters in
the user-defined space and can open them without a problem. Windows-based
applications that use the ANSI character set will see a second mapping
from the user-defined UNICODE characters to the ANSI default character --
the question mark (?). Because the question mark is also a wild-card
character on Windows platforms, Windows applications that use the ANSI
character set will not be able to open these files.

NTFS will automatically generate short file name equivalents for long
file names created by both Macintosh and Win32 clients so that 16-bit
Windows and MS-DOS clients can gain access to them. The rules for automatic
short name generation are the same as Windows NT uses any time a long file
name is created on disk.

File Structures

Windows platforms represent files differently from the Macintosh Operating
System. File Server for Macintosh handles these differences so that
Macintosh clients see files as though they were native to Macintosh
computers, and Windows clients see them as being native to Windows
platforms. This section explains how files are represented on both
operating systems and how FSM handles them.

Windows platforms do not define the structure or interpretation of any
file's content; applications can impose any structure on the content.
Except for a very limited case, all files consist of a single stream
(linear sequence) of bytes. These files are called "flat" because they
don't have any higher-level organization. Win32 applications running on
Windows NT can create files with multiple streams on NTFS volumes only.
However, as a general rule, they should not create files with multiple
streams because they will be "flattened" when copied to volumes with the
FAT file system.

Because Win32 platforms can use different file systems, the maximum file
size depends on which file system is used. Files on the Protected-Mode FAT
file system may have a maximum size of 2 gigabytes (GB). On NTFS, the
largest file can be 17 billion GB long (2 to the 64th power bytes). Only

Win32 applications running on Windows NT can access the full range of files
larger than 2 GB.

The Macintosh Operating System uses files consisting of two linear
sequences of bytes known as forks. The data fork is used to store the
file's data and corresponds to a file created by a Win32 platform. The
resource fork is used to store information about the file, such as its icon
or the fonts used in it. Every file has both forks, but either or both may
be empty.

As far as the Macintosh Operating System is concerned, the content of the
data fork is unstructured and is subject to interpretation by applications.
The resource fork has a definite structure imposed by the Macintosh
Operating System and is used for file management purposes. The following
diagram shows how a file created by a Macintosh is structured:

 +--------File--------+
 | |
 V V
 +------------+ +------------+
 | | | |
 | Data | | Resource |
 | Fork | | Fork |
 | | | |
 +------------+ +------------+

When a file created by a Macintosh is stored on a Windows NT server, it is
stored in a single file that contains a stream for each fork. When Windows-
based applications gain access to a file created by a Macintosh client,
File Server for Macintosh presents only the data fork because the data fork
is the equivalent of the representation of files on Windows platforms.
Windows-based applications may not access the resource fork.

The Macintosh Operating System allows files and volumes to be as large as 2
GB.

Design Recommendations for Win32 Applications

Some Win32-based applications running on a Windows NT server need to manage
files that were created by Macintosh clients. Although File Server for
Macintosh presents files as each type of client expects to use them,
applications that manage files must do so correctly to preserve the file
names and structure for Macintosh clients. This section presents the four
most important design guidelines that you should follow to handle files
properly.

1. Handle file names with UNICODE strings. This can be done either by
 making the application completely UNICODE-enabled or by explicitly
 calling the UNICODE versions of the file APIs. (UNICODE APIs end with a
 "W" as in CopyFileW.)

 Win32 applications that use file names of files created by Macintosh
 clients must use UNICODE strings to prevent problems in translating
 characters that are unique to the Macintosh. Because file names are

 stored on disk in UNICODE, when a UNICODE application uses them, the
 file name the application sees is identical to that stored on the disk.
 The application can find, copy, or move the file without forcing its
 name to be translated.

 Non-UNICODE Windows-based applications that retrieve and then store
 files by name (example operations include find, copy, and move) will
 force file names to be translated from UNICODE to ANSI and then back to
 UNICODE. During the first part of the translation, characters in the
 UNICODE user-defined space are mapped to their nearest equivalents in
 the ANSI code page. In the second part, the ANSI characters are written
 back out to disk. This process results in a file name that may not
 exactly match the original because the ANSI characters written are the
 results of the mapping, not the original characters.

2. Don't copy files created by Macintosh clients to volumes that have the
 FAT file system. The FAT file system does not support multiple streams,
 so the file will be flattened; that is, its resource fork will be lost.

3. Don't copy or rename files created by Macintosh clients from Windows 95,
 Win32s, or Windows 3.x clients. When these clients connect to the
 Windows NT server through a redirected drive letter or UNC name, they
 gain access to shared files through the clients' disk I/O systems. The
 problem with these clients is that their disk I/O systems do not support
 multiple file streams, so the files they save will be flattened, as
 described in guideline 2.

 To allow Windows 95, Win32s, and Windows 3.x clients to gain access to
 files created by Macintosh clients, the server should provide an RPC
 server or service to handle requests. The RPC server or service should
 then use the UNICODE file APIs as described in guideline 1.

4. Ensure that Win32-based applications running under Windows NT do not
 create files larger than 2 GB because Macintosh clients won't be able to
 use them.

File Name Reference

A code page is a mapping of the numerical bytes (character codes) used to
represent strings and their representation on the display (glyphs). Because
Win32 and Macintosh systems use different code pages, some extended ASCII
characters on one system are not representable on screen in exactly the
same way on the other. For example, on the Macintosh, the glyph for
character code 0xBD is the Greek Omega character while in the Windows ANSI
code page, it is character symbol for "1/2."

The Macintosh Operating System uses the following file naming conventions:

 - File and folder (directory) names may be up to 31 characters long; full
 pathnames are not limited to 260 characters (as they are on Win32
 platforms).

 - The colon (:) is used as a path separator.

 - File and folder names may use any characters except the colon, which is
 the path separator. Characters such as ?, *, \, and / are perfectly
 legal in Macintosh file names.

 - Although the Macintosh Operating System preserves the case of all file
 names, it does not distinguish between file names by case. (That is,
 file and folder names are not case-sensitive.)

Windows Platforms use two different file systems -- the Protected-Mode File
Allocation Table (FAT) file system and the New Technology File System
(NTFS). These file systems have similar naming conventions, and differ
mainly in which characters are illegal. The naming conventions listed below
apply to both FAT and NTFS unless specifically noted.

 - File and directory names may be up to 255 characters long on FAT file
 systems and 256 characters on NTFS. Full pathnames may be up to 260
 characters long.

 - The backslash (\) is the path separator.

 - File and directory names on the Protected-Mode FAT file system may
 consist of letters, digits, spaces, and these characters:

 $%'-_@~`!{}()#&+,;=[].

 Note that periods are allowed in file and directory names, as long as
 they are accompanied by other characters. For example, .text is
 perfectly legal.

 On NTFS, file and directory names may consist of any character except
 the following characters:

 "/*?<>|:

 - Although file and directory names are not case-sensitive, their case is
 preserved.

REFERENCES
==========

"Inside Macintosh: Files," copyright 1992 Apple Computer, Inc.

"Services For Macintosh," Microsoft Windows NT Server product
documentation, copyright 1985-1994 Microsoft Corporation.

"File Systems," Microsoft Win32 SDK overview, copyright 1985-1986 Microsoft
Corporation.

Additional reference words: 3.51 3.50 SFM Mac fork
KBCategory: kbprg kb3rdparty kbhowto
KBSubcategory: BseFileio

How to Use a Program to Calculate Print Margins
PSS ID Number: Q122037

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0

SUMMARY
=======

The Windows Software Development Kit (SDK) does not provide a function to
calculate printer margins directly. An application can calculate this
information using a combination of printer escapes and calls to the
GetDeviceCaps() function in Windows or by using GetDeviceCaps() in Windows
NT. This article discusses those functions and provides code fragments as
illustrations.

MORE INFORMATION
================

An application can determine printer margins as follows:

1. Calculate the left and top margins

 a. Determine the upper left corner of the printable area by using the
 GETPRINTINGOFFSET printer escape in Windows or by calling
 GetDeviceCaps() with the PHYSICALOFFSETX and PHYSICALOFFSETY
 indices in Windows NT. For example:

 // Init our pt struct in case escape not supported
 pt.x = 0; pt.y = 0;

 // In Windows NT, the following 2 calls replace GETPRINTINGOFFSET:
 // pt.x = GetDeviceCaps(hPrnDC, PHYSICALOFFSETX);
 // pt.y = GetDeviceCaps(hPrnDC, PHYSICALOFFSETY);

 // In Windows, use GETPRINTINGOFFSET to fill the POINT struct
 // Drivers are not required to support the GETPRINTINGOFFSET escape,
 // so call the QUERYESCSUPPORT printer escape to make sure
 // it is supported.
 Escape (hPrnDC, GETPRINTINGOFFSET, NULL, NULL, (LPPOINT) &pt);

 b. Determine the number of pixels required to yield the desired margin
 (x and y offsets) by calling GetDeviceCaps() using the LOGPIXELSX and
 LOGPIXELSY flags.

 // Figure out how much you need to offset output. Note the
 // use of the "max" macro. It is possible that you are asking for
 // margins that are not possible on this printer. For example, the HP
 // LaserJet has a 0.25" unprintable area so we cannot get margins of
 // 0.1".

 xOffset = max (0, GetDeviceCaps (hPrnDC, LOGPIXELSX) *
 nInchesWeWant - pt.x);

 yOffset = max (0, GetDeviceCaps (hPrnDC, LOGPIXELSY) *
 nInchesWeWant - pt.y);

 // When doing all the output, you can either offset it by the above
 // values or call SetViewportOrg() to set the point (0,0) at
 // the margin offset you calculated.

 SetViewportOrg (hPrnDC, xOffset, yOffset);
 ... all other output here ...

2. calculate the bottom and right margins

 a. Obtain the total size of the physical page (including printable and
 unprintable areas) by using the GETPHYSPAGESIZE printer escape in
 Windows or by calling GetDeviceCaps() with the PHYSICALWIDTH and
 PHYSICALHEIGHT indices in Windows NT.

 b. Determine the number of pixels required to yield the desired right
 and bottom margins by calling GetDeviceCaps using the LOGPIXELSX and
 LOGPIXELSY flags.

 c. Calculate the size of the printable area with GetDeviceCaps() using
 the HORZRES and VERTRES flags.

 The following code fragment illustrates steps 2a through 2c:

 // In Windows NT, the following 2 calls replace GETPHYSPAGESIZE
 // pt.x = GetDeviceCaps(hPrnDC, PHYSICALWIDTH);
 // pt.y = GetDeviceCaps(hPrnDC, PHYSICALHEIGHT);

 // In Windows, use GETPHYSPAGESIZE to fill the POINT struct
 // Drivers are not required to support the GETPHYSPAGESIZE escape,
 // so call the QUERYESCSUPPORT printer escape to make sure
 // it is supported.
 Escape (hPrnDC, GETPHYSPAGESIZE, NULL, NULL, (LPPOINT) &pt);

 xOffsetOfRightMargin = xOffset +
 GetDeviceCaps (hPrnDC, HORZRES) -
 pt.x -
 GetDeviceCaps (hPrnDC, LOGPIXELSX) *
 wInchesWeWant;

 yOffsetOfBottomMargin = yOffset +
 GetDeviceCaps (hPrnDC, VERTRES) -
 pt.y -
 GetDeviceCaps (hPrnDC, LOGPIXELSY) *
 wInchesWeWant;

NOTE: Now, you can clip all output to the rectangle bounded by xOffset,
yOffset, xOffsetOfRightMargin, and yOffsetOfBottomMargin.

For further information about margins, query in the Microsoft Knowledge
Base by using these words:

 GETPHYSPAGESIZE and GETPRINTINGOFFSET and GetDeviceCaps

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprint kbprg kbcode
KBSubcategory: GdiPrn

How to Use CTL3D Under the Windows 95 Operating System
PSS ID Number: Q130693

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

When an application that uses CTL3D is run under Windows 95, CTL3D disables
itself if any dialog box has the DS_3DLOOK style. By default, all
applications based on Windows version 4.0 get the DS_3DLOOK style for all
dialog boxes. This article explains how this affects the way dialog boxes
and controls are displayed under the Windows 95 operating system.

MORE INFORMATION
================

When CTL3D is disabled, Windows 95 draws dialog boxes and controls using
its own 3D drawing properties. Windows 95 does not draw the static
rectangles and frames in 3D as CTL3D does. For more information about how
these frames and rectangles are drawn under Windows 95, please see the
following article in the Microsoft Knowledge Base:

ARTICLE-ID: Q125684
TITLE : How to Use SS_GRAYRECT SS_BLACKRECT SS_WHITERECT in Windows 95

There are two new static control styles (SS_SUNKEN and SS_ETCHEDFRAME) in
Windows 95 that simulate two of the static panels used in CTL3D. SS_SUNKEN
creates a sunken panel, and SS_ETCHEDFRAME creates a panel with a dipped
edge. There is no static style for creating a raised panel, but you can use
the DrawEdge API to draw a raised panel.

There are also two new static control styles that you can use to create 3D
lines. SS_ETCHEDHORZ creates a dipped horizontal line, and SS_ETCHEDVERT
creates a dipped vertical line.

An application should check the platform version at run time by using the
GetVersion or GetVersionEx function, and then implement appropriate 3D
effects. If the major version is less than 4, the application can use the
CTL3D functions, messages, and controls. If the major version is 4 or
greater, the application should not implement CTL3D; it should create the
proper Windows 95 style controls (or use DrawEdge to draw its 3D panels) to
achieve the desired effects.

Additional reference words: 4.00
KBCategory: kbui
KBSubcategory: UsrCtl

How to Use DWL_MSGRESULT in Property Sheets & Wizard Controls
PSS ID Number: Q130762

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Each page in a property sheet or wizard control is an application-defined
modeless dialog box that manages the control windows used to view and edit
the properties of an item. Applications provide the dialog box template
used to create each page as well as the dialog box procedure.

A property sheet or wizard control sends notification messages to the
dialog box procedure for a page when the page is gaining or losing the
focus and when the user chooses the OK, Cancel, or other buttons. The
notifications are sent in the form of WM_NOTIFY messages. The dialog box
procedure(s) for the correspoding page(s) should use the SetWindowLong()
function to set the DWL_MSGRESULT value of the page dialog box to specify
the return value from the dialog box procedure to prevent or accecpt the
change. After doing so, the dialog box procedure must return TRUE in
response to processing the WM_NOTIFY message. If it does not return TRUE,
the return value set in the DWL_MSGRESULT index using the SetWindowLong()
function is ignored by the property sheet or wizard control.

MORE INFORMATION
================

Dialog box procedures return a BOOL value (TRUE or FALSE). This return
value indicates to the caller of the dialog box function that the dialog
box function either handled the message that it received or did not handle
it. When the dialog box function returns FALSE, it is indicating that it
did not handle the message it received. When the dialog box handles the
message and generates a return value, it typically sets the DWL_MSGRESULT
index of the dialog box with the return value.

The dialog box function of the property sheet or wizard page handles
messages (WM_NOTIFY) sent by the property sheet or wizard control. The
property sheet or wizard control determines whether the page that received
the message processed the message or not by checking the retrun value from
the call to SendMessage(). If the return value is FALSE, the control goes
ahead and does what needs to be done by default. But if the return value is
TRUE, the control checks for the return value by looking at the value
stored in the DWL_MSGRESULT index of that page.

For example, the dialog box function of a property page might trap the
PSN_SETACTIVE notification to prevent it from being activated under certain
circumstances. In this case, the page dialog box function uses the
SetWindowLong() function to set the DWL_MSGRESULT value to -1. If the

dialog box does not return TRUE after setting the DWL_MSGRESULT, the
property sheet control that sent the message completely ignores the return
value because it assumes there is no return value.

Additional reference words: 4.00 common controls user Windows 95
KBCategory: kbui
KBSubcategory: UsrCtl

How to use ExitExecRestart to Install System Files
PSS ID Number: Q114606
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK, version 3.5
--

SUMMARY
=======

Some installation procedures require the installation of files (such as
CTL3D.DLL, COMMDLG.DLL, and fonts) that may be in use by Windows at the
time the setup program is run. Windows is likely to have these files open,
so they cannot be installed without causing sharing violations. The Setup
Toolkit provides features to exit Windows, install these files, and then
restart Windows when complete.

MORE INFORMATION
================

The Setup Toolkit accomplishes the installation of system files as
follows:

1. Before the Setup Toolkit copies a system file, it checks to see if the
 file is currently open. If it is, it copies the file to the destination
 directory, but under a different file name. It then adds this file to
 the "restart list".

2. When CopyFilesInCopyList() is complete, the Setup Toolkit checks the
 "restart list" and generates a .BAT file (named _MSSETUP.BAT) in the
 "restart directory". This .BAT file contains commands which delete the
 system files which were open (in step #1) and rename the new versions to
 their correct names.

3. Windows is exited, the .BAT file executed, then Windows restarted.

4. The .BAT file is then deleted.

 NOTE: The "restart directory" is not deleted. Hence, you should use your
 application's installation directory as your restart directory.

Hence, to install system files, perform the following steps:

1. Mark the system files as "system" in the DSKLAYT program. This is
 accomplished by highlighting all the system files (clicking with the
 CTRL key down) and placing a check in the "System File" check box under
 "File Attributes".

2. Before calling CopyFilesInCopyList() specify the name of your "restart
 directory". Assuming the target directory for your application is stored
 in DEST$ (as in the samples), use the following line:

 SetRestartDir DEST$

 The specified directory does not need to exist. It will be created
 if necessary.

3. After your installation is complete, execute the following code before
 exiting your setup script. Normally this code will be placed at the
 end of the Install subroutine.

 if RestartListEmpty ()=0 then
 '' The following two lines must go on one line.
 MessageBox hwndFrame (), "Windows will now be exited and
 restarted.", "Sample Setup Script", MB_OK+MB_ICONINFORMATION
 eer:
 i%=ExitExecRestart ()
 '' The following three lines must go on one line.
 MessageBox hwndFrame (), "Windows cannot be restared because
 MS-DOS-based applications are active. Close all MS-DOS-based
 applications, and then click OK.", "Sample Setup Script",
 MB_OK+MB_ICONSTOP
 goto eer
 end if

 NOTE: In order to use the MessageBox() function you must add the
 following lines at the beginning of your setup script:

 const MB_ICONINFORMATION = 64
 '' The following two lines must go on one line.
 declare sub MessageBox lib "user.exe" (hwnd%, message$,
 title$, options%)

4. Add the file _MSSETUP.EXE to your source directory and lay it out on
 Disk #1 in DSKLAYT.

5. Add a reference to _MSSETUP.EXE to the [files] section of your .LST
 file. For example,

 if you marked _MSSETUP.EXE to be compressed,

 [files]
 mssetup.ex = _mssetup.exe

 if you did not mark it as compressed,

 [files]
 _mssetup.exe = _mssetup.exe

NOTES:

1. If ExitExecRestart () is successful, your script will be exited. That
 is, ExitExecRestart () will not return. If it does return, an error
 has occurred.

2. This functionality is not available under Windows 3.0. If the user runs
 the above setup script on Windows 3.0, they will receive the message

 that MS-DOS-based applications are running and they will not be able to
 complete the setup. If this is a concern, check the version of Windows
 before executing the above code.

3. If _MSSETUP.EXE is not in your .LST file or not laid out in DSKLAYT,
 you will receive an "assertion failure" message when calling
 ExitExecRestart ().

Additional reference words: 3.10 3.50 setup toolkit mssetup
KBCategory: kbtool kbsetup kbprg kbcode
KBSubcategory: TlsMss

How to Use Hangeul (Korean) Windows Input Method Editor (IME)
PSS ID Number: Q130053
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 Software Development Kit (SDK) version 3.5
 - Microsoft Win32s version 1.2
--

SUMMARY
=======

Hangeul (Korean) Windows supports the KSC5601-1987 code set, which consists
of several thousands Hangeul characters. The Hangeul Windows IME (Input
Method Editor) allows the user to enter Hangeul Jamos (24 basic components
of Hangeul characters), compose the final characters, and send them to
applications.

MORE INFORMATION
================

When running Hangeul Windows, you will see a small window with three
buttons in the lower-left corner:

 - The left button toggles between the Roman "A" character and the Korean
 character that is pronounced "GA," which Windows uses to symbolize
 Korean characters.

 - The center button is a graphic of a half box or full box, which selects
 SBCS or DBCS storage (or display) of Roman (but not Hangeul) characters.
 Hangeul characters always take up a double-byte space, unlike some
 Japanese characters (katakana).

 - The right button is the "Hangeul to Hanja" converter.

You can type in English by having the Roman toggle selected. To try typing
Hangeul, the main thing to remember is that there is no apparent logical
connection between the US 101 keyboard and what the you end up typing.
To type like a pro, you need Korean keycaps, a cheat sheet, or a lot of
memory in your brain.

For example, to type the word "Hangeul" type these characters:

 GKS RMF

(Please ignore the spaces between the two characters.) Notice how each
group of three keyboard characters assemble a single Hangeul character.
Hangeul is often made up of three components (called "Jamos"), but
characters can actually be composed of from two to several Jamos.

Here is how to type "Seoul, Korea." Seoul is pronounced locally "sa-ul,"
so try typing these characters:

 TJ DNF ZH FL DK

(Please ignore the spaces between the characters.) The word "Korea" is not
a Korean name; it is the English equivalent, just as Japan is really
Nippon. The word "Korea" in Korean is "Han-guk," so "Seoul, Hanguk" would
be:

 TJD NF GKS RNR

The reason to try "Hanguk" instead of "Korea" is that Hanguk can also be
spelled with Chinese characters. Put the mouse pointer (cursor) on the left
edge of "Han" and click the "Hangeul to Hanja" button. A list box appears.
Select choice #1 by typing 1 or by selecting it with the mouse. Do the same
for the next character, again selecting choice #1. Then it will display
in Hanja.

Most Korean text is in Hangeul not Hanja, notice the 3.1-H readme is all
Hangeul. Hanja is still used in Korea - sometimes.

Additional reference words: 1.20 3.10 3.50 Hangul kbinf
KBCategory: kbother
KBSubcategory: wintldev

How to Use IDFEDIT to Create MIDI Instrument Definition Files
PSS ID Number: Q134994
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.51, 4.0
--

SUMMARY
=======

Idfedit.exe is a software tool and sample included in the Win32 SDK. You
can use it to create MIDI Instrument Definition Files (IDF) for the MIDI
Mapper in Windows 95. The Windows 95 MIDI Mapper also supports the Windows
version 3.1 Configuration file format (CFG) for backwards compatibility,
but Microsoft recommends that any new MIDI Mapper configurations be created
using the IDF file format. The Windows NT version 3.51 MIDI Mapper does not
yet support the IDF file format, so it still requires the old CFG file
format.

MORE INFORMATION
================

You can use Idfedit to create new IDF files or to edit existing ones. To
change values in Definition Data fields, double click the data field, and
enter the new data. It is important to note that some of the fields have
restrictions on the kind of data they accept. The following table
summarizes the required data types for each field:

Field Data type
--
IDF Version hexadecimal

IDF Creator hexadecimal

Manufacturer ASCII text string

Product Name ASCII text string

Supports General MIDI boolean values (expressed as TRUE,
 FALSE, YES, NO, 1 or 0)

Supports SysEx Messages boolean values (expressed as TRUE, FALSE,
 YES, NO, 1 or 0)

The remaining fields accept only decimal values.

Other than the source code provided for Idfedit, there is currently no
additional source of information about the IDF file format. The sample code
is located in the \Mstools\Samples\Mm\Win95\Idfedit directory.

Additional reference words: 4.00 Windows 95
KBCategory: kbmm kbprg
KBSubcategory: MMMidi

How to Use LANA Numbers in a 32-bit Environment
PSS ID Number: Q138037

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)
 versions 3.1, 3.5, 3.51, 4.0

SUMMARY
=======

NetBIOS uses the concept of a LANA (LAN adapter number) that allows you to
write transport-independent NetBIOS applications. This article describes
what a LANA is and recommends an approach to writing NetBIOS applications.

MORE INFORMATION
================

A LANA is a field of the NetBIOS NCB structure. In IBM's NetBIOS 3.0
specification, a LANA was used to specify a particular network adapter, as
NetBIOS then supported up to two network adapters in one PC computer.
Specifying a LANA of zero directed a request to the first adapter, and
specifying a LANA of one directed a request to the second adapter.

Originally, IBM sent NetBIOS packets over the NETBEUI protocol, also known
as the NetBIOS Frames protocol. This was the only transport NetBIOS could
use to send data across the network. In other words, each network adapter
had only one protocol to send and receive NetBIOS packets.

Because most computers have only one network adapter, many MS-DOS-based
applications send all their requests to a LANA value of zero (also called
simply 'LANA zero'). If a second network adapter is installed, some
programs allow the user to configure the application to use LANA one
instead. As a result, LANA zero became a default setting, though it was
never intended to be a default.

Today's network technology allows NetBIOS to use transports other than
NETBEUI. Microsoft has extended the meaning of LANA to indicate a specific
transport on a specific adapter. For example, if you have two network
adapters, and have IPX/SPX and NETBEUI transports installed, you have four
LANAs. The LANAs may or may not be sequential, and there is no systematic
way to identify which transport maps to which LANA.

In addition to extending the meaning of a LANA, Microsoft also added an NCB
command (NCBENUM) that returns an array of available LANA numbers. As an
example, the LANA_ENUM structure filled by NCBENUM might hold an array with
values 0, 3, 5, and 6. Zero might map to IPX/SPX on the first adapter,
three might map to NETBEUI on a second adapter, and so on.

In Windows NT and Windows 95, network adapters consist of physical adapters
(like a 3Com Etherlink II) and software adapters (like the Dial Up
Adapter). In addition, a user may have TCP/IP, NETBEUI, IPX/SPX, and other
transports installed, all of which have NetBIOS support.

For Windows NT, LANAs are configurable through the control panel. Choose
the Network applet, choose the NetBIOS Interface component, then choose
Configure. A dialog appears that allows you to edit the LANAs.

For Windows 95, you may only set LANA zero, the default protocol, and if no
protocol is set as default, there won't be a LANA zero. You can set the
default protocol in the control panel. Choose the Network applet, choose
the protocol you want as default, choose Properties, the Advanced tab, and
finally check 'Set this protocol to be the default protocol'.

LANAs may seem like a constraint that your application must work around.
However, making your application ignorant of how users want to configure
their machines is a powerful idea, and one that makes life easier for your
customers.

The best way to write a NetBIOS application is to support all LANAs, and
establish connections over any LANA. A good approach is outlined in the
following steps:

1. Enumerate the LANAs by submitting NCBENUM.

2. Reset each LANA by submitting one NCBRESET per LANA.

3. Add your local NetBIOS name to each LANA. The name may be the same on
 each LANA.

4. Connect using any LANA:

 - For servers, submit an NCBLISTEN on each LANA. If necessary, cancel
 any outstanding listen after the first listen is satisfied.

 - For clients, submit an NCBFINDNAME on each LANA. The first successful
 find name will give you a LANA on which you can submit an NCBCALL.

It is a good idea to submit NCBADDNAME, NCBLISTEN, and NCBFINDNAME
asynchronously. Asynchronous requests will be processed almost in parallel
on each transport.

This architecture is quite beneficial. Once your application is written to
establish connections in this manner, it will support any transport that
NetBIOS can use. As a result, your customers will not have to configure
anything within your application, and your application will not be affected
by dynamic LANAs such as dial-up adapters or plug-and-play hardware.

REFERENCES
==========

IBM NetBIOS specification version 3.0 and Win32 SDK Documentation.

Additional reference words: LANA 3.10 3.50 3.51 4.00
KBCategory: kbnetwork kbprg
KBSubcategory: NtwkNetBios

How to Use LVIF_DI_SETITEM on an LVN_GETDISPINFO Notification
PSS ID Number: Q131285

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s version 1.3

SUMMARY
=======

Windows 95 provides two flags, LVIF_DI_SETITEM and TVIF_DI_SETITEM, for the
listview and treeview controls respectively. When set, these flags instruct
Windows to start storing information for that particular item previously
set as a callback item.

MORE INFORMATION
================

Windows 95 introduces the concept of callback items for the new listview
and treeview common controls. A callback item is a listview or treeview
item for which the application, not the control, stores the text, icon, or
any appropriate information about the item. If the application already
maintains this information anyway, setting up callback items could decrease
the memory requirements of the control. Callback items are just as useful
for items that display constantly changing information. Setting these items
up as callback items allows the application to display the most current
values appropriate for that item.

Take for example a SPY application that displays information in a
hierarchical form (or a treeview) about the window being browsed or spied
on. One of the things it displays is the window rectangle, or the
dimensions of the window.

Because the user could resize this window at any time, this particular item
is a good candidate for a callback item because it displays constantly
changing information.

The application defines a callback item by specifying LPSTR_TEXTCALLBACK
for the pszText member of the TV_ITEM structure. Whenever the item needs to
be displayed, Windows requests the callback information by sending the
treeview's parent a TVN_GETDISPINFO notification in the form of a WM_NOTIFY
message. The parent window then fills the pszText member of the TV_ITEM
structure as the following sample code demonstrates:

 LRESULT MsgNotify(HWND hwnd,
 UINT uMessage,
 WPARAM wparam,
 LPARAM lparam)
 {

 TV_DISPINFO *ptvdi = (TV_DISPINFO *)lparam;

 switch (ptvdi->hdr.code)
 {
 case TVN_GETDISPINFO:

 if (ptvdi.mask & TVIF_TEXT)
 {
 RECT rect;
 char szBuf [30];

 GetWindowRect (hWndToBrowse, &rect);

 // where FormatRectText formats the rect information
 // in a nice <WindowRect: (x,y):cx,cy> format
 // and stores it in szBuf.
 FormatRectText (&rect, szBuf, sizeof (szBuf));

 lstrcpy (ptvdi.pszText, szBuf);
 }
 :

 default: break;

 }
 return 0;
 }

At a certain point, the application may determine during run time, that the
window dimensions will no longer change. At this point, there may be no
reason for this particular treeview item to remain as a callback item. This
time, you need to process the TVN_GETDISPINFO message in a slightly
different manner, specifying the TVIF_DI_SETITEM flag as demonstrated in
the following code:

 case TVN_GETDISPINFO:

 if (ptvdi.mask & TVIF_TEXT)
 {
 RECT rect;
 char szBuf [30];

 GetWindowRect (hWndToBrowse, &rect);

 // where FormatRectText formats the rect information
 // in a nice <WindowRect: (x,y):cx,cy> format
 // and stores it in szBuf.
 FormatRectText (&rect, szBuf, sizeof (szBuf));

 lstrcpy (ptvdi.pszText, szBuf);
 plvdi->item.mask = plvdi->item.mask | TVIF_DI_SETITEM;
 }

By ORing the mask with TVIF_DI_SETITEM, you instruct Windows to start
storing text information for the particular treeview item. At that point,

the application stops receiving a TVN_GETDISPINFO notification whenever the
item needs to be redrawn. This works almost as well as calling
TreeView_SetItem() on the item and replacing pszText's value with
LPSTR_TEXTCALLBACK to the appropriate string.

The same holds true for listview controls when the mask is ORed with the
LVIF_DI_SETITEM flag. However, note that setting the LVIF_DI_SETITEM flag
for listviews works only for the first column of text (iSubItem ==0).

If an application specifies LPSTR_TEXTCALLBACK therefore for a column
other than 0 in report view, LVIF_DI_SETITEM does not store the text
information for that listview item column.

For more information on other members of the LV_ITEM and TV_ITEM structures
that can be set up for callback, refer to the documentation on LV_DISPINFO
and TV_DISPINFO structures.

Additional reference words: 4.00 1.30 I_IMAGECALLBACK win95
I_CHILDRENCALLBACK
KBCategory: kbui kbcode
KBSubcategory: UsrCtl

How to Use MIDI Stream Callbacks
PSS ID Number: Q142107

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows 95

SUMMARY
=======

Applications running under Windows 95 that use MIDI streams to send events
to a MIDI device can use MIDI stream callbacks to be notified of the
playback progress at specified times during playback of the stream. This
article discusses the following topics regarding MIDI stream callbacks:

 - Uses of MIDI Stream Callbacks.
 - How to Generate a MIDI Stream Callback.
 - Determining Resolution of Periodic MIDI Stream Callbacks.
 - Processing MIDI Stream Callbacks.
 - Behavior of MIDI Stream Callbacks in Real-time.

A general familiarity with MIDI stream APIs and especially the MIDIEVENT
data structure is assumed. For an introduction to MIDI streams, see the
"Stream Buffers" and "MIDIEVENT" topics in the Win32 SDK Multimedia
documentation.

MORE INFORMATION
================

Uses of MIDI Stream Callbacks

MIDI stream callbacks can be used to inform the application of playback
progress while a MIDI stream is being played. This allows the application
to display a graphical indication of the progress of the music playback, or
perform some other periodic task in synchronization with the music. MIDI
stream callbacks can also be used to synchronize other non-periodic events
as well. For example, a MIDI stream-based rendition of the 1812 Overture
could include callback events to trigger the playback of a wave file of a
cannon fusillade at appropriate times.

How to Generate a MIDI Stream Callback

An application specifies that a MIDI event within a MIDI stream be used to
generate a callback by setting the MEVT_F_CALLBACK flag in the dwEvent
parameter of the MIDIEVENT structure before the stream is sent to the MIDI
device with midiStreamOut(). There are several kinds of short events and
long events, and any of these may be used to generate a callback. The
following is an example of a short MIDI event with callback:

 MIDIEVENT me;
 me.dwDeltaTime = 48; // play 48 ticks after preceding event

 me.dwStreamID = 0; // must be 0
 me.dwEvent = MEVT_F_SHORT | MEVT_F_CALLBACK | // flags
 (((DWORD)MEVT_SHORTMSG) << 24) | // event code
 (DWORD) 0x90 | // MIDI note-on status byte
 (((DWORD) 0x3C) << 8) | // middle C
 (((DWORD) 0x7F) << 16); // maximum key velocity

Note that the flags and the event code must all be coded into the high byte
of dwEvent, but only the flags are defined in Mmsystem.h as DWORD values
with bits set in the high byte. The event codes such as MEVT_SHORTMSG are
defined as BYTE values, so it is necessary to left-shift them to the high
byte position. Similarly, two of the three bytes describing the event data
are shifted to their appropriate positions in the lower 24 bits of dwEvent.

If a callback is desired at a time for which there are no MIDI events in
the stream, a special event can be added that does not play back MIDI data
but causes a callback to occur by using the MEVT_NOP "no-op" code. In the
following example, the MIDI data is not played back through the MIDI output
device, but a pointer is sent to the application in a callback:

 MIDIEVENT me;
 me.dwDeltaTime = 48;
 me.dwStreamID = 0;
 me.dwEvent = MEVT_F_SHORT | MEVT_F_CALLBACK |
 (((DWORD)MEVT_NOP) << 24) |
 (DWORD) 0x90 |
 (((DWORD) 0x3C) << 8) |
 (((DWORD) 0x7F) << 16);

Simultaneous callback events are not meaningful and there are practical
limitations to spacing callbacks close together in time. These limitations
are described in detail later in this article.

Determining Resolution of Periodic MIDI Stream Callbacks
--

Periodic callbacks can be generated by tagging appropriate events with a
callback, and in cases where there are no events at the required times,
inserting MEVT_NOP events with callbacks, as discussed previously. Note
that there is no API for generating periodic MIDI stream callbacks similar
to the timeSetEvent API for generating periodic multimedia timer callbacks.
Instead, each callback event must be individually specified by a MIDIEVENT
data structure in the MIDI stream buffer.

You should choose a time period (dwDeltaTime) that provides sufficient
resolution for your application's needs but does not impose too great a
performance penalty. While the optimum period will depend on many factors,
it is probably not realistic to try for a period shorter than something on
the order of 25 milliseconds. Also, by allowing a tolerance on this period,
you can tag existing events with a callback that are not exactly on time,
but sufficiently close to being on time that it will not be noticed by the
user. As a result, many fewer MEVT_NOP events with callbacks must be
inserted, which will result in more efficient playback performance. The
amount of tolerance to allow depends on a number of factors, but for a
period of 25 milliseconds, a tolerance of 10 milliseconds would be a

reasonable value to try.

Although there isn't a set hard-and-fast limit on the minimum effective
callback period, the 25 milliseconds figure reflects realistic design
limitations. You don't want to burn processor time trying to be more
accurate than the user can possibly distinguish. And equally so, you don't
want to burn processor time at the cost of application performance. Because
MIDI stream callbacks result in system overhead which could potentially
impact MIDI playback performance, callbacks should not be scheduled more
frequently than absolutely necessary.

Processing MIDI Stream Callbacks

For each MIDI stream callback event, a MOM_POSITIONCB message is sent to
the application's callback procedure. Along with this message, the callback
procedure receives a pointer to a MIDIHDR structure, the dwOffset member of
which specifies the offset into the MIDI stream buffer in bytes for the
callback event most recently processed. Using this offset, the application
can access the event data associated with the callback event to learn which
event has occurred and perform any necessary processing.

The callback function used to process MIDI stream callbacks is similar to
other MIDI callback functions. The following is an example of a MIDI stream
callback function:

void CALLBACK MidiStreamProc(
 HMIDIOUT hmo, // handle of MIDI output device
 UINT uMsg, // MIDI message
 DWORD dwInstance, // callback instance data
 DWORD dwParam1, // address of MIDI header
 DWORD dwParam2) // unused parameter
{
 LPMIDIHDR lpMIDIHeader;
 MIDIEVENT *lpMIDIEvent;

 if (!dwParam1)
 return; // nothing to do

 switch (uMsg)
 {
 case MOM_POSITIONCB:
 // assign address of MIDIHDR
 lpMIDIHeader = (LPMIDIHDR)dwParam1;

 // get address of event data
 lpMIDIEvent = (MIDIEVENT *)&(lpMIDIHeader->
 lpData[lpMIDIHeader->dwOffset]);

 // do something here with event data

 break;

 // handle these messages if desired
 case MOM_OPEN:

 case MOM_DONE:
 case MOM_CLOSE:
 break;
 }
}

Behavior of MIDI Stream Callbacks in Real-time
--

Look at the MIDI stream callback as a request by the application to be
called after a specific event in the stream is reached during playback.
Once the callback is delivered, the event referred to by the callback is
always the absolutely most recent event processed that has the callback
flag set. If the callbacks are far apart and the system is running well,
this will usually be the same event that triggered the callback, but it
doesn't have to be. Stated another way, if another event with the callback
flag set has been processed by the time the callback is delivered, then the
event referred to by the callback will be the most recently processed
callback event, not the event that originally triggered the callback.

The dwOffset parameter of the MIDIHDR received by the callback function
tells the application how far playback has travelled in the stream at the
time the callback is finally given to the application. For callback events
that are scheduled to occur at the same time, the same offset referring to
the most recently processed callback event will be received with each of
the callbacks. Therefore, the use of simultaneous callback events serves no
useful purpose and results in unnecessary overhead, so it should be
avoided. Similarly, if callback events are not scheduled simultaneously but
are scheduled too closely together, the callbacks will also refer to the
most recently processed callback event, so this situation should also be
avoided.

When a callback is received by the application, it should use the dwOffset
data to decide what to do. If it is expecting a callback at a particular
location but gets a callback for somewhere further along in the stream
instead, it means that the application is not keeping up or that the
callbacks are scheduled too closely together for the capabilities of the
machine. The best thing to do in this case is to just throw the callback
away because there will be another one in the queue that will be delivered
just as soon as processing of the current callback is completed. This may
add a little complexity to the logic required to process the callbacks but
not to any great extent, and it has the benefit of degrading gracefully on
machines that can't keep up.

Additional Notes

Note that MIDI stream support is currently available only on Windows 95.
For a complete implementation of a MIDI playback sequencer written with the
MIDI stream APIs, see the MIDIPLYR sample in the Windows 95 multimedia
samples in the Win32 SDK or the MSTREAM sample in the Games SDK. Although
these samples do not use MIDI stream callbacks, they both demonstrate use
of MIDI streams in general.

Additional reference words: 4.00 MEVT_EVENTPARM MEVT_EVENTTYPE

KBCategory: kbmm kbprg kbhowto kbcode
KBSubcategory: MMMidi

How to Use NetUserAdd
PSS ID Number: Q140165

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5,
 3.51, 4.0

SUMMARY
=======

NetUserAdd allows a Windows NT application to add a user to a Windows NT
workstation or server programmatically. Adding a user with this function
seems easy enough, but there are a few issues that are not obvious.

MORE INFORMATION
================

If you would like to add users to a Windows NT workstation or server in
your application, you must use NetUserAdd. Given a server name, level, and
appropriate structure, a new user will be created. The following pointers
may help you avoid problems:

1. As required of all Net* functions, submit all strings in UNICODE (wide
 characters). Use MultiByteToWideChar to convert standard ASCII strings
 into UNICODE strings. Don't forget to include the terminating NULL in
 string conversions.

2. Specify the server name as \\server. Be sure to include double
 backslashes, four backslashes if inside a C literal string.

3. Use the UF_SCRIPT required flag. Without it, you will get
 ERROR_INVALID_PARAMETER.

4. When using level 2, make sure your strings do not exceed the maximum
 lengths. Constants are defined for the maximum lengths. For example, the
 maximum lengths for params, comment, user comment, and full name is
 MAXCOMMENTSZ. Paths must fit within PATHLEN characters. UNC names for
 servers must fit in UNCLEN characters.

5. To add user accounts, always use NetUserAdd, not guest or administrator
 accounts. After the account is established, use NetUserSetGroups to add
 Administrator, Guest, or other groups to the new user account.

REFERENCES
==========

Microsoft LAN Manager, A Programmer's Guide by Ralph Ryan.
Microsoft LAN Manager Programmer's Reference.
Win32 SDK Documentation.

Additional reference words: NETUSERADD LANMAN 3.10 3.50 3.51 4.00
KBCategory: kbnetwork kbprg kbhowto

KBSubcategory: NtwkMisc

How to Use PeekMessage() Correctly in Windows
PSS ID Number: Q74042

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In the Windows environment, many applications use a PeekMessage() loop to
perform background processing. Such applications must allow the Windows
system to enter an idle state when their background processing is complete.
Otherwise, system performance, "idle-time" system processes such as paging
optimizations, and power management on battery-powered systems will be
adversely affected.

While an application is in a PeekMessage() loop, the Windows system cannot
go idle. Therefore, an application should not remain in a PeekMessage()
loop after its background processing has completed.

NOTE: The PeekMessage method described in this article is only needed if
your application is a 32-bit application for Windows and is, for some
reason, unable to create threads and perform background processing.

MORE INFORMATION
================

Many Windows-based applications use PeekMessage() to retrieve messages
while they are in the middle of a long process, such as printing,
repaginating, or recalculating, that must be done "in the background."
PeekMessage() is used in these situations because, unlike GetMessage(), it
does not wait for a message to be placed in the queue before it returns.

An application should not call PeekMessage() unless it has background
processing to do between the calls to PeekMessage(). When an application is
waiting for an input event, it should call GetMessage() or WaitMessage().

Remaining in a PeekMessage() loop when there is no background work
causes system performance problems. A program in a PeekMessage() loop
continues to be rescheduled by the Windows scheduler, consuming CPU
time and taking time away from other processes.

In enhanced mode, the virtual machine (VM) in which Windows is running
will not appear to be idle as long as an application is calling the
PeekMessage function. Therefore, the Windows VM will continue to
receive a considerable fraction of CPU time.

Many power management methods employed on laptop and notebook computers are
based on the system going idle when there is no processing to do. An
application that remains in a PeekMessage() loop will make the system
appear busy to power management software, resulting in excessive power
consumption and shortening the time that the user can run the system.

In the future, the Windows system will make more and more use of idle
time to do background processing, which is designed to optimize system
performance. Applications that do not allow the system to go idle will
adversely affect the performance of these techniques.

All these problems can be avoided by calling the PeekMessage() function
only when there is background work to do, and calling GetMessage() or
WaitMessage() when there is no background work to do.

For example, consider the following PeekMessage() loop. If there is no
background processing to do, this loop will continue to run without
waiting for messages, preventing the system from going idle and
causing the negative effects described above.

 // This PeekMessage loop will NOT let the system go idle.

 for(;;)
 {
 while (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
 {
 if (msg.message == WM_QUIT)
 return TRUE;

 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }

 BackgroundProcessing();
 }

This loop can be rewritten in two ways, as shown below. Both of the
following PeekMessage() loops have two desirable properties:

 - They process all input messages before performing background
 processing, providing good response to user input.

 - The application "idles" (waits for an input message) when no
 background processing needs to be done.

Improved PeekMessage Loop 1

 // Improved PeekMessage() loop

 for(;;)
 {
 while (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
 {
 if (msg.message == WM_QUIT)

 return TRUE;

 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }

 if (IfBackgroundProcessingRequired())
 BackgroundProcessing();
 else
 WaitMessage(); // Will not return until a message is posted.
 }

Improved PeekMessage Loop 2

 // Another improved PeekMessage() loop

 for (;;)
 {
 for (;;)
 {
 if (IfBackgroundProcessingRequired())
 {
 if (!PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
 break;
 }
 else
 GetMessage(&msg, NULL, 0, 0, 0);

 if (msg.message == WM_QUIT)
 return TRUE;

 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 BackgroundProcessing();
 }

Note that calls to functions such as IsDialogMessage() and
TranslateAccelerator() can be added to these loops as appropriate.

There is one case in which the loops above need additional support: if
the application waits for input from a device (for example, a fax
board) that does not send standard Windows messages. For the reasons
outlined above, a Windows-based application should not use a PeekMessage()
loop to continuously poll the device. Rather, implement an interrupt
service routine (ISR) in a dynamic-link library (DLL). When the ISR is
called, the DLL can use the PostMessage function to inform the
application that the device requires service. DLL functions can safely
call the PostMessage() function because the PostMessage() function
is reentrant.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbui
KBSubcategory: UsrMsg

How to Use RPC Under Win32s
PSS ID Number: Q127903

The information in this article applies to:

 - Microsoft Win32s, versions 1.2 and 1.25a

Win32s does not thunk Remote Procedure Call (RPC) calls. Therefore, if you
have a Win32-based application that uses RPC and you want it to run on
Win32s, you will need to write a thunking layer for your application to
thunk the 32-bit calls to the 16-bit RPC implementation.

One issue to keep in mind when writing the thunking layer is how to handle
stub code. It is convenient to direct the MIDL compiler to produce 16-bit
stub code for the application. The stub code can be built as a 16-bit DLL,
which can be called from the Win32-based application via the Universal
Thunk. This eliminates the need to write a thunking layer for the RPC
run-time functions that appear in 32-bit client stub code.

One limitation is that RPC servers are not supported with the 16-bit RPC,
only clients. Microsoft's 32-bit RPC implements servers by spawning threads
for each call, and threads are not supported under Win32s. There may be
other vendors who supply a 16-bit RPC that supports servers.

Additional reference words: 1.20
KBCategory: kbprg
KBSubcategory: W32s

How to Use SS_GRAYRECT SS_BLACKRECT SS_WHITERECT in Windows 95
PSS ID Number: Q125684

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The colors used in the gray, white, and black rectangle static controls has
changed in Windows 95. In previous versions of Windows, these colors were
based on the system colors for windows. In Windows 95, these colors are
based on the colors for 3D objects.

MORE INFORMATION
================

In Windows 95, the definitions for white, gray, and black rectangle static
controls are as follows:

 - SS_WHITERECT: Specifies a rectangle filled with the highlight color for
 three-dimensional display elements (for edges facing the light source).
 This is the same color retrieved by using GetSysColor() with
 COLOR_3DHILIGHT.

 - SS_GRAYRECT: Specifies a rectangle filled with the shadow color for
 three-dimensional display elements (for edges facing away from the light
 source). This is the same color retrieved by using GetSysColor() with
 COLOR_3DSHADOW.

 - SS_BLACKRECT: Specifies a rectangle filled with the Shadow color for
 three-dimensional display elements (for edges facing away from the light
 source). This is the same color retrieved by using GetSysColor() with
 COLOR_3DDKSHADOW. This is not the same color as COLOR_3DSHADOW. There
 are two shadow colors used on 3D objects.

In previous versions of Windows, the definitions for white, gray, and
black rectangle static controls were as follows:

 - SS_WHITERECT: Specifies a rectangle filled with the color used to fill
 window backgrounds. This color is white in the default Windows color
 scheme. This is the same color retrieved by using GetSysColor() with
 COLOR_WINDOW.

 - SS_GRAYRECT: Specifies a rectangle filled with the color used to fill
 the screen background. This color is gray in the default Windows color
 scheme. This is the same color retrieved by using GetSysColor() with
 COLOR_BACKGROUND.

 - SS_BLACKRECT: Specifies a rectangle filled with the color used to draw

 window frames. This color is black in the default Windows color scheme.
 This is the same color retrieved by using GetSysColor() with
 COLOR_WINDOWFRAME.

Additional reference words: 4.00
KBCategory: kbui
KBSubcategory: UsrCtl

How to Use the AutoDial Feature in Network and WinSock Apps
PSS ID Number: Q137369

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SUMMARY
=======

This article describes how to use the AutoDial feature in applications
using Windows sockets.

MORE INFORMATION
================

Windows 95 supports a new AutoDial feature. Using this feature,
applications can initiate a dial-up connection to remote networks as
needed. AutoDial is fully transparent from the programmer's point of view.

The following steps demonstrate this capability:

1. Ping abc.abc.abc.abc

2. If the destination IP address (or fully qualified name) cannot be
 resolved or connected locally (on a LAN for example), then the
 AutoDial window comes up, and a preconfigured Dial-Up Network
 Connection connects to a WAN link provider.

These steps also apply to any Windows Socket application that requests a
connection to a destination that cannot be connected locally. There are no
special coding techniques needed to program such applications.

The following versions of Window 95 have the AutoDial feature available:

 - OEM preinstalled Windows 95
 - Windows 95 with the Plus! pack.

The retail version of Windows 95 does not have the AutoDial feature. To use
the AutoDial feature on the retail version of Windows 95, you must install
the Microsoft Internet Explorer, which is available free of charge on the
Microsoft Web site (http://www.microsoft.com) subject to the licensing
agreement. Once Microsoft Internet Explorer is installed, the Internet icon
appears in the control panel. AutoDial can be configured by double-clicking
this icon.

At the present time AutoDial is not available on Windows NT.

Additional reference words: 4.00
KBCategory: kbnetwork
KBSubcategory: NtwkWinsock

How to Use the Small Icon in Windows 95
PSS ID Number: Q125682

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In Windows 95, each application is associated with two icons: a small icon
(16x16) and a large icon (32x32). The small icon is displayed in the
upper-left hand corner of the application and on the taskbar.

MORE INFORMATION
================

Large and small icons are associated with an application by using the
RegisterClassEx() function. This function takes a pointer to a WNDCLASSEX
structure. The WNDCLASSEX structure is similar to the WNDCLASS structure
except for the addition of the hIconSm parameter, which is used for the
handle to the small icon. If no small icon is associated with an
application, Windows 95 will use a 16x16 representation of the large icon.

NOTE: RegisterClassEx() is not currently implemented in Windows NT where it
returns NULL.

The LoadIcon() function loads the large icon member of an icon resource.
To load the small icon, use the new LoadImage() function as follows:

LoadImage(hInstance,
 MAKEINTRESOURCE(<icon identifier>),
 IMAGE_ICON,
 16,
 16,
 0);

The small icon currently associated with the application will be displayed
in the upper-left corner of the application's main window and on the task
bar. Both the large and the small icon association can be changed at
runtime by using the WM_SETICON message.

By default, the start menu will display the first icon defined in an
application's resources. This can be changed through the start menu
property sheets.

Explorer displays the first defined icon in an application's resources
unless the application adds an entry to the registry under the program
information called DefaultIcon or defines an icon handler shell extension
for the file type. Refer to the Shell Extension documentation for more
information on shell extensions.

Additional reference words: 4.00
KBCategory: kbui
KBSubcategory: UsrWndw

How to Use the StartService API Within a Service
PSS ID Number: Q133756

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51

SUMMARY
=======

In the Win32 API Help file, it mentions that you cannot call the
StartService API from within a service. This statement is not totally
correct. It should say that you cannot call the StartService API from
within a service while it is initializing.

An initializing service is a service which has not yet reported to the
Service Control Manager that it has successfully started. Once the service
is running, you can use the StartService API within a service.

MORE INFORMATION
================

If your service is initializing due to a dependency or the auto start flag,
and your service attempts to start another service, a deadlock state in the
Service Control Manager may occur. The reason this occurs is because the
call to StartService() blocks because the Service Control Manager has a
lock on the service control database from the original initializing
service.

Additional reference words: 3.50
KBCategory: kbprg kbdocerr
KBSubcategory: BseService

How to Use the Win32 registry from 16-bit Windows-Based App
PSS ID Number: Q137378

The information in this article applies to:

 - Microsoft Win32 Software Development KIT (SDK)
 versions 3.1x, 3.5, 3.51, 4.0

SUMMARY
=======

By obtaining access to all Win32-based registry APIs, a 16-bit
Windows-based application can also gain full access to the Win32 registry.
Such access would be based on Generic Thunking to ensure portability
between Windows NT and Windows 95.

MORE INFORMATION
=================

A 16-bit Windows-based application must implement a generic thunk function
for each Win32 API required to access the Win32 registry. To achieve the
greatest flexibility, you need to implement these new functions in a 16-bit
Windows-based DLL that can be implicitly linked to a 16-bit Windows-based
application. In Windows NT and Windows 95, all Win32 registry APIs are
exported from Advapi.dll.

For a 16-bit Windows-based application to access the Win32 registry, it
must first define the predefined reserved handle value (HKEY_LOCAL_MACHINE)
as defined by the Win32 environment. These predefined reserved handle
values are located in the Winreg.h file in the Win32 SDK.

The following demonstrates a sample technique used to perform registry
thunking.

// required includes
#include "wownt16.h" // available from Win32 SDK
#include "shellapi.h" // 16-bit Windows header

// As defined by the Win32 SDK in Winreg.h
#define HKEY_CURRENT_USER ((HKEY) 0x80000001)

HKEY hOpen;
DWORD rc;

if (ERROR_SUCCESS ==
 (rc=RegOpenKey(HKEY_CURRENT_USER, "Control Panel\\Desktop", &hOpen)))
 {
 DWORD dwType, cbData;
 BYTE bData[1000];
 cbData = 1000;

 if ((rc =
 RegQueryValueEx(hOpen, "BorderWidth", NULL,

 &dwType, bData, &cbData))
 == ERROR_SUCCESS)
 {
 // used retreived data
 MessageBox(NULL, "Value Retreived","Information",MB_OK);
 }
 else
 MessageBox(NULL, "RegQueryValueEx Failed","Error",MB_OK);
 RegCloseKey(hOpen);
 }

// This code should be placed in a DLL to allow for maximum flexibility.
// When the full conversion to 32-bit is complete, the thunking library
// need not be included.

LONG RegQueryValueEx(
 HKEY hKey,
 LPSTR lpszValueName,
 LPDWORD lpdwReserved,
 LPDWORD lpdwType,
 LPBYTE lpbData,
 LPDWORD lpcbData
)
{
 DWORD pFn;
 DWORD dwResult = ERROR_ACCESS_DENIED; //random error if fail
 DWORD hAdvApi32;

 hAdvApi32=LoadLibraryEx32W("ADVAPI32.DLL", NULL, 0);

 if ((DWORD)0!=hAdvApi32)
 {
 // call ANSI version
 pFn=GetProcAddress32W(hAdvApi32, "RegQueryValueExA");
 if ((DWORD)0!=pFn)
 {
 dwResult=CallProcEx32W(
 CPEX_DEST_STDCALL | 6, // standard function call with
 // six parameters
 0x3e, // Identify what parameters
 //(addresses) must be translated
 pFn, // function pointer
 hKey, // open key
 lpszValueName, // value to query
 lpdwReserved, // reserved for future use
 lpdwType, // value type
 lpbData, // value data
 lpcbData // value data length
);
 }
 }
 if (hAdvApi32)
 FreeLibrary32W(hAdvApi32);

 return(dwResult);

}

To include the generic thunk APIs, the 16-bit app needs to add the
following to its module definition (.DEF) file:

IMPORTS
 _CallProcEx32W = KERNEL.518
 LoadLibraryEx32W = KERNEL.513
 FreeLibrary32W = KERNEL.514
 GetProcAddress32W = KERNEL.515

Additional reference words: 3.50 4.00
KBCategory: kbprg kbcode
KBSubcategory: Bse

How to Use Wave Audio Volume Control APIs
PSS ID Number: Q139098

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 Software Development Kit (SDK) versions 3.5,
 3.51, 4.0

SUMMARY
=======

The functions waveOutGetVolume() and waveOutSetVolume() can be used to set
and retrieve a wave output device's volume. The DWORD passed or retrieved
contains the left channel's volume in the low-order word and the right
channel's volume in the high-order word. In this article, the use of these
functions is illustrated through a single function that can be added to the
Generic sample.

MORE INFORMATION
================

Although the Mixer APIs included in the Win32 SDK offer more extensive
control, quick and simple audio volume control can be obtained by using the
waveOutGetVolume() and waveOutSetVolume() functions.

By adding the code for the ShowVolume() function (given in this article) to
the Generic sample, you can cause it to output message boxes about the
state of the volume control. While the sample is running, the WSS Audio
Conrol's Volume Control (or a given sound card's mixer control that
displays wave output volume) undergoes changes in its slider positions as
the values for right and left channel volume are changed by the
ShowVolume() function.

As the sample runs, the first message box reports the number of wave output
devices. The second and third message boxes report a left channel volume of
8192 and a right channel volume of 16384 (out of a maximum of 65535). The
horizontal slider in the Wave column of the Volume Control is the balance
slider, and it is set to the right because the right volume is greater now.
Also, the vertical slider in the Wave column, which is the volume slider,
is set to the 1/4 position, tracking the larger volume setting of the two
channels.

The fourth and fifth messages boxes report a left and right volume of 32768
and 16384 respectively. Now the balance slider is to the left, and the wave
volume is about 1/2, again tracking the larger value.

ShowVolume() Code to Be Added to the Generic Sample

// Link with mmsystem.lib for 16-bit applications and
// link with winmm.lib for 32-bit applications.

#include <mmsystem.h>
#include <stdlib.h>

void ShowVolume(void); //Prototype the function early in the app

void ShowVolume(void)
{
 // This is the function that can be added to the Generic Sample to
 // illustrate the use of waveOutGetVolume() and waveOutSetVolume().

 char buffer[40];
 char printbuf[80];
 UINT uRetVal, uNumDevs;
 DWORD volume;
 long lLeftVol, lRightVol;

 WAVEOUTCAPS waveCaps;

 // Make sure there is at least one
 // wave output device to work with.
 if (uNumDevs = waveOutGetNumDevs())
 {
 itoa((int)uNumDevs, buffer, 10);
 wsprintf(printbuf, "Number of devices is %s\n", (LPSTR)buffer);
 MessageBox(GetFocus(), printbuf, "NumDevs", MB_OK);
 }

 // This sample uses a hard-coded 0 as the device ID, but retail
 // applications should loop on devices 0 through N-1, where N is the
 // number of devices returned by waveOutGetNumDevs().
 if (!waveOutGetDevCaps(0,(LPWAVEOUTCAPS)&waveCaps,
 sizeof(WAVEOUTCAPS)))

 {
 // Verify the device supports volume changes
 if(waveCaps.dwSupport & WAVECAPS_VOLUME)
 {
 // The low word is the left volume, the high word is the right.
 // Set left channel: 2000h is one-eighth volume (8192 base ten).
 // Set right channel: 4000h is quarter volume (16384 base ten).
 uRetVal = waveOutSetVolume(0, (DWORD)0x40002000UL);

 // Now get and display the volumes.
 uRetVal = waveOutGetVolume(0, (LPDWORD)&volume);

 lLeftVol = (long)LOWORD(volume);
 lRightVol = (long)HIWORD(volume);

 ltoa(lLeftVol, buffer, 10);
 wsprintf(printbuf, "Left Volume is %s\n", (LPSTR)buffer);
 MessageBox(GetFocus(), printbuf, "Left Volume", MB_OK);

 ltoa(lRightVol, buffer, 10);
 wsprintf(printbuf, "Right Volume is %s\n", (LPSTR)buffer);
 MessageBox(GetFocus(), printbuf, "Right Volume", MB_OK);

 // The low word is the left volume, the high word is the right.
 // Set left channel: 8000h is half volume (32768 base ten).
 // Set right channel: 4000h is quarter volume (16384 base ten).
 uRetVal = waveOutSetVolume(0, (DWORD)0x40008000UL);

 // Now get and display the volumes.
 uRetVal = waveOutGetVolume(0, (LPDWORD)&volume);

 lLeftVol = (long)LOWORD(volume);
 lRightVol = (long)HIWORD(volume);

 ltoa(lLeftVol, buffer, 10);
 wsprintf(printbuf, "Left Volume is %s\n", (LPSTR)buffer);
 MessageBox(GetFocus(), printbuf, "Left Volume", MB_OK);

 ltoa(lRightVol, buffer, 10);
 wsprintf(printbuf, "Right Volume is %s\n", (LPSTR)buffer);
 MessageBox(GetFocus(), printbuf, "Right Volume", MB_OK);

 }
 }
}

Additional reference words: 3.50 4.00 waveOutGetVolume waveOutSetVolume
KBCategory: kbmm kbsound kbprg kpcode kbhowto
KBSubcategory: MMWave

How to Use Win32 API to Draw a Dragging Rectangle on Screen DC
PSS ID Number: Q135865

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

This article shows by example how to have your application draw a dragging
rectangle on an arbitrary area of the screen. This action is known as
"rubber banding." Utilities that perform screen capture, zooming, and so on
are typical examples of such applications. Due to the change in behavior of
the SetCapture API in win32, the standard technique used for rubber banding
on the screen DC in 16-bit Windows no longer works under Windows NT and
Windows95. This article explores alternate methods you can use to perform
rubber banding in win32.

MORE INFORMATION
================

16-bit Method for Rubber Banding Won't Work in Win32-Based Applications

In 16-bit Windows, an application called the SetCapture API prior to
starting the rubber banding. This then directed all further mouse input to
the application's capture window. This allowed the user to click anywhere
on the desktop including the client area of other running applications and
start the drag action. Because SetCapture directs all mouse input to the
capture window, it is then a simple matter for the application to draw a
rubber banding rectangle as the user moves the mouse.

However, the Win32 implementation of the SetCapture API has changed so that
the 16-bit method fails. SetCapture no longer directs all mouse input to an
application's capture window. If an application calls SetCapture and the
user then clicks another application or the desktop (an application by
itself) to activate it, subsequent mouse messages are no longer directed to
the capture window. The only mouse messages that a capture window receives
are those generated when the application's thread is active. This is
applicable to a 16-bit application running under Windows NT or Windows 95
as well as a newly written 32-bit application. There are two ways for a
Win32-based application to perform rubber banding.

Method One: How to Perform Rubber Banding in Win32-Based Applications

In this method, the application imposes a restriction on the user as to how
the dragging action is done. For example, the application might display a
small window and require the user to depress the mouse button in the client

area of the window to indicate the beginning of the rubber banding mode and
drag the mouse, without releasing the mouse button, to whichever part of
the desktop the user wants to capture. Upon reaching the appropriate anchor
point, the user presses a key on the keyboard (for example, the CTRL key)
and drags the mouse to perform the actual rubber banding. Note that during
the entire process, the user keeps the mouse button depressed, so other
applications are not activated, and all the mouse messages are therefore
directed to the capture window.

The following sample code illustrates how this might be implemented:

// some global declarations

BOOL bDrag;
BOOL bDraw;
POINT ptCurrent, ptNew;

// inside the capture window procedure...

case WM_LBUTTONDOWN:
 SetCapture(hwnd);
 bDrag = TRUE; // set flag to check for key down in mouse move message

case WM_MOUSEMOVE:
 if (bDrag)
 {
 if (keyFlags & MK_CONTROL) // CTRL key down
 {
 bDraw = TRUE; // start actual drawing from next move message
 ptCurrent.x = ptNew.x = x; // store the first point after
 ptCurrent.y = ptNew.y = y; // converting to screen coordinates
 ClientToScreen (hwnd,&ptCurrent);
 ClientToScreen (hwnd,&ptNew);
 bDrag = FALSE;
 }
 }
 else if (bDraw)
 {

 // Draw two rectangles in the screen DC to cause rubber banding

 HDC hdc = CreateDC (TEXT("DISPLAY"), NULL, NULL, NULL);
 SetROP2(hdc, R2_NOTXORPEN);

 // Draw over and erase the old rectangle

 Rectangle (hdc, ptCurrent.x, ptCurrent.y, ptNew.x, ptNew.y);
 ptNew.x = x;
 ptNew.y = y;
 ClientToScreen (hwnd,&ptNew);

 // Draw the new rectangle

 Rectangle (hdc, ptCurrent.x, ptCurrent.y, ptNew.x, ptNew.y);
 DeleteDC (hdc);

 }

case WM_LBUTTONUP:

 if (bDraw)
 {

 // Don't leave orphaned rectangle on desktop; erase last rectangle.

 HDC hdc;
 bDrag = FALSE;
 bDraw = FALSE;
 ReleaseCapture();
 hdc = CreateDC (TEXT("DISPLAY"), NULL, NULL, NULL);
 SetROP2(hdc, R2_NOTXORPEN);
 Rectangle (hdc, ptCurrent.x, ptCurrent.y, ptNew.x, ptNew.y);
 DeleteDC (hdc);

 // At this point the application has the coordinates of the rubber
 // banding rectangle.

 } else if (bDrag)
 {
 // The user released the mouse button without ever pressing CTRL key.

 bDraw = FALSE;
 bDrag = FALSE;
 ReleaseCapture();
 }

The drawback to this approach is that the rubber banding action may
not be intuitive. The user is required to use a key in addition to the
mouse now, whereas in 16-bit Windows this could have been accomplished with
the mouse alone.

Method Two: How to Perform Rubber Banding in Win32-Based Applications

Another way to do rubber banding in win32 consistent with the 16-bit method
is to create a popup window that covers the entire desktop and has the
WS_EX_TRANSPARENT style bit set. This window can be created with no title
bar or borders and is active only for the time period of the rubber
banding. It is destroyed upon completion of the rubber banding - when the
user releases the mouse button. This popup window becomes the capture
window and the rubber banding logic would then simply be applied on the
client area DC of the popup window.

Additional reference words: 4.00
KBCategory: kbui kbcode
KBSubcategory: usrctl

How to Use WinSock to Enumerate Addresses
PSS ID Number: Q129315

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.5 and 3.51

SUMMARY
=======

The gethostbyname() and gethostname() WinSock database APIs can be used to
list IP addresses for a multihomed host. However, these functions work only
for IP addresses. This article shows by example how to give addresses for
other address families. Two different methods are given.

MORE INFORMATION
================

Method One Code Sample

AF_IPX:

This function can be used to give an IPX address:

 #include <winsock.h>
 #include <wsipx.h>
 #include <wsnwlink.h>

 #include <stdlib.h>

 // Note: In the interest of clarity, the following code does not check
 // return values or handle error conditions.

 void IPXEnum()
 {
 int cAdapters,
 cbOpt = sizeof(cAdapters),
 cbAddr = sizeof(SOCKADDR_IPX);

 SOCKET s;
 SOCKADDR_IPX Addr;

 // Create IPX socket.
 s = socket(AF_IPX, SOCK_DGRAM, NSPROTO_IPX);

 // Socket must be bound prior to calling IPX_MAX_ADAPTER_NUM
 memset(&Addr, 0, sizeof(Addr));
 Addr.sa_family = AF_IPX;
 bind(s, (SOCKADDR*) &Addr, cbAddr);

 // Get the number of adapters => cAdapters.

 getsockopt((SOCKET) s, NSPROTO_IPX, IPX_MAX_ADAPTER_NUM,
 (char *) &cAdapters, &cbOpt);
 // At this point cAdapters is the number of installed adapters.
 while (cAdapters > 0)
 {
 IPX_ADDRESS_DATA IpxData;

 memset(&IpxData, 0, sizeof(IpxData));

 // Specify which adapter to check.
 IpxData.adapternum = cAdapters - 1;
 cbOpt = sizeof(IpxData);

 // Get information for the current adapter.
 getsockopt(s, NSPROTO_IPX, IPX_ADDRESS,
 (char*) &IpxData, &cbOpt);

 // IpxData contains the address for the current adapter.
 cAdapters--;
 }
 }

AF_NETBIOS:

This function uses the EnumProtocols() function to give lana numbers
for the available NetBIOS transports. NOTE: This doesn't work under Windows
NT 3.5 because of a bug in EnumProtocols(), but it does work under Windows
NT 3.51.

 void NBEnum()
 {
 DWORD cb = 0;
 PROTOCOL_INFO *pPI;
 BOOL pfLanas[100];

 int iRes,
 nLanas = sizeof(pfLanas) / sizeof(BOOL);

 // Specify NULL for lpiProtocols to enumerate all protocols.

 // First, determine the output buffer size.
 iRes = EnumProtocols(NULL, NULL, &cb);

 // Verify the expected error was received.
 assert(iRes == -1 && GetLastError() == ERROR_INSUFFICIENT_BUFFER);
 if (!cb)
 {
 fprintf(stderr, "No available NetBIOS transports.\n");
 break;
 }

 // Allocate a buffer of the specified size.
 pPI = (PROTOCOL_INFO*) malloc(cb);

 // Enumerate all protocols.

 iRes = EnumProtocols(NULL, pPI, &cb);

 // EnumProtocols() lists each lana number twice, once for
 // SOCK_DGRAM and once for SOCK_SEQPACKET. Set a flag in pfLanas
 // so unique lanas can be identified.

 memset(pfLanas, 0, sizeof(pfLanas));

 while (iRes > 0)
 // Scan protocols looking for AF_NETBIOS.
 if (pPI[--iRes].iAddressFamily == AF_NETBIOS)
 // found one
 pfLanas[pPI[iRes].iProtocol] = TRUE;

 fprintf(stderr, "Available NetBIOS lana numbers: ");
 while(nLanas--)
 if (pfLanas[nLanas])
 fprintf(stderr, "%d ", nLanas);

 free(pPI);
 }

AF_APPLETALK:

Address enumeration is not meaningful for AF_APPLETALK. On a multihomed
host with routing disabled, only the default adapter is used. If routing is
enabled, a single AppleTalk address is used for all installed network
adapters.

Method Two: Code Sample

Listed below is an example of how to use the WinSock database APIs to
give IP addresses:

 void EnumIP()
 {
 char szHostname[100];
 HOSTENT *pHostEnt;
 int nAdapter = 0;

 gethostname(szHostname, sizeof(szHostname));
 pHostEnt = gethostbyname(szHostname);

 while (pHostEnt->h_addr_list[nAdapter])
 {
 // pHostEnt->h_addr_list[nAdapter] is the current address in host
 // order.

 nAdapter++;
 }
 }

Additional reference words: 3.50
KBCategory: kbnetwork kbcode

KBSubcategory: NtwkWinsock

How Win32 Applications Can Read CD-ROM Sectors in Windows 95
PSS ID Number: Q137813

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:
 Microsoft Windows 95 version 4.0

SUMMARY
=======

Some Win32 applications, such as multimedia applications and games, need to
read sectors directly from compact discs to implement custom access or read
caching to optimize CD-ROM access for specific purposes. This article
provides information and example code that demonstrates how Win32-based
applications can read sectors from compact discs in Windows 95.

MORE INFORMATION
================

The Windows 95 Compact Disc File System (CDFS) is a protected-mode CD-ROM
driver that implements the V86-mode MSCDEX Interrupt 2Fh functions as its
sole application-callable interface. This interface allows it to replace
real-mode CD-ROM drivers and MSCDEX.EXE and still be completely compatible
with existing applications for MS-DOS and Windows 3.x. In fact,
applications for MS-DOS and Windows 3.x will not be able to tell the
difference between CDFS and MSCDEX.EXE.

Windows 95 provides an interface for Win32-based applications to read
sectors from compact discs; this interface differs substantially from that
provided by Windows NT. Unlike Windows NT, which uses CreateFile() and
ReadFile() to read sectors from compact discs, Windows 95 does not provide
a Win32 API function for reading sectors. Instead, Win32-based applications
running under Windows 95 must use an indirect method that involves thunking
to a 16-bit DLL that calls MSCDEX functions.

The MSCDEX interface that CDFS provides is callable only in V86-mode, so
Win32-based applications must thunk to a 16-bit DLL, and the 16-bit DLL
must use the DOS Protected Mode Interface (DPMI) Simulate Real Mode
Interrupt function to call MSCDEX Interrupt 2Fh functions. The Win32-based
application must pass a buffer to the 16-bit DLL by using the thunk. Inside
the thunk, the 16-bit DLL obtains the sector data from MSCDEX, copies it
into the Win32-based application's buffer, and returns to the Win32-based
application.

The following code demonstrates how to read sectors from a compact disc
using the method described above. Because the code implements a flat thunk,
it is divided into three sections:

 - Code that resides in a Win32 DLL (the 32-bit side of the thunk).

 - Code that resides in the thunk script.

 - Code that resides in the 16-bit DLL that actually calls MSCDEX.

//--
// Code inside the Win32 DLL (the 32-bit side of the thunk)
// ReadSectorsFromCD() is exported by the DLL so that it can be called
// by Win32-based applications.

#include <windows.h>

#define CD_SECTOR_SIZE 2048

__declspec(dllexport)
BOOL WINAPI ReadSectorsFromCD (BYTE bDrive,
 DWORD dwStartSector,
 WORD wSectors,
 LPBYTE lpBuff);

// Prototype for thunk function in 16-bit DLL.
BOOL FAR PASCAL ReadCDRomSectors (BYTE bDrive,
 DWORD dwStartSector,
 WORD wSectors,
 LPBYTE lpBuffer);

/*---
 ReadSectorsFromCD()

 Calls the thunked function, ReadCDRomSectors(). This function is
 exported by the Win32 DLL and thus is callable from Win32-based
 applications.

 Parameters:

 bDrive
 Drive letter of CD-ROM drive to read from. Specified as
 a character in the range 'A', 'B', 'C', ..., 'Z'. May be
 upper- or lower-case.

 dwStartSector
 First sector to read.

 wSectors
 Number of sectors to read.

 lpBuffer
 Buffer to contain sector data. Must be large enough to
 accomodate all sectors being read. Because this buffer is
 provided to the 16-bit DLL via a thunk, its maximum
 length is limited to 64K.

 Example use:
 // Read 5 sectors from CD-ROM drive E: starting at sector 16.
 fResult = ReadSectorsFromCD ('E', 16, 5, lpBuff);

 Return Value

 Returns TRUE if successful, or FALSE if an error occurred
 in reading or if a parameter was invalid.
---*/

__declspec(dllexport)
BOOL WINAPI ReadSectorsFromCD (BYTE bDrive,
 DWORD dwStartSector,
 WORD wSectors,
 LPBYTE lpBuff)
{
 // Call 16-bit DLL to read sectors via a 32->16 thunk
 return ReadCDRomSectors (bDrive, dwStartSector, wSectors, lpBuff);
}

//--
// Contents of the thunk script

enablemapdirect3216 = true;

typedef unsigned short WORD;
typedef unsigned long DWORD;
typedef unsigned char BYTE, *LPBYTE;
typedef bool BOOL;

BOOL ReadCDRomSectors (BYTE bDrive,
 DWORD dwStartSector,
 WORD wSectors,
 LPBYTE lpBuffer)
{
 lpBuffer = inout;
}

//--
// Code inside the 16-bit DLL. This code implements the 16-bit side of
// the thunk, and is where the calls to MSCDEX are made to read
// sectors from a compact disc.

#include <windows.h>
#include <string.h>
#include <ctype.h>

// Cooked-mode sector size in bytes
#define CD_SECTOR_SIZE 2048

// Maximum sector buffer size in bytes
#define MAX_BUFFER_LENGTH 65536

// Maximum muber of sectors for each read request
#define MAX_CD_SECTORS_TO_READ ((MAX_BUFFER_LENGTH) / \
 (CD_SECTOR_SIZE))

// Processor flags masks -- use for testing wFlags member of RMCS
#define CARRY_FLAG 0x0001

// Real-mode call structure for making DPMI Simulate Real Mode
// Interrupt calls.
typedef struct tagRMCS
{
 DWORD edi, esi, ebp, RESERVED, ebx, edx, ecx, eax;
 WORD wFlags, es, ds, fs, gs, ip, cs, sp, ss;
} RMCS, FAR* LPRMCS;

BOOL FAR PASCAL __export ReadCDRomSectors (BYTE bDrive,
 DWORD dwStartSector,
 WORD wSectors,
 LPBYTE lpBuffer);

BOOL FAR PASCAL MSCDEX_ReadSector (BYTE bDrive,
 DWORD dwStartSector,
 LPBYTE RMlpBuffer);

BOOL FAR PASCAL SimulateRM_Int (BYTE bIntNum, LPRMCS lpCallStruct);
void FAR PASCAL BuildRMCS (LPRMCS lpCallStruct);

/*---
 ReadCDRomSectors()

 Reads a specified number of sectors from a CD-ROM.

 Parameters:

 bDrive
 Drive letter of CD-ROM drive to read from. Specified as
 a character in the range 'A', 'B', 'C', ..., 'Z'. May be
 upper- or lower-case.

 dwStartSector
 First sector to read.

 wSectors
 Number of sectors to read.

 lpBuffer
 Buffer to contain sector data. Must be large enough to
 accomodate all sectors being read. Since this buffer is
 provided by the calling Win32 application, no more than
 the first 64K bytes will be used.

 Return Value
 Returns TRUE if successful, or FALSE if an error occurred
 in reading or if a parameter was invalid.
---*/

BOOL FAR PASCAL __export ReadCDRomSectors (BYTE bDrive,
 DWORD dwStartSector,
 WORD wSectors,
 LPBYTE lpBuffer)
{

 BOOL fResult;
 DWORD cbOffset;
 DWORD i;
 DWORD gdaBuffer; // Return value of GlobalDosAlloc().
 LPBYTE RMlpBuffer; // Real-mode buffer pointer
 LPBYTE PMlpBuffer; // Protected-mode buffer pointer

 // Convert drive letter into drive number for MSCDEX call.
 bDrive = toupper(bDrive) - 'A';

 /*
 Validate parameters:
 bDrive must be between 0 and 25, inclusive.
 lpBuffer must not be NULL.
 wSectors must be between 1 and the maximum number of
 sectors that can fit into a 64K buffer, inclusive.
 */
 if (bDrive > 25 || !lpBuffer)
 return FALSE;

 if (!wSectors || (wSectors > MAX_CD_SECTORS_TO_READ))
 return FALSE;

 /*
 Allocate buffer for MSCDEX call. This buffer must be below 1MB
 because the MSCDEX function will be called using DPMI. Like real-
 mode MSCDEX.EXE, CDFS implements the MSCDEX API as V86-mode
 Interrupt 2Fh functions.

 Free memory below 1MB is relatively scarce, so allocating a
 small sector buffer increases the chances that it can be
 allocated no matter how many other applications and MS-DOS
 device drivers are running. Also, a small sector buffer leaves
 more memory for other applications to use.
 */
 gdaBuffer = GlobalDosAlloc (CD_SECTOR_SIZE);

 if (!gdaBuffer)
 return FALSE;

 RMlpBuffer = (LPBYTE)MAKELONG(0, HIWORD(gdaBuffer));
 PMlpBuffer = (LPBYTE)MAKELONG(0, LOWORD(gdaBuffer));

 // Call MSCDEX to read each sector.
 for (i = cbOffset = 0;
 i < wSectors;
 i++, cbOffset += CD_SECTOR_SIZE)
 {
 if (fResult = MSCDEX_ReadSector (bDrive,
 dwStartSector + i,
 RMlpBuffer))
 _fmemcpy (lpBuffer + cbOffset, PMlpBuffer, CD_SECTOR_SIZE);
 else
 break;

 }

 GlobalDosFree (LOWORD(gdaBuffer));

 return (fResult);
}

/*---
 MSCDEX_ReadSector()

 Calls MSCDEX to read a single sector from a CD-ROM compact disc.

 Parameters:

 bDrive
 Drive number of CD-ROM drive to read from. Expected to be
 a number in the following series: 0 = A, 1 = B, 2 = C, etc.

 dwStartSector
 First sector of read.

 RMlpBuffer
 Real-mode segment:offset pointer to a buffer that will receive
 sector data. Must be large enough to accomodate a single
 sector in cooked mode.

 Return Value
 Returns TRUE if successful, or FALSE if an error occurred in
 reading.
---*/

BOOL FAR PASCAL MSCDEX_ReadSector (BYTE bDrive,
 DWORD dwStartSector,
 LPBYTE RMlpBuffer)
{
 RMCS callStruct;
 BOOL fResult;

 /*
 Prepare DPMI Simulate Real Mode Interrupt call structure with
 the register values used to make the MSCDEX Absolute read call.
 Then, call MSCDEX using DPMI and check for errors in both the DPMI
 call and the MSCDEX call.
 */
 BuildRMCS (&callStruct);
 callStruct.eax = 0x1508; // MSCDEX Absolute read
 callStruct.ebx = LOWORD(RMlpBuffer); // Offset of sect buffer
 callStruct.es = HIWORD(RMlpBuffer); // Segment of sect buffer
 callStruct.ecx = bDrive; // 0=A, 1=B, 2=C, etc.
 callStruct.edx = 1; // Read one sector
 callStruct.esi = HIWORD(dwStartSector);
 callStruct.edi = LOWORD(dwStartSector);

 if (fResult = SimulateRM_Int (0x2F, &callStruct))
 fResult = !(callStruct.wFlags & CARRY_FLAG);

 return fResult;
}

/*---
 SimulateRM_Int()

 Allows protected-mode software to execute real-mode interrupts
 such as calls to MS-DOS, MS-DOS TSRs, MS-DOS device drivers.

 This function implements the "Simulate Real Mode Interrupt"
 function of the DPMI specification v0.9 and later.

 Parameters:

 bIntNum
 Number of the interrupt to simulate.

 lpCallStruct
 Call structure that contains params (register values)
 for bIntNum.

 Return Value
 SimulateRM_Int returns TRUE if it succeeded or FALSE if
 it failed.

 Comments
 lpCallStruct is a protected-mode selector:offset address, not
 a real-mode segment:offset address.
---*/

BOOL FAR PASCAL SimulateRM_Int (BYTE bIntNum, LPRMCS lpCallStruct)
{
 BOOL fRetVal = FALSE; // Assume failure

 _asm {
 push di
 mov ax, 0300h ; DPMI Simulate Real Mode Interrupt
 mov bl, bIntNum ; Number of the interrupt to simulate
 mov bh, 01h ; Bit 0 = 1; all other bits must be 0
 xor cx, cx ; No words to copy from PM to RM stack
 les di, lpCallStruct ; Real mode call structure
 int 31h ; Call DPMI
 jc END1 ; CF set if error occurred

 mov fRetVal, TRUE
 END1:
 pop di
 }
 return (fRetVal);
}

/*---
 BuildRMCS()

 Initializes a real-mode call structure by zeroing all its members.

 Parameters:

 lpCallStruct
 Points to a real-mode call structure

 Return Value
 None.

 Comments
 lpCallStruct is a protected-mode selector:offset address,
 not a real-mode segment:offset address.
---*/

void FAR PASCAL BuildRMCS (LPRMCS lpCallStruct)
 {
 _fmemset (lpCallStruct, 0, sizeof(RMCS));
 }

REFERENCES
==========

DOS Protected Mode Interface Specification Version 0.9.
Programmer's Guide to Windows 95.
Win32 SDK Online Documentation.

Additional reference words: Windows 95 4.00 cdrom cd-rom absolute
KBCategory: kbprg kbcode kbhowto
KBSubcategory: MMCDROM

How Win32-Based Applications Are Loaded Under Windows
PSS ID Number: Q110845
--
The information in this article applies to:

 - Microsoft Win32s versions 1.0, 1.1, and 1.2
--

SUMMARY
=======

Microsoft Win32s is an operating system extension that allows Win32-based
applications to be run on Windows 3.1. Win32s consists of a VxD and a set
of dynamic-link libraries (DLLs).

It is possible to distinguish whether an executable was built for Win32 or
Win16. Win32 executables use the Portable Executable (PE) format, while
Win16 executables use the New Executable (NE) format.

The Windows 3.1 loader was designed to be aware that Win32-based
applications would potentially be loaded. When the user starts a
Win32-based application, the Windows 3.1 loader tries to load the
Win32-based application via WinExec(). WinExec() calls LoadModule(), which
will fail with an error indicating that it was passed an .EXE with the PE
format. At this point, WinExec() calls a special function to start up
Win32s. This function loads W32SYS.DLL (16-bit DLL) via LoadModule(). If
W32SYS determines that the EXE is indeed a valid PE file, it calls
LoadModule() on WIN32S.EXE (16-bit EXE) (it is similar to WinOldApp for MS-
DOS-based programs running in Windows). WIN32S.EXE contains the task
database, PSP, task queue, and module database. WIN32S.EXE calls its only
function to load the Win32s 16-bit translator DLL, W32S16.DLL, which does
work as a translator between the Win32-based application and the 16-bit
world that it is running in.

MORE INFORMATION
================

Win32-based applications are loaded in the upper 2 gigabytes (GB) of the 4
GB address space under Win32s, whereas Windows NT loads them in the lower 2
GBs. This is because W32S.386, a VxD, allocates the memory, and VxDs get
memory in the 2 GB to 4 GB range. The first 64K and the last 64K cannot be
read or written to (similar to a null page on other architectures).

On Windows 3.1, all applications, even the Win32-based applications, share
the same address space, unlike Windows NT where each Win32-based
application gets its own address space. Each Windows-based application may
be given its own address space, starting with Windows NT 3.5.

Additional reference words: 1.00 1.10 1.20 G byte
KBCategory: kbprg
KBSubcategory: W32s

How Win32-Based Applications Read CD-ROM Sectors in Windows NT
PSS ID Number: Q138434

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface included with:
 Microsoft Windows NT versions 3.50 and 3.51

SUMMARY
=======

Some Win32-based applications, such as multimedia applications and games,
need to read sectors directly from compact discs in order to implement
custom access and read caching that will optimize access for specific
purposes. This article provides information and example code that
demonstrates how Win32-based applications can read sectors from compact
discs in cooked mode in Windows NT.

Windows 95 does not support this method for reading sectors from compact
discs. For more information about how to read sectors from compact discs in
Windows 95, please see the following article in the Microsoft Knowledge
Base:

 ARTICLE-ID: Q137813
 TITLE : How Win32 Applications Can Read CD-ROM Sectors in Windows 95

MORE INFORMATION
================

The Windows NT CD-ROM File System (CDFS) currently supports compact discs
formatted with either the ISO 9660 or High Sierra file systems. CDFS does
not support other file systems, so Win32-based applications cannot read
sectors from discs formatted with file systems other than ISO 9660 or High
Sierra.

Steps to Read Sectors from Compact Discs
--

Win32-based applications can read sectors in cooked mode from compact disks
in the same way they read sectors from floppy and hard disks. Because the
reads are in cooked mode, no error correcting codes are included in the
sector data that the application reads. Follow these three basic steps:

1. Use CreateFile to open a CD-ROM drive with the syntax \\.\X: where X is
 the letter of the CD-ROM drive.

2. Use ReadFile or ReadFileEx to read sectors.

3. Use CloseHandle to close the CD-ROM drive.

As with floppy and hard disks, all sector reads must start on sector
boundaries on the compact disc and must be an integral number of sectors
long. Furthermore, the buffers used for the reads must be aligned on

addresses that fall on sector boundaries. For example, because a sector on
a compact disc is normally 2048 bytes, the buffer that receives the sector
data must be a multiple of 2048 and must start on an address that is a
multiple of 2048. An easy way to guarantee the that the buffer will start
on a multiple of 2048 is to allocate it with VirtualAlloc. Finally,
although sectors on compact discs are normally 2048 bytes, you should use
the DeviceIoControl IOCTL_CDROM_GET_DRIVE_GEOMETRY command to return the
sector size to avoid hard-coded limits.

Issuing DeviceIoControl IOCTL Commmands to CD-ROM Drives
--

Whenf reading sectors from compact discs, applications usually need to use
a few support functions that provide capabilities such as determining the
characteristics of the media and locking the media in the drive so that it
can't be removed accidentally. These functions are provided by
DeviceIoControl IOCTL commands.

To issue IOCTL commands to CD-ROM drives, Win32-based applications must use
the IOCTL compact disc commands defined in Ntddcdrm.h instead of the IOCTL
disk commands defined in Winioctl.h. The IOCTL disk commands will fail if
issued for compact discs. Documentation for the IOCTL compact disc commands
is located in the Windows NT DDK. The Ntddcdrm.h header file is located in
the Windows NT DDK in the \Ddk\Src\Storage\Inc directory.

Example Code that Reads Sectors from a Compact Disc

The following code demonstrates how to read sectors from a compact disc
from a Win32-based application running on Windows NT.

#include <windows.h>
#include <winioctl.h> // From the Win32 SDK \Mstools\Include
#include "ntddcdrm.h" // From the Windows NT DDK \Ddk\Src\Storage\Inc

/*
 This code reads sectors 16 and 17 from a compact disc and writes
 the contents to a disk file named Sector.dat
*/

{
 HANDLE hCD, hFile;
 DWORD dwNotUsed;

 // Disk file that will hold the CD-ROM sector data.
 hFile = CreateFile ("sector.dat",
 GENERIC_WRITE, 0, NULL, CREATE_ALWAYS,
 FILE_ATTRIBUTE_NORMAL, NULL);

 // For the purposes of this sample, drive F: is the CD-ROM
 // drive.
 hCD = CreateFile ("\\\\.\\F:", GENERIC_READ,
 FILE_SHARE_READ|FILE_SHARE_WRITE,
 NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL,
 NULL);

 // If the CD-ROM drive was successfully opened, read sectors 16
 // and 17 from it and write their contents out to a disk file.
 if (hCD != INVALID_HANDLE_VALUE)
 {
 DISK_GEOMETRY dgCDROM;
 PREVENT_MEDIA_REMOVAL pmrLockCDROM;

 // Lock the compact disc in the CD-ROM drive to prevent accidental
 // removal while reading from it.
 pmrLockCDROM.PreventMediaRemoval = TRUE;
 DeviceIoControl (hCD, IOCTL_CDROM_MEDIA_REMOVAL,
 &pmrLockCDROM, sizeof(pmrLockCDROM), NULL,
 0, &dwNotUsed, NULL);

 // Get sector size of compact disc
 if (DeviceIoControl (hCD, IOCTL_CDROM_GET_DRIVE_GEOMETRY,
 NULL, 0, &dgCDROM, sizeof(dgCDROM),
 &dwNotUsed, NULL))
 {
 LPBYTE lpSector;
 DWORD dwSize = 2 * dgCDROM.BytesPerSector; // 2 sectors

 // Allocate buffer to hold sectors from compact disc. Note that
 // the buffer will be allocated on a sector boundary because the
 // allocation granularity is larger than the size of a sector on a
 // compact disk.
 lpSector = VirtualAlloc (NULL, dwSize,
 MEM_COMMIT|MEM_RESERVE,
 PAGE_READWRITE);

 // Move to 16th sector for something interesting to read.
 SetFilePointer (hCD, dgCDROM.BytesPerSector * 16,
 NULL, FILE_BEGIN);

 // Read sectors from the compact disc and write them to a file.
 if (ReadFile (hCD, lpSector, dwSize, &dwNotUsed, NULL))
 WriteFile (hFile, lpSector, dwSize, &dwNotUsed, NULL);

 VirtualFree (lpSector, 0, MEM_RELEASE);
 }

 // Unlock the disc in the CD-ROM drive.
 pmrLockCDROM.PreventMediaRemoval = FALSE;
 DeviceIoControl (hCD, IOCTL_CDROM_MEDIA_REMOVAL,
 &pmrLockCDROM, sizeof(pmrLockCDROM), NULL,
 0, &dwNotUsed, NULL);

 CloseHandle (hCD);
 CloseHandle (hFile);
 }
}

Additional reference words: 3.5 3.51 sector cdrom cd-rom
KBCategory: kbprg kbmm kbhowto kbcode

KBSubcategory: MMCDROM

Icons for Console Applications
PSS ID Number: Q91150

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Under OS/2, when adding an application named CONAPP.EXE to a program group,
the system uses the file CONAPP.ICO (if it exists) as the icon. This does
not happen automatically under Windows NT and Windows 95; the item will
have a generic icon.

To specify the icon that appears in the program group, use the following
steps:

1. Create a resource file containing an ICON statement:

 ConApp ICON ConApp.ICO

2. Compile the resource using RC:

 rc -r $(rcvars) -fo conapp.res conapp.rc

3. Add the .rc file to the link command line

MORE INFORMATION
================

If the application is started by clicking its icon in Program Manager, the
icon that appears when the application is minimized will be that icon,
whether it is a generic icon or an icon imbedded in the executable file.

If the application is started from the MS-DOS prompt or the File menu, then
the icon that appears when the application is minimized will be the icon
that is used for the MS-DOS prompt.

Additional reference words: 3.10 3.50 4.00
KBCategory: kbprg
KBSubcategory: BseCon

Ideas to Remember as You Convert from ASCII or ANSI to Unicode
PSS ID Number: Q130052
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.5
 - Microsoft Win32s version 1.2
--

SUMMARY
=======

Because the industry is moving to Windows NT, and Windows NT supports
Unicode, many independent software vendors (ISVs) want to know how to
convert existing ASCII (or ANSI) help and resource files into Unicode. This
article gives you some notes on the subject.

MORE INFORMATION
================

When converting ASCII to Unicode, remember that the entire ASCII characters
map perfectly to the first characters in Unicode. You need only add a
second null bit and a 0x00 in the high byte.

When converting ANSI to Unicode, UCONVERT.EXE sources in the Win32 SDK and
the good illustration of win32 MultiBytetoWideChar conversion API are
helpful sources to consult.

When converting a Help file, you face the challenge presented by the fact
that the old ANSI RTF format is clueless about wide characters. Also, you
need an RTF format for each specific country. For example, you'll need one
specific to Japan, another separate RTF format for Korea, and so on. In
addition, you might want to consider converting to the newer, much more
powerful Help file formats supported in the Windows 95 Help file system;
this may be an easier solution.

Help files in Windows NT versions 3.1 and 3.5 use the same Help file format
as Windows version 3.1 does. But newer operating systems such as Windows 95
contains a new help file compiler, engine, and format. One reason that
Microsoft made this change was to improve international support.

One final idea you might want to consider is to develop your own converter
by using the MutltiByteToWideChar() API. In fact, this may be the best
approach, because application developers know exactly what kind of user
interface they want to implement.

Additional reference words: 1.20 3.50 kbinf
KBCategory: kbother
KBSubcategory: wintldev

Identifying a Previous Instance of an Application
PSS ID Number: Q106385

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The entry point of both Windows and Windows NT applications is documented
to be:

 int WinMain(hInstance, hPrevInstance, lpszCmdLine, nCmdShow)

 HINSTANCE hInstance; /* Handle of current instance */
 HINSTANCE hPrevInstance; /* Handle of previous instance */
 LPSTR lpszCmdLine; /* Address of command line */
 int nCmdShow; /* Show state of window */

However, under Windows NT, hPrevInstance is documented to always be NULL.
The reason is that each application runs in its own address space and may
have the same ID as another application.

To determine whether another instance of the application is running, use a
named mutex. If opening the mutex fails, then there are no other instances
of the application running. FindWindow() can be used with the class and
window name. However, note that a second instance of the application could
be started, and could execute the FindWindow() call before the first
instance has created its window. Use a named object to ensure that this
does not happen.

MORE INFORMATION
================

The fact that hPrevInstance is set to NULL simplifies porting Win16
applications. Most 16-bit Windows-based applications contain the following
logic:

 if(!hPrevInstance)
 if(!InitApplication(hInstance))
 return FALSE;

Under Windows, window classes only are registered by the first instance of
an application. Consequently, if hPrevInstance is not NULL, then the window
classes have already been registered and InitApplication() is not called.

Under Windows NT, because hPrevInstance is always NULL, InitApplication()
is always called, and each instance of an application will correctly
register its window classes.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrMisc

Identifying the Versions of International Windows
PSS ID Number: Q130062
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 Software Development Kit (SDK) version 3.5
 - Microsoft Win32s version 1.2
--

SUMMARY
=======

This article suggests three ways to check for the language used in an
international version of a Windows-based application.

MORE INFORMATION
================

Option One: Least Coding and Least Accurate

Check the "sCountry" entry under the [intl] section of the WIN.INI file by
using the GetProfileString API. It is likely that this will match the
Windows language version. For example, German Windows will probably have
"Deutchland" and English Windows will probably have "United States" or
"United Kingdom." However, because the user can change this setting by
using the Control Panel, it is not always accurate.

Option Two: Most Coding and Most Accurate

Check the "deflang" entry under the [data] section of the SETUP.INF file.
This is a three-letter language code that SETUP.EXE uses. The setting will
be one of these:

 English=ENU or ENG
 Spanish=ESP
 German=DEU
 French=FRA or FRC (French Canadian)
 Italian=ITA

The problem with this method is getting at the "deflang" entry in the
SETUP.INF file. The applications should parse SETUP.INF. It's not that
difficult, but it does involve extra coding.

Option Three: Let the User Choose

Suggest to the user what the application found, and let the user make final
decision. Here's the algorithm:

 if Windows Version < 3.1

 Look at Win.ini, Setup.inf files
 Suggest a good guess and let the user choose;
 Register a profile string for your app;
 else
 Use version stamping;

For Windows version 3.1, the way to identify the character set is to use
the version stamping API. The translation value from the GetFileVersionInfo
when performed on GDI or SHELL.DLL is the only way in version 3.1 to find
out the character set of the system. Please refer to the SDK documentation
for more details on this API. Look for both GetFileVersionInfo and
VERSIONINFO.

The VERSIONINFO statement creates a version-information resource. The
resource contains information about the file such as its version number,
its intended operating system, and its original filename. One of the
parameters is langID, which specifies the language identifiers.

On Windows NT, look for the version resource information in one of the
system DLLs, such as KERNEL32.DLL. Look at result returned by
GetFileVersionInfo and its associated structures and references in the
Win32 API help file or documentation. This should be correct on Windows NT
version 3.5.

Additional reference words: 1.20 3.10 3.50 kbinf
KBCategory: kbother
KBSubcategory: wintldev

IME (Input Method Editor) Usage in Windows 95
PSS ID Number: Q118496
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Japanese
 Windows 95
--

SUMMARY
=======

IMEs (Input Method Editors) are dynamic-link libraries that allow users to
type complex ideographic characters using a standard keyboard. IMEs are
available in Asian versions of the Microsoft Windows operating system, and
help minimize the effort needed by users to enter text containing
characters from Unicode and double-byte character sets (DBCS). IMEs relieve
users of the need to remember all possible character values. Instead, IMEs
monitor the user's keystrokes, anticipate the character the user may want,
and present a list of candidate characters from which to choose.

MORE INFORMATION
================

Asian versions of Windows 3.1 and Windows NT each have a separate IME
application programming interface (API). However, these APIs have been
merged into a single API for Windows 95.

Applications for Far East versions of Windows 95 can choose from three
levels of IME support:

1. IME-unaware: Merely retrieves double-byte characters through two WM_CHAR
 messages.

2. IME-aware: Takes control of the IME module's default user interface and
 properly handles Kanji strings passed to it by the IME.

3. Fully IME-aware: Controls the entire process of composing characters,
 including the display of intermediate keystrokes, and can customize the
 IME user interface.

IME, by default, provides an IME window through which users enter
keystrokes and view and select candidate characters. Applications developed
for the WIN32 APIs can use the Input Method Manager(IMM) functions and
messages to create and manage their own IME windows, providing a custom
interface while using the conversion capabilities of the IME.

Additional reference words: 4.00 international IME IMM
KBCategory: kbother
KBSubcategory: WIntlDev

IME Setup in Far East Windows 95
PSS ID Number: Q140897
--
The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s version 1.3

SUMMARY
=======

On most Far East versions (Korean, Simplified Chinese, Traditional Chinese)
of Windows 95, a user can add or delete additional IME (Input Method
Editor) or language layouts by using the control panel keyboard language
Add(D) or Remove(M)

MORE INFORMATION
================

IMEs for Windows 3.1 FE versions (all excecpt Japanese version) can also be
added to Windows 95 by using control panel keyboard language Add 3.1 IME.

However, Japanese IMEs for the Windows 95 Japanese version cannot be
manipulated this way. All Japanese IMEs must be installed or removed by its
own setup program that comes with the IME. Language layouts can still be
added or removed by using the control panel, keyboard icon, language page.

Additional reference words: front-end processor FE Asian kbinf
KBCategory: kbprg kbhowto
KBSubcategory: wintldev

Implementing a Line-Based Interface for Edit Controls
PSS ID Number: Q92626

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In specific situations, it may be desirable to make multiline edit controls
behave similar to list boxes, such that entries can be selected and
manipulated on a per-line basis. This article describes how to implement
the line-based interface.

MORE INFORMATION
================

A multiline edit control must be subclassed to achieve the desired
behavior. The subclass function is outlined below.

Most of the work necessary to implement a line-based interface is done by
the predefined window function of the edit control class. With the return
value from the EM_LINEINDEX message, the offset of the line under the caret
can be determined; with the length of that line retrieved via the
EM_LINELENGTH message, the EM_SETSEL message can be used to highlight the
current line.

There are two problems with this approach:

 - The first problem is that the EM_LINEINDEX message, when sent to the
 control with wParam=-1, returns the line index of the caret, which is
 not necessarily the same as the current mouse position. Thus, upon
 receiving the WM_LBUTTONDOWN message, the subclass function should first
 call the old window function, which will set the caret to the character
 under the current mouse position, then compute the beginning and ending
 offsets of the corresponding line, and eventually set the selection to
 that line.

 - The other problem is that the WM_MOUSEMOVE message should be ignored by
 the subclassing function because otherwise the built-in selection
 mechanism will change the selection when the mouse is being dragged with
 the left mouse button pressed, thus defeating the purpose.

Following is the subclassing function that follows from this discussion:

WNDPROC EditSubClassProc(HWND hWnd,
 UINT wMsg,

 WPARAM wParam,
 LPARAM lParam)
{ int iLineBeg, iLineEnd;
 long lSelection;
 switch (wMsg)
 { case WM_MOUSEMOVE:
 break; /* Swallow mouse move messages. */
 case WM_LBUTTONDOWN: /* First pass on, then process. */
 CallWindowProc((FARPROC)lpfnOldEditFn,hWnd,wMsg,wParam,lParam);
 iLineBeg = SendMessage(hWnd,EM_LINEINDEX,-1,0);
 iLineEnd=iLineBeg+SendMessage(hWnd,EM_LINELENGTH,iLineBeg,0);
#ifndef WIN32
 SendMessage(hWnd,EM_SETSEL,0,MAKELPARAM(iLeneBeg,iLineEnd));
#else
 SendMessage(hWnd,EM_SETSEL,iLineBeg,iLine) /* Win 32 rearranges
 parameters. */
#endif
 break;
 case WM_LBUTTONDBLCLK:
 lSelection = SendMessage(hWnd,EM_GETSEL,0,0);
 /* Now we have the indices to the beginning and end of the line in
 the LOWORD and HIWORD of lSelection, respectively.
 Do something with it... */
 break;
 default:

return(CallWindowProc((FARPROC)lpfnOldEditFn,hWnd,wMsg,wParam,lParam));
};
return(0);
}

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrCtl

Importance of Calling DefHookProc()
PSS ID Number: Q74547

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

When an application installs a hook using SetWindowsHook(), Windows adds
the hook's callback filter function to the hook chain. It is the
responsibility of each callback function to call the next function in the
chain. DefHookProc() is used to call the next function in the hook chain
for Windows 3.0. DefHookProc() is retained in Windows 3.1 for backwards
compatibility. For Windows 3.1, you should use CallNextHookEx() to call
the next function in the hook chain.

For Win32, mouse and keyboard hooks can suppress messages by return value
and do not have to call CallNextHookEx(), unless they want to pass the
message on. Other hooks, like WH_CALLWNDPROC, don't need to call
CallNextHookEx(), because it will be called by the system. However, all
hooks should call CallNextHookEx() immediately if nCode<0.

MORE INFORMATION
================

Windows 3.0

If a callback function does not call DefHookProc(), none of the filter
functions that were installed before the current filter will be called.
Windows will try to process the message and this could hang the system.

Only a keyboard hook (WH_KEYBOARD) can suppress a keyboard event by not
calling DefHookProc() and returning a 1. When the system gets a value of 1
from a keyboard hook callback function, it discards the message.

Windows 3.1

In Windows 3.1, the WH_MOUSE hook will work like the WH_KEYBOARD hook in
that the mouse event can be suppressed by returning 1 instead of calling
DefHookProc().

Furthermore, when the hook callback function receives a negative value for
the nCode parameter, it should pass the message and the parameters to
DefHookProc() without further processing. When nCode is negative, Windows

is in the process of removing a hook callback function from the hook chain.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbui
KBSubcategory: UsrHks

Improve System Performance by Using Proper Working Set Size
PSS ID Number: Q126767

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.5

SUMMARY
=======

While increasing your working set size and locking pages in physical memory
can reduce paging for your application, it can adversely affect the system
performance. When making decisions for your application, it is important to
consider the whole system, and then test your application under a heavily
loaded system, such as the users of your application might have.

MORE INFORMATION
================

The Win32 SDK provides a tool called the working set tuner (WST.EXE). The
working set tuner decreases the working set size, which decreases memory
demand. However, you can also choose to set the process working set minimum
and maximum using SetProcessWorkingSetSize() and/or lock pages into memory
with VirtualLock(). These APIs should be used with care. Suppose you have a
16-megabyte system and you set your minimum to four megabytes. In effect,
this takes away four megabytes from the system. Other applications may be
unable to get their minimum working set. You or other applications may be
unable to create processes or threads or perform other operations that
require non-paged pool. This can have an extremely negative impact on the
overall system.

Reducing memory consumption is always a beneficial goal. If you call
SetProcessWorkingSetSize(0xffffffff, 0xffffffff), this tells the system
that your working set can be released. This does not change the current
sizing of the working set, it just allows the memory to be used by other
applications. It is a good idea to do this when your application goes into
a wait state. When you call SetProcessWorkingSet(0, 0), your working set is
reset to the default values. In addition, if you call VirtualUnlock() on a
range that was not locked, it is used as a hint that those pages can be
removed from the working set.

Additional reference words: 3.50
KBCategory: kprg
KBSubcategory: BseMm

Improving the Performance of MCI Wave Playback
PSS ID Number: Q77700
--
The information in this article applies to:

 - Microsoft Software Development Kit (SDK) for Windows version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
--

SUMMARY
=======

This article discusses two methods to improve playback performance for
a series of MCI wave files in an application developed for the
Microsoft Windows environment.

MORE INFORMATION
================

The following code fragment demonstrates opening the device and wave
file at the same time. This method does not give the best performance.

 mciopen.lpstrDeviceType = (LPSTR)"waveaudio";
 mciopen.lpstrElementName = (LPSTR)lpWavefile;

 // The following two fields must be initialized or the debugging
 // version of MMSYSTEM will cause an unrecoverable application
 // error (UAE).
 mciopen.lpstrDeviceType = "\0";
 mciopen.lpstrAlias = "\0";

 dwFlags = MCI_OPEN_TYPE | MCI_OPEN_ELEMENT;

 dwRes = mciSendCommand(0, MCI_OPEN, dwFlags,
 (DWORD)(LPSTR)&mciopen);

To improve performance, open the device separately from the wave file
(element) and leave the device open until the last element in the
series has been played. Alternately, open and close elements but leave
the global (waveaudio) device open during the entire process. The
following code fragment demonstrates this process:

 // Open the waveaudio driver separate from the element.
 mciopen.lpstrDeviceType = (LPSTR)MCI_DEVTYPE_WAVEFORM_AUDIO;
 dwFlags = MCI_OPEN_TYPE;
 dwRes = mciSendCommand(0, MCI_OPEN, dwFlags,
 (DWORD)(LPSTR)&mciopen);

The following code fragment demonstrates using the global device ID to
open the wave file separately:

 dwFlags = MCI_OPEN_ELEMENT;
 mciopen.lpstrElementName = (LPSTR)lpWaveName;
 dwRes = mciSendCommand(wGlobalDeviceID, MCI_OPEN, dwFlags,

 (DWORD)(LPSTR)&mciopen);

This allows the application to open and play wave files without
incurring the performance penalty involved with opening the device.
Another method to speed loading a wave file is to use the fully
qualified path. For example, rather than specifying LASER.WAV, specify
C:\MMWIN\MMDATA\LASER.WAV. If this is done, MCI is not required to
search the directories in the MS-DOS PATH environment variable for the
wave file.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbmm kbprg
KBSubcategory: MMWave

Increased Performance Using FILE_FLAG_SEQUENTIAL_SCAN
PSS ID Number: Q98756

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

There is a flag for CreateFile() called FILE_FLAG_SEQUENTIAL_SCAN which
will direct the Cache Manager to access the file sequentially.

Anyone reading potentially large files with sequential access can specify
this flag for increased performance. This flag is useful if you are reading
files that are "mostly" sequential, but you occasionally skip over small
ranges of bytes.

MORE INFORMATION
================

The effect on the Cache Manager of this flag is two-fold:

 - There is a minor savings because the Cache Manager dispenses with
 keeping a history of reads on the file, and tries to maintain a
 high-water mark on read ahead, which is always a certain delta from
 the most recent read.

 - More importantly, the Cache Manager reads further ahead for
 sequential access files--currently about three times more than
 files that are currently detected for sequential access.

If the caller makes multiple passes through a file, there are no negative
effects of specifying the sequential flag, because the Cache Manager will
still disable read ahead for as long as the application is getting hits on
the file (such as on the second or subsequent pass).

If you are working on an application where your ability to sequentially
read file data is key to performance, you may want to consider adding the
sequential flag to your create file call. This is especially true of
applications that use this flag to read from a CD-ROM.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseFileio

Initializing Menus Dynamically
PSS ID Number: Q75630

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

Many commercial applications developed for Windows allow the user to
customize the menus of the application. This ability introduces some
complexity when the application must disable particular menu items at
certain times. This article provides a method to perform this task.

Windows sends a WM_INITMENUPOPUP message just before a pop-up menu is
displayed. The parameters to this message provide the handle to the menu
and the index of the pop-up menu on the main menu.

To process this message properly, each menu item must have a unique
identifier. When the application starts up, it creates a mapping array that
lists the items on each menu. When the WM_INITMENUPOPUP message is
received, the application checks the conditions necessary for each menu
item to be disabled or checked and modifies the menu appropriately.

The application must maintain the mapping array when the user modifies the
menus in any way.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrMen

Installing the Win32s NLS Files
PSS ID Number: Q124136

The information in this article applies to:

 - Microsoft Win32s version 1.2

SUMMARY
=======

The help file for Win32s version 1.2 states that the following NLS files
need to be installed in the <windows>\SYSTEM\WIN32S directory when you
install Win32s version 1.2 with your application. However, if your
Win32-based application is only targeting U.S. Windows, you do not need to
install all these files.

 .NLS files:

 CTYPE.NLS P_850.NLS
 LOCALE.NLS P_852.NLS
 L_INTL.NLS P_855.NLS
 P_037.NLS P_857.NLS
 P_10000.NLS P_860.NLS
 P_10001.NLS P_861.NLS
 P_10006.NLS P_863.NLS
 P_10007.NLS P_865.NLS
 P_10029.NLS P_866.NLS
 P_10081.NLS P_869.NLS
 P_1026.NLS P_875.NLS
 P_1050.NLS P_932.NLS
 P_1051.NLS P_936.NLS
 P_1252.NLS P_949.NLS
 P_1053.NLS P_950.NLS
 P_1054.NLS SORTKEY.NLS
 P_437.NLS SORTTBLS.NLS
 P_500.NLS UNICODE.NLS
 P_737.NLS

MORE INFORMATION
================

Use the following guidelines when shipping a Win32-based application that
targets Win32s:

Ship National Language Support (.NLS) files corresponding to the market of
the Win32-based application. For a Win32-based application released for an
international market, ship all the .NLS files found in MSTOOLS\WIN32S\NLS.
For a Win32-based application released for use only in the United States,
ship P_437.NLS, P_850.NLS, and P_1252.NLS.

NOTE: When installing Win32s, be sure to remove the obsolete files. These
are tagged in WIN32S\SETUP\W32S.LYT with Win32sSystemObsoleteFiles.

Additional reference words: 1.20
KBCategory: kbusage kbpolicy kbdocerr
KBSubcategory: W32s

Instance-Specific String Handles (HSZs) in DDEML
PSS ID Number: Q94953

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Instance-specific string handles in DDEML may be used in DdeConnect()
or DdeConnectList() in order to connect to a particular instance of a
server. These string handles are received by a DDEML callback as the
HSZ2 parameter to the XTYP_REGISTER/XTYP_UNREGISTER transactions
whenever a server application registers or unregisters the service
name it supports.

This article explains how instance-specific HSZs are internally
implemented in the Windows 3.1 DDEML; however, this is for purposes of
illustration only because the implementation may change in future versions
of DDEML, particularly in Win32. However, the behavior will be the same.

MORE INFORMATION
================

Currently, instance-specific string handles contain two pieces of
information: the original service name string plus the handle to a
hidden window created by DDEML, which is associated with that string.
These two pieces of information are then merged [that is, MAKELONG
(SvcNameAtom, hWnd)] into an HSZ.

It is important to underscore what the documents on
DdeCreateStringHandle() say in reference to instance-specific HSZs
(see the Comments section of the Windows 3.1 Software Development Kit
(SDK) "Programmer's Reference, Volume 2: Functions," page 169):

 An instance-specific string handle is not mappable from string
 handle to string to string handle again. The DdeQueryString()
 function creates a string from a string handle and then
 DdeCreateStringHandle() creates a string handle from that string,
 but the two handles are not the same.

This might be better explained as follows:

1. Server registers itself:

 0x0000C18F = DdeCreateStringHandle (,"SERVER",);
 DdeNameService (,0x0000C18F,,);

2. Callbacks receive two HSZs in XTYP_REGISTER:

 HSZ1 = 0x0000C18F (normal HSZ)
 HSZ2 = 0x56F8C18F (instance-specific HSZ)

3. Client does a DdeQueryString() on the HSZ2 returned above, and
 creates a string handle with the string returned.

 DdeQueryString (,0x56F8C18F, myLpstr,,,);
 // where myLpstr returned = "SERVER:(56F8)"

 0x0000C193= DdeCreateStringHandle (,myLpstr,);

 Note how instance-specific 0x56F8C18F passed in to DdeQueryString()
 is not the same as the HSZ returned (0x0000C193) from the
 DdeCreateStringHandle() on the same string; whereas regular string
 handles (that is, non-instance-specific HSZs) would have mapped to
 the same string handle.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbui
KBSubcategory: UsrDde

Intergraph's NFS causes WinSock APIs to return error 10093
PSS ID Number: Q127015

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.5

SYMPTOMS
========

The presence of Intergraph's NFS (Network File System) may cause Windows
Sockets applications to function incorrectly. Specifically, if the 'Choose
File' common dialog is displayed in a Windows Sockets application,
subsequent Windows Sockets API calls may return error 10093,
WSAENOTINITIALIZED.

STATUS
======

This problem has been corrected in an updated version of PC-NFS, version
2.0.8.0. The update is available from Intergraph's FTP server or bulletin
board (IBBS): (205) 730-7248. For more information, please call Intergraph
technical support at (800) 633-7248.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Call WSAStartup(...).

2. Call any WinSock API function to verify that WSOCK32.DLL is initialized.

3. Call GetOpenFileName to display the 'Open File' common dialog.

4. Call any WinSock API function. If Intergraph's NFS implementation is
 installed, you may receive error 10093.

Additional reference words: 3.50 Windows Sockets
bug CFileDialog
KBCategory: kbnetwork
KBSubcategory: NtwkWinsock

International Glossaries Available on MSDN
PSS ID Number: Q140764

The information in this article applies to:

 - Microsoft Win32 Software Development Kit for

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

To promote the use of common terminology in the international developer and
localization communities, Microsoft is making its international language
glossaries available to the software development community. Right now, the
glossaries are only available on Microsoft Developer Network, level II
subscription (Development Platform) compact discs.

MORE INFORMATION
================

On compact disc No. 13 "INTL: Additional Windows NT Service Packs and
Windows 3.11 Versions," under \Glossary directory, you will find the
following language versions of glossaries:

Brazilian-Portuguese
Czech
Danish
Dutch
Finnish
French
German
Greek
Hungary
Italian
Japanese
Norwegian
Polish
Portuguese
Simplified Chinese
Russian
Slovak
Spanish
Swedish
Traditional Chinese
Turkish

The glossary collection will be updated with each release of the MSDN
compact discs. Additional glossaries will be added when they become
available.

Additional reference words: 4.00 translation user interface menu string

globalization
KBCategory: kbref
KBSubcategory: wintldev

International Versions of Windows 95
PSS ID Number: Q118495
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)
--

SUMMARY
=======

Microsoft Windows version 3.1 is available in 27 different language
versions. Windows 95 will also be released in 27 different language
versions, with possibly more versions following later.

MORE INFORMATION
================

There are three categories of the Windows 95 platform:

1. Western and Eastern European languages, plus Indonesian, which are
 based on single-byte character sets (SBCSs) and are written from left to
 right:

 English
 German
 French
 Spanish
 Swedish
 Dutch
 Italian
 Norwegian
 Danish
 Finnish
 Portuguese-Brazil
 Portuguese-Portugal
 Russian
 Czech
 Polish
 Hungarian
 Turkish
 Greek
 Basque
 Catalan
 Indonesian

2. Middle East languages, plus Thai, which are based on SBCSs from both
 right to left and left to right:

 Arabic
 Hebrew
 Thai

3. Far East languages, which are based on double-byte character

 sets (DBCSs) and are written from both left to right and, in certain
 types of applications, from top to bottom:

 Japanese
 Korean
 Simplified Chinese
 Traditional Chinese

Additional reference words: 4.00 versions international
KBCategory: kbother
KBSubcategory: WIntlDev

Interpreting Executable Base Addresses
PSS ID Number: Q101187
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0
--

LINK.EXE and DUMPBIN.EXE (from Visual C++ 32-bit edition) can be used to
dump the portable executable (PE) header of an executable file. Below is a
fragment of a dump:

 7300 address of entry point
 7000 base of code
 B000 base of data
 ----- new -----
 10000 image base

The "image base" value of 10000 is the address where the program begins in
memory. The value associated with "base of code," "base of data," and
"address of entry point" are all offsets from the image base.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsMisc

Interprocess Communication on Windows NT, Windows 95, & Win32s
PSS ID Number: Q95900

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The following are some of the standard mechanisms available for
interprocess communication (IPC): NetBIOS, mailslots, windows sockets
(winsock), named pipes, anonymous pipes, semaphores, shared memory, and
shared files. Other IPC mechanisms available on Microsoft systems include
DDE, OLE, memory-mapped files, Windows messages, Windows atoms, the
registration database, and the clipboard.

MORE INFORMATION
================

The table below denotes what platforms and subsystems provide which IPC
mechanisms (this does not imply that all the mechanisms will interoperate
between different subsystems):

Interprocess Communication Mechanisms

 IPC Mechanism WinNT Win95 Win32s(1) Win16(2) MS-DOS(2) POSIX OS/2
 ------------- ----- ----- --------- -------- --------- ----- ----

 DDE YES YES YES YES NO NO NO
 OLE 1.0 YES YES YES YES NO NO NO
 OLE 2.0 YES YES YES YES NO NO NO
 NetBIOS YES YES YES YES YES NO YES
 Named pipes YES YES(3) YES(3) YES(3) YES(3) YES(4) YES
 Windows sockets YES(5) YES YES YES(5) NO NO(6) NO
 Mailslots YES YES YES(3) NO NO NO YES
 Semaphores YES YES NO NO NO YES YES
 RPC YES YES(7) YES(8) YES YES NO NO
 Mem-Mapped File YES YES YES NO NO NO NO
 WM_COPYDATA YES YES YES(9) YES NO NO NO

(1) Win32s an extension to Windows 3.1, which allows Win32-based
 applications to run under Windows 3.1. Win32s supports all the Win32
 APIs, but only a subset provides functionality under Windows 3.1. Those
 APIs that are not functional return ERROR_CALL_NOT_IMPLEMENTED.

(2) This is technically not a subsystem.

(3) Cannot be created on Win16, Windows 95 and MS-DOS workstations, but can

 be opened.

(4) The POSIX subsystem supports FIFO queues, which do not interoperate
 with Microsoft's implementation of named pipes.

(5) Via the Windows sockets API.

(6) Currently BSD-style sockets are under consideration for the POSIX
 subsystem.

(7) Windows 95 supports the RPC 1 protocol only. The NetBios protocol is
 not supported. Namedpipe servers are not supported.

(8) Win32s version 1.1 provides network support through Universal Thunks.

(9) Under Win32s, WM_COPYDATA does not actually copy the data -- it
 only translates the pointers to the data. If the receiving application
 changes the buffer, then the data is changed for both applications.

(10) OLE objects created in a Win32 service must be in the same user
 context as a logged on user that wishes to use them. Any attempt to
 access these objects from a different user context will result in
 failure. For example, a service that runs under the LocalSystem account
 creates an object that an application running in Domain\User's context
 attempts to access will fail.

Additional reference words: 3.10 3.50 4.00
KBCategory: kbprg
KBSubcategory: BseIpc

Interrupting Threads in Critical Sections
PSS ID Number: Q101193

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

If a thread enters a critical section and then terminates abnormally, the
critical section object will not be released. Many components of the C
Run-time library are not reentrant and use a resource locking scheme to
maintain coherency in the multithreaded environment. Thus, a thread that
has entered a C Run-time function, such as printf(), could deadlock all
access (within that process) to printf() if it terminates abnormally.

This situation could arise if a thread is terminated with TerminateThread()
while it holds a resource lock. If this occurs, any thread that tries to
acquire that resource lock will become deadlocked.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseMisc

Inverting Color Inverts Palette Index, Not RGB Value
PSS ID Number: Q71227

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Performing any bitwise logical operator on a color, such as inversion,
does not modify the color's RGB value; it instead changes the index
into the system palette. This applies also to the ROP codes associated
with the blt functions (BitBlt, StretchBlt, and PatBlt) and in
the SetRop2 function. For display devices with hardware palettes
[generally, devices with fewer than 24 bits-per-pixel (BPP)], this can
produce unexpected or undesirable results.

MORE INFORMATION
================

Suppose the system palette contained the following colors:

 Entry #
 Color 0 1 2 3 4 5 6 7

 Red = 0 0x80 0 0 0x80 0x80 0 0x80
 Green = 0 0 0x80 0 0x80 0 0x80 0x80
 Blue = 0 0 0 0x80 0 0x80 0x80 0x80

 Entry #
 Color 8 9 A B C D E F

 Red = 0xC0 0xFF 0 0 0xFF 0xFF 0 0xFF
 Green = 0xC0 0 0xFF 0 0xFF 0 0xFF 0xFF
 Blue = 0xC0 0 0 0xFF 0 0xFF 0xFF 0xFF

The inversion of colors would look like this:
(Half = half intensity, Full = full intensity)

 Color Index Inverse Color Index
 ----- ----- ------------- -----
 Black 0 White F
 Half Red 1 Full Cyan E
 Half Green 2 Full Magenta D
 Half Blue 3 Full Yellow C
 Half Yellow 4 Full Blue B

 Half Magenta 5 Full Green A
 Half Cyan 6 Full Red 9
 Dark Gray 7 Light Gray 8

This obviously is not the desired effect. Inverting a full-intensity
color such as red will not invert to full-intensity cyan; instead, it
is inverted to half-intensity cyan.

This is also true for any logical operations performed on the bits of
a bitmap, pen, or flood fill through ROP codes. All operations are
done on the index of the color and not its RGB value.

Note that when using custom palettes on a palette capable device, the
application does not have control over the precise mapping between
logical palette indexes and system palette indexes. The results of
bitwise logical operations are unpredictable in such a case.

The only way for an application to precisely control color mixing is
to perform the operation on RGB values, then translate the RGB result
back into the most appropriate palette index.

For example, one way to do this is to mix colors in a 24 BPP
device-independent bitmap (DIB), then set the DIB bits into the device
context (DC) again when finished. Another method is to query the RGB
color of pixels to modify, do the mixing, and then use the SetPixel
function to apply the change to the DC.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbgraphic
KBSubcategory: GdiPal

Joliet Specification for CD-ROM
PSS ID Number: Q125630
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)
--

Content authors who are developing Windows 95 applications on CD-ROM should
develop their titles according to the Joliet specification in order to
incorporate Unicode file names and take full advantage of Windows 95 long
file name support.

The Joliet specification complies with the ISO 9660:1988 standard. It is
designed to resolve some of its restrictions and ambiguities including:

 - Character Set limitations.

 - File Name Length limitations.

 - Directory Tree Depth limitations.

 - Directory Name Format limitations.

 - Unicode Character ambiguities.

Because the Joliet specification is ISO 9660 compliant, CD-ROM disks
recorded according to the Joliet specification may continue to interchange
data with non-Joliet systems. The designs for the System Use Sharing
Protocol, RockRidge extensions for POSIX semantics, CD-XA System Use Area
Semantics, and Apple's Finder Flags and Resource Forks all port in a
straightforward manner to the Joliet specification. These protocols are not
an integral part of the Joliet specification, however.

Support for Joliet is included in Windows 95, and the spec is now included
in the Win95 DDK docs. It will also be included in a future version of
Windows NT. The Joliet spec is now available on the web at
http://www.ms4music.com/devl/dvjoliet.htm (that's "devl" as in developer).
The spec can also be downloaded from our FTP site:
developr/drg/multimedia/joliet/joliet-ZIP.zip.

Additional reference words: 4.00 CD CD-ROM XA SUSP ROCKRIDGE LFN
KBCategory: kbprg
KBSubcategory: SubSys

Journal Hooks and Compatibility
PSS ID Number: Q106717

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

Journal hooks are used to record and play back events, such as keyboard and
mouse events. Journal hooks are system-wide hooks that take control of all
user input, and therefore should be used as little as possible.

MORE INFORMATION
================

Note that Windows NT does not ship with a Recorder application, as Windows
3.1 does. Therefore, it may be desirable to create an application that can
play back macros recorded under Windows 3.1. However, there are a number of
different problems with the Windows NT implementation of journaling that
make it difficult to use macros recorded under Windows 3.1.

The EVENTMSG structures recorded under Windows 3.1 that hold keystrokes do
not play back under Windows NT. They must be modified, because the journal
playback hook parses a scan code out of the EVENTMSG structure differently
than the Windows 3.1 journal record hook put it in the structure. Under
Windows 3.1, paramH specifies the repeat count. Under Windows NT, there is
no way to specify a repeat count; it is always assumed to be 1.

For more information on hooks, please see the Hooks Overview in Volume 1 of
the Win32 "Programmer's Reference" and the article "Win32 Hooks" included
in the MSDN CD #5.

Additional reference words: 3.10 3.50
KBCategory: kbui
KBSubcategory: UsrHks

Jumping to a Keyword in the Middle of a Help Topic
PSS ID Number: Q94611

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SUMMARY
=======

The following information was extracted from the Windows Help Authoring
Guide available on the Microsoft Developer's Network CD-ROM:

 Placing Keywords in the Topic

 When the user goes to a topic by choosing a keyword from the Search
 dialog box, Help displays the selected topic in the main window,
 starting from the beginning of the topic. If the information related to
 the keyword is located in the middle or toward the end of the topic, the
 user may not be able to see the relevant information without scrolling
 the topic. This result may not be what you want.

 If you want users to be able to go directly to relevant information
 within a topic (and see it without scrolling), you can place additional
 keywords with the information you want users to find. Keywords placed
 within a topic function as spot references (similar to context-string
 spot references) because they index specific locations, or "spots,"
 within the topic. To access the spot-referenced material, users choose
 the keyword from the Search dialog box.

 In the Search dialog box, all keywords appear the same. The user cannot
 tell the difference between keywords placed at the beginning of the
 topic and those placed elsewhere in the topic. However, when the user
 goes to the topic, Windows Help uses the location of the keyword
 footnote as a reference point. If the keyword footnote is located in the
 middle of the topic, Help displays the topic as if the middle location
 were the "top" of the topic.

 NOTE:

 Because you cannot insert a title footnote in the middle of a topic, any
 keywords that you place in the middle of the topic use the main topic
 title in the Search dialog box.

 To define a keyword in the middle of the topic:

 1. Place the insertion point where you want to define the keyword. A
 keyword inserted anywhere except the beginning of the topic is
 treated as a spot reference.

 2. From the Insert menu, choose Footnote. The Footnote dialog box
 appears.

 3. Type an uppercase K as the custom footnote mark, and then choose OK.
 A superscript K appears in the text window, and the insertion point
 moves to the footnote window.

 4. Type the keyword(s) to the right of the K in the footnote window. Use
 only a single space between the K and the first keyword. Separate
 multiple keywords with a semicolon (;).

Additional reference words: 3.10 3.50 4.00 95 winhelp hc
KBCategory: kbprg
KBSubcategory: TlsHlp

LANGUAGE Statement in RC Differs in Windows NT from Windows 95
PSS ID Number: Q140763

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s version 1.3

 - Microsoft Win32 Software Development Kit (SDK) for:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The LANGUAGE statement in resource files sets the language for all
resources up to the next LANGUAGE statement or to the end of the file. When
the LANGUAGE statement appears before the BEGIN in an ACCELERATORS, DIALOG,
MENU, RCDATA, or STRINGTABLE resource definition, the specified language
applies only to that resource.

The general syntax for the language statement is:

 LANGUAGE language, sublanguage

MORE INFORMATION
================

In Windows NT, several language versions of the same resource (with the
same ID and type) can be loaded at the same time. The programmer can decide
which language version of the resource to use dynamicaly by calling
SetThreadLocale(). For example, the following is in a RC file:

ABOUTBOX DIALOG DISCARDABLE 52, 57, 144, 45
LANGUAGE LANG_GERMAN, SUBLANG_GERMAN
STYLE DS_MODALFRAME | WS_CAPTION
FONT 8, "System"
BEGIN
 CTEXT "Microsoft(r)",-1,0,5,144,8
 CTEXT "German menu Example",-1,0,14,144,8
 ICON IDR_MENU,-1,10,10,18,20
 DEFPUSHBUTTON "OK",IDOK,53,25,32,14,WS_GROUP
END

ABOUTBOX DIALOG DISCARDABLE 52, 57, 144, 45
LANGUAGE LANG_ENGLISH, SUBLANG_ENGLISH_US
STYLE DS_MODALFRAME | WS_CAPTION
FONT 8, "System"
BEGIN

 CTEXT "Microsoft(r)",-1,0,5,144,8
 CTEXT "Menu Example",-1,0,14,144,8
 ICON IDR_MENU,-1,10,10,18,20
 DEFPUSHBUTTON "OK",IDOK,53,25,32,14,WS_GROUP
END

In Winodws NT, you can call SetThreadLocale
(MAKELCID(MAKELANGID(LANG_GERMAN, SUBLANG_GERMAN), SORT_DEFAULT)) to set
the thread locale to German, and the German resource (the first dialog box)
would is automatically used.

In Windows 95, multiple copies of a resource with exactly the same ID and
resource type cannot be loaded at the same time. Thus, the only value of
LANGUAGE that works is the one that matches the current locale. In the
previous example, if the current system locale is German, then only the
German dialog box will be loaded.

Additional reference words: 4.00 1.30 setlocale kbinf
KBCategory: kbprg
KBSubcategory: wintldev

LB_GETCARETINDEX Returns 0 for Zero Entries in List Box
PSS ID Number: Q97922

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

To determine whether a multiple selection list box is empty or has no items
to select, two messages are required. First, call LB_GETCOUNT to determine
whether or not the list box is empty. If the list box is not empty, then
use LB_GETCARETINDEX to determine the position of the caret.

If you want a list box to contain selections that remain after the focus
goes elsewhere, Microsoft recommends using visible check marks next to the
items in the list box. This method provides better visual feedback to the
user than a selection bar.

Additional reference words: 3.50 3.51 4.00 95 listbox
KBCategory: kbui
KBSubcategory: UsrCtl

Length of STRINGTABLE Resources
PSS ID Number: Q20011

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

In order to find the length of a string in the STRINGTABLE you need to
do a FindResource() and then a SizeofResource() to find the total size
in bytes of the current block of 16 strings. Remember that
STRINGTABLEs are stored specially; to FindResource() you will ask for
RT_STRING as the Type, and the (string number / 16) + 1 as the name.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrRsc

Limitations of Overlapped I/O in Windows 95
PSS ID Number: Q125717

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Windows 95 does not support overlapped operations on files, disk, pipes, or
mailslots, but does support overlapped operations on serial and parallel
communication ports. Non-overlapped file write operations are similar to
overlapped file writes, because Windows 95 uses a lazy-write disk cache.
Overlapped I/O can be implemented in a Win32-based application by creating
multiple threads to handle I/O.

MORE INFORMATION
================

Asynchronous I/O on files, disk, pipes and mailslots is not implemented in
Windows 95. If a Win32-based application running on Windows 95 attempts to
perform asynchronous file I/O (such as ReadFile() with any value other than
NULL in the lpOverlapped field) on any of these objects, the ReadFile() or
WriteFile fails and GetLastError() returns ERROR_INVALID_PARAMETER (87).

Overlapped I/O to serial and parallel communication ports is fully
supported in Windows 95. To implement overlapped I/O, call CreateFile()
with the FILE_FLAG_OVERLAPPED flag set in the flags attribute.

Overlapped I/O on disk and files was not implemented in Windows 95, because
the added performance benefits (which would only affect a certain class of
I/O-intensive applications) were not judged to be worth the extra cost.

The system uses a lazy-write disk cache algorithm which automatically
provides many of the benefits of overlapped writes. When a process writes
data to a file, the data is written to the cache and then the write
immediately returns to the calling process. Then, at some later time, the
cache manager writes the data to disk. This is similar to behavior that is
achieved with overlapped I/O. In the case of disk/file reads, many
applications that need to read data do so because it is needed for further
processing. Some applications benefit greatly by prefetching data from
files while doing other work.

Although Windows 95 does not implement overlapped I/O, it is possible for
Win32-based applications on Windows 95 to create additional threads for
implementing an effect similar to overlapped file I/O. One way to implement
this effect is to communicate with an I/O thread using a request packet
mechanism. The thread can queue request packets from other threads and
service them as it is able, signalling the other threads on the completion
of each request with an event. Even though the application may be "waiting"

on some I/O activity, it can still be responsive to the user since the
main, or user interface, thread is not blocking on I/O requests. However,
the use of multiple threads will increase the amount of time spent in the
kernel, which leads to inefficiencies, as compared with an operating system
that supports overlapped I/O.

NOTE: Windows NT has a lazy-write disk cache as well. It has been found
that a write-back cache is not as good as overlapped I/O, particularly when
the data is much larger than the file cache or noncached I/O. One of the
biggest benefits of overlapped I/O is that it allows you to quickly get
lots of outstanding I/O posted to the disk controller, thereby keeping the
disks busy with tagged command queueing in the controller. Using multiple
threads is a reasonable substitute, but I/O may be serialized in the
filesystem.

Additional reference words: 4.00 95 asynchronous overlapped
KBCategory: kbprg
KBSubcategory: BseFileio

Limitations of POSIX Applications on Windows NT
PSS ID Number: Q149902
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), for Windows NT,
 version 3.5, 3.51, 4.0
--

SUMMARY
=======

This article discusses the limitations of the Portable Operating System
Interface (POSIX) applications on Windows NT. POSIX is a standard set by
ANSI/IEEE to promote source level compatibility that allows applications to
run on a wide variety of systems and architectures. The POSIX interface on
Windows NT strictly follows the POSIX 1003.1-1990 standards.

MORE INFORMATION
================

Following are some of the POSIX limitations:

 - POSIX applications only launch other POSIX applications. They do not
 launch DOS, OS/2, Win16 or Win32 applications.

 - POSIX applications do not call any APIs. They do not access DDE, OLE,
 memory mapped files, named pipes, windows sockets and other Win32
 features.

 - POSIX applications do not implicitly or explicitly load a Win32 DLL.

 - POSIX applications do not have access to any networking APIs such as
 pipes or sockets. They are not network aware, but they do access files
 over the network.

 - POSIX applications do not have any source level debugger support.
 You cannot use Windbg or the Microsoft Visual C++ debugger to
 debug POSIX applications on Windows NT.

For additional information, please see the following article in the
Microsoft Knowledge Base:

 ARTICLE-ID: Q99361
 TITLE : Specifying Filenames Under the POSIX Subsystem

REFERENCES
==========

MSDN Development Library, "Understanding Windows NT POSIX Compatibility",
by Ray Cort.

Additional reference words: 3.50 3.51 4.00 POSIX
KBCategory: kbprg

KBSubcategory: SubSys

Limiting the Number of Entries in a List Box
PSS ID Number: Q78241

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Although there is no single message that restricts the number of
entries (lines) allowed in a list box, the limit can be imposed
through the use of subclassing.

MORE INFORMATION
================

The following code fragment is an excerpt from a subclassing function
that can be used to restrict the number of entries in a list box to no
more than the constant MAXENTRIES where the lpfnOldLBFn variable
points to the original list box window procedure:

long FAR PASCAL SubClassFn(hWnd, message, wParam, lParam)
HWND hWnd;
unsigned message;
WORD wParam;
LONG lParam;
{
 int iCount;

 switch (message)
 {
 case LB_ADDSTRING:
 case LB_INSERTSTRING:
 iCount = SendMessage(hWnd, LB_GETCOUNT, 0, 0L);
 if (iCount > MAXENTRIES)
 { /* Insert action here to inform user of limit violation */
 break;
 }
 /* fall through if less entries than maximum */

 default:
 return CallWindowProc(lpfnOldLBProc, hWnd, message, wParam,
 lParam);
 }
}

Additional reference words: 3.00 3.10 3.50 4.00 95 list box

KBCategory: kbui
KBSubcategory: UsrCtl

Limits on Overlapped Pipe Operations
PSS ID Number: Q115522

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

The Windows NT version 3.1 redirector allows only 17 outstanding overlapped
pipe operations at any given time. The Windows NT 3.5 redirector does
not have this restriction on overlapped pipe writes. However, the Windows
NT 3.5 redirector allows only 17 outstanding overlapped pipe reads at any
given time.

If the client uses overlapped I/O through the redirector, it is possible
for the client to become deadlocked. You may need to increase the number of
threads that the redirector uses for I/O; the same thing is true for the
server. If your application is doing a lot of I/O, you can avoid this
deadlock by creating extra threads and having them use non-overlapped I/O.

MORE INFORMATION
================

Increasing the workstation services MaxThreads parameter increases the
number of kernel threads that the redirector will create, thus allowing
more operations to be outstanding at any given time.

This parameter is located in:

 HKEY_LOCAL_MACHINE\SYSTEM\
 CurrentControlSet\
 Services\
 LanmanWorkstation\
 Parameters\
 MaxThreads

The parameter can be set from 0 to 255 (the default is 17).

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseFileio

Line Continuation and Carriage Returns in String Tables
PSS ID Number: Q44385
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
--

The RC compiler does not offer a line-continuation symbol for strings in
string tables.

To force a carriage return into a long line of text, use one of the methods
described below.

One method is to force the carriage return using \012\015. The following
example demonstrates the use of \012\015 and should be considered to be on
one continuous line:

 STRINGTABLE
 BEGIN
 IDSLONGSTRING, "This is a long line of text so I would like \012\015
 to force a carriage return."
 END

For more information on this method, query in the Microsoft Knowledge
Base on the following words:

 STRINGTABLE WinLoadString

Another method of forcing a carriage return is to press ENTER and
continue the line on the next line. The following example will force
a carriage return after the word "like."

 STRINGTABLE
 BEGIN
 IDSLONGSTRING, "This is a long line of text so I would like
 to force a carriage return"
 END

If you try to use the \n or other \ characters, the RC compiler will ignore
them.

NOTE: There is a 255-character limit (per string) in a string table. For
more information on this limit, please query on the following words in the
Microsoft Knowledge Base:

 STRINGTABLE length 255

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsRc

List All NetBIOS Names on a Lana
PSS ID Number: Q124960
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1 and 3.5
--

SUMMARY
=======

You can get a list of NetBIOS names for a lana by using the Adapter Status
NetBIOS request and using the "*" character as the call name. However, on
Windows NT, this method lists only the names added by the current process.

If you want to list all of the NetBIOS names on the lana, use a unique
local name as the call name. This method causes the Adapter Status to be
treated as a remote call, which will disable the "filtering" of names added
by other processes. The sample code below demonstrates this technique.

SAMPLE CODE

/* The following makefile may be used to build this sample:

 !include <ntwin32.mak>

 PROJ = test.exe
 DEPS = test.obj
 LIBS_EXT = netapi32.lib

 .c.obj:
 $(cc) /YX $(cdebug) $(cflags) $(cvars) $<

 $(PROJ) : $(DEPS)
 $(link) @<<
 $**
 -out:$@
 $(conlibs)
 $(conlflags)
 $(ldebug)
 $(LIBS_EXT)
 <<

*/

#include <windows.h>
#include <stdio.h>
#include <string.h>

/*
 * LANANUM and LOCALNAME should be set as appropriate for
 * your system
 */

#define LANANUM 0
#define LOCALNAME "MAKEUNIQUE"

#define NBCheck(x) if (NRC_GOODRET != x.ncb_retcode) { \
 printf("Line %d: Got 0x%x from NetBios()\n", \
 __LINE__, x.ncb_retcode); \
 }

void MakeNetbiosName (char *achDest, LPCSTR szSrc);
BOOL NBAddName (int nLana, LPCSTR szName);
BOOL NBReset (int nLana, int nSessions, int nNames);
BOOL NBListNames (int nLana, LPCSTR szName);
BOOL NBAdapterStatus (int nLana, PVOID pBuffer, int cbBuffer,
 LPCSTR szName);

void
main ()
{
 if (!NBReset (LANANUM, 20, 30))
 return;

 if (!NBAddName (LANANUM, LOCALNAME))
 return;

 if (!NBListNames (LANANUM, LOCALNAME))
 return;

 printf ("Succeeded.\n");
}

BOOL
NBReset (int nLana, int nSessions, int nNames)
{
 NCB ncb;

 memset (&ncb, 0, sizeof (ncb));
 ncb.ncb_command = NCBRESET;
 ncb.ncb_lsn = 0; /* Allocate new lana_num resources */
 ncb.ncb_lana_num = nLana;
 ncb.ncb_callname[0] = nSessions; /* max sessions */
 ncb.ncb_callname[2] = nNames; /* max names */

 Netbios (&ncb);
 NBCheck (ncb);

 return (NRC_GOODRET == ncb.ncb_retcode);
}

BOOL
NBAddName (int nLana, LPCSTR szName)
{
 NCB ncb;

 memset (&ncb, 0, sizeof (ncb));

 ncb.ncb_command = NCBADDNAME;
 ncb.ncb_lana_num = nLana;

 MakeNetbiosName (ncb.ncb_name, szName);

 Netbios (&ncb);
 NBCheck (ncb);

 return (NRC_GOODRET == ncb.ncb_retcode);
}

/*
 * MakeNetbiosName - Builds a name padded with spaces up to
 * the length of a NetBIOS name (NCBNAMSZ).
 */
void
MakeNetbiosName (char *achDest, LPCSTR szSrc)
{
 int cchSrc;

 cchSrc = lstrlen (szSrc);
 if (cchSrc > NCBNAMSZ)
 cchSrc = NCBNAMSZ;

 memset (achDest, ' ', NCBNAMSZ);
 memcpy (achDest, szSrc, cchSrc);
}

BOOL
NBListNames (int nLana, LPCSTR szName)
{
 int cbBuffer;
 ADAPTER_STATUS *pStatus;
 NAME_BUFFER *pNames;
 int i;

 // Allocate the largest buffer we might need
 cbBuffer = sizeof (ADAPTER_STATUS) + 255 * sizeof (NAME_BUFFER);
 pStatus = (ADAPTER_STATUS *) HeapAlloc (GetProcessHeap (), 0,
 cbBuffer);
 if (NULL == pStatus)
 return FALSE;

 if (!NBAdapterStatus (nLana, (PVOID) pStatus, cbBuffer, szName))
 {
 HeapFree (GetProcessHeap (), 0, pStatus);
 return FALSE;
 }

 // The list of names immediately follows the adapter status
 // structure.
 pNames = (NAME_BUFFER *) (pStatus + 1);

 for (i = 0; i < pStatus->name_count; i++)

 printf ("\t%.*s\n", NCBNAMSZ, pNames[i].name);

 HeapFree (GetProcessHeap (), 0, pStatus);

 return TRUE;
}

BOOL
NBAdapterStatus (int nLana, PVOID pBuffer, int cbBuffer, LPCSTR szName)
{
 NCB ncb;

 memset (&ncb, 0, sizeof (ncb));
 ncb.ncb_command = NCBASTAT;
 ncb.ncb_lana_num = nLana;

 ncb.ncb_buffer = (PUCHAR) pBuffer;
 ncb.ncb_length = cbBuffer;

 MakeNetbiosName (ncb.ncb_callname, szName);

 Netbios (&ncb);
 NBCheck (ncb);

 return (NRC_GOODRET == ncb.ncb_retcode);
}

Additional reference words: 3.10 3.50
KBCategory: kbnetwork kbnetwork
KBSubcategory: NtwkNetios

List of Articles for Win32 Base Programming Issues
PSS ID Number: Q89989

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

INSTRUCTIONS
============

Microsoft FastTips is available 24 hours a day, 7 days a week, from a
touch-tone telephone. To order items from this catalog, first select the
items you want to receive, noting the five- to six-digit number of the Item
ID shown below for each item, and then:

- Dial the toll-free FastTips number (800) 936-4300.
- When prompted, select the Win32 Software Development Kit.
- Press one (1) on your phone keypad to select Express Order Service.
- When prompted, select the delivery method, fax.
- When prompted, enter your three-digit area code and seven-digit fax
 number on your phone keypad.
- When prompted, enter the number of the Item ID and press #, for up
 to five items.

When finished, simply hang up. If you have problems receiving a fax, please
call (206) 635-3105.

ARTICLE LISTING
===============

ITEM ID ARTICLE TITLE PAGES
--
Q 83298 Objects Inherited Through a CreateProcess Call 1
Q 83670 Correct Use of Try/Finally 2
Q 83706 Exporting Callback Functions 1
Q 84240 Consoles Do Not Support ANSI Escape Sequences 1
Q 84244 Processes Maintain Only One Current Directory 1

Q 89296 How HEAPSIZE/STACKSIZE Commit > Reserve Affects Execution 1
Q 89373 Replacing the Windows NT Task Manager 1
Q 89750 AllocConsole() Necessary to Get Valid Handles 1
Q 89817 How to Specify Shared and Nonshared Data in a DLL 1
Q 90083 Windows NT Servers in Locked Closets 2

Q 90088 CreateFile() Using CONOUT$ or CONIN$ 1
Q 90368 Cancelling Overlapped I/O 1
Q 90470 Getting Real Handle to Thread/Process Requires Two Calls 1
Q 90493 Determining Whether an Application is Console or GUI 4
Q 90530 Exporting Data from a DLL or an Application 2

Q 90745 Dynamic Loading of Win32 DLLs 2
Q 90749 Implementing a "Kill" Operation in Windows NT 2
Q 90837 Default Attributes for Console Windows 1
Q 90910 Win32 Priority Class Mechanism and the START Command 1
Q 91146 PRB: SEH with Abort() in the try Body 1

Q 91147 PRB: SEH with return in the finally Body Preempts Unwind 2
Q 91149 Using volatile to Prevent Optimization of try/except 1
Q 91150 Icons for Console Applications 1
Q 91194 Memory Handle Allocation 1
Q 91698 Sharing Win32 Services 1

Q 92395 Determining System Version from a Win32-based Application 3
Q 92761 Process Will Not Terminate Unless System Is In User-mode 1
Q 92764 Non-Addressable Range in Address Space 1
Q 92862 Alternatives to Using GetProcAddress() With LoadLibrary() 1
Q 94239 Secure Erasure Under Windows NT 1

Q 94561 WM_COMMNOTIFY is Obsolete for Win32-Based Applications 1
Q 94804 Thread Local Storage Overview 2
Q 94839 Precautions When Passing Security Attributes 1
Q 94840 Physical Memory Limits Number of Processes/Threads 1
Q 94920 Calculating String Length in Registry 1

Q 94947 PAGE_READONLY May Be Used as Discardable Memory 1
Q 94950 Clarification of COMMPROP dwMax?xQueue Members 1
Q 94990 OpenComm() and Related Flags Obsolete Under Win32 1
Q 94993 Global Quota for Registry Data 2
Q 94994 Determining Whether App Is Running as Service or .EXE 1

Q 94996 VirtualLock() Only Locks Pages into Working Set 1
Q 94997 Reducing the Count on a Semaphore Object 1
Q 94998 Trapping Floating-Point Exceptions in a Win32-based App 1
Q 94999 FormatMessage() Converts GetLastError() Codes 1
Q 95043 FlushViewOfFile() on Remote Files 1

Q 95900 Interprocess Communication on Windows NT, Windows 95, & Win32s 2
Q 96005 Validating User Accounts (Impersonation) 2
Q 96209 Chaining Parent PSP Environment Variables 1
Q 96242 Distinguishing Between Keyboard ENTER and Keypad ENTER 1
Q 96418 Priority Inversion and Windows NT Scheduler 2

Q 96780 Security and Screen Savers 1
Q 97786 Default Stack in Win32-Based Applications 2
Q 97926 The Use of the SetLastErrorEx() API 1
Q 98216 Windows NT Virtual Memory Manager Uses FIFO 1
Q 98575 File Manager Passes Short Filename as Parameter 1

Q 98722 Getting the Net Time on a Domain 1
Q 98756 Increased Performance Using FILE_FLAG_SEQUENTIAL_SCAN 1
Q 98840 Noncontinuable Exceptions 1
Q 98891 Validating User Account Passwords Under Windows NT 1
Q 98892 PRB: Unexpected Result of SetFilePointer() with Devices 2

Q 98893 Limit on the Number of Bytes Written Asynchronously 2

Q 98952 Setting File Permissions 1
Q 99026 Possible Serial Baud Rates on Various Machines 1
Q 99114 Using GMEM_DDESHARE in Win32 Programming 1
Q 99115 Preventing the Console from Disappearing 1

Q 99173 Types of File I/O Under Win32 2
Q 99261 Performing a Clear Screen (CLS) in a Console Application 1
Q 99456 Win32 Equivalents for C Run-Time Functions 6
Q 99794 FILE_FLAG_WRITE_THROUGH and FILE_FLAG_NO_BUFFERING 2
Q 99795 PRB: SetConsoleOutputCP() Not Functional 1

Q 100027 Direct Drive Access Under Win32 1
Q 100291 Restriction on Named-Pipe Names 1
Q 100329 CPU Quota Limits Not Enforced 1
Q 101186 Time Stamps Under the FAT File System 1
Q 101190 Examining the dwOemId Value 1

Q 101193 Interrupting Threads in Critical Sections 1
Q 101378 Impersonation Provided by ImpersonateNamedPipeClient() 1
Q 102098 Gaining Access to ACLs 1
Q 102099 Administrator Access to Files 1
Q 102100 Passing Security Information to SetFileSecurity() 1

Q 102101 Extracting the SID from an ACE 1
Q 102102 How to Add an Access-Allowed ACE to a File 5
Q 102103 Computing the Size of a New ACL 1
Q 102104 FILE_READ_EA and FILE_WRITE_EA Specific Types 1
Q 102105 System GENERIC_MAPPING Structures 1

Q 102128 Why LoadLibraryEx() Returns an HINSTANCE 1
Q 102352 Passing a Pointer to a Member Function to the Win32 API 2
Q 102429 Detecting Closure of Command Window from a Console App 1
Q 102447 Definition of a Protected Server 1
Q 102555 How Windows NT Handles Floating-Point Calculations 2

Q 102798 Security Attributes on Named Pipes 2
Q 103237 Using Temporary File Can Improve Application Performance 1
Q 103858 Copy on Write Page Protection for Windows NT 2
Q 104122 Detecting Logoff from a Service 1
Q 104136 Mapping .INI File Entries to the Registry 1

Q 105302 Cancelling WaitCommEvent() with SetCommMask() 1
Q 105304 SetErrorMode() Is Inherited 1
Q 105305 Calling CRT Output Routines from a GUI Application 2
Q 105306 Getting and Using a Handle to a Directory 1
Q 105531 Named Pipe Buffer Size 1

Q 105532 The Use of PAGE_WRITECOPY 1
Q 105674 Setting the Console Configuration 1
Q 105675 First and Second Chance Exception Handling 1
Q 105678 Critical Sections Versus Mutexes 1
Q 105763 Using NTFS Alternate Data Streams 2

Q 106383 RegSaveKey() Requires SeBackupPrivilege 1
Q 106387 Sharing Objects with a Service 1

Q 106663 Accessing the Macintosh Resource Fork 1
Q 107728 Retrieving Counter Data From the Registry 3
Q 108228 Replace IsTask() with GetExitCodeProcess() 1

Q 108230 Accessing the Event Logs 2
Q 108231 CreateFileMapping() SEC_* Flags 2
Q 108448 Use LoadLibrary() on .EXE Files Only for Resources 1
Q 108449 Working Set Size, Nonpaged Pool, and VirtualLock() 3
Q 109619 Sharing All Data in a DLL 2

Q 110148 PRB: ERROR_INVALID_PARAMETER from WriteFile() or ReadFile() 1
Q 110853 PRB: Can't Increase Process Priority 1
Q 111541 New Owner in Take-Ownership Operation 1
Q 111542 Checking for Administrators Group 2
Q 111543 Creating a World SID 1

Q 111544 Looking Up the Current User and Domain 1
Q 111545 Security Context of Child Processes 1
Q 111546 Taking Ownership of Registry Keys 1
Q 111559 PRB: GetExitCodeProcess() Always Returns 0 for 16-Bit Processes 1
Q 111837 ERROR_BUS_RESET May Be Benign 1

Q 111838 Possible Cause for ERROR_INVALID_FUNCTION 1
Q 115231 Retrieving Time-Zone Information 1
Q 115232 Timer Resolution in Windows NT 1
Q 115236 Long Filenames on Windows NT FAT Partitions 2
Q 115522 Limits on Overlapped Pipe Operations 1

Q 115825 Accessing the Application Desktop from a Service 2
Q 115826 Clarification of SearchPath() Return Value 1
Q 115827 Filenames Ending with Space or Period Not Supported 1
Q 115828 Getting Floppy Drive Information 3
Q 115829 How to Gracefully Fail at Service Start 1

Q 115831 Specifying Serial Ports Larger than COM9 1
Q 115848 Services and Redirected Drives 1
Q 115945 Determining the Maximum Allowed Access for an Object 1
Q 115946 PRB: AccessCheck() Returns ERROR_INVALID_SECURITY_DESCR 1
Q 115947 Adding Categories for Events 2

Q 115948 Creating Access Control Lists for Directories 2
Q 117223 PRB: Byte-Range File Locking Deadlock Condition 2
Q 117261 PRB: RegCreateKeyEx() Gives Error 161 Under Windows NT 3.5 2
Q 117330 PRB: Error Message Box Returned When DLL Load Fails 2
Q 117892 Memory Requirements for a Win32 App vs. the Win16 Version 1

Q 118605 How to Create Inheritable Win32 Handles in Windows 95 2
Q 118625 Detecting Data on the Communications Port 1
Q 118626 Determining Whether the User is an Administrator 2
Q 118816 PRB: LoadLibrary() Fails with _declspec(thread) 1
Q 119163 Getting the Filename Given a Window Handle 5

Q 119218 PRB: Named Pipe Write() Limited to 64K 1
Q 119220 ReadFile() at EOF Changed in Windows NT 3.5 1
Q 119669 Listing Account Privileges 2

Q 120556 PRB: Starting a Service Returns "Logon Failure" Error 1
Q 120557 Dealing w/ Lengthy Processing in Service Control Handler 1

Q 120697 Additional Information for WIN32_FIND_DATA 1
Q 124103 Obtaining a Console Window Handle (HWND) 2
Q 124207 Detecting x86 Floating Point Coprocessor in Win32 2
Q 124305 Which Windows NT (Server or Workstation) Is Running? 2
Q 125657 Mutex Wait Is FIFO But Can Be Interrupted 1

Q 125660 How to Set Foreground/Background Responsiveness in Code 1
Q 125661 How to Support Language Independent Strings in Event Logging 2
Q 125677 How to Share Data Between Different Mappings of a DLL 2
Q 125688 How to Port a 16-bit DLL to a Win32 DLL 5
Q 125689 How to Detect All Program Terminations 3

Q 125691 Overview of the Windows 95 Virtual Address Space Layout 3
Q 125710 Types of Thunking Available in Win32 Platforms 3
Q 125712 How To Open Volumes Under Windows 95 1
Q 125713 Common File Mapping Problems and Platform Differences 4
Q 125714 How to Start an Application at Boot Time Under Windows 95 1

Q 125715 Calling 16-bit Code from Win32-based Apps in Windows 95 4
Q 125717 Limitations of Overlapped I/O in Windows 95 2
Q 125718 Calling 32-bit Code from 16-bit Apps in Windows 95 4
Q 125867 Understanding Win16Mutex 2
Q 125868 How to Display Debugging Messages in Windows 95 1

Q 126628 How to Spawn a Console App and Redirect Standard Handles 1
Q 126629 How CREATOR_OWNER and CREATOR_GROUP Affect Security 2
Q 126645 PRB: Access Denied When Opening a Named Pipe from a Service 2
Q 126766 Determining the Network Protocol Used By Named Pipes 1
Q 126767 Improve System Performance by Using Proper Working Set Size 1

Q 126768 How to Design Multithreaded Applications to Avoid Deadlock 2
Q 127860 PRB: CreateProcess() of Windows-Based Application Fails 1
Q 127862 PRB: After CreateService() with UNC Name, Service Start Fails 1
Q 127904 How to Modify Executable Code in Memory 1
Q 127905 PRB: Messages Sent to Mailslot Are Duplicated 1

Q 127990 How to Delete Keys from the Windows NT Registry 1
Q 127991 GetLastError() May Differ Between Windows 95 and Windows NT 1
Q 127992 Thread Handles and Thread IDs 1
Q 128126 FileTimeToLocalFileTime() Adjusts for Daylight Saving Time 3
Q 128404 PRB: Corruption of the Perflib Registry Values 2

Q 128642 How to Change Hard Error Popup Handling in Windows NT 3
Q 128731 How to Back Up the Windows NT Registry 5
Q 128787 PRB: COMM (TTY) Sample Does Not Work on Windows 95 1
Q 129003 PRB: Description for Event ID Could Not Be Found 1
Q 129532 MoveFileEx Not Supported in Windows 95 But Functionality Is 2

Q 130331 Copying Compressed Files 1
Q 131065 How to Obtain a Handle to Any Process with SeDebugPrivilege 4
Q 131144 How to Assign Privileges to Accounts for API Calls 1
Q 131320 How to Convert a Binary SID to Textual Form 4

End of listing.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbref kbtlc
KBSubcategory: BseMisc

List of Articles for Win32 GDI Programming Issues
PSS ID Number: Q80828
--
The information in this article applies to:

 - FastTips for the Microsoft Win32 Software Development Kit (SDK)
 versions 3.1, 3.5, 3.51, and 4.0
--

INSTRUCTIONS
============

Microsoft FastTips is available 24 hours a day, 7 days a week, from a
touch-tone telephone. To order items from this catalog, first select the
items you want to receive, noting the five- to six-digit number of the Item
ID shown below for each item, and then:

- Dial the toll-free FastTips number (800) 936-4300.
- When prompted, select the Win32 Software Development Kit.
- Press one (1) on your phone keypad to select Express Order Service.
- When prompted, select the delivery method, fax.
- When prompted, enter your three-digit area code and seven-digit fax
 number on your phone keypad.
- When prompted, enter the number of the Item ID and press #, for up
 to five items.

When finished, simply hang up. If you have problems receiving a fax, please
call (206) 635-3105.

ARTICLE LISTING
===============

ITEM ID ARTICLE TITLE PAGES
--
Q 11915 Printing in Windows Without Form Feeds 1
Q 12071 Maximum Brush Size 1
Q 22242 PRB: Area Around Text and Remainder of Window Different Colors 2
Q 22553 Displaying on the Screen What Will Print 4
Q 24179 PRB: Dotted Line Displays as Solid Line 1

Q 27225 Determining Available RGB Values of an Output Device 2
Q 27585 Specifying Windows "Bounding Box" Coordinates 1
Q 29240 Converting Colors Between RGB and HLS (HBS) 3
Q 33096 Drawing Outside a Window's Client Area 1
Q 34614 Creating Lines with a Nonstandard Pattern 2

Q 41464 Background Colors Affect BitBlt() from Mono to Color 1
Q 64520 Printing Monochrome and Color Bitmaps from Windows 1
Q 66532 Use of NULL_PEN, NULL_BRUSH, and HOLLOW_BRUSH 1
Q 67883 How to Use a DIB Stored as a Windows Resource 2
Q 69885 SetBkColor() Does Not Support Dithered Colors 2

Q 71227 Inverting Color Inverts Palette Index, Not RGB Value 2
Q 71229 Windows Regions Do Not Scale 1

Q 72020 Stroke Fonts Marked as OEM Character Set Are ANSI 1
Q 72041 Using Device-Independent Bitmaps and Palettes 1
Q 72386 Background, Foreground, and System Palette Management 2

Q 72387 How to Determine If a Device Is Palette Capable 2
Q 73667 Considerations for CreateCursor() and CreateIcon() 1
Q 74298 Calculating Text Extents of Bold and Italic Text 2
Q 74299 Calculating The Logical Height and Point Size of a Font 2
Q 74300 Calculating the Point Size of a Font 1

Q 74467 Using GDI-Synthesized Italic Fonts 1
Q 74793 Simulating CreatePatternBrush() on a High-Res Printer 1
Q 75214 Using RLE Bitmaps for Animation Applications In Windows 2
Q 75380 Using the DRAWPATTERNRECT Escape in Windows 1
Q 75431 An Efficient Animation Algorithm 2

Q 75469 Accurately Showing on the Screen What Will Print 2
Q 75912 GetDeviceCaps(hDC, RASTERCAPS) Description 3
Q 77126 Raster and Stroke Fonts; GDI and Device Fonts 1
Q 77127 Rotating a Bitmap by 90 Degrees 2
Q 77255 wsprintf() Buffer Limit in Windows 1

Q 77402 Do Not Call the Display Driver Directly 1
Q 77702 Processing WM_PALETTECHANGED and WM_QUERYNEWPALETTE 2
Q 82169 PRB: PaintRgn() Fills Incorrectly with Hatched Brushes 1
Q 82932 PRB: Device and TrueType Fonts Rotate Inconsistently 1
Q 83807 PRB: CreateEllipticRgn() and Ellipse() Shapes Not Identical 1

Q 84131 Retrieving Font Styles Using EnumFontFamilies() 3
Q 84132 Retrieving the Style String for a TrueType Font 4
Q 85679 Changing Print Settings Mid-Job 1
Q 85844 PRB: Saving/Loading Bitmaps in .DIB Format on MIPS 1
Q 85846 Using GetDIBits() for Retrieving Bitmap Information 1

Q 86800 PRB: UnrealizeObject() Causes Unexpected Palette Behavior 1
Q 87115 GetGlyphOutline() Native Buffer Format 3
Q 87817 TrueType Font Converters and Editors 3
Q 89215 Mapping Modes and Round-Off Errors 3
Q 89375 Transparent Blts in Windows NT 2

Q 90085 PSTR's in OUTLINETEXTMETRIC Structure 1
Q 91072 PRB: IsGdiObject() Is Not a Part of the Win32 API 1
Q 92410 PRB: Average & Maximum Char Widths Different for TT Fixed Font 1
Q 92514 Use of DocumentProperties() vs. ExtDeviceMode() 1
Q 94236 Using Device Contexts Across Threads 1

Q 94918 Advantages of Device-Dependent Bitmaps 1
Q 95804 Win32 Software Development Kit Buglist 1
Q 96282 DEVMODE and dmSpecVersion 1
Q 99672 Complete Enumeration of System Fonts 2
Q 100487 Use 16-Bit .FON Files for Cross-Platform Compatibility 1

Q 102353 Tracking Brush Origins in a Win32-based Application 1
Q 102354 Calculating the TrueType Checksum 1
Q 104010 Creating a Logical Font with a Nonzero lfOrientation 1

Q 105299 Creating a Font for Use with the Console 1
Q 106384 ClipCursor() Requires WINSTA_WRITEATTRIBUTES 1

Q 108929 Querying Device Support for MaskBlt 1
Q 114471 Drawing a Rubber Rectangle 1
Q 115762 Printing Offset, Page Size, and Scaling with Win32 1
Q 117742 Limitations of WINOLDAP's Terminal Fonts 1
Q 118472 PRB: SelectClipRgn() Cannot Grow Clip Region in WM_PAINT 2

Q 118622 Using the Document Properties Dialog Box 2
Q 118873 PRB: EndPage() Returns -1 When Banding 1
Q 119164 Use of Polygon() Versus PolyPolygon() 1
Q 119455 PRB: RoundRect() and Ellipse() Don't Match Same Shaped Regions 1
Q 119914 PRB: Unable to Choose Kanji Font Using CreateFontIndirect 1

Q 121960 Alternative to PtInRegion() for Hit-Testing 4
Q 122564 Prototypes for SetSystemCursor() & LoadCursorFromFile() 1
Q 124135 Using Printer Escapes w/PS Printers on Windows NT & Win32s 2
Q 124870 XFONT.C from SAMPLES\OPENGL\BOOK Subdirectory 1
Q 124947 Retrieving Palette Information from a Bitmap Resource 3

Q 125692 Printer Escapes Under Windows 95 2
Q 125696 StartPage/EndPage Resets Printer DC Attributes in Windows 95 1
Q 125697 Primitives Supported by Paths Under Windows 95 1
Q 125699 GDI Objects and Windows 95 Heaps 1
Q 126019 PRB: Most Common Cause of SetPixelFormat() Failure 1

Q 126239 PRB: Win32-Based Screen Saver Shows File Name in Control Panel 1
Q 126258 How to Determine the Type of Handle Retrieved from OpenPrinter 1
Q 126627 How to Disable the Screen Saver Programmatically 1
Q 127152 How to Make an Application Display Real Units of Measurement 1
Q 128637 How to Draw a Gradient Background 2

Q 128786 How to Shade Images to Look Like Windows 95 Active Icon 3
Q 131130 How to Set the Current Normal Vector in an OpenGL Application 2

End of listing.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbref kbtlc
KBSubcategory: GdiMisc

List of Articles for Win32 SDK Networking Issues
PSS ID Number: Q81246
--
The information in this article applies to:

 - FastTips for the Microsoft Win32 Software Development Kit (SDK)
 versions 3.1, 3.5, 3.51, and 4.0
--

INSTRUCTIONS
============

Microsoft FastTips is available 24 hours a day, 7 days a week, from a
touch-tone telephone. To order items from this catalog, first select the
items you want to receive, noting the five- to six-digit number of the Item
ID shown below for each item, and then:

- Dial the toll-free FastTips number (800) 936-4300.
- When prompted, select the Win32 Software Development Kit.
- Press one (1) on your phone keypad to select Express Order Service.
- When prompted, select the delivery method, fax.
- When prompted, enter your three-digit area code and seven-digit fax
 number on your phone keypad.
- When prompted, enter the number of the Item ID and press #, for up
 to five items.

When finished, simply hang up. If you have problems receiving a fax, please
call (206) 635-3105.

ARTICLE LISTING
===============

ITEM ID ARTICLE TITLE PAGES
--
Q 85965 Windows Socket API Specification Version 1
Q 94088 PRB: WSAAsyncSelect() Notifications Stop Coming 1
Q 95944 NetBIOS Name Table and NCBRESET 2
Q 96781 Using RPC Callback Functions 2
Q 100009 RPC Can Use Multiple Protocols 1

Q 102381 Location of WNet* API Functions 1
Q 104315 PRB: RPC Installation Problem 1
Q 104318 RpcNsxxx() APIs Not Supported by Windows NT Locator 1
Q 104536 Using ReadFile() and WriteFile() on Socket Descriptors 1
Q 110703 Host Name May Map to Multiple IP Addresses 1

Q 110776 Windows NT Support for the MS-DOS LAN Manager APIs 1
Q 115604 Availability of Microsoft Network SDKs 2
Q 115830 MIDL 1.0 and MIDL 2.0 Full Pointers Do Not Interoperate 1
Q 118623 Getting the MAC Address for an Ethernet Adapter 2
Q 119216 Enumerating Network Connections 2

Q 119670 How to Look Up a User's Full Name 2
Q 121625 PRB: WINS.MIB & DHCP.MIB Files Missing from Win32 SDK 3.5 1

Q 124876 Sockets Applications on Microsoft Windows Platforms 2
Q 124879 PRB: Error 1 (NRC_BUFLEN) During NetBIOS Send Call 1
Q 124960 List All NetBIOS Names on a Lana 3

Q 125700 Windows 95 Support for LAN Manager APIs 2
Q 125701 Windows 95 RPC: Supported Protocol Sequences 1
Q 125702 Windows 95 Network Programming Support 1
Q 125704 Multiprotocol Support for Windows Sockets 3
Q 126716 PRB: Poor TCP/IP Performance When Doing Small Sends 1

Q 127015 Intergraph's NFS causes WinSock APIs to return error 10093 1
Q 127870 SNMP Agent Breaks Up Variable Bindings List 1
Q 127902 Where to Get the Microsoft SNMP Headers and Libraries 1
Q 128729 How to Add an SNMP Extension Agent to the NT Registry 2
Q 129022 DLC Information on LLC_DIR_SET_MULTICAST_ADDRESS Command 2

Q 129063 PRB: SnmpMgrStrToOid Assumes Oid Is in Mgmt Subtree 1
Q 129065 PRB: Getsockopt() Returns IP Address 0.0.0.0 for UDP 2
Q 129240 PRB: Building SDK SNMP Samples Results in Unresolved Externals 1
Q 129315 How to Use WinSock to Enumerate Addresses 3
Q 129316 Tips for Writing Windows Sockets Apps That Use AF_NETBIOS 3

Q 129317 Client Service For Novell Netware Doesn't Support Named Pipes 1
Q 129975 Registering Multiple RPC Server Interfaces 1
Q 130024 How Database WinSock APIs Are Implemented in Windows NT 3.5 1
Q 130562 PRB: SNMP Extension Agent Gives Exception on Windows NT 3.51 1
Q 130564 PRB: SnmpMgrGetTrap() Fails 1

Q 130942 PRB: WSAStartup() May Return WSAVERNOTSUPPORTED on Second Call 1
Q 131159 FIX: Winsock Over Appletalk (DDP) Leaks Memory 1
Q 131458 How to Broadcast Messages Using NetMessageBufferSend() 1
Q 131495 RPC CALLBACK Attribute and Unsupported Protocol Sequences 1
Q 131505 How to Set Up and Run the RNR Sample Included in the Win32 SDK 2

Q 131623 When to Use Synchronous Socket Handles & Blocking Hooks 1

End of listing.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbref kbtlc
KBSubcategory: NtwkMisc

List of Articles for Win32 SDK Samples
PSS ID Number: Q132151
--
The information in this article applies to:

 - FastTips for the Microsoft Win32 Software Development Kit (SDK)
 versions 3.1, 3.5, 3.51, and 4.0
--

INSTRUCTIONS
============

Microsoft FastTips is available 24 hours a day, 7 days a week, from a
touch-tone telephone. To order items from this catalog, first select the
items you want to receive, noting the five- to six-digit number of the Item
ID shown below for each item, and then:

- Dial the toll-free FastTips number (800) 936-4300.
- When prompted, select the Win32 Software Development Kit.
- Press one (1) on your phone keypad to select Express Order Service.
- When prompted, select the delivery method, fax.
- When prompted, enter your three-digit area code and seven-digit fax
 number on your phone keypad.
- When prompted, enter the number of the Item ID and press#, for up
 to five items.

When finished, simply hang up. If you have problems receiving a fax, please
call (206) 635-3105.

ARTICLE LISTING
===============

ITEM ID ARTICLE TITLE PAGES
--
Q 11787 SAMPLE: Using Blinking Text in an Application 1
Q 40959 SAMPLE: FASTBLT Implements Smooth Movement of a Bitmap 1
Q 66652 SAMPLE: Setting Tab Stops in a Windows List Box 2
Q 66942 SAMPLE: Changing Text Alignment in an Edit Control Dynamiclly 2
Q 94326 SAMPLE: 16 and 32 Bits-Per-Pel Bitmap Formats 2

Q 112639 SAMPLE: SCLBLDLG - Demonstrates Scaleable Controls in Dialog 1
Q 118327 SAMPLE: ServerEnumDialog DLL 2
Q 118983 SAMPLE: RASberry - an RAS API Demonstration 1
Q 122787 SAMPLE: How to Use File Associations 4
Q 123605 SAMPLE: RESIZE App Shows How to Resize a Window in Jumps 2

Q 125587 SAMPLE: How to Simulate Multiple-Selection TreeView Control 2
Q 125683 SAMPLE: Customizing the TOOLBAR Control 3
Q 127071 SAMPLE: MFCOGL a Generic MFC OpenGL Code Sample 3
Q 128091 SAMPLE: How to Use Paths to Create Text Effects 3
Q 128122 SAMPLE: Implementing Multiple Threads in an OpenGL Application 2

Q 130459 SAMPLE: Adding TrueType, Raster, or Vector Fonts to System 1
Q 130476 SAMPLE: Simulating Palette Animation on Non-Palette Displays 1

Q 130804 SAMPLE: Fade a Bitmap Using Palette Animation 2
Q 130805 SAMPLE: Drawing to a Memory Bitmap for Faster Performance 1
Q 131024 SAMPLE: Drawing Three-Dimensional Text in OpenGL Applications 2

Q 131788 SAMPLE: Highlighting an Entire Row in a ListView Control 1

End of listing.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbref kbtlc
KBSubcategory: CodeSam

List of Articles for Win32 SDK Tools
PSS ID Number: Q89345
--
The information in this article applies to:

 - FastTips for the Microsoft Win32 Software Development Kit (SDK)
 versions 3.1, 3.5, 3.51, and 4.0
--

INSTRUCTIONS
============

Microsoft FastTips is available 24 hours a day, 7 days a week, from a
touch-tone telephone. To order items from this catalog, first select the
items you want to receive, noting the five- to six-digit number of the Item
ID shown below for each item, and then:

- Dial the toll-free FastTips number (800) 936-4300.
- When prompted, select the Win32 Software Development Kit.
- Press one (1) on your phone keypad to select Express Order Service.
- When prompted, select the delivery method, fax.
- When prompted, enter your three-digit area code and seven-digit fax
 number on your phone keypad.
- When prompted, enter the number of the Item ID and press #, for up
 to five items.

When finished, simply hang up. If you have problems receiving a fax, please
call (206) 635-3105.

ARTICLE LISTING
===============

ITEM ID ARTICLE TITLE PAGES
--
Q 21569 RW2002 Error "Cannot Reuse String Constants" in RC.EXE 1
Q 32019 PRB: Dialog Editor Does Not Modify RC File Dialog Box Resource 1
Q 40958 PRB: DIALOG.EXE Reads Compiled .RES Files, Not .DLG Files 1
Q 44385 Line Continuation and Carriage Returns in String Tables 1
Q 64050 Use Uppercase "K" for Keywords in Windows Help Files 1

Q 67895 Multiple Columns of Text in Windows Help Files 2
Q 69081 Height and Width Limitations with Windows SDK Font Editor 1
Q 71761 PRB: Search Button Disabled in Windows Help 1
Q 74264 PRB: Dialog Editor Does Not Retain Unsupported Styles 1
Q 74278 PRB: Spy Repeatedly Lists a Single Message 1

Q 74937 Authoring Windows Help Files for Performance 2
Q 75111 Changing Hypertext Jump Color in Windows Help 2
Q 76534 Conditionally Activating a Button in Windows Help 1
Q 77748 Nesting Quotation Marks Inside Windows Help Macros 1
Q 77841 PRB: Vertical Scroll Bars Missing from Windows Help 1

Q 80945 Using #include Directive with Windows Resource Compiler 2
Q 81233 Creating Autosized Tables with Windows Help 1

Q 83020 Semicolons Cannot Separate Macros in .HPJ File 1
Q 83300 Using a Mouse with MEP Under Windows NT 1
Q 83911 Windows Help PositionWindow Macro Documented Incorrectly 2

Q 84081 RCDATA Begins on 32-Bit Boundary in Win32 1
Q 85490 PRB: Number Causes Help Compiler Invalid Context ID Error 1
Q 86477 How to Specify a Full Path in the ExecProgram Macro 1
Q 86719 PRB: Special Characters Missing from Compiled Help File 1
Q 87906 Dsklayt2 Does Not Support Duplicate Filenames 1

Q 87947 DSKLAYT2 Does Not Preserve Tree Structure of Source Files 1
Q 88141 Setup Toolkit .INF File Format and Disk Labels 1
Q 88142 Preventing Word Wrap in Microsoft Windows Help Files 1
Q 88197 PRB: DDESpy Track Conversations Strings Window Empty 1
Q 89822 Format for LANGUAGE Statement in .RES Files 2

Q 90291 Using Graphics Within a Help File 2
Q 90384 PRB: Selecting Overlapping Controls in Dialog Editor 1
Q 91697 Use of DLGINCLUDE in Resource Files 1
Q 92422 Help Fonts Must Use ANSI Character Set 1
Q 92523 Localizing the Setup Toolkit for Foreign Markets 1

Q 93395 Using the FORCEFONT .HPJ Option 1
Q 94248 Using the C Run-Time 4
Q 94323 CTYPE Macros Function Incorrectly 1
Q 94611 Jumping to a Keyword in the Middle of a Help Topic 1
Q 97765 Size Comparison of 32-Bit and 16-Bit x86 Applications 1

Q 97858 CTRL+C Exception Handling Under WinDbg 1
Q 97908 Debugging DLLs Using WinDbg 2
Q 98288 Watching Local Variables That Are Also Globally Declared 1
Q 98888 PRB: MS-SETUP Uses \SYSTEM Rather Than \SYSTEM32 1
Q 98890 Debugging a Service with WinDbg 2

Q 99053 Source-level Debugging Under NTSD 1
Q 99952 PRB: Debugging the Open Common Dialog Box in WinDbg 1
Q 99953 WinDbg Message "Breakpoint Not Instantiated" 1
Q 100292 PRB: Data Section Names Limited to Eight Characters 1
Q 100642 Setting Dynamic Breakpoints in WinDbg 2

Q 100957 PRB: Debugging an Application Driven by MS-TEST 1
Q 101187 Interpreting Executable Base Addresses 1
Q 102351 Debugging Console Apps Using Redirection 1
Q 103071 MS Setup Disklay2 Utility Calls COMPRESS.EXE Internally 1
Q 103861 Choosing the Debugger That the System Will Spawn 1

Q 103863 Cannot Load <exe> Because NTVDM Is Already Running 1
Q 105583 Viewing Globals Out of Context in WinDbg 1
Q 105677 Debugging the Win32 Subsystem 1
Q 105679 Differences Between the Win32 3.1 SDK and VCNT 1.0 2
Q 105764 Listing the Named Shared Objects 1

Q 106064 PRB: RW1004 Error Due to Unexpected End of File (EOF) 1
Q 106066 Additional Remote Debugging Requirement 1
Q 106382 PRB: Problems with the Microsoft Setup Toolkit 2

Q 108227 Changes to the MSTest WFndWndC() 1
Q 110540 PRB: Quotation Marks Missing from Compiled Help File 1

Q 114604 PRB: Double Quotes Not in Help Files Compiled From Word 6 RTF 1
Q 114605 PRB: DSKLAYT2 May Create Too Many Files on a Disk Image 2
Q 114606 How to use ExitExecRestart to Install System Files 2
Q 114609 PRB: Setup Toolkit File Copy Progress Gauge not Updated 1
Q 114610 PRB: "Out of Memory Error" in the Win32 SDK Setup Sample 1

Q 118890 Using the Call-Attributed Profiler (CAP) 2
Q 120251 How to Specify Filenames/Paths in Viewer/WinHelp Commands 1
Q 125474 Differences Between the Win32 3.5 SDK and Visual C++ 2.0 2
Q 131111 PRB: Errors When Windbg Switches Not Set for Visual C++ App 1

End of listing.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbref kbtlc
KBSubcategory: TlsMisc

List of Articles for Win32 SDK User Programming Issues
PSS ID Number: Q89372
--
The information in this article applies to:

 - FastTips for the Microsoft Win32 Software Development Kit (SDK)
 versions 3.1, 3.5, 3.51, 4.0
--

INSTRUCTIONS
============

Microsoft FastTips is available 24 hours a day, 7 days a week, from a
touch-tone telephone. To order items from this catalog, first select the
items you want to receive, noting the five- to six-digit number of the Item
ID shown below for each item, and then:

- Dial the toll-free FastTips number (800) 936-4300.
- When prompted, select the Win32 Software Development Kit.
- Press one (1) on your phone keypad to select Express Order Service.
- When prompted, select the delivery method, fax.
- When prompted, enter your three-digit area code and seven-digit fax
 number on your phone keypad.
- When prompted, enter the number of the Item ID and press #, for up
 to five items.

When finished, simply hang up. If you have problems receiving a fax, please
call (206) 635-3105.

ARTICLE LISTING
===============

ITEM ID ARTICLE TITLE PAGES
--
Q 10841 Using Extra Fields in Window Class Structure 1
Q 11337 PRB: Dialog Box and Parent Window Disabled 1
Q 11365 Creating a List Box Without a Scroll Bar 1
Q 11570 Translating Client Coordinates to Screen Coordinates 1
Q 11590 Windows Dialog-Box Style DS_ABSALIGN 1

Q 11606 Use of Allocations w/ cbClsExtra & cbWndExtra in Windows 1
Q 11619 Panning and Scrolling in Windows 1
Q 11654 Clipboard Memory Sharing in Windows 1
Q 12118 Customizing a Pop-Up Menu 1
Q 12190 Placing a Caret After Edit-Control Text 1

Q 12273 Using SendMessage() As Opposed to SendDlgItemMessage() 1
Q 19963 BeginPaint() Invalid Rectangle in Client Coordinates 1
Q 20011 Length of STRINGTABLE Resources 1
Q 24252 SetClipboardData() and CF_PRIVATEFIRST 1
Q 24646 Captions for Dialog List Boxes 1

Q 26234 PRB: Windows REQUEST Function Not Working With Excel 1
Q 29961 Location of the Cursor in a List Box 1

Q 31073 CS_SAVEBITS Class Style Bit 1
Q 31668 The Clipboard and the WM_RENDERFORMAT Message 1
Q 32519 Using SetClassLong Function to Subclass a Window Class 1

Q 32785 Placing Text in an Edit Control 1
Q 33161 Using the GetWindow() Function 1
Q 33690 PRB: Cannot Alter Messages with WH_KEYBOARD Hook 1
Q 34611 Allocating and Using Class and Window Extra Bytes 2
Q 35100 Method for Sending Text to the Clipboard 3

Q 35605 GetInputState Is Faster Than GetMessage or PeekMessage 1
Q 35930 Detecting Keystrokes While a Menu Is Pulled Down 1
Q 38901 Case Sensitivity in Atoms 1
Q 39480 Graying the Text of a Button or Static Text Control 1
Q 40669 Posting Frequent Messages Within an Application 2

Q 43596 GetClientRect() Coordinates Are Not Inclusive 1
Q 45702 GetCurrentTime and GetTickCount Functions Identical 1
Q 45714 How To Pass Numbers to a Named Range in Excel through DDE 1
Q 47674 Placing Double Quotation Mark Symbol in a Resource String 1
Q 57808 SizeofResource() Rounds to Alignment Size 1

Q 57959 Switching Between Single and Multiple List Boxes 1
Q 61980 MAKEINTATOM() Does Not Return a Valid LPSTR 2
Q 62068 How to Ignore WM_MOUSEACTIVATE Message for an MDI Window 1
Q 64296 Broadcasting Messages Using PostMessage() & SendMessage() 1
Q 64327 Owner-Draw: Overview and Sources of Information 2

Q 64504 Multicolumn List Boxes in Microsoft Windows 1
Q 64758 Showing the Beginning of an Edit Control after EM_SETSEL 1
Q 65256 Changing How Pop-Up Menus Respond to Mouse Actions 2
Q 65257 Reasons Why RegisterClass() and CreateWindow() Fail 2
Q 65881 The Parts of a Windows Combo Box and How They Relate 1

Q 65882 WindowFromPoint() Caveats 2
Q 65883 Action of Static Text Controls with Mnemonics 2
Q 66244 How to Keep a Window Iconic 1
Q 66365 Processing CBN_SELCHANGE Notification Message 1
Q 66479 Preventing Screen Flash During List Box Multiple Update 1

Q 66668 Multiline Edit Control Does Not Show First Line 1
Q 66943 Determining the Topmost Pop-Up Window 1
Q 66944 Efficiency of Using SendMessage Versus SendDlgItemMessage 1
Q 66946 Disabling the Mnemonic on a Disabled Static Text Control 1
Q 66947 Removing Focus from a Control When Mouse Released Outside 2

Q 67166 Process WM_GETMINMAXINFO to Constrain Window Size 1
Q 67210 Creating a Multiple Line Message Box 1
Q 67248 Using UnregisterClass When Removing Custom Control Class 1
Q 67293 Some CTRL Accelerator Keys Conflict with Edit Controls 3
Q 67655 Changing/Setting the Default Push Button in a Dialog Box 1

Q 67688 Retrieving Handles to Menus and Submenus 1
Q 67715 Owner-Draw Buttons with Bitmaps on Non-Standard Displays 1
Q 67716 Assigning Mnemonics to Owner-Draw Push Buttons 1

Q 67722 Multiline Edit Control Wraps Text Different than DrawText 2
Q 68115 Creating a List Box with No Vertical Scroll Bar 1

Q 68116 Creating a List Box That Does Not Sort 1
Q 68566 Default/Private Dialog Classes, Procedures, DefDlgProc 3
Q 68572 Caret Position & Line Numbers in Multiline Edit Controls 2
Q 68580 Changing a List Box from Single-Column to Multicolumn 1
Q 68583 Cases Where "Normal" Window Position, Size Not Available 1

Q 68586 How to Simulate Changing the Font in a Message Box 2
Q 69752 Using Quoted Strings with Profile String Functions 1
Q 69899 PRB: ExitProgman DDE Service Does Not Work If PROGMAN Is Shell 1
Q 69969 Top-Level Menu Items in Owner-Draw Menus 1
Q 70079 Use MoveWindow to Move an Iconic MDI Child and Its Title 1

Q 70080 Creating a Hidden MDI Child Window 1
Q 71223 Custom Controls Must Use CS_DBLCLKS with Dialog Editor 1
Q 71450 Using One IsDialogMessage() Call for Many Modeless Dialogs 2
Q 71454 Various Ways to Access Submenus and Menu Items 2
Q 71759 Determining Selected Items in a Multiselection List Box 1

Q 71836 Menu Operations When MDI Child Maximized 1
Q 72136 Using a Modeless Dialog Box with No Dialog Function 1
Q 72552 WM_CHARTOITEM Messages Not Received by Parent of List Box 1
Q 74041 Windows Does Not Support Nested MDI Client Windows 1
Q 74042 How to Use PeekMessage() Correctly in Windows 3

Q 74266 Default Edit Control Entry Validation Done by Windows 1
Q 74274 WM_SIZECLIPBOARD Must Be Sent by Clipboard Viewer App 1
Q 74277 Dangers of Uninitialized Data Structures 1
Q 74280 Translating Dialog-Box Size Units to Screen Units 1
Q 74297 Button and Static Control Styles Are Not Inclusive 1

Q 74334 Dialog Box Frame Styles 1
Q 74345 Associating Data with a List Box Entry 2
Q 74366 PRB: Applications Cannot Change the Desktop Bitmap 1
Q 74444 Clearing a Message Box 1
Q 74476 Some Basic Concepts of a Message-Passing Architecture 3

Q 74514 Creating and Using a Custom Caret 2
Q 74547 Importance of Calling DefHookProc() 1
Q 74548 Handling WM_CANCELMODE in a Custom Control 1
Q 74607 Creating a Nonblinking Caret 1
Q 74609 Using Private Templates with Common Dialogs 1

Q 74610 Common Dialog Boxes and the WM_INITDIALOG Message 1
Q 74612 Open File Dialog Box -- Pros and Cons 2
Q 74737 Changing the Font Used by Dialog Controls in Windows 2
Q 74789 PRB: MDI Program Menu Items Changed Unexpectedly 1
Q 74792 Making a List Box Item Unavailable for Selection 4

Q 74798 Centering a Dialog Box on the Screen 1
Q 74857 Avoid Calling SendMessage() Inside a Hook Filter Function 1
Q 74888 Specifying Time to Display and Remove a Dialog Box 1
Q 75236 Determining Visible Window Area When Windows Overlap 1

Q 75254 PRB: TrackPopupMenu() on LoadMenuIndirect() Menu Causes UAE 1

Q 75630 Initializing Menus Dynamically 1
Q 76365 PRB: Moving or Resizing the Parent of an Open Combo Box 1
Q 76947 Extending Standard Windows Controls Through Superclassing 2
Q 77550 Differentiating Between the Two ENTER Keys 1
Q 77750 Placing Captions on Control Windows 1

Q 77842 WM_DDE_EXECUTE Message Must Be Posted to a Window 1
Q 77843 Fractional Point Sizes Not Supported in ChooseFont() 1
Q 77991 Using a Fixed-Pitch Font in a Dialog Box 1
Q 78241 Limiting the Number of Entries in a List Box 1
Q 78952 Determining the Number of Visible Items in a List Box 1

Q 79981 Overlapping Controls Are Not Supported by Windows 1
Q 80382 Global Classes in Win32 1
Q 81137 How to Create a Topmost Window 1
Q 82078 Combo Box w/Edit Control & Owner-Draw Style Incompatible 1
Q 82171 Managing Per-Window Accelerator Tables 2

Q 82299 Changing the Controls in a Common Dialog Box 1
Q 83366 Value Returned by GetWindowLong(hWnd, GWL_STYLE) 3
Q 83413 Freeing Memory in a DDEML Server Application 1
Q 83453 Querying and Modifying the States of System Menu Items 1
Q 83808 Multiple References to the Same Resource 1

Q 83912 Freeing Memory for Transactions in a DDEML Client App 2
Q 83999 PRB: GP Fault in DDEML from XTYP_EXECUTE Timeout Value 2
Q 84054 Controlling the Caret Color 2
Q 84190 Window Owners and Parents 2
Q 84843 PRB: IsCharAlpha Return Value Different Between Versions 1

Q 85680 Application Can Allocate Memory with DdeCreateDataHandle 2
Q 86268 Call the Windows Help Search Dialog Box from Application 1
Q 86331 Retrieving the Text Color from the Font Common Dialog Box 2
Q 86429 PRB: Successful LoadResource of Metafile Yields Random Data 1
Q 86720 Adding a Custom Template to a Common Dialog Box 2

Q 86721 Adding a Hook Function to a Common Dialog Box 2
Q 86724 Using Drag-Drop in an Edit Control or a Combo Box 2
Q 86835 Defining Private Messages for Application Use 1
Q 87344 Using the DS_SETFONT Dialog Box Style 1
Q 87345 Using the DeferWindowPos Family of Functions 1

Q 88358 Using DWL_USER to Access Extra Bytes in a Dialog Box 1
Q 88387 Determining the Visible Area of a Multiline Edit Control 1
Q 89544 PRB: Printer Font too Small with ChooseFont() Common Dialog 1
Q 89712 Multiline Edit Control Limits in Windows NT 1
Q 89739 Reasons for Failure of Menu Functions 3

Q 89828 Do Not Forward DDEML Messages from a Hook Procedure 2
Q 89866 Writing Multiple-Language Resources 1
Q 90912 Getting the WinMain() lpCmdLine in Unicode 1
Q 90975 Creating Windows in a Multithreaded Application 1
Q 92505 Multiple Desktops Under Windows NT 1

Q 92526 Transparent Windows 1
Q 92527 Accessing Parent Window's Menu from Child Window w/ focus 1
Q 92530 Reasons for Failure of Clipboard Functions 3
Q 92626 Implementing a Line-Based Interface for Edit Controls 2
Q 92659 PRB: SetWindowsHookEx() Fails to Install Task-Specific Filter 1

Q 94091 DDEML Application-Instance IDs Are Thread Local 1
Q 94149 Freeing PackDDElParam() Memory 1
Q 94917 Uniqueness Values in User and GDI Handles 1
Q 94953 Instance-Specific String Handles (HSZs) in DDEML 2
Q 94955 DDE Error Message: Application Using DDE Did Not Respond 1

Q 95000 SendMessage() in a Multithreaded Environment 1
Q 95982 PRB: DDEML with Excel Error: Remote Data Not Accessible 1
Q 95983 Establishing Advise Loop on Same topic!item!format! Name 3
Q 96006 Window Message Priorities 1
Q 96134 PRB: TAB Key, Mnemonics with FindText and ReplaceText Dialogs 1

Q 96135 PRB: FindText, ReplaceText Hook Function 1
Q 96479 Message Retrieval in a DLL 2
Q 96674 PRB:Unselecting Edit Control Text at Dialog Box Initialization 2
Q 97922 LB_GETCARETINDEX Returns 0 for Zero Entries in List Box 1
Q 97925 SetActiveWindow() and SetForegroundWindow() Clarification 1

Q 98486 How to Stop a Journal Playback 2
Q 99046 How to Draw a Custom Window Caption 3
Q 99047 Using GetUpdateRgn() 1
Q 99338 PRB: Error with GetOpenFileName() and OFN_ALLOWMULTISELECT 1
Q 99339 DlgDirList on Novell Drive Doesn't Show Double Dots [..] 1

Q 99359 UNICODE and _UNICODE Needed to Compile for Unicode 1
Q 99360 Memory Handles and Icons 1
Q 99392 Using SetThreadLocale() for Language Resources 1
Q 99411 PRB: Processing the WM_QUERYOPEN Message in an MDI Application 1
Q 99668 Adding Point Sizes to the ChooseFont() Common Dialog Box 2

Q 99799 PRB: Pressing the ENTER Key in an MDI Application 2
Q 99800 Adding to or Removing Windows from the Task List 1
Q 99806 Mirroring Main Menu with TrackPopupMenu() 2
Q 100486 PRB: AttachThreadInput() Resets Keyboard State 1
Q 100488 System Versus User Locale Identifiers 1

Q 102428 Debugging a System-Wide Hook 1
Q 102482 SetTimer() Should Not Be Used in Console Applications 1
Q 102485 The SBS_SIZEBOX Style 1
Q 102552 PRB:Scroll Bar Continues Scrolling After Mouse Button Released 3
Q 102571 Calling DdePostAdvise() from XTYP_ADVREQ 2

Q 102574 XTYP_EXECUTE and its Return Value Limitations 2
Q 102576 PRB: DDEML Fails to Call TranslateMessage() in its Modal Loop 2
Q 102584 Returning CBR_BLOCK from DDEML Transactions 3
Q 102588 Nonzero Return from SendMsg() with HWND_BROADCAST 1
Q 102589 Using ENTER Key from Edit Controls in a Dialog Box 4

Q 102765 Clarification of the "Country" Setting 1
Q 103315 Explanation of the NEWCPLINFO Structure 1
Q 103644 Differences Between hInstance on Win 3.1 and Windows NT 2
Q 103977 Unicode Implementation in Windows NT 3.1 and 3.5 1
Q 104011 Propagating Environment Variables to the System 1

Q 104069 SetParent and Control Notifications 1
Q 104311 32-Bit Scroll Ranges 1
Q 104316 How Keyboard Data Gets Translated 1
Q 105300 COMCTL32 APIs Unsupported in the Win32 SDK 1
Q 105446 Win32 Shell Dynamic Data Exchange (DDE) Interface 2

Q 105530 Win32 Drag and Drop Server 1
Q 106079 PRB: CBT_CREATEWND Struct Returns Invalid Class Name 3
Q 106385 Identifying a Previous Instance of an Application 1
Q 106386 Retrieving DIBs from the Clipboard 1
Q 106716 Using SendMessageTimeout() in a Multithreaded Application 2

Q 106717 Journal Hooks and Compatibility 1
Q 107387 PRB: Inadequate Buffer Length Causes Strange Problems in DDEML 2
Q 107980 PRB: Excel's =REQUEST() from DDEML Application Returns #N/A 2
Q 108232 Hooking Console Applications and the Desktop 1
Q 108233 PRB: GetOpenFileName() and Spaces in Long Filenames 1

Q 108315 How to Keep an MDI Window Always on Top 2
Q 108925 DdeInitialize(), DdeNameService(), APPCMD_FILTERINITS 1
Q 108927 Hot Versus Warm Links in a DDEML Server Application 2
Q 108936 Using a Dialog Box as the Main Window of an Application 2
Q 108938 Windows WM_SYSTIMER Message Is an Undocumented Message 1

Q 108940 Text Alignment in Single Line Edit Controls 1
Q 108941 Using the WM_VKEYTOITEM Message Correctly 1
Q 109550 Programatically Appending Text to an Edit Control 2
Q 109551 Providing a Custom Wordbreak Function in Edit Controls 3
Q 109696 How to Update the List of Files in the Common Dialogs 2

Q 110704 Replacing Windows NT Control Panel's Mouse Applet 1
Q 114612 Getting a Dialog to Use an Icon When Minimized 2
Q 118624 Using GetForegroundWindow() When Desktop Is Not Active 1
Q 121541 How to Override Full Drag 1
Q 121623 How to Program Keyboard Interface for Owner-Draw Menus 2

Q 124835 PRB: JournalPlayback Hook Can Cause Windows NT to Hang 3
Q 125614 PRB: Can't Disable CTRL+ESC and ALT+TAB Under Windows NT 1
Q 125628 PRB: Listview Comes Up with No Images 1
Q 125629 How to Overlay Images Using Image List Controls 2
Q 125669 How to Create Non-rectangular Windows 1

Q 125670 How to Implement Context-Sensitive Help in Windows 95 Dialogs 2
Q 125672 Using the Windows 95 Common Controls on Windows NT and Win32s 1
Q 125673 New Windows 95 Styles Make Attaching Bitmap to Button Easier 2
Q 125674 Calling a New 32-bit API from a 16-bit Application 1
Q 125675 How to Right-Justify Menu Items in Windows 95 2

Q 125676 New User Heap Limits Under Windows 95 1

Q 125678 New Dialog Styles in Windows 95 1
Q 125679 New Window Styles in Windows 95 2
Q 125680 How to Subclass a Window in Windows 95 2
Q 125681 How to Calculate Dialog Base Units with Non-System-Based Font 2

Q 125682 How to Use the Small Icon in Windows 95 1
Q 125684 How to Use SS_GRAYRECT SS_BLACKRECT SS_WHITERECT in Windows 95 1
Q 125686 How to Add Windows 95 Controls to Visual C++ 2.0 Dialog Editor 1
Q 125687 PRB: Inter-thread SetWindowText() Fails to Update Window Text 1
Q 125694 How to Find Out Which Listview Column Was Right-Clicked 2

Q 125695 SystemParametersInfo() Add-On Gets or Sets System Parameters 1
Q 125703 Windows 95 Support for Network DDE 1
Q 125705 Application Version Marking in Windows 95 2
Q 125706 Customizing the FileOpen Common Dialog in Windows 95 2
Q 125752 How to Increase Windows NT System and Desktop Heap Sizes 1

Q 126625 How to Change the International Settings Programmatically 1
Q 126630 Resource Sections are Read-only 1
Q 127066 Advanced Graphics Settings Slider under Windows 95 1
Q 127190 How to Toggle the NUM LOCK, CAPS LOCK, and SCROLL LOCK Keys 1
Q 127861 Network DDE For 16-bit Windows-based Apps Under Windows NT 1

Q 128110 PRB: CBS_SIMPLE ComboBox Repainting Problem 2
Q 128125 Trusted DDE Shares 2
Q 128558 Rich Edit Control Does Not Support Unicode 1
Q 129595 WM_SYSCOLORCHANGE Must Be Sent to Windows 95 Common Controls 1
Q 129859 Using Text Bullets in a Rich Edit Control 1

Q 129860 Using Built-In Printing Features from a Rich Edit Control 3
Q 130692 PRB: Editing Labels in a TreeView Gives WM_COMMAND|IDOK Errors 1
Q 130693 How to Use CTL3D Under the Windows 95 Operating System 1
Q 130758 How to Change Small Icon for FileOpen and Other Common Dialogs 2
Q 130759 EM_SETHANDLE and EM_GETHANDLE Messages Not Supported 1

Q 130760 PRB: Can't Remove Minimize or Maximize Button from Caption Bar 1
Q 130761 Using FileOpen Common Dialog w/ OFN_ALLOWMULTIPLESELECT Style 1
Q 130762 How to Use DWL_MSGRESULT in Property Sheets & Wizard Controls 1
Q 130763 How to Create 3D Controls in Client Area of Non-Dialog Window 1
Q 130764 How to Obtain Fonts, ToolTips, and Other Non-Client Metrics 1

Q 130765 PRB: Property Sheet w/ Multiline Edit Control Ignores ESC Key 2
Q 130951 PRB: Private Button Class Can't Get BM_SETSTYLE in Windows 95 1
Q 130952 WM_CTLCOLORxxx Message Changes for Windows 95 1
Q 131025 PRB: NetDDE Fails to Connect Under Windows 95 1
Q 131225 PRB: CFileDialog::DoModal() Does Not Display FileOpen Dialog 1

Q 131259 How to Detect Slow CPU & Unaccelerated Video Under Windows 95 1
Q 131278 Using cChildren Member of TV_ITEM to Add Speed & Use Less RAM 3
Q 131279 PRB: SelectObject() Fails After ImageList_GetImageInfo() 1
Q 131280 PRB: LoadCursor() Fails on IDC_SIZE/IDC_ICON 1
Q 131281 PRB: Calling LoadMenuIndirect() with Invalid Data Hangs System 1

Q 131282 How to Display Old-Style FileOpen Common Dialog in Windows 95 1
Q 131283 PRB: Can't Use TAB to Move from Standard Controls to Custom 1

Q 131284 How to Select a Listview Item Programmatically in Windows 95 2
Q 131285 How to Use LVIF_DI_SETITEM on an LVN_GETDISPINFO Notification 2
Q 131286 PRB: LB_DIR with Long Filenames Returns LB_ERR in Windows 95 2

Q 131287 Treeviews Share Image Lists by Default 1
Q 131288 PRB: RegisterClass()/ClassEx() Fails If cbWndExtra > 40 Bytes 1
Q 131381 PRB: RichEdit Control Hides Mouse Pointer (Cursor) 1
Q 131462 How to Handle FNERR_BUFFERTOOSMALL in Windows 95 3
Q 131500 How to Obtain Icon Information from an .EXE in Windows 95 2

Q 131845 How to Modify the Width of the Drop Down List in a Combo Box 3

End of listing.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbref kbtlc
KBSubcategory: UsrMisc

List of Articles for Win32s Programming Issues
PSS ID Number: Q93064
--
The information in this article applies to:

 - FastTips for Microsoft Win32s versions 1.1, 1.2, and 1.25a
--

INSTRUCTIONS
============

Microsoft FastTips is available 24 hours a day, 7 days a week, from a
touch-tone telephone. To order items from this catalog, first select the
items you want to receive, noting the five- to six-digit number of the Item
ID shown below for each item, and then:

- Dial the toll-free FastTips number (800) 936-4300.
- When prompted, select the Win32 Software Development Kit.
- Press one (1) on your phone keypad to select Express Order Service.
- When prompted, select the delivery method, fax.
- When prompted, enter your three-digit area code and seven-digit fax
 number on your phone keypad.
- When prompted, enter the number of the Item ID and press #, for up
 to five items.

When finished, simply hang up. If you have problems receiving a fax, please
call (206) 635-3105.

ARTICLE LISTING
===============

ITEM ID ARTICLE TITLE PAGES
--
Q 83520 General Overview of Win32s 2
Q 93639 PRB: Win32s GetVolumeInformation() Returns 0x12345678 or 0 1
Q 97785 Calling a Win32 DLL from a Win16 App on Win32s 2
Q 97918 Win32s Message Queue Checking 1
Q 98286 PRB: _getdcwd() Returns the Root Directory Under Win32s 2

Q 100713 Support for Sleep() on Win32s 1
Q 100833 Win32s Translated Pointers Guaranteed for 32K 1
Q 102430 Debugging Applications Under Win32s 2
Q 102762 GetCommandLine() Under Win32s 1
Q 104314 Win32s NetBIOS Programming Considerations 1

Q 105756 Debugging Universal Thunks 1
Q 105757 Using Windows Sockets Under Win32s and WOW 1
Q 105758 Win32s and Windows NT Timer Differences 1
Q 105759 Using Serial Communications Under Win32s 1
Q 105760 Using VxDs and Software Interrupts Under Win32s 1

Q 105761 Getting Resources from 16-Bit DLLs Under Win32s 1
Q 105762 Sharing Memory Between 32-Bit and 16-Bit Code on Win32s 1
Q 106715 Troubleshooting Win32s Installation Problems 3

Q 108497 DIB_PAL_INDICES and CBM_CREATEDIB Not Supported in Win32s 1
Q 108722 PRB: "Routine Not Found" Errors in Windows Help 1

Q 109620 Creating Instance Data in a Win32s DLL 1
Q 110844 Detecting the Presence of NetBIOS in Win32s 1
Q 110845 How Win32-Based Applications Are Loaded Under Windows 1
Q 113679 DOCERR: Errors in Win32s Compatibility 2
Q 114611 PRB: GlobalAlloc() Pagelocks Blocks on Win32s 2

Q 115080 Converting a Linear Address to a Flat Offset on Win32s 1
Q 115082 PRB: Page Fault in WIN32S16.DLL Under Win32s 2
Q 115084 Win32s Device-Independent Bitmap Limit 1
Q 117153 PRB: Display Problems with Win32s and the S3 Driver 1
Q 117825 Handling COMMDLG File Open Network Button Under Win32s 1

Q 117864 PRB: GP Fault Caused by GROWSTUB in POINTER.DLL 1
Q 117893 PRB: Result of localtime() Differs on Win32s and Windows NT 1
Q 120486 How to Remove Win32s 1
Q 121091 How to Determine Which Version of Win32s Is Installed 1
Q 121092 PRB: Local Reboot (CTRL+ALT+DEL) Doesn't Work Under Win32s 1

Q 121093 Points to Remember When Writing a Debugger for Win32s 7
Q 121094 PRB: Controls Do Not Receive Expected Messages 2
Q 121095 PRB: GPF When Spawn Windows-Based App w/ WinExec() in Win32s 1
Q 122235 Microsoft Win32s Upgrade 2
Q 123421 PRB: Inconsistencies in GDI APIs Between Win32s and Windows NT 2

Q 123422 Win32s OLE 16/32 Interoperability 1
Q 123731 Calling LoadLibrary() on a 16-bit DLL 1
Q 123812 Debugging OLE 2.0 Applications Under Win32s 2
Q 123813 Results of GetFileInformationByHandle() Under Win32s 1
Q 124133 PRB: ShellExecute() Succeeds But App Window Doesn't Appear 1

Q 124134 Allowing Only One Application Instance on Win32s 2
Q 124136 Installing the Win32s NLS Files 1
Q 124137 Virtual Memory and Win32s 2
Q 124191 FixBrushOrgEx() and Brush Origins under Win32s 1
Q 124836 GetSystemMetrics(SM_CMOUSEBUTTONS) Fails Under Win32s 1

Q 125014 How to Find the Version Number of Win32s 3
Q 125212 Performing a Synchronous Spawn Under Win32s 6
Q 125475 Using Network DDE Under Win32s 1
Q 125659 PRB: Netbios RESET Cannot Be Called with Pending Commands 1
Q 126575 PRB: Large DIBs May Not Display Under Win32s 2

Q 126626 PRB: GetLogicalDrives() Indicates that Drive B: Is Present 1
Q 126708 How to Pass Large Memory Block Through Win32s Universal Thunk 1
Q 126709 PRB: Error on Win32s: R6016 - not enough space for thread data 2
Q 126710 PRB: WinExec() Fails Due to Memory Not Deallocated 2
Q 127760 PRB: Oracle7 for Win32s Hangs When Initialize Database Manager 1

Q 127903 How to Use RPC Under Win32s 1
Q 129542 Using the Registry Under Win32s 1
Q 129543 PRB: CreateFile Fails on Win32s w/ UNC Name of Local Machine 1
Q 129544 PRB: CreateFile() Does Not Handle OEM Chars as Expected 1

Q 129597 PRB: DialogBox() Call w/ Desktop Window Handle Disables Mouse 1

Q 129598 GetWindowRect() Returns TRUE with Desktop Window Handle 1
Q 129599 How to Examine the Use of Process Memory Under Win32s 2
Q 131224 PRB: DLL Load Fails Under Win32s When Apps Share a DLL 2
Q 131896 Win32s Version 1.25a Limitations 7

End of listing.

Additional reference words: 1.10 1.20
KBCategory: kbref kbtlc
KBSubcategory: W32s

Listing Account Privileges
PSS ID Number: Q119669

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

When a user starts a process, that process takes on the security attributes
of the user. The security attributes inherited from the user include
privileges, which control access to system services.

MORE INFORMATION
================

To list the privileges belonging to a process (and thus to the current
user), perform the following steps:

1. Call GetCurrentProcess() to obtain a handle to the current process.

2. Call GetProcessToken() to obtain the process' access token.

3. Call GetTokenInformation() to obtain the list of privileges (among
 other information).

4. Step through the list of privileges, using LookupPrivilegeName() and
 LookupPrivilegeDisplayName() to obtain the names for the program to
 display.

The following sample code lists the displayable privilege names and the
privilege names as defined in the WINNT.H header file:

Sample Code

 #include <windows.h>
 #include <stdio.h>

 void main()
 {
 HANDLE hProcess, hAccessToken;
 UCHAR InfoBuffer[1000];
 PTOKEN_PRIVILEGES ptgPrivileges = (PTOKEN_PRIVILEGES)InfoBuffer;
 DWORD dwInfoBufferSize;
 DWORD dwPrivilegeNameSize;
 DWORD dwDisplayNameSize;
 UCHAR ucPrivilegeName[500];
 UCHAR ucDisplayName[500];
 DWORD dwLangId;

 UINT x;

 hProcess = GetCurrentProcess();

 OpenProcessToken(hProcess, TOKEN_READ, &hAccessToken);

 GetTokenInformation(hAccessToken, TokenPrivileges, InfoBuffer,
 sizeof(InfoBuffer), &dwInfoBufferSize);

 printf("Account privileges: \n\n");
 for(x=0; x<ptgPrivileges->PrivilegeCount; x++)
 {
 dwPrivilegeNameSize = sizeof(ucPrivilegeName);
 dwDisplayNameSize = sizeof(ucDisplayName);
 LookupPrivilegeName(NULL, &ptgPrivileges->Privileges[x].Luid,
 ucPrivilegeName, &dwPrivilegeNameSize);
 LookupPrivilegeDisplayName(NULL, ucPrivilegeName,
 ucDisplayName, &dwDisplayNameSize, &dwLangId);
 printf("%40s (%s)\n", ucDisplayName, ucPrivilegeName);
 }
 }

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

Listing the Named Shared Objects
PSS ID Number: Q105764
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5
--

Included with the Win32 SDK is an object viewer utility called WinObj that
be used to list named objects, devices, dynamic-link libraries (DLLs), and
so forth. To find objects such as pipes, memory, and semaphores, start
WinObj and select the folder BaseNamedObjects.

Additional reference words: 3.10 3.50
KBCategory: kbtool
KBSubcategory: TlsMisc

Localizing the Setup Toolkit for Foreign Markets
PSS ID Number: Q92523
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK, version 3.5
--

There are no localized versions of the Setup Toolkit .DLLs available.
However, the resource files for these .DLLs are provided with the
Windows 3.1 Software Development Kit (SDK). They can be found in the
INTLDLL subdirectory in the MSSETUP directory created by the SDK
Setup.

The strings in the STRINGTABLES in these .RC files can be translated.
The localized .RC files can then be bound to the .DLLs using the
resource compiler.

Additional reference words: 3.10 3.50 MSSETUP tool kit
KBCategory: kbtool
KBSubcategory: TlsMss

Location of the Cursor in a List Box
PSS ID Number: Q29961

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

There is no way to determine which item in the list box has the cursor
when the LBN_DBLCLK message is received. You must keep track of which
item has the cursor as it moves among the items. When you receive the
double-click message, you will know which box has the cursor.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbui
KBSubcategory: UsrCtl

Location of WNet* API Functions
PSS ID Number: Q102381

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0

The WNet* API routines are implemented in MPR.DLL. When linking an
application that uses these routines, link with the import library MPR.LIB.
For a list of which APIs can be resolved with which import libraries, see
the file WIN32API.CSV, which is included in the Win32 SDK and the Visual
C++ 32-bit edition.

Additional reference words: 3.10 3.50 4.00 95 lnk2001
KBCategory: kbnetwork
KBSubcategory: NtwkWinnet

Long File & Path Names Shorten When Launched Using Association
PSS ID Number: Q142275
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0
--

SYMPTOMS
========

When an application is installed along a path that contains a space (as in
C:\Program Files\MyApp) and you double-click a data file registered to
MyApp.exe in Explorer (or any other shell), you will only get a short file
name on the command line.

RESOLUTION
==========

To resolve the problem, place quotation marks around the around the
arguments list in the registry entries, as in this example:

 HKEY_CLASSES_ROOT\MyApp\Shell\Open\Command =
 <path to MyApp.exe> "%1"

Without the quotation marks, short names are the result. With quotation
marks, long file names are the result. This works correctly in Windows 95
and Windows NT 3.51.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

The 8.3 file name specification didn't allow spaces in filenames, so the
system automatically converts long file names to short filenames when no
quotation marks are used to differenciate between a long file name and
a list of short names seperated by spaces.

Basically the shell looks at the .exe type of the program refered to,
if it is a win32 .exe, the shell passes a long name by default (as %1), if
it is not, the shell passes the short name. The code that sniffs the .exe
type requires the quotation marks to get this right.

Additional reference words: 4.00
KBCategory: kbenv kbprg kbprb
KBSubcategory:

Long Filenames on Windows NT FAT Partitions
PSS ID Number: Q115236

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.5

SUMMARY
=======

Windows NT, version 3.5, introduces the ability to create or open files
with long filenames (LFN) on Windows NT file allocation table (FAT)
partitions.

UNICODE is stored on disk, so that the original name is always preserved
for extended characters regardless of which code page happens to be active
when reading from or writing to the disk.

The legal character set is that of the Windows NT file system (NTFS)
(except for the ":" for opening NTFS alternative file streams), so you can
copy arbitrary files between NTFS and FAT without losing any of the
filename information.

MORE INFORMATION
================

The LFNs are not available from the MS-DOS DIR command, but they are
available from the Windows NT DIR command. When you create an LFN on a
Windows NT FAT partition, an accompanying short name is created just as
on an NTFS partition. You can access the file or directory with either
the long names or the short names under Windows NT.

For example, use the Microsoft Editor (MEP) to create a file named as
follows on a FAT partition under Windows NT:

 longfilename.fat

This is exactly how the filename appears when you run the DIR command from
the Windows NT command prompt. However, when you boot the machine into MS-
DOS and run the DIR command, the filename appears as follows:

 longfi~1.fat

NOTE: NTFS partitions are not available under MS-DOS, so you cannot
perform this experiment using an NTFS partition.

The same result can also be achieved programmatically. Build and run the
following sample code on Windows NT:

Sample Code

 #include <windows.h>

 void main()
 {
 WIN32_FIND_DATA fd;
 char buf[80];

 FindFirstFile("long*", &fd);
 wsprintf(buf, "File name is %s", fd.cFileName);
 MessageBox(NULL, buf, "Test", MB_OK);
 wsprintf(buf, "Alternate file name is %s", fd.cAlternateFileName);
 MessageBox(NULL, buf, "Test", MB_OK);
 }

The first message box will read:

 File name is longfilename.fat

The second message box will read:

 Alternate file name is longfi~1.fat

Additional reference words: 3.50
KBCategory: kbprg
KBSubcategory: BseFileio

Looking Up the Current User and Domain
PSS ID Number: Q111544

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

Program Manager displays the logged in user account and domain name in its
windows title. This information can be retrieved programmatically by
extracting the user SID from the current access token and then looking up
the account and domain name via the LookupAccountSid() Win32 API. Below is
sample code demonstrating this technique:

Sample Code

void ShowUserDomain(void)
{
 HANDLE hProcess, hAccessToken;
 UCHAR InfoBuffer[1000],szAccountName[200], szDomainName[200];
 PTOKEN_USER pTokenUser = (PTOKEN_USER)InfoBuffer;
 DWORD dwInfoBufferSize,dwAccountSize = 200, dwDomainSize = 200;
 SID_NAME_USE snu;

 hProcess = GetCurrentProcess();

 OpenProcessToken(hProcess,TOKEN_READ,&hAccessToken);

 GetTokenInformation(hAccessToken,TokenUser,InfoBuffer,
 1000, &dwInfoBufferSize);

 LookupAccountSid(NULL, pTokenUser->User.Sid, szAccountName,
 &dwAccountSize,szDomainName, &dwDomainSize, &snu);

 printf("%s\\%s\n",szDomainName,szAccountName);
}

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

MAKEINTATOM() Does Not Return a Valid LPSTR
PSS ID Number: Q61980

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The LPSTR returned from MAKEINTATOM() cannot be treated as a
general-purpose string pointer. Instead, either use it with the Atom
family or convert it into a valid string before passing it off as one.

MORE INFORMATION
================

The MAKEINTATOM() macro is documented on Page 370 of the "Microsoft
Windows Software Development Kit Programmer's Reference" versions 2.x
as returning a value of type LPSTR. This is correct, but misleading.
The LPSTR value returned is a "fabricated" LPSTR and cannot be
considered a general-purpose string pointer. Consider the definition
of the MAKEINTATOM macro:

 #define MAKEINTATOM(i) (LPSTR) ((DWORD)((WORD)(i)))

This tells the compiler to "take the integer value 'i', think of it as
a WORD, zero-extend this into a DWORD, then think of this as a LPSTR."
Thus, MAKEINTATOM(1Ah) returns 001Ah. This obviously is not the same
as "1A", which would be ASCII(1)+ASCII(A)+0.

The reason this psuedo-LPSTR works with AddAtom(), for example, is
that AddAtom() looks to see if the HIWORD of the LPSTR parameter is
0 (zero). If so, AddAtom() knows that the LOWORD contains an actual
integer value and it simply grabs that.

The following code samples show how problems can occur with these
psuedo-LPSTRs returned from MAKEINTATOM.

Incorrect

ATOM AddIntAtom(int iAtom)
{
 LPSTR szAtom;

 MessageBox(hWnd,
 (szAtom=MAKEINTATOM(iAtom)),

 "Adding Atom",
 MB_OK);
 return (AddAtom(szAtom));
}

The above code fragment will create and return a valid atom, but the
message box will display an erroneous value.

Correct

ATOM AddIntAtom(int iAtom)
{
 LPSTR szAtom;
 char szBuf[10];

 szAtom=MAKEINTATOM(iAtom);
 sprintf(szBuf, "%d", LOWORD(szAtom)); /* Here's the trick */
 MessageBox(hWnd,
 szBuf,
 "Adding Atom",
 MB_OK);
 return (AddAtom(szAtom));
}

In the above example, we converted the integer value contained in the
LOWORD of szAtom into a character string, then used this new character
string in the MessageBox() call.

Although these code fragments illustrate the limitations of a
MAKEINTATOM LPSTR, they are not very realistic because you really
should use GetAtomName() to get the character string of an atom. If
you have not yet created an atom out of an integer value, you could
just format the integer into character string directly, as follows:

 sprintf (szBuf, "%d", iAtom);
 MessageBox (hWnd, szBuf,....);

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrDde

Making a List Box Item Unavailable for Selection
PSS ID Number: Q74792

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In the Microsoft Windows graphical environment, an application can use
a list box to enumerate options. However, there are circumstances in
which one or more options may not be appropriate. The application can
change the appearance of items in a list box and prevent the user from
selecting one of these items by using the techniques discussed below.

MORE INFORMATION
================

Changing the Appearance of a List Box Item
--

To dim (gray) a particular item in a list box, use an owner-draw list
box as follows:

1. Create a list box that has the LBS_OWNERDRAW and LBS_HASSTRINGS
 styles.

2. Use the following code to process the WM_MEASUREITEM message:

 case WM_MEASUREITEM:
 ((MEASUREITEMSTRUCT FAR *)(lParam))->itemHeight = wItemHeight;
 break;

 wItemHeight is the height of a character in the list box font.

3. Use the following code to process the WM_DRAWITEM message:

 #define PHDC (pDIS->hDC)
 #define PRC (pDIS->rcItem)

 DRAWITEMSTRUCT FAR *pDIS;

 ...

 case WM_DRAWITEM:
 pDIS = (DRAWITEMSTRUCT FAR *)lParam;

 /* Draw the focus rectangle for an empty list box or an
 empty combo box to indicate that the control has the
 focus
 */
 if ((int)(pDIS->itemID) < 0)
 {
 switch(pDIS->CtlType)
 {
 case ODT_LISTBOX:
 if ((pDIS->itemAction) & (ODA_FOCUS))
 DrawFocusRect (PHDC, &PRC);
 break;

 case ODT_COMBOBOX:
 if ((pDIS->itemState) & (ODS_FOCUS))
 DrawFocusRect (PHDC, &PRC);
 break;
 }
 return TRUE;
 }

 /* Get the string */
 switch(pDIS->CtlType)
 {
 case ODT_LISTBOX:
 SendMessage (pDIS->hwndItem,
 LB_GETTEXT,
 pDIS->itemID,
 (LPARAM)(LPSTR)szBuf);
 break;

 case ODT_COMBOBOX:
 SendMessage (pDIS->hwndItem,
 CB_GETLBTEXT,
 pDIS->itemID,
 (LPARAM)(LPSTR)szBuf);
 break;
 }

 if (*szBuf == '!') // This string is disabled
 {
 hbrGray = CreateSolidBrush (GetSysColor
 (COLOR_GRAYTEXT));
 GrayString (PHDC,
 hbrGray,
 NULL,
 (LPARAM)(LPSTR)(szBuf + 1),
 0,
 PRC.left,
 PRC.top,
 0,
 0);
 DeleteObject (hbrGray);

 /* SPECIAL CASE - Need to draw the focus rectangle if

 there is no current selection in the list box, the
 1st item in the list box is disabled, and the 1st
 item has gained or lost the focus
 */
 if (pDIS->CtlType == ODT_LISTBOX)
 {
 if (SendMessage (pDIS->hwndItem,
 LB_GETCURSEL,
 0,
 0L) == LB_ERR)
 if ((pDIS->itemID == 0) &&
 ((pDIS->itemAction) & (ODA_FOCUS)))
 DrawFocusRect (PHDC, &PRC);
 }
 }

 else // This string is enabled
 {
 if ((pDIS->itemState) & (ODS_SELECTED))
 {
 /* Set background and text colors for selected
 item */
 crBack = GetSysColor (COLOR_HIGHLIGHT);
 crText = GetSysColor (COLOR_HIGHLIGHTTEXT);
 }
 else
 {
 /* Set background and text colors for unselected
 item */
 crBack = GetSysColor (COLOR_WINDOW);
 crText = GetSysColor (COLOR_WINDOWTEXT);
 }

 // Fill item rectangle with background color
 hbrBack = CreateSolidBrush (crBack);
 FillRect (PHDC, &PRC, hbrBack);
 DeleteObject (hbrBack);

 // Set current background and text colors
 SetBkColor (PHDC, crBack);
 SetTextColor (PHDC, crText);

 // TextOut uses current background and text colors
 TextOut (PHDC,
 PRC.left,
 PRC.top,
 szBuf,
 lstrlen(szBuf));

 /* If enabled item has the input focus, call
 DrawFocusRect to set or clear the focus
 rectangle */
 if ((pDIS->itemState) & (ODS_FOCUS))
 DrawFocusRect (PHDC, &PRC);
 }

 return TRUE;

Strings that start with "!" are displayed dimmed. The exclamation mark
character is not displayed.

Preventing Selection

To prevent a dimmed string from being selected, create the list box
with the LBS_NOTIFY style. Then use the following code in the list
box's parent window procedure to process the LBN_SELCHANGE
notification:

 case WM_COMMAND:

 switch (wParam)
 {

 ...

 case IDD_LISTBOX:
 if (LBN_SELCHANGE == HIWORD(lParam))
 {
 idx = (int)SendDlgItemMessage(hDlg, wParam,
 LB_GETCURSEL, 0, 0L);
 SendDlgItemMessage(hDlg, wParam, LB_GETTEXT, idx,
 (LONG)(LPSTR)szBuf);
 if ('!' == *szBuf)
 {
 // Calculate an alternate index here
 // (not shown in this example).

 // Then set the index.
 SendDlgItemMessage(hDlg, wParam, LB_SETCURSEL, idx, 0L);
 }
 }
 break;

 ...

 }
 break;

When the user attempts to select a dimmed item, the alternate index
calculation moves the selection to an available item.

Additional reference words: 3.00 3.10 3.50 4.00 95 listbox
KBCategory: kbui
KBSubcategory: UsrCtl

Managing Per-Window Accelerator Tables
PSS ID Number: Q82171

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In the Windows environment, an application can have several windows,
each with its own accelerator table. This article describes a simple
technique requiring very little code that an application can use to
translate and dispatch accelerator key strokes to several windows. The
technique employs two global variables, ghActiveWindow and
ghActiveAccelTable, to track the currently active window and its
accelerator table, respectively. These two variables, which are used
in the TranslateAccelerator function in the application's main message
loop, achieve the desired result.

MORE INFORMATION
================

The key to implementing this technique is to know which window is
currently active and which accelerator table, if any, is associated
with the active window. To track this information, process the
WM_ACTIVATE message that Windows sends each time an application gains
or loses activation. When a window loses activation, set the two
global variables to NULL to indicate that the window and its
accelerator table are no longer active. When a window that has an
accelerator table gains activation, set the global variables
appropriately to indicate that the accelerator table is active. The
following code illustrates how to process the WM_ACTIVATE message:

case WM_ACTIVATE:
 if (wParam == 0) // indicates loss of activation
 {
 ghActiveWindow = ghActiveAccelTable = NULL;
 }
 else // indicates gain of activation
 {
 ghActiveWindow = <this window>;
 ghActiveAccelTable = <this window's accelerator table>;
 }
 break;

The application's main message loop resembles the following:

while (GetMessage(&msg, // message structure
 NULL, // handle of window receiving the msg
 NULL, // lowest message to examine
 NULL)) // highest message to examine
{
 if (!TranslateAccelerator(ghActiveWindow, // active window
 ghActiveAccelTable, // active accelerator
 &msg))
 {
 TranslateMessage(&msg); // Translates virtual key codes
 DispatchMessage(&msg); // Dispatches message to
 // window procedure
 }
}

Under Windows version 3.1, the WM_ACTIVATE message with the wParam set
to WA_INACTIVE indicates loss of activation.

Under Win32, the low-order word of wParam set to WA_INACTIVE indicates
deactivation.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbui
KBSubcategory: UsrMen

Mapping .INI File Entries to the Registry
PSS ID Number: Q104136

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

Under Windows NT, .INI file variables are mapped into the Registry as
defined in the

 \HKEY_LOCAL_MACHINE
 \Software\Microsoft\WindowsNT\CurrentVersion\IniFileMapping

mapping key. The Win32 Profile application programming interface (API)
functions look for a mapping by looking up the filename extension portion
of the profile file. If a match is found, then the search continues under
that node for the specified application name. If a match is found, then the
search continues for the variable name. If the variable name is not found,
the value of the (NULL) variable name is a string that points to a node in
the Registry, whose value keys are the variable names. If a specific
mapping is found for the variable name, then its value points to the
Registry value that contains the variable value.

The Profile API calls go to the Windows server to look for an actual .INI
file, and read and write its contents, only if no mapping for either the
application name or filename is found. If there is a mapping for the
filename but not the application name, and there is a (NULL) application
name, the value of the (NULL) variable will be used as the location in the
Registry of the variable, after appending the application name to it.

In the string that points to a Registry node, there are several
prefixes that change the behavior of the .INI file mapping:

 ! - This character forces all writes to go both to the Registry and
 to the .INI file on disk.

 # - This character causes the Registry value to be set to the value
 in the Windows 3.1 .INI file when a new user logs in for the
 first time after setup.

 @ - This character prevents any reads from going to the .INI file
 on disk if the requested data is not found in the Registry.

 USR: - This prefix stands for HKEY_CURRENT_USER, and the text after
 the prefix is relative to that key.

 SYS: - This prefix stands for HKEY_LOCAL_MACHINE\Software, and the
 text after the prefix is relative to that key.

Additional reference words: 3.10 3.50 inifilemapping
KBCategory: kbprg

KBSubcategory: BseMisc

Mapping Modes and Round-Off Errors
PSS ID Number: Q89215

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Mapping modes, window extents/origins, and viewport extents/origins
allow for very powerful coordinate manipulation, such as scaling or
moving objects. However, you should be aware that there are cases when
using mapping modes other than MM_TEXT results in improper painting
due to round-off errors.

Round-off errors occur when one logical unit does not equal one device
unit, and an application requests the graphics device interface (GDI)
to perform an action that would result in a nonintegral number of
pixels needing to be drawn, scrolled, blt'd, and so on.

Round-off errors can manifest themselves in many ways, including
unpainted portions of a client area when scrolling, gaps between
objects that shouldn't have gaps (or vice versa), objects that shrink
or grow one pixel depending on where they are on the screen, objects
of unexpected sizes, and so on.

MORE INFORMATION
================

To better understand round-off errors, consider the following code:

 SetMapMode (hDC, MM_ANISOTROPIC);
 SetWindowExt (hDC, 2, 2);
 SetViewportExt (hDC, 3, 3);
 PatBlt (hDC, 0, 0, 5, 2, BLACKNESS);

This code tells the GDI to treat two logical units (the coordinates
used by most GDI functions), in both the vertical and horizontal
direction, as being equal to three device units (pixels). It then asks
the GDI to draw what amounts to a black rectangle five logical units
wide by three logical units tall starting at the logical point (0,0).

The GDI would translate this request into a request to draw a
rectangle 7.5 (5 * 3/2 = 7.5) pixels wide by 3 (2 * 3/2 = 3) pixels
tall. However, display cards cannot draw half a pixel, so the GDI
would either have to round the width up to 8 or truncate it to 7. If

an application relied on one behavior or the other, improper painting
could occur.

Note that using mapping modes, window origins/extents, and viewport
origins/extents does not mean that an application will have round-off
errors. The occurrence of round-off errors depends on what these
features are used for, the structure of the application, and other
factors. Many applications take advantage of mapping modes, window
origins/extents, and viewport origins/extents without ever
encountering adverse round-off errors.

If an application exhibits round-off errors, there are a number of ways
to prevent them, some which are described below.

Method 1

Only use MM_TEXT mapping mode, where one logical unit always equals
one device unit. However, the application must do all its own scaling
and moving of objects. The benefit of this approach is that the
application has strict control over how objects are scaled and moved;
you can look at your code to see the algebra that leads to round-off
errors, and counter these errors appropriately. The drawback to this
approach is that it makes the code more complicated and harder to read
than it might be if the SetMapMode, SetWindowOrg, SetWindowExt,
SetViewportOrg, and SetViewportExt functions were used.

Method 2

Mix MM_TEXT mapping mode with the mapping mode required. Sometimes
applications only have round-off problems with certain types of
objects. For example, in a graphing program, the application might
want to set a certain mapping mode to draw a bar graph; this mapping
mode might cause the fonts that the application draws to be of the
wrong size.

To work around problems like this, mix MM_TEXT mapping mode with your
mapping mode of choice. You could use MM_TEXT when dealing with
objects that need exact sizes or placement and the other mapping mode
for other drawing.

The benefits and drawbacks of this method are almost the same as those
for method 1. However, with method 2, applications can take advantage
of mapping modes for some of the scaling and moving of objects.

Method 3

If window/viewport origins/extents are set at compile time, be sure to
only do operations that would result in no round-off errors. For
example, take the fraction WindowExt over ViewportExt, and reduce this
fraction. Then only do operations that involve multiples of the
reduced WindowExt values. For example, given the following

 WindowExt = (6, 27)
 ViewportExt = (50, 39)

turn this into a fraction and reduce it. It yields:

 in x direction: 6/50 = (2 * 3) / (2 * 5 * 5) = 3/25
 in y direction: 27/39 = (3 * 3 * 3) / (3 * 13) = 9/13

Therefore, anything done in the x direction could be done using a
multiple of three logical units; anything done in the y direction
could be done using a multiple of nine logical units. For example, if
the application wanted to scroll the window horizontally, it could
scroll 3, 6, 9, 12, and so on logical units without having to deal
with rounding errors. By using these values, the application will
never have round-off errors.

One benefit of this method is that an application can take advantage
of window origins/extents and viewport origins/extents. A disadvantage
is that the application is limited to a certain set of origins/extents
(that is, those built into the application at compile time).

Method 4

Applications can perform method 3 on-the-fly. This allows the
application to deal with arbitrary window origins/extents and viewport
origins/extents. To determine the minimum number of logical units an
application could use given arbitrary extent values, the following
code might prove useful (the code shown is for determining the value
to use in the horizontal direction):

int GetMinWinXFactor (HDC hDC)
{
 int nMinX, xWinExt, xViewExt, nGCD;

 xWinExt = LOWORD (GetWindowExt (hDC));
 xViewExt = LOWORD (GetViewportExt (hDC));
 while ((nGCD = GreatestCommonDivisor (xWinExt, xViewExt)) != 1)
 {
 xWinExt /= nGCD;
 xViewExt /= nGCD;
 }
 return xWinExt;
}

int GreatestCommonDivisor (int i, int j)
{
 while (i != j)
 if (i > j)
 i -= j;
 else
 j -= i;
 return i;
}

The return value from the GetMinWinXFactor function above can then be
used just like in method 3 (that is, the application can do all output
based on multiples of this value).

Final Notes

The discussion above did not take into account the window origin,
which can contribute to round-off errors. How origins and extents
affect the coordinates that GDI uses is summed up in "Programmer's
Reference.

Developers using mapping modes are encouraged to study the equations
presented in the programmer's reference. The GDI uses these equations when
converting between logical and device units. When round-off errors occur in
an application, it is always a good idea to run the numbers through these
equations to try to determine the cause of the errors.

Additional reference words: 3.00 3.10 3.50 4.00 95 rounding
KBCategory: kbgraphic
KBSubcategory: GdiDc

Maximum Brush Size
PSS ID Number: Q12071

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

The maximum size of a brush is determined by the OEM driver. In
theory, any brush size can be created. However, the brushes are
realized by the OEM driver. The only requirement the driver must
satisfy is that it must be able to handle 8 x 8 brushes.

If the driver realizes variable sizes, passing any bitmap is
acceptable. The driver decides what to do with brushes larger than
8 x 8.

Currently, sample drivers use the top left 8 x 8 piece of the pattern;
however, if the OEM wants to use the whole pattern, that also is
proper. The limit of the current device drivers is 8 x 8 because of a
performance trade-off.

The amount of pattern realized is a display driver-dependent issue.

Additional reference words: 3.00 3.10 4.00 95
KBCategory: kbgraphic
KBSubcategory: GdiPnbr

Memory Handle Allocation
PSS ID Number: Q91194

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

This article discusses the limitations that exist when allocating memory
handles.

The minimum block you can reserve with each call to VirtualAlloc() is 64K.
It is a good idea to confirm this number by checking the allocation
granularity returned by GetSystemInfo().

With HeapAlloc(), there is no limit to the number of handles that can be
allocated. GlobalAlloc() and LocalAlloc() (combined) are limited to 65536
total handles for GMEM_MOVEABLE and LMEM_MOVEABLE memory per process. Note
that this limitation does not apply to GMEM_FIXED or LMEM_FIXED memory.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseMm

Memory Requirements for a Win32 App vs. the Win16 Version
PSS ID Number: Q117892

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s versions 1.1, 1.15, and 1.2

SUMMARY
=======

A Win32 port of a Windows-based application generally requires more virtual
memory than the original Windows-based application. However, it is possible
for the Win32 version of the application to have a smaller working set. The
working set is the certain number of pages that the virtual memory manager
must keep in memory for a process to execute efficiently. If you lower the
working set of an application, it will use less RAM.

MORE INFORMATION
================

It can appear that the Win32-based version of an application running on
Win32s requires more RAM than the Windows-based version of the application
running on the same machine. This is because segments of a Windows-based
application are loaded only as they are referenced, while the address space
is reserved for the Win32-based application and its DLLs (dynamic-link
libraries) at program load. Therefore, the memory count that is displayed
by many "About" boxes is misleading: for the Windows-based application, the
free memory reported is reduced by the number of segments actually loaded;
for the Win32-based application, the free memory reported is reduced by the
total address space required. However, this free memory represents only the
virtual address space that all applications share, not the amount of RAM
actually used.

You can use WMem to determine the address space used, the number of
physical pages of RAM used, and to get an estimate of the working set. On a
machine that has enough RAM to load the whole application without swapping,
run only Program Manager and WMem. Use SHIFT+double-click in WMem and write
down the available physical memory. Activate the application and use
SHIFT+double-click again. The difference between the available physical
memory before and after activating the application is a rough estimate of
the working set. Test your application further and see how the working set
changes during execution.

The working set of a Win32-based application can be decreased 30 percent or
more with the use of the Working Set Tuner, included in the Win32 SDK.
However, a Win32-based application may fail to load on Win32s even if its
working set is significantly smaller than the free RAM (for example, 100K
working set versus 1 megabyte free RAM). The entire application, DLLs
included, must be mapped into the virtual address space.

The virtual memory size is set by the system at boot time, based on several
factors. RAM is one factor, free disk space is another. The system must be
able to allocate enough space for the swap file on disk. Windows, by
default, allows the size of the swap file to be a maximum of 4 times larger
than available RAM. This constant (4) can be modified by setting
PageOverCommit in the 386enh section of the SYSTEM.INI file. Valid settings
are between 1 and 20. Setting PageOverCommit to a value larger than 4 will
result in less efficient usage of resources and slower execution, but it
will allow you to run applications that otherwise are not able to run.

Additional reference words: 1.10 1.20 3.10 3.50 4.00 95 ProgMan
KBCategory: kbprg
KBSubcategory: BseMm

Menu Operations When MDI Child Maximized
PSS ID Number: Q71836

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

Pop-up menus added to an MDI application's menu using InsertMenu() with
MF_BYPOSITION will be inserted one position further left than expected if
the active MDI child window is maximized. This behavior occurs because the
system menu of the active MDI child is inserted into the first position of
the MDI frame window's menu bar.

To avoid this problem, if the active child is maximized when a new pop-up
is inserted by position, add 1 (one) to the position value that would
otherwise have been used. To determine that the currently active child
window is maximized, send a WM_MDIGETACTIVE message to the MDI client
window. In 16-bit Windows, if the high word of the return value from this
message contains 1, the active child window is maximized. In Win32, you
need to pass a pointer to a BOOL in the lParam. If the child window is
maximized, then Windows will set the BOOL pointed to by the lParam to TRUE.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbui
KBSubcategory: UsrMdi

Message Retrieval in a DLL
PSS ID Number: Q96479

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

When a function in a dynamic-link library (DLL) retrieves messages on
behalf of a calling application, the following must be addressed:

 - The application and the DLL may be re-entered.
 - The application can terminate while in the DLL's message retrieval
 loop.
 - The DLL must allow the application to preprocess any messages that
 may be retrieved.

MORE INFORMATION
================

The following concerns arise when a function in a DLL retrieves
messages by calling GetMessage or PeekMessage:

 - When the DLL function retrieves, translates, and dispatches
 messages, the calling application and the DLL function may be re-
 entered. This is because message retrieval can cause the calling
 application to respond to user input while waiting for the DLL
 function to return. The DLL function can return a reentrancy error
 code if this happens. To prevent reentrancy, disable windows and
 menu-items, or use a filter in the GetMessage or PeekMessage call
 to retrieve specific messages.

 - The application can terminate while execution is in the DLL
 function's message retrieval loop. The WM_QUIT message retrieved by
 the DLL must be re-posted and the DLL function must return to the
 calling application. This allows the calling application's message
 retrieval loop to retrieve WM_QUIT and terminate.

 - When the DLL retrieves messages, it must allow the calling
 application to preprocess the messages (to call
 TranslateAccelerator, IsDialogMessage, and so forth) if required.
 This is be done by using CallMsgFilter to call any WH_MSGFILTER
 hook that the application may have installed.

The following code shows a message retrieval loop in a DLL function
that waits for a PM_COMPLETE message to signal the end of processing:

while (notDone)
{
 GetMessage(&msg, NULL, 0, 0);

 // PM_COMPLETE is a WM_USER message that is posted when
 // the DLL function has completed.
 if (msg.message == PM_COMPLETE)
 {
 Clean up and set result variables;
 return COMPLETED_CODE;
 }
 else if (msg.message == WM_QUIT) // If application has terminated...
 {
 // Repost WM_QUIT message and return so that calling
 // application's message retrieval loop can exit.
 PostQuitMessage(msg.wParam);
 return APP_QUIT_CODE;
 }

 // The calling application can install a WH_MSGFILTER hook and
 // preprocess messages when the nCode parameter of the hook
 // callback function is MSGF_MYHOOK. This allows the calling
 // application to call TranslateAccelerator, IsDialogMessage, etc.
 if (!CallMsgFilter(&msg, MSGF_MYHOOK))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }

 :
 :
}

Define MSGF_HOOK to a value greater than or equal to MSGF_USER defined
in WINDOWS.H to prevent collision with values used by Windows.

Preprocessing Messages in the Calling Application

The calling application can install a WH_MSGFILTER hook to preprocess
messages retrieved by the DLL. It is not required for the calling
application to install such a hook if it does not want to preprocess
messages.

 lpfnMsgFilterProc = MakeProcInstance((FARPROC)MsgFilterHookFunc,
 ghInst);
 hookprocOld = SetWindowsHook(WH_MSGFILTER, lpfnMsgFilterProc);
 // Call the function in the DLL.
 DLLfunction();
 UnhookWindowsHook(WH_MSGFILTER, lpfnMsgFilterProc);
 FreeProcInstance(lpfnMsgFilterProc);

MsgFilterHookFunc is the hook callback function:

LRESULT CALLBACK MsgFilterHookFunc(int nCode, WPARAM wParam,
 LPARAM lParam)
{
 if (nCode < 0)
 return DefHookProc(nCode, wParam, lParam, &hookprocOld);

 // If CallMsgFilter is being called by the DLL.
 if (nCode == MSGF_MYHOOK)
 {
 Preprocess message (call TranslateAccelerator,
 IsDialogMessage etc.);
 return 0L if the DLL is to call TranslateMessage and
 DispatchMessage. Return 1L if TranslateMessage and
 DispatchMessage are not to be called.
 }
 else return 0L;
}

Additional reference words: 3.10 3.50 3.51 4.00 95 yield
KBCategory: kbui
KBSubcategory: UsrMsg

Method for Sending Text to the Clipboard
PSS ID Number: Q35100

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Sending text to the Clipboard is usually a cumbersome process of
allocating and locking global memory, copying the text to that memory,
and sending the Clipboard the memory handle. This method involves many
pointers and handles and makes the entire process difficult to use and
understand.

Clipboard I/O is easily accomplished with an edit control. If a
portion of text is highlighted, an application can send the edit
control a WM_COPY or WM_CUT message to copy or cut the selected text
to the Clipboard. In the same manner, text can be pasted from the
Clipboard by sending a WM_PASTE message to an edit control.

The following example demonstrates how to use an edit control
transparently within an application to simplify sending and retrieving
text from the Clipboard. Note that this code will not be as fast as
setting or getting the Clipboard data explicitly, but it is easier
from a programming standpoint, especially if the text to be sent is
already in an edit control. Note also that the presence of the edit
window will occupy some additional memory.

MORE INFORMATION
================

For simplified Clipboard I/O, do the following:

1. Declare a global HWND, hEdit, which will be the handle to the edit
 control.

2. In WinMain, use CreateWindow() to create a child window edit
 control. Use the style WS_CHILD, and give the control dimensions
 large enough to hold the most text that may be sent to or received
 from the Clipboard. CreateWindow() returns the handle to the edit
 control that should be saved in hEdit.

3. When a Cut or Copy command is invoked, use SetWindowText() to place
 the desired string in the edit control, then use SendMessage() to
 select the text and copy or cut it to the Clipboard.

4. When a Paste command is invoked, use SetWindowText() to clear the
 edit control, then use SendMessage() to paste text from the
 Clipboard. Finally, use GetWindowText() to copy the text in the
 edit control to a string buffer.

The actual coding for this procedure is as follows:

 .
 .
 .

 #define ID_ED 100
 HWND hEdit;

 .
 .
 .
 /* In WinMain: hWnd is assumed to be the handle of the parent window,
*/
 /* hInstance is the instance handle of the parent.
*/
 /* The "EDIT" class name is required for this method to work. ID_ED
*/
 /* is an ID number for the control, used by Get/SetDlgItemText.
*/

 hEdit=CreateWindow("EDIT",
 NULL,
 WS_CHILD | BS_LEFTTEXT,
 10, 15, 270, 10,
 hWnd,
 ID_ED,
 hInstance,
 NULL);

 .
 .
 .

 /* In the procedure receiving CUT, COPY, and PASTE commands: */
 /* Note that the COPY and CUT cases perform the same actions, only */
 /* the CUT case clears out the edit control. */

 /* Get the string length */
 short nNumChars=strlen(szText);

 case CUT:
 /* First, set the text of the edit control to the desired string */
 SetWindowText(hEdit, szText);

 /* Send a message to the edit control to select the string */
 SendMessage(hEdit, EM_SETSEL, 0, MAKELONG(0, nNumChars));

 /* Cut the selected text to the clipboard */

 SendMessage(hEdit, WM_CUT, 0, 0L);
 break;

 case COPY:
 /* First, set the text of the edit control to the desired string */
 SetWindowText(hEdit, szText);

 /* Send a message to the edit control to select the string */
 SendMessage(hEdit, EM_SETSEL, 0, MAKELONG(0, nNumChars));

 /* Copy the text to the clipboard */
 SendMessage(hEdit, WM_COPY, 0, 0L);
 break;

 case IDM_PASTE:
 /* Check if there is text available */
 if (IsClipboardFormatAvailable(CF_TEXT))
 {
 /* Clear the edit control */
 SetWindowText(hEdit, "\0");

 /* Paste the text in the clipboard to the edit control */
 SendMessage(hEdit, WM_PASTE, 0, 0L);

 /* Get the test from the edit control into a string. */
 /* nNumChars represents the number of characters to get */
 /* from the edit control. */
 GetWindowText(hEdit, szText, nNumChars);
 }
 else
 MessageBeep(0); /* Beep on illegal request */
 break;

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrClp

Microsoft Win32s Upgrade
PSS ID Number: Q122235
-------------------------------- -------------------------------------
The information in this article applies to:

 - Microsoft Win32s, version 1.30c

SUMMARY
=======

Microsoft Win32s version 1.30c is the latest version of the software that
allows you to run Win32-based applications on Windows version 3.1 or
Windows for Workgroups versions 3.1 and later. The Win32s upgrade is now
available in the Microsoft Software Library (MSL) as PW1118.EXE.

The Microsoft Win32s upgrade includes OLE support.

The Win32s upgrade is intended as an end-user upgrade and is not intended
for further redistribution.

You can find PW1118.EXE, a self-extracting file, on these services:

 - Microsoft's World Wide Web site on the Internet
 On the www.microsoft.com home page, click the Support icon
 Click Knowledge Base, and select the product
 Enter kbfile PW1118.EXE, and click GO!
 Open the article, and click the button to download the file

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the Softlib/Mslfiles folder
 Get PW1118.EXE

 - The Microsoft Network
 On the Edit menu, click Go To, and then click Other Location
 Type "mssupport" (without the quotation marks)
 Double-click the MS Software Library icon
 Find the appropriate product area
 Locate and Download PW1118.EXE

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download PW1118.EXE

For additional information about downloading, please see the following
article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q119591
 TITLE : How to Obtain Microsoft Support Files from Online Services

MORE INFORMATION
================

Microsoft Win32s version 1.30c is the latest version of the software that
allows you to run Win32-based applications on Windows version 3.1 or
Windows for Workgroups version 3.1 and later.

Installing Win32s from PW1118.EXE

The following are instructions for installing Win32s if you have downloaded
the PW1118.EXE file. The Win32s files are provided in a compressed state in
the PW1118.EXE file, which is a self-extracting file.

1. Create a directory on your hard disk for the decompressed files. For
 example, you could create a directory named Install by entering the
 following at the command prompt:

 mkdir Install

2. Copy PW1118.EXE to the new Install directory, change directories to the
 Install directory, and type the following at the command prompt:

 pw1118

 This decompresses the Win32s files into an installation layout (setup
 program) in the Install directory.

To Install Win32s on Your System

1. Run Windows and start the File Manager.

2. Open the Install directory (the directory created in step 1 of the setup
 instructions above).

3. Double-click Setup.exe. The setup program installs Win32s and restarts
 the system to update the system files. Win32s is now installed or
 upgraded on your system, and any obsolete Win32s files have been
 removed.

4. Delete the Install directory and its contents.

REFERENCES
==========

For additional information, please see the following articles in the
Microsoft Knowledge Base:

 ARTICLE-ID: Q106715
 TITLE : How to Troubleshoot Win32s Installation Problems

 ARTICLE-ID: Q120486
 TITLE : How to Remove Win32s

 ARTICLE-ID: Q117153
 TITLE : Display Problems with Win32s and the S3 Driver.

Additional reference words: 1.30c
KBCategory: kbsetup kbfile kbwebcontent
KBSubcategory: W32s

MIDL 1.0 and MIDL 2.0 Full Pointers Do Not Interoperate
PSS ID Number: Q115830
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.5
--

Microsoft Remote Procedure Call (RPC), version 1.0, has minimal support for
full pointers, so the version of the MIDL compiler with Microsoft RPC
version 1.0 (MIDL 1.0) treats full pointers (specified with the ptr
attribute) as unique pointers (specified with the unique attribute).

The MIDL compiler with Microsoft RPC, version 2.0 (MIDL 2.0), supports full
pointers. Because of the way Microsoft RPC, version 1.0, handles the on-
wire representation of pointers, applications compiled using MIDL 2.0 full
pointers cannot operate interactively with applications compiled using MIDL
1.0 full pointers.

The workaround is to recompile the MIDL 2.0 application to use unique
pointers.

Additional reference words: 3.50
KBCategory: kbnetwork
KBSubcategory: NtwkRpc

Mirroring Main Menu with TrackPopupMenu()
PSS ID Number: Q99806

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

A developer may want to use TrackPopupMenu() to display the same menu
that is used by the main window. TrackPopupMenu() takes a pop-up menu,
while GetMenu() and LoadMenu() both return handles to top level menus,
and therefore you cannot use the menus returned from these functions
with TrackPopupMenu(). To "mirror" the main menu, you must create
pop-up menus with the same strings, style, and IDs as the main menu.
To do this, use the following Windows APIs:

 GetMenu()
 CreatePopupMenu()
 GetMenuState()
 GetMenuString()
 GetSubMenu()
 AppendMenu()

MORE INFORMATION
================

The following code displays the same menu as the main window when the
right mouse button is clicked:

// In the main window procedure...

 case WM_RBUTTONDOWN:
 {

 HMENU hMenu; // The handle to the main menu.
 int nMenu; // The index of the menu item.
 POINT pt; // The point to display the track menu.
 HMENU hMenuOurs; // The pop-up menu that we are creating.
 UINT nID; // The ID of the menu.
 UINT uMenuState; // The menu state.
 HMENU hSubMenu; // A submenu.
 char szBuf[128]; // A buffer to store the menu string.

// Get the main menu.
 hMenu = GetMenu(hWnd);
 nMenu = 0;

// Create a pop-up menu.
 hMenuOurs = CreatePopupMenu();

// Get menu state will return the style of the menu
// in the lobyte of the unsigned int. Return value
// of -1 indicates the menu does not exist, and we
// have finished creating our pop up.
 while ((uMenuState =
 GetMenuState(hMenu,nMenu,MF_BYPOSITION)) != -1)
 {
 if (uMenuState != -1)
 {
// Get the menu string.
 GetMenuString(hMenu,nMenu, szBuf,128,MF_BYPOSITION);
 if (LOBYTE(uMenuState) & MF_POPUP) // It's a pop-up
menu.
 {
 hSubMenu = GetSubMenu(hMenu,nMenu);
 AppendMenu(hMenuOurs,
 LOBYTE(uMenuState),hSubMenu,szBuf);
 }
 else // Is a menu item, get the ID.
 {
 nID = GetMenuItemID(hMenu,nMenu);
 AppendMenu(hMenuOurs,LOBYTE(uMenuState),nID,szBuf);

 }
 nMenu++; // Get the next item.
 }
 }
 pt = MAKEPOINT(lParam);
// TrackPopupMenu expects screen coordinates.
 ClientToScreen(hWnd,&pt);
 TrackPopupMenu(hMenuOurs,
 TPM_LEFTALIGN|TPM_RIGHTBUTTON,
 pt.x,pt.y,0,hWnd,NULL);

// Because we are using parts of the main menu in our
// pop-up menu, we can't just delete the pop-up menu, because
// that would also delete the main menu. So we must
// go through the pop-up menu and remove all the items.
 while (RemoveMenu(hMenuOurs,0,MF_BYPOSITION))
 ;

// Destroy the pop-up menu.
 DestroyMenu(hMenuOurs);
 }
 break;

If the menu is never dynamically modified, then the menu hMenuOurs
could be made static and created inside the WM_CREATE message, and
destroyed in the WM_DESTROY message.

To see how this function works, paste this code into the MENU sample

application shipped with both Microsoft Visual C/C++ and Microsoft
C/C++ version 7.0 in the file MENU.C in the MenuWndProc() function.

Additional reference words: 3.10 3.50 3.51 4.00 95 popup
KBCategory: kbui
KBSubcategory: UsrMen

Missing Japanese Win32s-J Version 1.25 Files
PSS ID Number: Q130844
--
The information in this article applies to:

 - Microsoft Japanese Win32s-J version 1.25
--

SUMMARY
=======

The files missing from the Japanese Win32s version 1.25 release included in
MSDN (Microsoft Developers Network) Development Platform April '95 (CD 1)
are now available.

Download WIN32SJ.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download WIN32SJ.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the SOFTLIB\MSLFILES directory
 Get WIN32SJ.EXE

MORE INFORMATION
================

The following files are missing from the MSDN Win32s-J v1.25 NODEBUG
directory:

ole2conv.dll
ole2conv.sym
ole2disp.dll
ole2disp.sym
ole2nls.dll
ole2nls.sym
ole2prox.dll
ole2prox.sym
ole2thk.dll
ole32.dll
oleaut32.dll
oleaut32.sym
olecli.dll
olecli32.dll
olecli32.sym
olesvr32.dll
olesvr32.sym
sck16thk.dll
shell32.dll
shell32.sym
stdole.tlb

stdole32.tlb
storage.dll
typelib.dll
typelib.sym
version.dll
version.sym
w32s.386
w32scomb.dll
w32scomb.sym
w32skrnl.dll
w32sys.dll
win32s.exe
win32s16.dll
winmm.dll
winmm16.dll
winspool.drv
winspool.sym
wsock32.dll
wsock32.sym

All of these files are included in the self-extracting file (WIN32SJ.EXE)
available from the MSL.

Additional reference words: 1.25 3.10 kbinf kbmsdn
KBCategory: kbother kbfile
KBSubcategory: wintldev

Mixer Manager Incorporated into NT 3.5 SDK and DDK
PSS ID Number: Q124504

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.5, 3.51,
 and 4.0
 - Microsoft Win32 Device Development Kit (DDK) version 3.5

In Windows version 3.1, the Mixer Manager Application Programming Interface
(API) and Mixer Manager Service Provider Interface (SPI) are provided by
the Windows Sound System Version 2.0 Driver Development Kit (DDK). The
Windows Sound System Version 2.0 DDK supports 16-bit application and driver
development for digital audio mixers.

Starting with Windows NT version 3.5, the Mixer Manager API has been
incorporated into the Win32 SDK, and the Mixer Manager SPI has been
incorporated into the Win32 DDK. As a result, there is no 32-bit version of
the Windows Sound System Version 2.0 DDK; all of its functions have been
incorporated into the Win32 SDK and DDK.

Additional reference words: 3.50 4.00 95 WSS DDK Mixer Manager msmixmgr
msmixmgr.dll
KBCategory: kbmm
KBSubcategory: MMMixer

MS Setup Disklay2 Utility Calls COMPRESS.EXE Internally
PSS ID Number: Q103071
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0
--

The Disklay2 utility that comes with the Microsoft Setup Toolkit calls the
COMPRESS.EXE application internally to compress files. If this utility
cannot be found during the execution of Disklay2, the infamous "Bad Command
or Filename" error results. The screen dump of the results of Disklay2's
progress will contain this error message. The solution is to ensure
COMPRESS.EXE is available in the path.

COMPRESS.EXE is a component of the Windows Software Development Kit (SDK).

Additional reference words: 3.10 3.50 4.00 95 mssetup tool kit
KBCategory: kbtool
KBSubcategory: TlsMss

MultiByteToWideChar() Codepages CP_ACP/CP_OEMCP
PSS ID Number: Q108450
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5
--

SUMMARY
=======

MultiByteToWideChar() maps a character string to a wide-character string.
The declaration of this application programming interface (API) is as
follows:

 int MultiByteToWideChar(uCodePage, dwFlags, lpMultiByteStr,
 cchMultiByte, lpWideCharStr, cchWideChar)

 UINT uCodePage; /* codepage */
 DWORD dwFlags; /* character-type options */
 LPCSTR lpMultiByteStr; /* address of string to map */
 int cchMultiByte; /* number of characters in string */
 LPWSTR lpWideCharStr; /* address of wide-character buffer */
 int cchWideChar; /* size of wide-character buffer */

The first parameter, uCodePage, specifies the codepage to be used when
performing the conversion. This discussion applies to the first parameter
of WideCharToMultiByte() as well. The codepage can be any valid codepage
number. It is a good idea to check this number with IsValidCodepage(), even
though MultiByteToWideChar() returns an error if an invalid codepage is
used. The codepage may also be one of the following values:

 CP_ACP ANSI codepage
 CP_OEMCP OEM (original equipment manufacturer) codepage

CP_ACP instructs the API to use the currently set default Windows ANSI
codepage. CP_OEMCP instructs the API to use the currently set default OEM
codepage.

If Win32 ANSI APIs are used to get filenames from a Windows NT system, use
CP_ACP when converting the string. Windows NT retrieves the name from the
physical device and translates the OEM name into Unicode. The Unicode name
is translated into ANSI if an ANSI API is called, then it can be translated
back into Unicode with MultiByteToWideChar().

If filenames are being retrieved from a file that is OEM encoded, use
CP_OEMCP instead.

MORE INFORMATION
================

When an application calls an ANSI function, the FAT/HPFS file systems will
call AnsiToOem(); however, if an ANSI character does not exist in an OEM

codepage, the filename will not be representable. In these cases,
SetFileApisToOEM() should be called to prevent this problem by setting a
group of the Win32 APIs to use the OEM codepage instead of the ANSI
codepage.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: WIntlDev

Multicolumn List Boxes in Microsoft Windows
PSS ID Number: Q64504

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In the Microsoft Windows environment, a multicolumn list box is
designed to contain homogeneous data. For example, all the data might
be "first names." These first names could logically fall into the same
column or be in multiple columns. This feature was added to Windows at
version 3.0 to enable a list box to be shorter vertically by splitting
the data into two or three columns.

MORE INFORMATION
================

To create a multicolumn list box, specify the LBS_MULTICOLUMN style
when creating the list box. Then the application calls the SendMessage
function to send an LB_SETCOLUMNWIDTH message to the list box to set
the column width.

When an application sends an LB_SETCOLUMNWIDTH message to a
multicolumn list box, Windows does not update the horizontal scroll
bar until the a string is added to or deleted from the list box. An
application can work around this situation by performing the following
six steps when the column width changes:

1. Send the LB_SETCOLUMNWIDTH message to the list box.

2. Send a WM_SETREDRAW message to the list box to turn off redraw.

3. Add a string to the list box.

4. Delete the string from the list box.

5. Send a WM_SETREDRAW message to the list box to turn on redraw.

6. Call the InvalidateRect function to invalidate the list box.

In response, Windows paints the list box and updates the scroll bar.

Windows automatically manages the list box, including horizontal and
vertical scrolling and distributing the entries into columns. The
distribution is dependent on the dimensions of the list box. Windows

fills Column 1 first, then Column 2, and so on. For example, if an
application has a list box containing 13 ordered items and vertical
space for 5 items, items 1-5 would be in the first column, items 5-10
in the second, and 11-13 in the last column, and item order would be
maintained.

A multicolumn list box cannot have variable column widths.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrCtl

Multiline Edit Control Does Not Show First Line
PSS ID Number: Q66668

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

When a multiline edit control is created that is less than one system
character in height, the text in the edit control will not be displayed and
subsequent attempts to enter text will cause the edit control to beep. This
functionality is an invalid multiline edit control under Microsoft Windows
versions 3.0 and later, even though this construct does work in Windows
versions 2.x.

The multiline edit control also checks to see if the next line of text is
displayable. If the next line of text is not displayable, it will beep to
let you know that you have reached the limit of the edit control.

There is a similar situation with a control that overlaps another control
in a dialog box. This construct is also considered invalid; thus, the
second control will not be displayed.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrCtl

Multiline Edit Control Limits in Windows NT
PSS ID Number: Q89712

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

The default maximum size for a multiline edit (MLE) control in both Windows
and Windows NT is 30,000 characters. The EM_LIMITTEXT message allows an
application to increase this value. Setting "cchmax" to 0 is a portable
method of increasing this limit to the maximum in both Windows and Windows
NT. When cchmax is set to 0, the maximum size for an MLE is 4GB-1 (4
gigabytes minus 1).

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrCtl

Multiline Edit Control Wraps Text Different than DrawText
PSS ID Number: Q67722

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Multiline edit controls will not wrap text in the same manner as the
DrawText() function. This can be a problem when an application
displays text that has been in an edit control because the text may
wrap in a different location.

It is possible to obtain the text from the edit control and display it
statically in a window with the same line breaks. To do this, the
application must retrieve each line of text separately. This can be
accomplished by sending the EM_GETLINE message to the control and
displaying the retrieved text with the TextOut() function.

MORE INFORMATION
================

The following is a brief code fragment that demonstrates how to obtain
the text of a multiline edit control line by line:

 ... /* other code */

 char buf[80]; // Buffer for line storage
 HDC hDC; // Temporary display context
 HFONT hFont; // Temporary font storage
 int iNumEditLines; // How much text
 TEXTMETRIC tm; // Text metrics

 // Get number of lines in the edit control
 iNumEditLines = SendMessage(hEditCtl, EM_GETLINECOUNT, 0, 0L);

 hDC = GetDC(hWnd);

 // Get font currently selected into the control
 hFont = SendMessage(hEditCtl, WM_GETFONT, 0, 0L);

 // If it is not the system font, then select it into DC
 if (hFont)
 SelectObject(hDC, hFont);

 GetTextMetrics(hDC, &tm);

 iLine = 0;

 while (iNumEditLines--)
 {
 // First word of buffer contains max number of characters
 // to be copied
 buf[0] = 80;

 // Get the current line of text
 nCount = SendMessage(hEditCtl, EM_GETLINE, iLine, (LONG)buf);
 TextOut(hDC, x, y, buf, nCount); // Output text to device
 y += tm.tmHeight;
 iLine++;
 }

 ReleaseDC(hWnd, hDC);
 ... /* other code */

The execution time of this code could be reduced by using the
ExtTextOut() function instead of TextOut().

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbui
KBSubcategory: UsrCtl

Multimedia API Parameter Changes in the Win32 API
PSS ID Number: Q125864
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)
--

SUMMARY
=======

This article discusses the following topics concerning multimedia APIs in
the Win32 SDK:

 - Some Windows version 3.1 APIs that require a device ID will also accept
 a properly cast device handle in the Win32 API if the caller is a 32-bit
 application.

 - An explanation of the difference between using a device ID and using a
 device handle in conjunction with the above functions is given.

 - A list of related APIs that are now obsolete but are provided for
 backwards compatibility with Windows version 3.1 is given.

MORE INFORMATION
================

Functions That Accept A Device Handle or Device ID
--

Several MIDI and wave audio APIs have been revised in Win32 to
provide greater flexibility to application developers. The following
APIs require the calling application to provide a device ID for the
target device under Windows 3.1, but under Win32 the APIs also
accept a properly cast device handle if the caller is a 32-bit
application:

 midiInGetDevCaps
 midiOutGetDevCaps
 waveInGetDevCaps
 waveOutGetDevCaps
 midiOutGetVolume
 midiOutSetVolume
 waveOutGetVolume
 waveOutSetVolume

Device ID vs. Device Handle

A device ID has a one-to-one correspondence with the physical device
it references and is determined by querying for the number of
devices of a given type in the system and selecting the desired
device. A device handle refers to a specific instance of a device,
of which there may be more than one, and is obtained by opening a

device. A device instance may be thought of as a logical copy of
a physical device.

If a 32-bit application is querying a device's capabilities using
one of the xxxGetDevCaps APIs listed above, the distinction between
whether a device ID or device handle is used in the function call
is unimportant because all instances of a device have the same
capabilities. The result of one of these function calls will be the
same whether or not a device ID or device handle was used.

However, if a 32-bit application uses one of the xxxVolume APIs listed
above to get or set the output volume of a device, the distinction
between using a device ID or device handle becomes important. If a
device ID is used in a call to these xxxVolume APIs, then the result
of the call and/or information returned applies to all instances of
the device. If a device handle is used in a call to the xxxVolume
APIs, then the result of the call and/or information returned by the
call applies only to the instance of the device referenced by the
device handle.

The revised versions of the above APIs are available to 32-bit
applications only. For backwards compatibility reasons, 16-bit
applications are subject to the API design of Windows 3.1.

Obsolete APIs

In addition to the above changes, the following related APIs are now
obsolete, but are included in Win32 for backwards compatibility
purposes:

 midiInGetID
 midiOutGetID
 waveInGetID
 waveOutGetID

For further information about all the above APIs and how to use
device IDs and device handles, please consult the Win32
Multimedia Programmer's Reference.

Additional reference words: 4.00 95
KBCategory: kbmm
KBSubcategory: MmMisc

Multimedia Group System and API Design Guidelines
PSS ID Number: Q67692
--
The information in this article applies to:

 - Microsoft Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
--

SUMMARY
=======

The Microsoft Multimedia Systems Group is doing a large amount of
system design and implementation. This article comments on the areas of
system design.

MORE INFORMATION
================

Definitions

 Term Definition
 ---- ----------

 Module A module provides a set of functions and the interface to
 access those functions. The interface is called the API.

 Client A client uses a module. A client might be an application
 or a dynamic-link library (DLL).

 Prefix The initialization portion of the module that must be
 called before any of the other functions can be accessed.

 Postfix The closing portion of the module that must be called
 after the client has finished using the functions of the
 module.

 Channel A channel is created by calling a module's prefix
 function. It is used by the rest of the functions of the
 module (including the postfix function).

 Two notes about a channel:

 1. A module can allocate resources to a channel. For
 example, a handle to a window is a channel, which has
 memory, a window procedure, and many other resources
 associated with it.

 2. The channel uniquely identifies the user of the
 interface to the module. This allows the module to
 perform functions uniquely on each open channel. For
 example, each file handle represents a different file

 that has been opened. Each file handle may have
 different attributes (read, write, read/write, binary,
 and so forth).

Separate Driver Interface from Module Interface

Separating the application from the hardware is one of the major tasks
of system software. Layers within the operating system are separated
from the hardware through the use of drivers. The system interface to
the application should hide the mechanisms of the drivers as much as
possible. This allows changing the mechanics of a driver in a later
version of the system software. This also preserves the formality of
the interface; applications are prevented from directly accessing the
hardware.

Each application should also be separated from the drivers within the
system. The driver API should not depend on where the driver is
located, what it is named, or what form it takes (DLL, VxD, and so
forth).

A driver should shield the application writer from its internal
workings to enforce the principle of information hiding. If too much
information is available, the application writer may choose to
directly access the hardware, which jeopardizes the separation of
functionality provided by the driver mechanism and system API.

Every Module Should Have an Initialization Function
--

Requiring the application to call a prefix function before using a
system module and a postfix function after using a system module
provides three major benefits, as follows:

1. Later versions of the driver can easily virtualize resources
 because the driver defies a channel for all communication. The
 driver can maintain separate resources for each communication
 channel, which is required for virtualization.

 Note that the complete virtualization does not need to be done in
 the first implementation of the module. As long as the interface
 requires the prefix and postfix calls, subsequent prefix calls can
 fail with an appropriate error message. Future versions of the
 system can properly handle multiple requests for the system
 resource.

2. The system module can allocate resources when the channel is
 allocated (when the prefix function is called), rather than when
 the system is initialized. Modules that are not called consume no
 resources. Resource allocation for all modules is postponed as long
 as possible.

3. The system can resolve conflicts between clients through the
 identification provided by the channels.

Interface Naming

During the process of designing a new module, use the interface naming
conventions from an existing module with similar functionality. For
example, an interface that deals with files would have a prefix
interface containing the word "open," and a postfix interface
containing the word "close." Extend naming conventions to similar
functional areas. A stream interface would also have an "open" and a
"close" function.

If the module has new functionality, then the functions can have
unique names, such as the MIDI driver's midiOutStop function. If the
module is similar to but not the same as another module, then use the
function name to distinguish between modules. For example, the
CreateWindow and CreateWindowEx functions in Windows create windows
but CreateWindowEx also allows an application to specify other
attributes.

The goal is to provide programmers familiar with existing modules a
basis by which to quickly learn the new interface.

Prefix function names with the module name (abbreviated, if
necessary). This allows the documentation to sort function names
alphabetically, while keeping related functions together. More
importantly, it allows easy identification of the module to which a
function belongs.

Definition Naming

Prefix the names of constants and data structures with the module name
(abbreviated, if necessary). For example, STRM_SEEK is a constant in
the STRM group. This allows easy identification of the module to which
a definition or data structure belongs.

As another example, MIDIOUTCAPS is the Device Capabilities structure
for the MIDI output module. Using the naming convention developed here
and symmetry (discussed in depth in the second part of this article),
the MIDI Input module Device Capabilities structure should be called
MIDIINCAPS.

Use additional prefixes as appropriate to identify the use of the
definition. For example, MOERR_NODRIVER is a definition in the MIDI
Output module to describe an error, that of no driver present.

Registering Drivers with Module

Most of the systems designed by the Multimedia group allow device
drivers to be installed by the original equipment manufacturer (OEM)
or even by the end user (given an appropriate setup program). There
are two main ways for these drivers to communicate with the main
module.

The first is to place an entry in the SYSTEM.INI file. When the parent
module loads, it loads the child driver and initiates communication
with the child.

The other method is for the child driver to call the parent to
register itself as a client. This second method presumes that there is
a suitable method available to load the child. Windows provides such a
mechanism.

Requiring a driver to register itself with the handler module provides
four benefits:

1. Drivers can be installed by adding them to the "modules to load"
 list. This is much easier than creating a line for the SYSTEM.INI
 file.

2. The handler module is more general because it does not assume the
 presence of certain drivers. This enhances system portability and
 reduces interdependencies between drivers and handlers. This
 advantage also applies to drivers loaded by a parent process.

3. A driver can pass information about itself, such as its name and
 entry points, to its parent during registration. This further
 separates the parent module from the driver. As long as the format
 of the interface data is fixed, independent changes may be made to
 both parent and driver.

4. Run-time installation of drivers is possible. The inherent nature
 of registration makes installing new drivers while the system is
 running much easier. This also simplifies implementing
 virtualization.

Symmetry of Function Names

 - Every Open function should have a Close function and every Get
 function a Put function.

 - Related functions in separate areas should work the same way. For
 example, if the MIDI output has an Open, the MIDI input should also
 have an Open. Additionally, the return values and parameters should
 be as similar as possible. This eases the programmer's task of
 learning the new APIs. This applies even if the current
 implementation doesn't use API symmetry. See "Designing for
 Implementation in Steps," below.

Symmetry in Naming Conventions

 - Name defined constants and types for related areas should all be
 named using the same conventions. For example, LPMIDICALLBACK and
 LPWAVECALLBACK.

 - If a naming convention already exists for a function type, adhere
 to it. Example: use SEEK and TELL functions to move within a file

 system.

 - If any part of an existing convention is used, little deviation
 from it is allowed. For example, a combination of SEEK and GET
 functions to move within a file system would not be the product of
 good design because it confuses an existing convention.

 - If a convention does not already exist, create a new naming
 convention to avoid confusing things. Example: KNOCK and ANSWER.

Design for Implementation in Steps

Most implementations of any size must be done in incremental steps of
functionality. More and more features are added to the modules until
the entire design is completely implemented. For large or complex
modules, this process may occur over several years. However, the
original design must anticipate the complete, final functionality, not
just the short-term goals. For example, even if allowing multiple
users of a module will not be implemented in the first phase, this
capability should be designed into the API. That way, the impact on
users of the module will be minimal once implementation is complete.

Avoid placing arbitrary limits on functionality due to details of the
current implementation. For example, even if only one user can have a
resource allocated today, this may not always be true. Specifically,
the Open function should return a handle to the resource that is then
passed to functions that manipulate the resource. In the future, when
multiple users of the resource is implemented, it will not be
necessary to change other functions or applications.

In a message-based system, functions should return a "message not
recognized" code for unexpected messages that is distinct from the "an
error occurred" code. Then, when a future version of the driver
contains extended functionality, an application can determine if the
installed version of the driver supports the new features. If not, the
application can take appropriate alternative action.

A project designed to be built in phases has well defined progress
milestones. This makes it much easier to track progress while the
module is under construction.

Building a module in phases also makes it easier to verify that the
module is built correctly. Testing receives increments of
functionality instead of the entire product toward the end of the
development cycle.

Error Reporting

An function call can fail for many reasons. It is best if the call can
return the specific cause of the error in addition to noting that the
call failed. Functions that return a handle, structure, or other data
cause particular problems because there is a limited set of values
that are always invalid.

Three approaches to error reporting are:

1. Ignore it (not recommended).

2. Provide a separate "what was that error?" call. This is more
 complicated than it sounds because, in a multitasking system, there
 can be multiple users of the module at the same "time." This makes
 determining what was the last error for a particular application
 difficult.

3. Return the handle or structure in a parameter and return the error
 code as the function return. This seems to be the best option, and
 is the approach used by OS/2.

Now that the error code is available, what should be done with it? To
allow for internationalization and for additional error codes, the
application should not associate the error code with a message.
Instead, provide a function in each API that returns the text message
for a specified error code. This function might be named
GetTextErrorInformation, for example.

Client-Supplied Buffers

It is desirable for the client application to provide all buffers that
it will access. If a system module allocates and maintains buffers,
many implementation problems can arise when a buffer is made visible
to the client application. Three advantages of client-supplied buffers
are:

1. If the system software runs at a different privilege level or on a
 different CPU, or is otherwise separate from the client
 application, the system software can easily access the buffer.
 However, at the client's lower privilege level, or if the client
 and operating system are on different CPUs, it may be extremely
 difficult (if not impossible) to make a system-supplied buffer
 available to the client.
2. When the application supplies the buffers, the application has
 complete control over how much memory the system module uses.

3. The application is responsible for reporting an out-of-memory
 error. This removes an error condition from the system call.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbmm kbprg
KBSubcategory: MMMisc

Multiple Columns of Text in Windows Help Files
PSS ID Number: Q67895
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
--

SUMMARY
=======

Microsoft Windows Help version 3.0 will support multiple columns of
information in Help files. Unfortunately, the Table features of Word for
Windows are not supported in Help version 3.0. In Windows Help version 3.1,
however, Word for Windows tables are supported. Below is an outline of the
supported techniques for creating multiple columns in Help files.

MORE INFORMATION
================

The best results can be achieved with Help version 3.0 if the text is
organized such that one column has the bulk of the text to be
presented and the other columns have relatively little text. The text
might resemble the following:

 column1column1 column2 column3column3column3column3column3column3col
 column3column3column3...

As the size of the Help window is decreased, the text in the third
column will wrap to remain displayed for as long as possible. To
achieve this effect, format the text as paragraphs with an "outdent,"
or negative indent, as shown in the following example:

 First line Left margin and tab stop
 v v
 column1column1 column2 column3column3column3column3column3column3col
 column3column3column3...

A typical format for paragraphs of this type is:

 Left Margin 2.5"
 First Line -2.5"

It is also necessary to define a tab stop at 2.5 inches.

Having two columns of text in the outdent is merely an example. You
can define as many or as few columns in that space as necessary.

If two columns with similar amounts of text in each are required, you
can use the side-by-side paragraph formatting of Word for the
Macintosh or Word for MS-DOS. Only two paragraphs side-by-side are
supported by the Help compiler.

If neither of the tools mentioned above is available, or if more
complicated tables are required, you can format the tables manually.
Define appropriate tab stops and use them to align the columns of
text. Format each physical line in the table as a separate paragraph.
Select the entire table and format the paragraphs as "Keep Together."
In the context of a Help system, this paragraph format disables word
wrap.

The following is an example of a more complex table. In this example,
(P*) is the paragraph mark at the end of a line:

 column1column1 column2column2 column3column3column3column3colu(P*)
 column1column1 column2coul column3column3column3column3colu(P*)
 column1column1 column3column3column3column3(P*)
 column1column1(P*)

 newcol1newcol1 newcol2newcol2 newcol3newcol3newcol3newcol3...(P*)

As the size of the Help window is reduced, the text will not wrap.
Instead, you must use the horizontal scroll bar at the bottom of the
window to view the remainder of the table.

Support for Word for Windows tables was added in Windows Help version 3.1.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsHlp

Multiple References to the Same Resource
PSS ID Number: Q83808

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Windows supports multiple references to a given resource. For example,
suppose that an application has two top-level menus that each contain the
same submenu. (An application can use the AppendMenu or SetMenu functions
to add a submenu to another menu at run time.)

Normally, destroying a menu destroys all of its submenus. In the case
above, however, when one menu is destroyed, the other menu has a lock on
the common submenu. Therefore, the common submenu remains in memory and is
not destroyed. The handle to the submenu remains valid until all references
to the submenu are removed. The submenu either remains in memory or is
discarded, while its handle remains valid.

MORE INFORMATION
================

Windows maintains a lock count for each resource, including menus. When the
lock count falls to zero, Windows can free (destroy) the object. Each time
an application loads a resource, its lock count is incremented. If a
resource is loaded more than once, only one copy is created; subsequent
loads only increment the lock count. Each call to free a resource
decrements its lock count.

When the LoadResource function determines if a resource has already been
loaded, it also determines if the resource has been discarded. If so,
LoadResource loads the resource again. The resource is not necessarily
present in memory at all times. However, if the lock count is not zero and
the resource is discarded, Windows will automatically reload the resource.
All resources are discardable and will be discarded if required to free
memory.

Therefore, in the example above, the application's call to the DestroyMenu
function calls FreeResource, which checks the lock count. This process is
analogous to LoadMenu, which calls LoadResource.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrRsc

Multiprotocol Support for Windows Sockets
PSS ID Number: Q125704
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)
--

SUMMARY
=======

The Windows Sockets (WinSock) API is based on the Berkeley Sockets
progamming model, the standard interface for TCP/IP network programming on
Windows. However, the WinSock implementations for Windows NT and Windows 95
include support for additional network transports. Here are the network
transports supported by Microsoft WinSock implementations, listed by
platform. For convenience, the headers and libraries required for
application development are also listed.

Platform Transport Header* Lib
--
Windows NT TCP/IP WINSOCK.H WSOCK32.LIB
 IPX/SPX WSIPX.H, WSNWLINK.H ""
 NetBEUI (via NetBIOS) WSNETBS.H ""
 Appletalk ATALKWSH.H ""
 ISO/TP4 WSHISOTP.H ""

Windows 95 TCP/IP WINSOCK.H ""
 IPX/SPX WSIPX.H, WSNWLINK.H ""

Windows for
Workgroups
version 3.11 TCP/IP WINSOCK.H WINSOCK.LIB

* WINSOCK.H is required for all platforms and transports, in addition to
 other header files.

MORE INFORMATION
================

The Windows Sockets API provides a uniform interface to multiple network
transports and shields the programmer from most transport level
ideosyncracies. However, WinSock does not eliminate the need to learn the
basics of the transport protocol used. In particular, the programmer should
be familiar with the following aspects of any transport protocol used with
Windows Sockets:

1. Addressing.

 Each transport uses different address format. For example, the IP
 socket address structures looks like this:

 /*
 * Socket address, internet style.

 */
 struct sockaddr_in
 {
 short sin_family;
 u_short sin_port;
 struct in_addr sin_addr;
 char sin_zero[8];
 };

 struct in_addr
 {
 union
 {
 struct { u_char s_b1,s_b2,s_b3,s_b4; } S_un_b;
 struct { u_short s_w1,s_w2; } S_un_w;
 u_long S_addr;
 } S_un;
 }

 In contrast, the IPX address structure looks like this:

 typedef struct sockaddr_ipx
 {
 short sa_family;
 char sa_netnum[4];
 char sa_nodenum[6];
 unsigned short sa_socket;
 } SOCKADDR_IPX;

2. Connection-Oriented vs. Connectionless Transport.

 In a connection-oriented transport protocol such as TCP or SPX,
 applications are required to establish a virtual circuit before data
 transfer can take place. The following sequences of WinSock functions
 are required at minimum to establish a virtual circuit:

 Server Client

 socket socket
 bind connect
 listen
 accept

 After the virtual circuit is established, the send() and recv()
 functions are used to transfer data.

 In a connectionless transport, a virtual circuit is not established.
 Both the client and server exchange data by binding a socket and
 calling sendto() or recvfrom().

3. Virtual circuit termination semantics.

4. Message Oriented vs. Stream-Oriented.

 See the Win32 SDK online documentation for information on these topics.

5. Expedited data delivery.

 This is data that has been earmarked by the application as urgent data,
 and will be sent by the transport as quickly as possible. Not all
 transports support this feature. The Windows Sockets API provides the
 ability to request expedited data delivery via the MSG_OOB flag in the
 send() function.

6. Broadcasts.

 Here is an extract from the Win32 SDK online documentation:

 "Most connectionless transport protocols support broadcasts in the
 same fashion, in which any bound socket can send a broadcast if the
 SO_BROADCAST option is set, and broadcasts sent to the appropriate
 local endpoint are received without any additional work on the part
 of the application. NetBIOS transport protocols, however, handle
 broadcasts somewhat differently. In order to receive broadcasts, an
 application must bind to the NetBIOS broadcast address, which is an
 asterisk ("*") followed by 15 blank spaces (ASCII character 0x20).
 This means two things: A socket must be specially bound to receive
 broadcasts, and applications cannot depend on receiving broadcasts
 intended only for a specific application, since all NetBIOS broadcasts
 are delivered to this address. In other protocols such as
 UDP/IP and IPX, broadcasts are delivered to a socket only if the
 broadcast was sent to the same port to which the socket was bound."

For more information on any of the above topics, please see the Win32 SDK
online documentation.

Additional reference words: 4.00
KBCategory: kbnetwork
KBSubcategory: NtwkWinsock

Mutex Wait Is FIFO But Can Be Interrupted
PSS ID Number: Q125657

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

A mutex is a synchronization object that is signalled when it is not owned
by any thread. Only one thread at a time can own a mutex. Other threads
requesting the mutex will have to wait until the mutex is signalled. This
article discusses the order in which threads acquire the mutex.

MORE INFORMATION
================

Threads that are blocked on a mutex are handled in a first in, first out
(FIFO) order. Therefore, the first to wait on the mutex will be the first
to receive the mutex, regardless of thread priority.

It is important to remember that Windows NT can interrupt the wait and that
this will change the order in which threads are queued. A kernel-mode
asynchronous procedure call (APC) can interrupt a user-mode thread's
execution at any time. Once the normal execution of the thread resumes, the
thread will again wait on the mutex; however, the thread is placed at the
end of the wait queue. For example, each time you enter the debugger (hit a
breakpoint, execute OutputDebugString(), and so on), all application
threads are suspended. Suspending a thread causes the thread to run a piece
of code in kernel mode. When you continue from the debugger, the threads
are resumed, causing them to resume their wait for the mutex, but possibly
in a different order than before. In this case, it does not look like the
mutex is acquired in FIFO order. Some threads may be unable to acquire the
mutex when the application in run under the debugger.

NOTE: This implementation detail is subject to change. Windows 95 and other
platforms that support the Win32 API may adopt different strategies.

Most programs do not usually need to make any assumption about this
behavior. The only class of applications that should be sensitive to mutex
claim and release throughput are realtime-class applications. If throughput
is of importance to a program, critical sections should be used wherever
possible.

Additional reference words: 3.10 3.50 windbg ntsd
KBCategory: kbprg
KBSubcategory: BseSync

Named Pipe Buffer Size
PSS ID Number: Q105531

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51

The documentation for CreateNamedPipe() indicates that

 The input and output buffer sizes are advisory. The actual buffer
 size reserved for each end of the named pipe is either the system
 default, the system minimum or maximum, or the specified size
 rounded up to the next allocation boundary.

The buffer size specified should be a reasonable size so that your process
will not run out of nonpaged pool, but it should also be large enough to
accommodate typical requests.

Every time a named pipe is created, the system creates the inbound and/or
outbound buffers using nonpaged pool, which is the physical memory used by
the kernel. The number of pipe instances (as well as objects such as
threads and processes) that you can create is limited by the available
nonpaged pool. Each read or write request requires space in the buffer for
the read or write data, plus additional space for the internal data
structures.

Whenever a pipe write operation occurs, the system first tries to charge
the memory against the pipe write quota. If the remaining pipe write quota
is enough to fulfill the request, the write completes immediately.

If the remaining pipe write quota is too small to fulfill the request, the
system will try to expand the buffers to accommodate the data using
nonpaged pool reserved for the process. The write will block until the data
is read from the pipe so that the additional buffer quota can be released.
Therefore, if your specified buffer size is too small, the system will grow
the buffer as needed, but the downside is that the operation will block. If
the operation is overlapped, a system thread is blocked; otherwise, the
application thread is blocked.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseIpc

Named Pipes Under WOW
PSS ID Number: Q94948
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5
--

A 16-bit Windows-based application under Windows on Win32 (WOW) may use a
named pipe that was created previously by a Win32-based application;
however, REDIR.EXE must be included in the AUTOEXEC.BAT file for this to
work properly.

Note that for local named pipes, networking doesn't need to be enabled.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: SubSys

Nesting Quotation Marks Inside Windows Help Macros
PSS ID Number: Q77748
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
--

In Windows Help macros, strings may be delimited in two ways. The
string can be opened and closed by double quotation marks or the
string can be opened by a single opening quotation mark and closed by
a single closing quotation mark.

Any quoted strings contained in a string delimited with double
quotation marks must be enclosed in opening and closing single
quotation marks.

The single opening quotation mark is different from the single closing
quotation mark. The single opening quotation mark (`) is paired with
the tilde (~) above the TAB key on extended keyboards; the single
closing quotation mark (') is the same as the apostrophe. For example,

 CreateButton("time_btn", "&Time", "ExecProgram("clock", 0)")

is illegal because the string "clock" uses double quotation marks
within the double quotation marks used for the ExecProgram macro. The
following example corrects the error by enclosing "clock" in single
quotation marks:

 CreateButton("time_btn", "&Time", "ExecProgram(`clock', 0)")

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsHlp

NetBIOS Name Table and NCBRESET
PSS ID Number: Q95944
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5
--

SUMMARY
=======

The Windows NT NetBIOS implementation conforms to the IBM NetBIOS 3.0
specifications, with several enhancements discussed in this article.

MORE INFORMATION
================

Name Table

Under Windows NT, the name table is maintained on a per-process basis,
which means that names added by one process are not visible by a different
process. This also means that for two processes to establish a session,
both processes must register two different NetBIOS names. However, sessions
can be established by two threads in the same process using the same
NetBIOS name.

NCBRESET

The IBM NetBIOS 3.0 specifications defines four basic NetBIOS environments
under the NCBRESET command. Win32 follows the OS/2 Dynamic Link Routine
(DLR) environment. This means that the first NCB issued by an application
must be a NCBRESET, with the exception of NCBENUM. The Windows NT
implementation differs from the IBM NetBIOS 3.0 specifications in the
NCB_CALLNAME field.

In the "IBM Local Area Network Technical Reference," under the section on
NetBIOS 3.0, the NCB_CALLNAME field is defined as the following:

 REQ_SESSIONS at NCB_CALLNAME+0 (1-byte field)
 The number of sessions requested by the application program.
 If zero, the default of 16 is used.

 REQ_COMMANDS at NCB_CALLNAME+1 (1-byte field)
 The number of commands requested by the application program.
 If zero, the default of 16 is used.

 REQ_NAMES at NCB_CALLNAME+2 (1-byte field)
 The number of names requested by the application program. This
 does not include a reservation for NAME_NUMBER_1.
 If zero, the default of 8 is used.

 REQ_NAME_ONE at NCB_CALLNAME+3 (1-byte field)
 A request to reserve NAME_NUMBER_1 for this application program.
 If 0, NAME_NUMBER_1 is not requested.
 If not 0, NAME_NUMBER_1 is desired to be reserved for this
 application.

Under the Windows NT implementation, the REQ_COMMANDS (NCB_CALLNAME+1)
field is ignored. Instead, an application is bound by the amount of memory
the process can allocate.

For more information on the differences between the Windows NT
implementation and the IBM NetBIOS 3.0 specifications, see "The NetBIOS
Function" in the "Win32 API Reference" Help file.

For more information on version 3.0 of NetBIOS, contact IBM and order the
"IBM Local Area Network Technical Reference."

Additional reference words: 3.00 3.10 3.50 NCBRESET
KBCategory: kbnetwork
KBSubcategory: NtwkNetbios

Network DDE For 16-bit Windows-based Apps Under Windows NT
PSS ID Number: Q127861

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.5

Network Dynamic Data Exchange (NetDDE) has limited support for 16-bit
Windows application running under Windows NT. You can use DDE across the
network, however, the NDde APIs are not supported.

The NDde APIs, such as NDdeShareAdd(), are used to create and manage the
NetDDE shares, not for the actual communication. Therefore, for 16-bit
applications to use NetDDE under Windows NT, you will need to use Generic
Thunks to thunk to the 32-bit NDde APIs to create and trust the share. Once
that is done, you can communicate using DDE or DDEML.

NOTE: You must be an administrator to add a DDE share.

Additional reference words: 3.50
KBCategory: kbui
KBSubcategory: SubSys UsrNetDde

New Dialog Styles in Windows 95
PSS ID Number: Q125678

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Windows 95 provides a few new dialog styles -- all listed in this article.
All Windows version 3.1 dialog styles are still usable in Windows 95.
However, DS_LOCALEDIT cannot be used in Win32-based applications because it
does not apply. Although not documented, DS_ABSALIGN and DS_SETFONT exist
in Windows version 3.1. They are documented in Windows 95.

MORE INFORMATION
================

Here is a list of the new dialog styles:

DS_3DLOOK Gives the dialog box a nonbold font and draws
 three-dimensional borders around control windows
 in the dialog box.

DS_CENTER Centers the dialog box in the working area -- the
 area not obscured by the tray.

DS_CENTERMOUSE Centers the mouse cursor in the dialog box.

DS_CONTEXTHELP Includes a question mark in the title bar of the
 dialog box. When the user clicks the question mark,
 the cursor changes to a question mark with a
 pointer. If the user then clicks a control in the
 dialog box, the control receives a WM_HELP message.
 The control should pass the message to the dialog
 procedure, which should call the WinHelp function
 using the HELP_WM_HELP command. The Help
 application displays a pop-up window that
 typically contains help for the control. Note that
 DS_CONTEXTHELP is just a placeholder. When the dialog
 box is created, the system checks for DS_CONTEXTHELP
 and, if it is there, adds WS_EX_CONTEXTHELP to the
 extended style of the dialog box.

DS_CONTROL Creates a dialog box that works well as a child
 window of another dialog box, much like a page in
 a property sheet. This style allows the user to
 tab among the control windows of a child dialog
 box, use its accelerator keys, and so on.

DS_FIXEDSYS Uses SYSTEM_FIXED_FONT instead of SYSTEM_FONT.

DS_NOFAILCREATE Creates the dialog even if errors occur -- for
 example, if a child window cannot be created
 or if the system cannot create a special data
 segment for an edit control.

DS_SETFOREGROUND Brings the dialog box to the foreground.
 Internally, Windows calls the SetForegroundWindow
 function for the dialog box.

Additional reference words: 4.00 DLGTEMPLATE kbinf
KBCategory: kbui
KBSubcategory: UsrDlgs

New Owner in Take-Ownership Operation
PSS ID Number: Q111541

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

When ownership of a file is taken, the user performing the operation
becomes the new owner. The exception to this rule is when the user is a
member of the "Administrators" group. In this situation, the ownership of
the file is assigned to the Administrators group.

The reasoning for this behavior is that the administrators on a particular
system work together. When one administrator takes ownership of a file, the
others should also receive access.

MORE INFORMATION
================

When a take-ownership operation is performed, the system assigns the new
owner SID based on the TOKEN_OWNER field of the user’s access token.

When a user logs on to a Windows NT system, the logon process builds an
access token to represent the user. Normally the TOKEN_OWNER field in the
access token is set equal to TOKEN_USER (the user’s SID). However, when the
user is a member of the Administrators group, the system sets the
TOKEN_OWNER field to the Administrators SID.

Although Windows NT does not provide a user interface for changing the
TOKEN_OWNER field in the user’s access token, it is possible to
programatically change this value via the SetTokenInformation() Win32 API
(application programming interface).

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

New User Heap Limits Under Windows 95
PSS ID Number: Q125676

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In Windows version 3.1, window and menu data is maintained in two 16-bit
heaps. This limits window and menu data to 64k each. Windows 95 uses
32-bit heaps for window and menu data, thus greatly expanding the
limits placed on the number of items contained in these heaps.

MORE INFORMATION
================

Windows version 3.1 user and menu heaps are each limited to 64K of data.
As a result, the number of window and menus in a system are each
constrained to around 200. In Windows 95, the number of Windows and Menus
that may exist in the system goes up to 32K each. This is possible because
the Windows 95 user and menu heaps are each two megabytes in size.

The first 64K of the user heap looks exactly as it did in Windows version
3.1, except for the absense of WND structures. The Windows 95 WND
structures populate the heap space above 64K, thus increasing the number of
WND structures the heap can hold. This new arrangement also has the
positive effect of freeing up space in the lower 64K space, making more
space for class structures and other items that reside in the user heap.
For the menu heap, there is nothing special about the low 64K, menus and
their data may appear anywhere in the two-megabyte heap.

Additional reference words: 4.00
KBCategory: kbusage
KBSubcategory: UsrMisc

New Window Styles in Windows 95
PSS ID Number: Q125679

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Windows 95 provides a number of new window styles that help make the user
interface more attractive and intuitive. These new styles are listed in
this article. Most of the new styles are extended styles, which are
specified with the CreateWindowsEx() function. All Windows version 3.1
window styles are still usable in Windows 95.

MORE INFORMATION
================

Here are the new styles:

WS_EX_ABSPOSITION Specifies that a window has an absolute position.

WS_EX_CLIENTEDGE Specifies that a window has a 3D look -- that is
 a border with a sunken edge.

WS_EX_CONTEXTHELP Includes a question mark in the title bar of the
 window. When the user clicks the question mark,
 the cursor changes to a question mark with a
 pointer. If the user then clicks a child window,
 the child receives a WM_HELP message.

WS_EX_CONTROLPARENT Allows the user to navigate among the child windows
 of the window by using the TAB key.

WS_EX_LEFT Gives window generic left-aligned properties.
 This is the default.

WS_EX_LEFTSCROLLBAR Places vertical scroll bar to the left of the
 client area.

WS_EX_LTRREADING Displays the window text using left-to-right
 reading order properties. This is the default.

WS_EX_MDICHILD Creates an MDI child window.

WS_EX_OVERLAPPEDWINDOW Combines the WS_EX_CLIENTEDGE and WS_EX_WINDOWEDGE
 styles.

WS_EX_PALETTEWINDOW Combines the WS_EX_WINDOWEDGE, WS_EX_SMCAPTION,
 and WS_EX_TOPMOST styles.

WS_EX_RIGHT Gives window generic right-aligned properties.
 This depends on the window class.

WS_EX_RIGHTSCROLLBAR Places vertical scroll bar (if present) to the
 right of the client area. This is the default.

WS_EX_RTLREADING Displays the window text using right-to-left
 reading order properties.

WS_EX_STATICEDGE Creates a window with a three-dimensional border
 style intended to be used for items that do not
 accept user input.

WS_EX_TOOLWINDOW Creates a tool window, which is a window intended
 to be used as a floating toolbar. A tool window has
 a title bar that is shorter than a normal title
 bar, and the window title is drawn using a smaller
 font. A tool window does not appear in the task bar
 or in the window that appears when the user presses
 ALT+TAB.

WS_EX_WINDOWEDGE Specifies that a window has a border with a raised
 edge.

Additional reference words: 4.00 CreateWindowEx kbinf
KBCategory: kbui
KBSubcategory: UsrWndw

New Windows 95 Styles Make Attaching Bitmap to Button Easier
PSS ID Number: Q125673

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In Windows 95, there are two new button styles (BS_BITMAP and BS_ICON).
Using these styles makes attaching a bitmap or an icon to a button in
Windows 95 easier than it was in Windows version 3.1.

MORE INFORMATION
================

In Windows version 3.1 you create the button by using the CreateWindow()
function with the BS_OWNERDRAW style to attach a bitmap or an icon to a
button. Each time the parent window receives the WM_DRAWITEM message the
bitmap or the icon must be loaded and drawn on the button.

In Windows 95 you can create a button with style BS_BITMAP to display a
bitmap instead of text on the button. After you create the button by using
CreateWindow() function, assign the bitmap to the button by sending a
WM_SETIMAGE message to the button with the wparam as IMAGE_BITMAP and
lparam as a handle to the bitmap. Windows displays the specified bitmap on
the button. The attached bitmap should not be deleted until the button uses
it.

SAMPLE CODE
===========

hwndButton = CreateWindow(
 "BUTTON", // predefined class
 "OK", // button text
 WS_VISIBLE| WS_CHILD | BS_DEFPUSHBUTTON |BS_BITMAP, //styles
 // Size and position values are given explicitly, because
 // the CW_USEDEFAULT constant gives zero values for buttons.
 5, // starting x position
 5, // starting y position
 30,// button width
 18, // button height
 hWnd,// parent window
 NULL,// No menu
 (HINSTANCE) GetWindowLong(hWnd,
 GWL_HINSTANCE), NULL); // pointer not needed

// load the bitmap, NOTE: delete it only when it's no longer being used.
hBitmap = LoadBitmap(hInst,MAKEINTRESOURCE(IDB_BITMAP1));
// associate the bitmap with the button.

SendMessage(hwndButton,BM_SETIMAGE,(WPARAM)IMAGE_BITMAP,
 (LPARAM)(HANDLE)hBitmap);

In Windows 95, you can also create a button with style BS_ICON to display a
icon instead of text on the button. After creating the button by using
CreateWindow() function, assign the icon to the button by sending a
WM_SETIMAGE message to the button with the wparam as IMAGE_ICON and the
lparam as the handle to the icon. Windows displays the specified icon on
the button.

NOTE: The system handles cleanup of icons or cursors loaded from resources.
Therefore, the icon should not be deleted unless the icon was created at
run time by using CreateIcon() function.

SAMPLE CODE
===========

hwndButton = CreateWindow(
 "BUTTON", // predefined class
 "OK", // button text
 WS_VISIBLE | WS_CHILD | BS_DEFPUSHBUTTON|BS_ICON,//styles
 // Size and position values are given explicitly, because
 // the CW_USEDEFAULT constant gives zero values for buttons.

 5, // starting x position
 5, // starting y position
 30, // button width
 18, // button height
 hWnd, // parent window
 NULL, // No menu
 (HINSTANCE) GetWindowLong(hWnd,GWL_HINSTANCE),
 NULL); // pointer not needed

// load the icon, NOTE: you should delete it after assigning it.
hIcon = LoadIcon(hInst,MAKEINTRESOURCE(IDI_ICON1));
// associate the icon with the button.
SendMessage(hwndButton,BM_SETIMAGE,(WPARAM)IMAGE_ICON,
 (LPARAM)(HANDLE)hIcon);

If a bitmap or icon is not specified via the BM_SETIMAGE message and the
BS_BITMAP or BS_ICON style is specified, a blank button with no text is
displayed.

Additional reference words: 4.00
KBCategory: kbui
KBSubcategory: UsrWnd

No Subsystem Developer Kit or Support for Such a Kit
PSS ID Number: Q89987
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5
--

There is not a kit available for developers to write subsystems, nor are
there plans to provide such a kit. Furthermore, there is no documentation
or support available to develop a subsystem for Windows NT.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: SubSys

Non-Addressable Range in Address Space
PSS ID Number: Q92764

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

In Windows NT, each process has its own private address space. The process
can use up to 2 gigabytes of virtual memory. This 2Gb is not necessarily
contiguous. The system uses the other 2Gb.

The user-mode addresses extend from 0x00010000 to 0x7FFF0000. The
following ranges are reserved as non-address space to ensure that the
process does not walk on system-owned memory

 0x00000000 to 0x0000FFFF (first 64K of virtual space)

 0x7FFF0000 to 0x7FFFFFFF (last 64K of user virtual space)

These are effectively PAGE_NOACCESS ranges.

Additionally, Win32 DLLs will reserve other specific address ranges. For
more information, see the file COFFBASE.TXT that comes with the DDK.

MORE INFORMATION
================

This range is not guaranteed to serve this purpose in the future. There
could be good reasons in a future implementation to use these addresses.
Code that is going to depend on this non-address range should verify its
validity at run time with something like

 BOOL IsFirst64kInvalid(void)
 {
 BOOL bFirst64kInvalid = FALSE;

 try {
 *(char *)0x0000FFFF;
 }
 except (EXCEPTION_EXECUTE_HANDLER) {
 if (EXCEPTION_ACCESS_VIOLATION == GetExceptionCode())
 bFirst64kInvalid = TRUE;
 }

 return bFirst64kInvalid;
 }

Additional reference words: 3.10 3.50

KBCategory: kbprg
KBSubcategory: BseMm

Noncontinuable Exceptions
PSS ID Number: Q98840

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

An exception is noncontinuable if the event isn't continuable in the
hardware, or if continuation makes no sense. For example, if the caller's
stack is corrupted while trying to post an exception, continuing from the
bad stack exception would not be useful.

The noncontinuable exception does not terminate the application, and
therefore an application that can succeed in catching the exception and
running after a noncontinuable exception is free to do so. However, a
noncontinuable exception typically arises as a result of a corrupted stack
or other serious problem, making it very difficult to recover from the
exception.

Additional reference words: 3.10 3.50 4.00 95 non-continuable
KBCategory: kbprg
KBSubcategory: BseExcept

Nonzero Return from SendMsg() with HWND_BROADCAST
PSS ID Number: Q102588

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The SendMessage() function calls the window procedure for the
specified window and does not return until that window has processed
the message and returned a value. Applications can send messages to
all top-level windows in the system by specifying HWND_BROADCAST as
the first parameter to the SendMessage() function. In doing so,
however, applications lose access to the return values resulting from
the SendMessage() call to each of the top-level windows.

MORE INFORMATION
================

When a call to SendMessage() is made, the value returned by the window
procedure that processed the message is the same value returned from
the SendMessage() call.

Among other things, SendMessage() determines whether the first
parameter is HWND_BROADCAST (defined as -1 in WINDOWS.H). If
HWND_BROADCAST is the first parameter, SendMessage enumerates all
top-level windows in the system and sends the message to all these
windows. Because this one call to SendMessage() internally translates
to a number of SendMessage() calls to the top-level windows, and
because SendMessage() can return only one value, Windows ignores the
individual return values from each of the top-level window procedures,
and just returns a nonzero value to the application that broadcast the
message. Thus, applications that want to broadcast a message to all
top-level windows, and at the same time expect a return value from
each SendMessage() call, should not specify HWND_BROADCAST as the
first parameter.

There are a couple of ways to access the correct return value from
messages sent to more than one window at a time:

 - If the broadcasted message is a user-defined message, and only a few
 other applications respond to this message, then those applications
 that trap the broadcasted message must return the result by sending
 back another message to the application that broadcast the message.
 The return value can be encoded into the message's lParam.

 - If the application does not have control over which application(s)
 will respond to the message, and it still expects a return value,
 then the application must enumerate all the windows in the system
 using EnumWindows() function, and send the message separately to
 each window it obtained in the enumeration callback function.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrMsg

Objects Inherited Through a CreateProcess Call
PSS ID Number: Q83298

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

The objects inherited by a process started by a call to CreateProcess() are
those objects that you can get a handle to and on which you can use the
CloseHandle() function. These objects include the following:

 Processes
 Events
 Semaphores
 Mutexes
 Files (including file mappings)
 Standard input, output, or error devices

However, the new process will only inherit objects that were marked
inheritable by the old process.

These are duplicate handles. Each process maintains memory for its own
handle table. If one of the processes modifies its handle (for example,
closes it or changes the mode for the console handle), other processes will
not be affected.

Processes will also inherit environment variables, the current directory,
and priority class.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseProcThrd

Obsolete Macro functions in Japanese Windows Version 3.1
PSS ID Number: Q130059

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 Software Development Kit (SDK) version 3.5
 - Microsoft Win32s version 1.2

SUMMARY
=======

Some of the Japanese Windows version 3.1 functions are no longer supported
in the Japanese version of Windows NT. These Macro functions are obsolete
in the current C++ compiler.

MORE INFORMATION
================

The macro functions of Japanese Windows version 3.10 are no longer
supported and are obsolete in current C++ compiler. They were remapped to
other generic MBCS functions. Use the following as workaround functions.
Include them in the current header file. T _ismbb* entries correspond to
the replaced Windows version 3.1 macro.

#include <mbctype.h>
#define iskana _ismbbkana
#define iskpun _ismbbkpunct
#define iskmoji _ismbbkalpha
#define isalkana _ismbbalpha
#define ispnkana _ismbbpunct
#define isalnmkana _ismbbalnum
#define isprkana _ismbbprint
#define isgrkana _ismbbgraph
#define iskanji _ismbblead
#define iskanji2 _ismbbtrail

Additional reference words: 3.10 1.20 3.50 kbinf
KBCategory: kbother
KBSubcategory: wintldev

Obtaining a Console Window Handle (HWND)
PSS ID Number: Q124103

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

It may be useful to manipulate a window associated with a console
application. The Win32 API provides no direct method for obtaining the
window handle associated with a console application. However, you can
obtain the window handle by calling FindWindow(). This function retrieves a
window handle based on a class name or window name.

Call GetConsoleTitle() to determine the current console title. Then supply
the current console title to FindWindow().

MORE INFORMATION
================

Because multiple windows may have the same title, you should change the
current console window title to a unique title. This will help prevent the
wrong window handle from being returned. Use SetConsoleTitle() to change
the current console window title. Here is the process:

1. Call GetConsoleTitle() to save the current console window title.

2. Call SetConsoleTitle() to change the console title to a unique title.

3. Call Sleep(40) to ensure the window title was updated.

4. Call FindWindow(NULL, uniquetitle), to obtain the HWND
 this call returns the HWND -- or NULL if the operation failed.

5. Call SetConsoleTitle() with the value retrieved from step 1, to
 restore the original window title.

You should test the resulting HWND. For example, you can test to see if the
returned HWND corresponds with the current process by calling
GetWindowText() on the HWND and comparing the result with
GetConsoleTitle().

The resulting HWND is not guaranteed to be suitable for all window handle
operations.

Sample Code

The following function retrieves the current console application window
handle (HWND). If the function succeeds, the return value is the handle of
the console window. If the function fails, the return value is NULL. Some
error checking is omitted, for brevity.

HWND GetConsoleHwnd(void)
{
 #define MY_BUFSIZE 1024 // buffer size for console window titles
 HWND hwndFound; // this is what is returned to the caller
 char pszNewWindowTitle[MY_BUFSIZE]; // contains fabricated WindowTitle
 char pszOldWindowTitle[MY_BUFSIZE]; // contains original WindowTitle

 // fetch current window title

 GetConsoleTitle(pszOldWindowTitle, MY_BUFSIZE);

 // format a "unique" NewWindowTitle

 wsprintf(pszNewWindowTitle,"%d/%d",
 GetTickCount(),
 GetCurrentProcessId());

 // change current window title

 SetConsoleTitle(pszNewWindowTitle);

 // ensure window title has been updated

 Sleep(40);

 // look for NewWindowTitle

 hwndFound=FindWindow(NULL, pszNewWindowTitle);

 // restore original window title

 SetConsoleTitle(pszOldWindowTitle);

 return(hwndFound);
}

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbui kbcode
KBSubcategory: BseCon UsrWndw

Obtaining Public Domain Information About Windows Sockets
PSS ID Number: Q115045
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0
 - Microsoft Windows SDK for Windows, version 3.1
--

SUMMARY
=======

Anyone with FTP access to the Internet can obtain a vast amount of
information pertinent to the Windows Sockets API. The information is
available through anonymous FTP to sunsite.unc.edu in the /pub/micro/pc-
stuff/ms-windows/winsock directory. In the winsock directory, there is a
wealth of technical information, including specifications, applications,
DLLs for testing, and developers' guides not only from Microsoft, but also
from other vendors of Windows Sockets.

The following list gives a brief overview of the information contained in
the directory. This information can also be obtained from the READ.ME file
in the location mentioned above.

FAQ

A list of frequently asked questions, with companion answers. Please send
additional questions or answers to towfiq@Microdyne.COM.

apps/

Applications that have been written to run on top of the Windows Sockets
DLL. See the file READ.ME in the winsock directory for a description of
each application.

./incoming/

A directory where submissions to the archive (such as sample programs)
should be placed.

packages/

The winsock directory contains different vendors' WINSOCK.DLLs for testing
purposes as well as Windows Sockets development packages. See the file
READ.ME in this directory for a description of each package.

press-releases/

Some of the press releases about the Windows Sockets.

winsock-archive/

An archive of the winsock@Sunsite.UNC.Edu mailing list. (Send subscription
requests to listserv@SunSite.UNC.Edu.)

wsguide.doc

The "Windows Sockets Guide," by Martin Hall, JSB (martinh@jsbus.com) in
Microsoft Word for Windows format.

wsguide.ps

The "Windows Sockets Guide," by Martin Hall, JSB (martinh@jsbus.com) in
PostScript format. In the subdirectories winsock-1.0 and winsock-1.1, you
can find the specification in many different formats.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbref
KBSubCategory: NtwkMisc

ODBC, MAPI, Video for Windows, NetDDE, & RAS/RPC Under Win32s
PSS ID Number: Q147432
--
The information in this article applies to:

 - Microsoft Win32s version 1.3
--

The following interfaces are not completely supported under Win32s. Any
exceptions are noted.

 - RAS API and RPC.

 - Video for Windows API (note that the MCI interface is supported).

 - MAPI interface (Also, a Win32s client can not thunk down to 16-bit MAPI
 in Windows 3.x. You will have to write a 16-bit client that calls the
 16-bit MAPI APIs, and then have the Win32s client thunk to this 16-bit
 client).

 - NetDDE interface.

 - ODBC (Win32s supports only ODBC version 2.0 and 2.1. Later versions of
 ODBC were not completely tested on Win32s).

Additional reference words: 1.30 kbinf
KBCategory: kbinterop
KBSubcategory: w32s

OFN_EXPLORER from 32-bit Thunk Brings Up Old-Style CommDlg
PSS ID Number: Q140726

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included
 with Microsoft Windows 95

SUMMARY
=======

You can have a 16-bit application running under Windows 95 take advantage
of the new Explorer-style FileOpen common dialog by thunking up to a 32-bit
DLL, specifying the OFN_EXPLORER style from that DLL, and linking it with
the new COMDLG32.DLL. This, however, causes the old-style dialog to come
up, instead of the new Explorer-style dialog.

MORE INFORMATION
================

Although the common dialog function is called from the 32-bit DLL,
COMDLG32.DLL detects that the current process is still a 16-bit application
and quickly reverts back to the old-style File Open common dialog. This is
because the new Explorer-style dialog uses multiple threads, which 16-bit
applications do not support.

The only way for a 16-bit application to take advantage of the new Explorer-
style functionality is to port to Win32 and make the call to
GetOpenFileName() directly.

Additional reference words: 4.00 kbinf
KBCategory: kbprg
KBSubcategory: UsrCmnDlg

Open File Dialog Box -- Pros and Cons
PSS ID Number: Q74612

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Applications can call the common dialog library (COMMDLG.DLL) function
GetOpenFileName() to retrieve the name of a file that the user wants to
manipulate. Using this DLL provides a common interface for opening files
across applications and also eliminates dialog-box message processing
within the application's code. However, the application must initialize a
structure specific to the dialog box. This article discusses the benefits
and costs of using the Open File common dialog, via GetOpenFileName().

MORE INFORMATION
================

When an application uses the Open File dialog box provided by the common
dialog DLL, the primary benefit to that application's users will be a
familiar interface. Once they learn how to open a file in one application
that uses the DLL, they will know how to open a file in all applications
that use it.

Features of the Open File dialog include:

 - A list box of files, filtered by extension, in the current directory
 - A list box of directories from root of current drive to current
 directory, plus subdirectories
 - A combo box of file types to list in filename list box
 - A combo box of drives available, distinguished by drive type
 - An optional "Read Only" check box
 - An optional "Help" button
 - An optional application hook function to modify standard behavior
 - An optional dialog template to add private application features

For the application's programming staff, the benefits of using the Open
File common dialog will include:

 - No dialog-box message processing necessary to implement the Open
 File dialog box
 - Drive and directory listings are constructed by the DLL, not by
 the application
 - A full pathname for the file to be opened is passed back to the
 application, and this name can be passed directly to the OpenFile

 function
 - Offsets into the full pathname are also returned, giving the
 application access to the filename (sans pathname) and the file
 extension without the need for parsing
 - The application can pass in its own dialog box template, in which
 case the DLL will use that template instead of the standard template
 - The application can provide a dialog hook function to extend the
 interface of the DLL or to change how events are handled
 - The application can choose to have a single filename or multiple
 filenames returned from the dialog box

The cost for the programming staff could be in adapting previously written
application code to handle the common dialog interface. While making this
change is straightforward, it does require coding time. If the application
only needs a filename with no path, the Open File common dialog is probably
not appropriate.

For more information on using the Open File common dialog, query on
GetOpenFileName().

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrCmnDlg

OpenComm() and Related Flags Obsolete Under Win32
PSS ID Number: Q94990

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

OpenComm(), a Windows 3.1 application programming interface (API), is
obsolete under Windows NT and is not in the Win32 API. Note that the flags,
IE_BADID, IE_BAUDRATE, IE_BYTESIZE, IE_DEFAULT, IE_HARDWARE, IE_MEMORY,
IE_NOPEN, and IE_OPEN are obsolete, but are still in the header files.

OpenComm() is provided for 16-bit Windows-based applications running under
Windows on Win32 (WOW).

MORE INFORMATION
================

Under Win32, CreateFile() is used to create a handle to a communications
resource (for example, COM1). The fdwShareMode parameter must be 0
(exclusive access), the fdwCreate parameter must be OPEN_EXISTING, and the
hTemplate parameter must be NULL. Read, write, or read/write access can be
specified and the handle can be opened for overlapped I/O.

ReadFile() and WriteFile() are used for communciations I/O. The TTY sample
program shipped with the Win32 Software Development Kit (SDK) demonstrates
how to do serial I/O in a Win32-based application.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseCommapi

Overlapping Controls Are Not Supported by Windows
PSS ID Number: Q79981

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Child window controls should not be overlapped in applications for the
Windows operating system. When one control overlaps another control,
or another child window, the borders shared by the controls may not be
drawn properly. Overlapping controls may confuse the user of the
application because clicking the mouse in the common area may not
activate the control that the user intended to activate. This behavior
is a consequence of the way that Windows is designed.

MORE INFORMATION
================

The following example illustrates the painting problems caused by the
ambiguity of overlapping borders. Consider three edit controls, called
A, B and C, which overlap each other, and an enclosing child window D:

 __
 | | A | B | C | |
 | -- |
 | D |
 --

Assume that control B has the focus. If this set of controls is
covered by another window, which is subsequently moved away, Windows
will send a series of client and nonclient messages to each of the
controls and to the enclosing child window. The result of these
messages may appear as the illustration below, where the portion of
window B's border that overlapped with part of window D's border is
missing:

 _______________ ________________
 | | A | B | C | |
 | -- |
 | D |
 --

Repainting problems related to overlapping controls may vary depending
on the version of Windows used.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95 CS_PARENTDC
WS_CLIPCHILDREN
WS_CLIPSIBLINGS WM_NCPAINT WM_PAINT
KBCategory: kbui
KBSubcategory: UsrDlgs

Overview of the Windows 95 Virtual Address Space Layout
PSS ID Number: Q125691

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The virtual memory management mechanism in Microsoft Windows 95 makes it
possible to execute Win32-based, 16-bit-based, and MS-DOS-based
applications simultaneously. To accomplish this, the virtual memory manager
uses a virtual address space layout that is considerably different from
that used by Microsoft Windows version 3.x and that is slightly different
from that used by Microsoft Windows NT. Although the differences from
Windows NT are slight, they are important.

The memory manager in Windows 95 uses paging and 32-bit linear addressing
to provide a full 32-bit virtual address space that has a maximum size of
four gigabytes (GB). This four-GB address space is partitioned by the
memory manager into four major sections, known as arenas, that are used for
different types of applications and parts of the system. The first arena,
from zero to four megabytes (MB) exists for compatibility with applications
based on Windows version 3.1x and MS-DOS. The next arena, from four MB to
two GB, is the private address space for each Win32 process. The third
arena, from two to three GB, is a shared address space that contains memory
mapped files and the 16-bit components. Finally, the fourth arena, from
three to four GB, is reserved for the system's use.

MORE INFORMATION
================

The following diagram shows the overall virtual address space layout used
in Windows 95. The Compatibility Arena holds the current virtual machine
and other software. Each Win32 process gets its own private address space
in which to execute. The Private Arena contains the currently executing
Win32 process's private address space. All 16-bit-based applications and
DLLs, including the 16-bit Windows system components, reside in the Shared
Arena. Finally, the Reserved System Arena is used to store all ring-0 code
such as the virtual machine manager and virtual device drivers. It is not
accessible by either 16-bit-based or Win32-based applications.

 +---------------------------------+ 4 Gigabytes
 | |
 | Reserved System Arena |
 | (Holds ring-0 components) |
 | |
 |---------------------------------| 3 Gigabytes
 | |
 | Shared Arena |

 | |
 | |
 |---------------------------------| 2 Gigabytes
 | |
 | Private Arena |
 | (Holds address space of |
 | currently executing |
 | Win32 process) |
 | |
 +---------------------------------+ 4 Megabytes
 | 16-bit/MS-DOS |
 | Compatibility Arena |
 +---------------------------------+ 0 Gigabytes

Each arena has a specific purpose and is described in detail below.

16-bit/MS-DOS Compatibility Arena

The first four megabytes of the system's address space is reserved by the
system and is accessible to 16-bit and MS-DOS software for compatibility.
The current virtual machine occupies the lowest megabyte of this area. The
remaining three megabytes are mostly empty space but may contain MS-DOS
device drivers and Terminate & Stay Resident (TSR) programs.

The 16-bt/MS-DOS Compatibility Arena is not accessible to Win32 processes
for reading or writing. This means Win32 processes may may not allocate
memory, load DLLs, or be loaded below the four megabyte (MB) address.

Private Arena

The private arena holds the private address space of the currently
executing Win32 process. Because every Win32 process gets its own address
space, the contents of this arena will depend upon which process is
currently executing. The memory manager maps the pages of a process's
private address space so that other processes cannot access it and corrupt
the process. The process's code, data, and dynamically-allocated memory all
exist in the private address space.

With the exception of the system's shared DLLs (USER32.DLL, GDI32.DLL, and
KERNEL32.DLL), all DLLs loaded by the process are mapped into the process's
private address space. Windows extension DLLs such as SHELL32.DLL,
COMCTL32.DLL, and COMDLG32.DLL are not system shared DLLs and are mapped
into the process's private address space.

Because console applications are Win32-based applications without graphical
user interfaces, they too get their own private address spaces, as do Win32
graphical user interface (GUI) applications.

The minimum load address for a Win32 process in Windows 95 is four MB
because the first four megabytes are reserved for the Compatibility Arena.

Shared Arena

The shared arena is unique to Windows 95. This arena contains components
that must be mapped into every process's address space. All of the pages in
this arena are mapped identically in every process.

The 16-bit global heap, which contains all 16-bit-based applications, DLLs,
and 16-bit system DLLs, resides in the shared arena. The Win32 shared
system DLLs (USER32.DLL, GDI32.DLL, and KERNEL32.DLL) are also located in
the shared arena.

Unlike the Reserved System Arena, the shared arena is readable and writable
by Win32 and 16-bit processes alike. This doesn't mean they are free to get
memory directly from this address space. All 16-bit-based applications and
DLLs actually are located in the 16-bit global heap, so they allocate
memory from the 16-bit global heap; when this heap needs to be grown,
KRNL386.EXE gets the memory from the shared arena.

Win32 processes may not allocate memory directly from the shared arena, but
they always use it for mapping views of file mappings. Unlike Windows NT,
where views of file mappings always are placed in the private address
space, Windows 95 holds views of file mappings in the shared arena.

The DOS Protected Mode Interface (DPMI) server's memory pool is located in
the Shared Arena. Thus, calls to the DPMI server to allocate memory will
result in memory that is globally accessible.

Sometimes, a virtual device driver (VxD) may need to map a buffer passed to
it by a Win32 process into globally accessible memory so that the buffer
can be accessed even if the process isn't in context. By calling
_LinPageLock virtual machine manager service with the PAGEMAPGLOBAL flag, a
VxD can obtain a linear address in the shared arena that corresponds to the
buffer passed to it by the Win32 process.

Reserved System Arena

The reserved system contains the code and data of all ring-0 components
such as the virtual machine manager, DOS extender, DPMI server, and virtual
device drivers. This arena is used exclusively by ring-0 components and not
addressable by ring 3 code, such as MS-DOS-based, 16-bit-based, and
Win32-based applications and DLLs.

Additional reference words: 4.00 layout memory virtual
KBCategory: kbprg
KBSubcategory: BseMm

Owner-Draw Buttons with Bitmaps on Non-Standard Displays
PSS ID Number: Q67715

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

If an application contains an owner-draw button that paints itself with a
bitmap, the application's resources must contain a set of bitmaps
appropriate to each display type on which the application might run.

If the application's resources do not contain bitmaps suitable for the
display on which the application is running, the application can use the
default 3-D button appearance by changing the button style to BS_PUSHBUTTON
from BS_OWNERDRAW.

Under Windows 95, there is a new style BS_BITMAP which applications might
find easier to use.

Changing the style of a button is possible in Windows version 3.0; however,
this technique is not guaranteed to be supported in future releases of
Windows.

MORE INFORMATION
================

An owner-draw button can use bitmaps to paint itself. When an application
contains this type of owner-draw button, it must also contain a set of
bitmaps appropriate for each display type on which the application might
run. Each set of bitmaps has a normal "up" bitmap and a depressed "down"
bitmap to implement the 3-D effects. The most common standard Windows
display types are: CGA, EGA, VGA, 8514/a, and Hercules Monochrome. The
dimensions and aspect ratio of the display affect the appearance of the
bitmap. For example, a monochrome bitmap designed for VGA will display
correctly on an 8514/a and any other display with a 1:1 aspect ratio.

If an application determines that it does not contain an appropriate set of
bitmaps for the current display type, then it should change the button
style from BS_OWNERDRAW to BS_PUSHBUTTON. After the style has been changed
and the button has been redrawn, the button will appear as a normal 3-D
push button.

The following code fragment demonstrates how to change the style of a
push button from owner-draw to normal:

 ...

 /*
 * hWndButton is assumed to be the handle to the button.
 * Note that lParam has a nonzero value, which forces the button
 * to be redrawn. This assures that the normal button appearance
 * will show after this message is sent.
 */
 SendMessage(hWndButton, BM_SETSTYLE, BS_PUSHBUTTON, 1L);

 ...

Additional reference words: 3.00 3.10 4.00 95
KBCategory: kbui
KBSubcategory: UsrCtl

Owner-Draw: Overview and Sources of Information
PSS ID Number: Q64327

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Owner-draw controls are a new feature of Windows version 3.0. Because your
application does all the drawing of the contents of the controls, you can
customize them any way you like. Owner-draw controls are similar to
predefined controls in that Windows will handle the control's functionality
and mouse and keyboard input processing. However, you are responsible for
drawing the owner-draw control in its normal, selected, and focus states.

You can create owner-draw controls from the menu, button, and list-box
classes. You can create owner-draw combo boxes, but they must have the
CBS_DROPDOWNLIST style (equates to a static text item and a list box). The
elements of an owner-draw control can be composed of strings, bitmaps,
lines, rectangles, and other drawing functions in any combination, in your
choice of colors.

MORE INFORMATION
================

The Windows SDK sample application MENU demonstrates owner-draw menu items.
The SDK sample application OWNCOMBO is a fairly large example of owner-draw
and predefined list boxes and combo boxes.

The Microsoft Software Library contains simplified examples of an owner-
draw push button, owner-draw list boxes, and an owner-draw drop-down list
style combo box. Each of these examples includes descriptive text in a
related Knowledge Base article. For additional information, please see the
following article(s) in the Microsoft Knowledge Base:

 ARTICLE-ID: Q64326
 TITLE : Owner-Draw: Handling WM_DRAWITEM for Drawing Controls

 -or-

 ARTICLE-ID: Q64328
 TITLE : Owner-Draw: 3-D Push Button made from Bitmaps with Text

 -or-

 ARTICLE-ID: Q65792

 TITLE : Owner-Draw Example: Right - and Decimal Alignment

To respond to a WM_MEASUREITEM message, you MUST specify the height of the
appropriate item in your control. Optionally, you can specify the item's
width as well.

If you want to do something special when a string is deleted from a list
box, you should process WM_DELETEITEM messages. Windows's default action is
to erase the deleted string and to redraw the list box.

If you want to have control over the sorting for the order of items in a
list box or combo box that does not have the *_HASSTRINGS style, you should
specify the appropriate *_SORT style and process WM_COMPAREITEM messages.
If the *_SORT and *_HASSTRINGS styles are present, Windows will
automatically do the sorting without sending WM_COMPAREITEM messages. If
*_SORT is not specified, WM_COMPAREITEM messages will not be generated and
items will be displayed in the list box in the order in which they were
inserted.

The heart of owner-draw controls is the response to WM_DRAWITEM messages.
During this processing is when you draw an entire button or each individual
item in a menu, list box, or combo box. Because Windows does not interfere
in the drawing of owner-draw controls, your application must draw the
specified control item. The display of the control must indicate the state
of the control. Common states are as follows:

1. Focus state (has the focus or not)

2. Selection state (selection or not)

3. Emphasis state (active, grayed, or disabled) (less common to
 process)

See the article titled "Owner-Draw: Handling WM_DRAWITEM for Drawing
Controls" for information about drawing controls in their various
states. Familiarity with the WM_DRAWITEM message and the various
control states is extremely helpful before trying to follow the code
examples.

Under Windows 95, the BS_BITMAP style allows buttons to display bitmaps
without using owner-draw.

Additional reference words: 3.00 3.10 3.50 4.00 owndraw od owner draw
KBCategory: kbui
KBSubcategory: UsrCtl

Owners Have Special Access to Their Objects
PSS ID Number: Q130543
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5
 and 3.51
--

The Windows NT operating system allows the owner of an object to determine
what types of access are granted or denied for a given user. This is
referred to as Discretionary Access Control (DAC). In addition to granting
the generic read and write types of access, the owner of an object can also
grant other users the right to modify the access allowed to the object.

The access right to view the access allowed on an object is called
READ_CONTROL. This is often granted as part of a generic right. The access
right that allows someone to change the access for an object is called
WRITE_DAC.

The owner of an object can always request WRITE_DAC and READ_CONTROL access
to the object. This prevents a situation where the owner of an object can
not manipulate the object. This also allows owners of objects to restrict
their own access to the object (to guard against accidents) without having
to explicitly grant READ_CONTROL and WRITE_DAC access to their accounts.

Additional reference words: 3.10 3.50 AccessCheck
KBCategory: kbprg
KBSubcategory: BseSecurity

PAGE_READONLY May Be Used as Discardable Memory
PSS ID Number: Q94947

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

Virtual memory pages marked as PAGE_READONLY under Win32 may be used the
way discardable segments of memory are used in Windows 3.1. These virtual
memory pages are by default not "dirty," so the system may use them
(zeroing them first if necessary) without having to first write their
contents to disk.

From a system resource perspective, PAGE_READONLY is treated similar to
discardable memory under Windows 3.1 when the system needs to free up
resources. From a programming standpoint, the system automatically re-reads
the memory when the data is next accessed (for example, we attempt to
access our page when it has been "discarded," a page fault is generated,
and the system reads it back in). Memory-mapped files are convenient for
setting up this type of behavior.

If a PAGE_READONLY memory page becomes dirty [by changing the protection
via VirtualProtect() to PAGE_READWRITE, changing the data, and restoring
PAGE_READONLY], the page will be written to disk before the system uses it.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseMm

Panning and Scrolling in Windows
PSS ID Number: Q11619

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

When using bitmaps, the mapping mode is ignored and physical units (in
other words, MM_TEXT pixels) are used. It is not necessary to use the
extent/origin routines to keep track of the logical origin.

If scrolling is desired and if there are no child windows in the
client area, it is best to BitBlt the client area to scroll it, and
PatBlt the uncovered area with the default brush.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrPnt

Passing a Pointer to a Member Function to the Win32 API
PSS ID Number: Q102352

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Many of the Win32 application programming interfaces (APIs) call for a
callback routine. One example is the lpStartAddr argument of
CreateThread():

 HANDLE CreateThread(lpsa, cbStack, lpStartAddr, lpvThreadParm,
 fdwCreate, lpIDThread)

 LPSECURITY_ATTRIBUTES lpsa; /* Address of thread security attrs */
 DWORD cbStack; /* Initial thread stack size*/
 LPTHREAD_START_ROUTINE lpStartAddr; /* Address of thread function */
 LPVOID lpvThreadParm; /* Argument for new thread*/
 DWORD fdwCreate; /* Creation flags*/
 LPDWORD lpIDThread; /* Address of returned thread ID */

When attempting to use a member function as the thread function, the
following error is generated:

 error C2643: illegal cast from pointer to member

The problem is that the function expects a C-style callback, not a pointer
to a member function. A major difference is that member functions are
called with a hidden argument called the "this" pointer. In addition, the
format of the pointer isn't simply the address of the first machine
instruction, as a C pointer is. This is particularly true for virtual
functions.

If you want to use a member function as a callback, you can use a static
member function. Static member functions do not receive the "this" pointer
and their addresses correspond to an instruction to execute.

Static member functions can only access static data, and therefore to
access nonstatic class members, the function needs an object or a pointer
to an object. One solution is to pass in the "this" pointer as an argument
to the member function.

MORE INFORMATION
================

This situation occurs with callback functions of other types as well, such
as:

 DLGPROC GRAYSTRINGPROC
 EDITWORDBREAKPROC LINEDDAPROC
 ENHMFENUMPROC MFENUMPROC
 ENUMRESLANGPROC PROPENUMPROC
 ENUMRESNAMEPROC PROPENUMPROCEX
 ENUMRESTYPEPROC TIMERPROC
 FONTENUMPROC WNDENUMPROC
 GOBJENUMPROC

For more information on C++ callbacks, please see the May 1993 issue of the
"Windows Tech Journal."

The following sample demonstrates how to use a static member function as a
thread function, and pass in the "this" pointer as an argument.

Sample Code

#include <windows.h>

class A
{
public:
 int x;
 int y;

 A() { x = 0; y = 0; }

 static StartRoutine(A *); // Compiles clean, includes "this" pointer
};

void main()
{
 A a;

 DWORD dwThreadID;

 CreateThread(NULL,
 0,
 (LPTHREAD_START_ROUTINE)(a.StartRoutine),
 &a, // Pass "this" pointer to static member fn
 0,
 &dwThreadID
);
}

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseMisc

PEN2CTL.VBX Custom Controls for Windows 95 Pen Services
PSS ID Number: Q130654

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) Version 4.0

SUMMARY
=======

The PEN2CTL.VBX provides three pen edit custom controls to allow for quick
development of pen-aware applications using Microsoft Windows 95 Pen
Services. The application designer may substitute these custom controls for
the standard input controls available in Visual Basic.

MORE INFORMATION
================

The PEN2CTL.VBX ships with version 4.0 of the Win32 SDK and is available in
the Microsoft Software. It is installed along with the Pen 2.0 Samples
Library.

To get PEN2CTL.VBX along with the PENVBX.HLP Help file and the sample
application files discussed in this article, download PEN2CTL.EXE, a self-
extracting file, from the Microsoft Software Library (MSL) on the following
services:

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download PEN2CTL.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the SOFTLIB\MSLFILES directory
 Get PEN2CTL.EXE

The PEN2CTL.EXE self-extracting file contains:

 - PENVBX.HLP, a help file that fully explains all the technical issues and
 describes how to interact with these pen-aware custom controls.

 - Several files that comprise a sample Pen application that demonstrates
 how to use all the major features of the PEN2CTL.VBX.

 - PEN2CTL.VBX, which is freely redistibutable and implements the three
 pen-aware custom edit controls: HEdit, BEdit, and lEdit.

 - HEdit is the handwriting edit control. It accepts free-form input.
 This control is similar to the standard Visual Basic text box except
 data can be entered using a pen in addition to the normal keyboard
 input method.

 - BEdit is the boxed edit control. It expands the properties of the

 handwriting edit control. It allows for additional manipulation of
 the writing area and provides the application with comb or box guides
 that accept pen input. Each segment or box accepts only a single
 character of input. This increases the accuracy of the recognition
 and in most cases is preferable to the handwriting edit control. The
 BEdit control also has the ability to provide a list of alternate
 words from which you may choose.

 - lEdit is the pen ink edit control. It is similar to a picture box
 control in that it allows you to draw, erase, move, resize,
 manipulate, and format pen strokes (called ink) on the control. It
 also allows you to set background pictures and grid lines as well as
 create bitmaps of the background and/or ink.

While there are many similarities between the controls provided by the Pen
1.0 VBX (PENCNTRL.VBX) and those provided by PEN2CTL.VBX, there are also
many differences. Those familiar with the Pen 1.0 VBX should refamiliarize
themselves with PEN2CTL.VBX and its changes.

NOTE: Neither VBX is compatible with the other but both implement some of
the same custom controls, so developers should make sure the correct VBX is
installed in their development environment and is distributed with their
application.

Additional reference words: 4.00 2.00
KBCategory: kbprg kbfile
KBSubcategory: WpenMisc WpenVB

Performing a Clear Screen (CLS) in a Console Application
PSS ID Number: Q99261

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

There is no Win32 application programming interface (API) that will clear
the screen in a console application. However, it is fairly easy to write a
function that will programmatically clear the screen.

MORE INFORMATION
================

The following function clears the screen:

void cls(HANDLE hConsole)
{
 COORD coordScreen = { 0, 0 }; /* here's where we'll home the
 cursor */
 BOOL bSuccess;
 DWORD cCharsWritten;
 CONSOLE_SCREEN_BUFFER_INFO csbi; /* to get buffer info */
 DWORD dwConSize; /* number of character cells in
 the current buffer */

 /* get the number of character cells in the current buffer */

 bSuccess = GetConsoleScreenBufferInfo(hConsole, &csbi);
 PERR(bSuccess, "GetConsoleScreenBufferInfo");
 dwConSize = csbi.dwSize.X * csbi.dwSize.Y;

 /* fill the entire screen with blanks */

 bSuccess = FillConsoleOutputCharacter(hConsole, (TCHAR) ' ',
 dwConSize, coordScreen, &cCharsWritten);
 PERR(bSuccess, "FillConsoleOutputCharacter");

 /* get the current text attribute */

 bSuccess = GetConsoleScreenBufferInfo(hConsole, &csbi);
 PERR(bSuccess, "ConsoleScreenBufferInfo");

 /* now set the buffer's attributes accordingly */

 bSuccess = FillConsoleOutputAttribute(hConsole, csbi.wAttributes,
 dwConSize, coordScreen, &cCharsWritten);

 PERR(bSuccess, "FillConsoleOutputAttribute");

 /* put the cursor at (0, 0) */

 bSuccess = SetConsoleCursorPosition(hConsole, coordScreen);
 PERR(bSuccess, "SetConsoleCursorPosition");
 return;
}

Additional reference words: 3.10 3.50 4.00 95 clearscreen
KBCategory: kbprg
KBSubcategory: BseCon

Performing a Synchronous Spawn Under Win32s
PSS ID Number: Q125212

The information in this article applies to:

 - Microsoft Win32s, version 1.2

SUMMARY
=======

Under Windows NT, you can synchronously spawn an application (that
is, spawn an application and wait until the spawned application is
terminated before continuing). To do so, call CreateProcess() to start the
application, and pass the handle returned to WaitForSingleObject() to
wait for the application to terminate. This is shown in the sample code
in the "More Information" section in this article.

However, this method does not work under Win32s. Under Win32s,
CreateProcess() does not return the process handle for 16-bit
Windows-based applications, only for Win32-based application. Even if it
did, the method described in the proceeding paragraph would not work under
Win32s because WaitForSingleObject() returns TRUE immediately under Win32s.

In fact, there is no 32-bit only solution for this issue. The 32-bit
WinExec() does not return an instance handle as the 16-bit WinExec() does.
In addition, you cannot use GetExitCodeProcess() to find the exit status
of 16-bit Windows-based applications in order to loop on their status. It
is a limitation that GetExitCodeProcess() returns zero for 16-bit
Windows-based applications on both Windows NT and Win32s.

The solution is to create a thunk to the 16-bit side and from the 16-bit
side, solve the problem as you would normally solve it from a Windows-based
application. Namely, start the application with WinExec() and use one of
the Toolhelp APIs in a test loop to determine when the application is
terminated. Alternatively, you can use EnumWindows() to determine when the
application is terminated. The sample code below uses the Toolhelp APIs.

MORE INFORMATION
================

Sample code to perform a synchronous spawn is given below. The code
is divided into three source files:

 - The main application.
 - The 32-bit side of the thunk.
 - The 16-bit side of the thunk.

You can use the thunking code as is, calling SynchSpawn() in your own
application as demonstrated in the main application below. For information
on Universal thunks (including which header files and libraries to use),
please see the "Win32s Programmer's Reference."

In all three modules, use the following header file SPAWN.H:

/*** Function Prototypes ****/

DWORD APIENTRY SynchSpawn(LPCSTR lpszCmdLine, UINT nCmdShow);

/*** Constants for Dispatcher ***/

#define SYNCHSPAWN 1

Main Application

This application attempts to synchronously spawn NOTEPAD under Windows NT
and Win32s. NOTE: Under Win32s, NOTEPAD is a 16-bit application.

GetVersion() is used to detect the platform. Under Windows NT,
CreateProcess() and WaitForSingleObject() perform the spawn. Under Win32s,
the thunked routine SynchSpawn() is called.

/*** Main application code ***/

#include <windows.h>
#include "spawn.h"

void main()
{
 DWORD dwVersion;
 STARTUPINFO si = {0};
 PROCESS_INFORMATION pi = {0};

 dwVersion = GetVersion();

 if(!(dwVersion & 0x80000000)) // Windows NT
 {
 si.cb = sizeof(STARTUPINFO);
 si.lpReserved = NULL;
 si.lpReserved2 = NULL;
 si.cbReserved2 = 0;
 si.lpDesktop = NULL;
 si.dwFlags = 0;

 CreateProcess(NULL,
 "notepad",
 NULL,
 NULL,
 TRUE,
 NORMAL_PRIORITY_CLASS,
 NULL,
 NULL,
 &si,
 &pi);
 WaitForSingleObject(pi.hProcess, INFINITE);
 }
 else if(LOBYTE(LOWORD(dwVersion)) < 4) // Win32s
 {

 SynchSpawn("notepad.exe", SW_SHOWNORMAL);
 }

 MessageBox(NULL, "Return from SynchSpawn", " ", MB_OK);

}

32-bit Side of Thunk

This DLL provides the 32-bit side of the thunk. If the DLL is loaded
under Win32s, it initializes the thunk in its DllMain() by calling
UTRegister(). The entry point SynchSpawn() packages up the arguments
and calls the 16-bit side through the thunk.

/*** Code for 32-bit side of thunk ***/

#define W32SUT_32 // Needed for w32sut.h in 32-bit code

#include <windows.h>
#include "w32sut.h"
#include "spawn.h"

typedef BOOL (WINAPI * PUTREGISTER) (HANDLE hModule,
 LPCSTR lpsz16BitDLL,
 LPCSTR lpszInitName,
 LPCSTR lpszProcName,
 UT32PROC * ppfn32Thunk,
 FARPROC pfnUT32Callback,
 LPVOID lpBuff
);

typedef VOID (WINAPI * PUTUNREGISTER) (HANDLE hModule);

typedef DWORD (APIENTRY *PUT32CBPROC) (LPVOID lpBuff, DWORD dwUserDefined);

UT32PROC pfnUTProc = NULL;
PUTREGISTER pUTRegister = NULL;
PUTUNREGISTER pUTUnRegister = NULL;
PUT32CBPROC pfnUT32CBProc = NULL;
int cProcessesAttached = 0;
BOOL fWin32s = FALSE;
HANDLE hKernel32 = 0;

/**\
* Function: BOOL APIENTRY DllMain(HANDLE, DWORD, LPVOID) *
* *
* Purpose: DLL entry point. Establishes thunk. *

BOOL APIENTRY DllMain(HANDLE hInst, DWORD fdwReason, LPVOID lpReserved)
{
 DWORD dwVersion;

 if (fdwReason == DLL_PROCESS_ATTACH)
 {

 /*
 * Registration of UT need to be done only once for first
 * attaching process. At that time set the fWin32s flag
 * to indicate if the DLL is executing under Win32s or not.
 */

 if(cProcessesAttached++)
 {
 return(TRUE); // Not the first initialization.
 }

 // Find out if we're running on Win32s
 dwVersion = GetVersion();
 fWin32s = (BOOL) (!(dwVersion < 0x80000000))
 && (LOBYTE(LOWORD(dwVersion)) < 4);

 if(!fWin32s)
 return(TRUE); // Win32s - no further initialization needed

 hKernel32 = LoadLibrary("Kernel32.Dll"); // Get Kernel32.Dll handle

 pUTRegister = (PUTREGISTER) GetProcAddress(hKernel32, "UTRegister"
);

 if(!pUTRegister)
 return(FALSE); // Error- Win32s, but can't find UTRegister

 pUTUnRegister = (PUTUNREGISTER) GetProcAddress(hKernel32,
 "UTUnRegister");

 if(!pUTUnRegister)
 return(FALSE); // Error- Win32s, but can't find
UTUnRegister

 return (*pUTRegister)(hInst, // Spawn32.DLL module handle
 "SPAWN16.DLL", // 16-bit thunk dll
 "UTInit", // init routine
 "UTProc", // 16-bit dispatch routine
 &pfnUTProc, // Receives thunk address
 pfnUT32CBProc, // callback function
 NULL); // no shared memroy

 }
 if((fdwReason==DLL_PROCESS_DETACH)&&(0==--cProcessesAttached)&&fWin32s)
 {
 (*pUTUnRegister)(hInst);
 FreeLibrary(hKernel32);
 }
} // DllMain()

/**\
* Function: DWORD APIENTRY SynchSpawn(LPTSTR, UINT) *

* *
* Purpose: Thunk to 16-bit code *

DWORD APIENTRY SynchSpawn(LPCSTR lpszCmdLine, UINT nCmdShow)
{
 DWORD Args[2];
 PVOID Translist[2];

 Args[0] = (DWORD) lpszCmdLine;
 Args[1] = (DWORD) nCmdShow;

 Translist[0] = &Args[0];
 Translist[1] = NULL;

 return((* pfnUTProc)(Args, SYNCHSPAWN, Translist));
}

16-bit Side of Thunk

This DLL provides the 16-bit side of the thunk. The LibMain() and WEP()
of this 16-bit DLL perform no special initialization. The UTInit()
function is called during thunk initialization; it stores the callback
procedure address in a global variable. The UTProc() function is called
with a code that indicates which thunk was called as its second
parameter. In this example, the only thunk provided is for SynchSpawn().
The synchronous spawn is performed in the SYNCHSPAWN case of the switch
statement in the UTProc().

NOTE: UTInit() and UTProc() must be exported. This can be done in the
module definition (.DEF) file.

/* Code for 16-bit side of thunk. */
/* Requires linking with TOOLHELP.LIB, for ModuleFindHandle(). */

#ifndef APIENTRY
#define APIENTRY
#endif
#define W32SUT_16 // Needed for w32sut.h in 16-bit code

#include <windows.h>
#include <toolhelp.h>
#include <malloc.h>
#include "w32sut.h"
#include "spawn.h"

UT16CBPROC glpfnUT16CallBack;

/**\
* Function: LRESULT CALLBACK LibMain(HANDLE, WORD, WORD, LPSTR) *
* *
* Purpose: DLL entry point *

int FAR PASCAL LibMain(HANDLE hLibInst, WORD wDataSeg,
 WORD cbHeapSize, LPSTR lpszCmdLine)

{
 return (1);
} // LibMain()

/**\
* Function: DWORD FAR PASCAL UTInit(UT16CBPROC, LPVOID) *
* *
* Purpose: Universal Thunk initialization procedure *

DWORD FAR PASCAL UTInit(UT16CBPROC lpfnUT16CallBack, LPVOID lpBuf)
{
 glpfnUT16CallBack = lpfnUT16CallBack;
 return(1); // Return Success
} // UTInit()

/**\
* Function: DWORD FAR PASCAL UTProc(LPVOID, DWORD) *
* *
* Purpose: Dispatch routine called by 32-bit UT DLL *

DWORD FAR PASCAL UTProc(LPVOID lpBuf, DWORD dwFunc)
{
 switch (dwFunc)
 {
 case SYNCHSPAWN:
 {
 HMODULE hMod;
 MODULEENTRY FAR *me;
 UINT hInst;
 LPCSTR lpszCmdLine;
 UINT nCmdShow;
 MSG msg;
 BOOL again=TRUE;

 /* Retrieve the command line arguments stored in buffer */

 lpszCmdLine = (LPSTR) ((LPDWORD)lpBuf)[0];
 nCmdShow = (UINT) ((LPDWORD)lpBuf)[1];

 /* Start the application with WinExec() */

 hInst = WinExec(lpszCmdLine, nCmdShow);
 if(hInst < 32)
 return 0;

 /* Loop until the application is terminated. The Toolhelp API
 * ModuleFindHandle() returns NULL when the application is
 * terminated. NOTE: PeekMessage() is used to yield the
 * processor; otherwise, nothing else could execute on the
 * system.
 * /

 hMod = GetModuleHandle(lpszCmdLine);

 me = (MODULEENTRY FAR *) _fcalloc(1, sizeof(MODULEENTRY));
 me->dwSize = sizeof(MODULEENTRY);
 while(NULL != ModuleFindHandle(me, hMod) && again)
 {
 while(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE) && again)
 {
 if(msg.message == WM_QUIT)
 {
 PostQuitMessage(msg.wParam);
 again=FALSE;
 }
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 }
 return 1;
 }

 } // switch (dwFunc)

 return((DWORD)-1L); // We should never get here.
} // UTProc()

/**\
* Function: int FAR PASCAL _WEP(int) *
* *
* Purpose: Windows exit procedure *

int FAR PASCAL _WEP(int bSystemExit)
{
 return (1);
} // WEP()

Additional reference words: 1.20 win16
KBCategory: kbprg kbcode
KBSubcategory: W32s

PHONECAPS for Phones That Don't Report Button States
PSS ID Number: Q108308

The information in this article applies to:

 - Microsoft Windows Telephony Software Development Kit (SDK) version
 1.0 for Windows version 3.1
 - Microsoft Win32 SDK, version 4.0
--

A Windows Telephony application can call phoneGetDevCaps to inquire about a
phone's telephony capabilities. The resulting function in the TAPI
(Telephony application programming interface) service provider is
TSPI_phoneGetDevCaps. If the phone device does not report button states, it
is acceptable for the service provider to set the dwButtonModeSize/Offset
fields in the PHONECAPS structure to 0 (zero). Alternatively, the provider
could describe the button(s) as PHONEBUTTONMODE_DUMMY.

As a clarification, setting the dwButtonModeSize to 0 or describing the
buttons as PHONEBUTTON_DUMMY does not prohibit the service provider from
setting and using the dwButtonFunctionsSize and dwButtonFunctionsOffset
members of the PHONECAPS structure.

Additional reference words: 1.00 3.10 4.00 95
KBCategory: kbprg
KBSubcategory: MsgTapi

Physical Memory Limits Number of Processes/Threads
PSS ID Number: Q94840

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

Each time Windows NT creates an object, such as a process or a thread, it
must allocate a certain amount of physical memory (nonpaged pool) for its
support. The amount of memory that is needed for support of a process
object is significantly higher than the memory requirement for support of a
thread object. The amount of memory that is required for a thread object
on a RISC machine is higher than the memory requirement for a thread on an
x86 machine, due to the greater number and size of registers on the RISC
machines.

Due to the physical memory requirement of processes and threads, programs
that use the CreateProcess() and CreateThread() APIs should be careful to
check their return codes to detect out-of-memory conditions.

On Windows NT 3.5, each time a process is created it reserves the minimum
working set of memory. On a 32 MB system, the default minimum working set
is 200 KB. Therefore, on a 32 MB system, you can create ~100 processes. You
can lower your minimum working set to 80 KB (the lowest allowed) with the
following call:

 SetProcessWorkingSetSize((HANDLE)(-1), 20*4096, 100*4096);

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseProcThrd

Placing a Caret After Edit-Control Text
PSS ID Number: Q12190

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

The EM_SETSEL message can be used to place a selected range of text in
a Windows edit control. If the starting and ending positions of the
range are set to the same position, no selection is made and a caret
can be placed at that position. To place a caret at the end of the
text in a Windows edit control and set the focus to the edit control,
do the following:

 hEdit = GetDlgItem(hDlg, ID_EDIT); // Get handle to control
 SetFocus(hEdit);
 SendMessage(hEdit, EM_SETSEL, 0, MAKELONG(0xffff,0xffff));

It is also possible to force the caret to a desired position within
the edit control. The following code fragment shows how to place the
caret just to the right of the Nth character:

 hEdit = GetDlgItem(hDlg, ID_EDIT); // Get handle to control
 SetFocus(hEdit);
 SendMessage(hEdit, EM_SETSEL, 0, MAKELONG(N,N));
 // N is the character position

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbui
KBSubcategory: UsrCtl

Placing Captions on Control Windows
PSS ID Number: Q77750

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

The SetWindowText() function can be used to place text into the caption bar
specified for a control window. The control must have the WS_CAPTION style
for the caption to be visible.

This technique does not work with edit controls because the SetWindowText()
function specifies the contents of the edit control, not its caption.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbui
KBSubcategory: UsrCtl

Placing Double Quotation Mark Symbol in a Resource String
PSS ID Number: Q47674

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

To specify a set of double quotation marks within a string in an
application's resource (RC) file, use two double quotation mark characters
in succession, as in the following example:

Specify the following string in the RC file:

 "The letter ""Q"" is quoted."

The following string will appear in the compiled resource (RES) file:

 The letter "Q" is quoted.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrRsc

Placing Text in an Edit Control
PSS ID Number: Q32785

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

Text is placed into an edit control by calling SetDlgItemText() or by
sending the WM_SETTEXT message to the edit control window, with lParam
being a pointer to a null-terminated string. This message can be sent in
two ways:

1. SendMessage(hwndEditControl, WM_SETTEXT, ...

2. SendDlgItemMessage(hwndParent, ID_EDITCTL, WM_SETTEXT...

 NOTE: hwndParent is the window handle of the parent, which may be a
 dialog or window. ID_EDITCTL is the ID of the edit control.

Text is retrieved from an edit control by calling GetDlgItemText() or
by sending the WM_GETTEXT message to the edit control window, with
wParam being the maximum number of bytes to copy and lParam being a
far pointer to a buffer to receive the text. This message can be sent
in two ways:

1. SendMessage(hwndEditControl, WM_GETTEXT, ...

2. SendDlgItemMessage(hwndParent, ID_EDITCTL, WM_GETTEXT...

 NOTE: hwndParent is the window handle of the parent, which may be
 a dialog or window. ID_EDITCTL is the ID of the edit control.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbui
KBSubcategory: UsrCtl

Points to Remember When Writing a Debugger for Win32s
PSS ID Number: Q121093

The information in this article applies to:

 - Microsoft Win32s, versions 1.1, 1.15, and 1.2

SUMMARY
=======

This article is intended for developers of debugging tools for the Win32s
environment. It covers the issues that should be to taken into
consideration while writing debugging tools for the Win32s environment.

Overall, the code of a debugger for the Win32s environment is similar to
the code of a debugger for the Windows NT environment. There are special
points that must be considered before and while writing debugging tools for
the Win32s environment. They are:

 - Using the WaitForDebugEvent() API Function

 - Debugging Shared Code

 - Getting and Setting Thread Context

 - Tracing Through Mixed 16- and 32-bit Code

 - Using Asynchronous Stops

 - Identifying System DLLs

 - Understanding Linear and Virtual Addresses

 - Reading and Writing Process Memory

 - Accessing the Thread Local Storage (TLS)

Each of these is discussed in detail in the More Information section below.

MORE INFORMATION
================

The following information is specific to writing a debugger for the Win32s
environment.

Using the WaitForDebugEvent() API Function

The WaitForDebugEvent() API function waits for a debugging event to occur
in a process being debugged. Use it to trap debugging events.

Because of the non-preemptive nature of Windows version 3.1, it is not
possible to guarantee the timeout functionality. For this reason, the

dwTimeout parameter was implemented differently in Win32s. In Win32s, if
dwTimeout is zero, the WaitForDebugEvent() function behaves as documented
in the "Win32 Programmer's Reference." Otherwise, the function waits
indefinitely, until a debug event occurs or until a message is received for
that process.

Make sure the function returns if a message is received, so that the
calling process can respond to messages. If WaitForDebugEvent() returns
because a debug event has occurred, the return value is TRUE. Otherwise,
the return value is FALSE. In Win32, a FALSE return value means failure.
Have the calling process use SetLastError() to set the error value to 0
before calling WaitForDebugEvent(). Then if the return value is FALSE and
error value returned by GetLastError() is still zero, it means a message
arrived.

The following code fragment demonstrates the use of WaitForDebugEvent() in
the message loop:

 while(GetMessage(&msg, NULL, NULL, NULL))
 {
 TranslateMessage(&msg); /* Translate virtual key codes */
 DispatchMessage(&msg); /* Dispatch message to window */

 SetLastError(0); /* Set error code to zero */
 if(WaitForDebugEvent(&DebugEvent, INFINITE))
 {
 /* Process the debug event */
 ProcessDebugEvents(&DebugEvent);
 }
 else
 {
 if(GetLastError() != 0)
 {
 /* Handle error condition. */
 }
 }
 }

Debugging Shared Code

Under Win32s, all processes run in a single address space. For that reason,
if a debugger sets a breakpoint in shared code, all processes will
encounter this breakpoint, even those that are not being debugged. For
these processes, the debugger should restore the code, let the process
execute the restored instruction, and then reset the breakpoint. The
problem is that in order to do these operations, the debugger needs a
handle to the process thread.

The debugger does not have a handle for the process thread of a process it
did not create. To get the handle, Win32s supports a new function,
OpenThread(), which is not a part of the Win32 API.

 HANDLE OpenThread(dwThreadId);

 DWORD dwThreadId; /* The thread ID */

 Parameter description:

 dwThreadId - Specifies the thread identifier of the thread to open.

 Returns:

 If the function succeeds, the return value is an open handle of the
 specified thread; otherwise, it is NULL. To get extended error
 information, use the GetLastError() API.

 Comments:

 The handle returned by OpenThread() can be used in any function that
 requires a handle to a thread.

OpenThread() is exported by KERNEL32.DLL, but is not included in any of the
SDK import libraries.

To create an import library on a Windows NT development machine:

1. Place the following contents into a file named W32SOPTH.C:

 #include <windows.h>

 HANDLE WINAPI OpenThread(DWORD dwThreadId)
 {
 return (HANDLE)NULL;
 }

2. Place the following contents into a file named W32SOPTH.DEF:

 LIBRARY kernel32

 DESCRIPTION 'Win32s OpenThread library'

 EXPORTS
 OpenThread

3. Place the following contents into a file named MAKEFILE:

 w32sopth.lib: w32sopth.obj
 lib -out:w32sopth.lib -machine:i386 -def:w32sopth.def w32sopth.obj

 w32sopth.obj: w32sopth.c
 cl /c w32sopth.c

4. Run the NMAKE utility from the directory that contains the files
 created in steps 1-3. This creates the W32SOPTH.LIB file.

The debugger should perform the following test: in the DEBUG_INFO structure
returned by WaitForDebugEvent(), there is a thread ID. The debugger should
check to see if this ID is one of the debugged processes. If it is not, the
debugger should call OpenThread() with the given thread ID as the parameter

and receive a handle to the thread. Using this handle, the debugger should
call GetThreadContext(), identify the breakpoint, restore the code, set the
single step bit of EFlag, and resume the process by calling
ContinueDebugEvent(). Then control returns to the debugger. The debugger
restores the breakpoint. After dealing with the non-debugged process, the
debugger must close the thread handle obtained from OpenThread() by using
CloseHandle().

The following code fragment demonstrates how a debugger can handle
breakpoints in the context of a non-debugged process:

 LPDEBUG_EVENT lpEvent; /* Pointer to the debug event structure */
 HANDLE hProc; /* Handle to process */
 HANDLE hThread; /* Handle to thread */
 CONTEXT Context; /* Context structure */;
 BYTE bOrgByte; /* Original byte in the place of BP */
 DWORD cWritten; /* Number of bytes written to memory */
 static DWORD dwBPLoc; /* Breakpoint location */

 /*
 * Other debugger functions:
 *
 * LookupThreadHandle -
 * Receives a thread ID and returns a handle to the thread, if
 * the thread created by the debugger, else returns NULL.
 */
 HANDLE LookupThreadHandle(DWORD);

 /*
 * LookupOriginalBPByte -
 * Receives an address of a breakpoint and returns the original
 * contents of the memory in the place of the breakpoint.
 * The memory contents is returned in the byte buffer passed as
 * a parameter.
 * Return value - If the breakpoint was set by the debugger the
 * return value is TRUE, else FALSE.
 */
 BOOL LookupOriginalBPByte(LPVOID, LPBYTE);

 /* Handle debug events according to event types */
 switch(lpEvent->dwDebugEventCode)
 {
 /* ... */
 case EXCEPTION_DEBUG_EVENT:
 /* Handle exception debug events according to exception type */
 switch(lpEvent->u.Exception.ExceptionRecord.ExceptionCode)
 {
 /* ... */
 case EXCEPTION_BREAKPOINT:
 /* Breakpoint exception */
 /* Look for the thread handle in the debugger tables */
 hThread = LookupThreadHandle(lpEvent->dwThreadId);
 if(hThread == NULL)
 {
 /* Not a debuggee */

 /* Get process and thread handles */
 hProc = OpenProcess(0, FALSE, lpEvent->dwProcessId);
 hThread = OpenThread(lpEvent->dwThreadId);

 /* Get the full context of the processor */
 Context.ContextFlags = CONTEXT_FULL;
 GetThreadContext(hThread, &Context);

 /* We get the exception after executing the INT 3 */
 dwBPLoc = --Context.Eip;

 /* Restore the original byte in memory in the */

 /* place of the breakpoint */
 if(!LookupOriginalBPByte((LPVOID)dwBPLoc, &bOrgByte))
 {
 /* Handle unfamiliar breakpoint */
 }
 else
 {
 /* Restore memory contents */
 WriteProcessMemory(hProc, (LPVOID)dwBPLoc,
 &bOrgByte, 1, &cWritten);

 /* Set the Single Step bit in EFlags */
 Context.EFlags |= 0x0100;
 SetThreadContext(hThread, &Context);
 }

 /* Free Handles */
 CloseHandle(hProc);
 CloseHandle(hThread);

 /* Resume the interrupted process */
 ContinueDebugEvent(lpEvent->dwProcessId,
 lpEvent->dwThreadId, DBG_CONTINUE);
 }
 else
 {
 /* Handle debuggee breakpoint. */
 }
 break;

 case STATUS_SINGLE_STEP:
 hThread = LookupThreadHandle(lpEvent->dwThreadId);
 if(hThread == NULL)
 {
 /* Not a debuggee, just executed the original instruction */
 /* and returned to the debugger. */

 /* Get process handle */
 hProc = OpenProcess(0, FALSE, lpEvent->dwThreadId);

 /* Restore the INT 3 instruction in the place of the BP */
 bOrgByte = 0xCC;

 WriteProcessMemory(hProc, (LPVOID)dwBPLoc,
 &bOrgByte, 1, &cWritten);

 /* Free Handle */
 CloseHandle(hProc);

 /* Resume the process */
 ContinueDebugEvent(lpEvent->dwProcessId,
 lpEvent->dwThreadId, DBG_CONTINUE);
 }
 else
 {
 /* Handle debuggee single-step. */
 }
 break;
 /* */
 }
 /* */
 }

This sample code does not contain code to handle error checking and return
values from APIs. The assumption is that a non-debugged process generates a
single step exception only when it is executing the instruction in the
place of the breakpoint. The code for handling the single step exception
does not handle debug registers.

Getting and Setting Thread Context

Because of architectural differences between Windows NT and Win32s, there
is a difference in the way GetThreadContext() and SetThreadContext() work
in Win32s. These functions return successfully only if they are called
after returning from WaitForDebugEvent() with the EXCEPTION_DEBUG_EVENT
value in the dwDebugEventCode field of the DEBUG_INFO structure and before
calling ContinueDebugEvent(). At any other point, these APIs fail and
GetLastError() returns ERROR_CAN_NOT_COMPLETE.

Tracing Through Mixed 16- and 32-bit Code

Occasionally, Win32-based applications switch to 16-bit mode and then go
back to 32-bit mode. For example, part of the Windows API is implemented in
Win32s by using thunks to connect to Windows version 3.1. That means that
in order to call the API, Win32s switches to 16-bit mode, calls the
corresponding API on the Windows version 3.1 side, and then returns to 32-
bit mode.

Most debuggers do not allow tracing through 16-bit code. So when the code
is about to switch to 16-bit mode, the debugger should trace over this
code. To do so, Win32s supplies the DbgBackTo32 label. All calls to 16-bit
code return through this address. The DbgBackTo32 label is exported by
W32SKRNL.DLL. At this label, there is a RET instruction. After executing
this RET instruction and immediately another following RET instruction,
Win32s resumes execution at the application code, at the instruction
following the call to the thunked function. So if the debugger determines

that the next call is into a thunk function, it can set a breakpoint at
DbgBackTo32 and trace over this call.

Using Asynchronous Stops

The asynchronous stop key combination was set to CTRL+ALT+F11 in Win32s.
It allows a 16-bit debugger to run at the same time as a 32-bit debugger.
Each debugger can synchronously stop the other.

If the user presses CTRL+ALT+F11 when the executing code is 16-bit code,
execution will not be interrupted until it returns to 32-bit code. This
way, the debugger does not have to handle 16-bit code. If the user presses
CTRL+ALT+F11 when the executing code is 32-bit code, execution is
interrupted immediately.

Execution is interrupted by generating a single step exception. To handle
the case where the user presses CTRL+ALT+F11 while 16-bit code is
executing, the address of the exception is at a special Win32s label
(W32S_BackTo32). This label is exported by W32SKRNL.DLL and is located a
few instructions before DbgBackTo32. For more information on this see the
"Tracing Through Mixed 16- and 32-bit Code" above.

The code at W32S_BackTo32 is system code and usually debuggers should not
allow tracing through system code. But between W32S_BackTo32 and
DbgBackTo32, the debugger may allow tracing through this specific code and
also through the two following RET instructions. This will bring the user
to the point in the application at which CTRL+ALT+F11 was pressed.

Identifying System DLLs

When tracing through application code, it is not desirable to trace into
system DLL code. The main reason for this is that in many cases the code
goes to 16-bit code. To enable the debugger to distinguish between system
and user DLLs, all Win32s system DLLs contain an extra exported symbol
called WIN32SYSDLL. The address of this symbol is meaningless. The
existence of such a symbol indicates that this is a system DLL.

Understanding Linear and Virtual Addresses
--

Win32s uses flat memory address space as does Windows NT, but unlike
Windows NT, the base of the code and data segments is not at zero. You must
consider this when dealing with linear addresses -- such as hardware debug
registers when setting a hardware breakpoint. When setting a hardware
breakpoint, you need to add the base of the selector to the virtual address
of the breakpoint and set the debug register with this value. If you do not
do so, the code will run on Windows NT but not on Win32s.

The debugger needs to get the base address of the selectors by using the
GetThreadSelectorEntry() function.

Similarly, when the hardware breakpoint is encountered, you must subtract
the selector base address from the contents of the debug register in order

to read the process memory at the breakpoint location.

Reading and Writing Process Memory

When reading from or writing to process memory, all hardware breakpoints
must be disabled. If you do not do so, accessing the memory locations
pointed to by the debug registers will trigger the hardware breakpoints.

The following code demonstrates how a debugger can read process memory at
the location of a read memory hardware breakpoint:

 CONTEXT Context;
 LDT_ENTRY SelEntry;
 DWORD dwDsBase;
 DWORD DR7;
 BYTE Buffer[4];

 /* Get Context */
 Context.ContextFlags = CONTEXT_FULL | CONTEXT_DEBUG_REGISTERS;
 GetThreadContext(hThread, &Context);

 /* Calculate the base address of DS */
 GetThreadSelectorEntry(hThread, Context.SegDs, &SelEntry);
 dwDsBase = (SelEntry.HighWord.Bits.BaseHi << 24) |
 (SelEntry.HighWord.Bits.BaseMid << 16) |
 SelEntry.BaseLow;

 /*
 * Disable all hardware breakpoints before reading the process
 * memory. Not doing so will lead to nested breapoints.
 */
 DR7 = Context.Dr7;
 Context.Dr7 &= ~0x3FF;
 SetThreadContext(hThread, &Context);

 /* Read DWORD at the location of DR0 */
 ReadProcessMemory(hProcess,
 (LPVOID)((DWORD)Context.Dr0-dwDsBase),
 Buffer, sizeof(Buffer), NULL);

 /* Restore hardware breakpoints */
 Context.Dr7 = DR7;
 SetThreadContext(hThread, &Context);

Accessing the Thread Local Storage (TLS)

The lpThreadLocalBase field of the CREATE_PROCESS_DEBUG_INFO structure in
Windows NT specifies the base address of a per-thread data block. At offset
0x2C within this block, there exists a pointer to an array of LPVOIDs.
There is one LPVOID for each DLL/EXE loaded at process initialization, and
that LPVOID points to Thread Local Storage (TLS). This gives a debugger
access to per-thread data in its debuggee's threads using the same

algorithms that a compiler would use.

On the other hand, in Win32s, lpThreadLocalBase contains a pointer directly
to the array of LPVOIDs, not the pointer to the per-thread data block.

Additional reference words: 1.10 1.15 1.20
KBCategory: kbprg kbcode
KBSubCategory: W32s

Possible Cause for ERROR_INVALID_FUNCTION
PSS ID Number: Q111838

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

The Win32 Tape API (application programming interface) functions may return
an error code of ERROR_INVALID_FUNCTION if the operation being attempted is
not supported by the tape device.

MORE INFORMATION
================

You can determine what operations are valid for a tape device by calling
GetTapeParameters() to get the tape drive parameters. See the code fragment
in the Sample Code section of this article for an example of how to call
GetTapeParameters() for this information.

Once you have the TAPE_GET_DRIVE_PARAMETERS structure, you can check for a
specific operation in the FeaturesLow and FeaturesHigh members of the
TAPE_GET_DRIVE_PARAMETERS structure. This is also demonstrated in the
Sample Code section.

Sample Code

/*
** This is a code fragment only and will not compile and run as is.
*/

DWORD dwRes, dwSize;
TAPE_GET_DRIVE_PARAMETERS parmDrive;

...

dwSize = sizeof(parmDrive);
dwRes = GetTapeParameters(hTape, GET_TAPE_DRIVE_INFORMATION,
 &dwSize, &parmDrive);
if (dwRes != NO_ERROR) {
 /* place error handling code here */
 exit(-1);
}

if (parmDrive.FeaturesLow & TAPE_DRIVE_ERASE_LONG)
 printf(“Device supports the long erase technique.\n”);

...

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseFileio

Possible Serial Baud Rates on Various Machines
PSS ID Number: Q99026

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

Computers running Windows NT may be unable to set the same serial baud
rates due to differences in serial port hardware on various platforms and
machines. These differences may be important to note when writing a serial
communications application that runs on different Windows NT platforms.

The simplest way to determine what baud rates are available on a particular
serial port is to call the GetCommProperties() application programming
interface (API) and examine the COMMPROP.dwSettableBaud bitmask to
determine what baud rates are supported on that serial port.

MORE INFORMATION
================

Some baud rates may be available on one machine and not on another because
of differences in the serial port hardware used on the two machines. Most
Intel 80x86 machines use a standard 1.8432 megahertz (MHz) clock speed on
serial port hardware, and therefore most Intel machines can set the same
baud rates. However, on other platforms, such as MIPS, there is no standard
serial port clock speed. MIPS serial ports are known to exist with 1.8432
MHz, 3.072 MHz, 4.2336 MHz, and 8.0 MHz serial port clock chips. Future NT
implementations on other platforms may have different serial port clock
speeds as well.

Furthermore, certain requested baud rates are special-cased in the Windows
NT serial driver so that they will work. The following are these special
cases:

 MHz Requested Baud Divisor Resulting Baud Rate (+/- 1)

 1.8432 56000 2 57600
 3.072 14400 13 14769
 4.2336 9600 28 9450
 4.2336 14400 18 14700
 4.2336 19200 14 18900
 4.2336 38400 7 37800
 4.2336 56000 5 52920
 8.0 14400 35 14286
 8.0 56000 9 55556

The actual baud rate can be calculated by dividing the divisor multiplied

by 16 into the clock rate. For example, for a 1.8432 MHz clock and a
divisor of 2, the baud rate would be:

 1843200 Hz / (2 * 16) = 57600

For all other cases, as long as the requested baud rate is within 1 percent
of the nearest baud rate that can be found with an integer divisor, the
baud rate request will succeed.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseCommapi

Posting Frequent Messages Within an Application
PSS ID Number: Q40669

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The object-oriented nature of Windows programming can create a situation in
which an application posts a message to itself. When such an application is
designed, care must be taken to avoid posting messages so frequently that
system messages to the application are not processed. This article
discusses two methods of using the PeekMessage() function to combat this
situation.

MORE INFORMATION
================

In the first method, a PeekMessage() loop is used to check for system
messages to the application. If none are pending, the SendMessage()
function is used from within the PeekMessage() loop to send a message to
the appropriate window. The following code demonstrates this technique:

while (fProcessing)
 {
 if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
 {
 if (msg.message == WM_QUIT)
 break;
 /* process system messages */
 }
 else
 {
 /* perform other processing */
 ...
 /* send WM_USER message to window procedure */
 SendMessage(hWnd, WM_USER, wParam, lParam);
 }
 }

In the second method, two PeekMessage() loops are used, one to look for
system messages and one to look for application messages. PostMessage() can
be used from anywhere in the application to send the messages to the
appropriate window. The following code demonstrates this technique:

while (fProcessing)

 {
 if (PeekMessage(&msg, NULL, 0, WM_USER-1, PM_REMOVE))
 {
 if (msg.message == WM_QUIT)
 break;
 /* process system messages */
 }
 else if (PeekMessage(&msg, NULL, WM_USER, WM_USER, PM_REMOVE))
 /* process application messages */
 }

An application should use a PeekMessage() loop for as little time as
possible. To be compatible with battery-powered computers and to optimize
system performance, every Windows-based application should inform Windows
that it is idle as soon and as often as possible. An application is idle
when the GetMessage() or WaitMessage() function is called and no messages
are waiting in the application's message queue.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrMsg

PRB: "Help Author On" Appears in Help Title Bar
PSS ID Number: Q147864
--
The information in this article applies to:

 - Microsoft Win32 Application Programming Interface included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s version 1.3
--

SYMPTOMS
========

After you run Microsoft Help Workshop, the text in the title bar for all of
your help files may display a number followed by the following text:

 (Help Author On)

This text will replace the title of the help file that normally appears.

CAUSE
=====

The "Help Author" command is provided by the Help Workshop to provide
additional authoring information and debugging capabilities. Whenever Help
Author is active, the title bar will display the topic number of the
currently displayed topic and the "Help Author On" message.

By design, once turned on, Help Author remains active until it is disabled,
even if the Help Workshop is no longer running.

RESOLUTION
==========

To disable Help Author, clear the Help Author check box in the Help
Workshop's File menu. For the change to take effect, you must exit the
Help Workshop.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

Under Windows 95 or Win32s, this setting corresponds to the following line
in the [Windows Help] section of the Win.ini file. Note that a value of 1
indicates that Help Author is enabled and a value of 0 indicates that Help
Author is disabled:

 Help Author=1

Under Windows NT, this setting corresponds to the following entry in the
registry:

 HKEY_CURRENT_USER\Software\Microsoft\Windows Help\
 Help Author:REG_SZ:1

Additional reference words: 1.30 4.00 hcw compiler
KBCategory: kbtool kbprb
KBSubcategory: TlsHlp

PRB: "Out of Memory Error" in the Win32 SDK Setup Sample
PSS ID Number: Q114610
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0
--

SYMPTOMS
========

When a dialog box is shown using UIStartDlg() or a billboard is switched
during the file copy operation, you may receive an "out of memory" error.
The error will also occur in any setup program based on a modified version
of the SDK sample.

CAUSE
=====

The dialog box and billboard templates are stored as resources in
MSCUISTF.DLL. This DLL (Dynamic Link Library) is not loaded at the
beginning of the setup program but is rather loaded and unloaded [using
LoadLibrary() and FreeLibrary()] around each call to UIStratDlg() and when
billboards are switched. Hence, each time a dialog or billboard is
displayed, floppy disk #1 has the potential of being accessed. If disks
have been swapped due to the installation process such that disk #1 is no
longer in the drive, you will receive an out of memory error when
LoadLibrary() is called on MSCUISTF.DLL.

RESOLUTION
==========

To solve the problem, call LoadLibrary() at the beginning of WinMain() and
call FreeLibrary() and the end of WinMain(). This way the DLL is always in
use and will never be unloaded until the setup is done.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool kbprb
KBSubcategory: TlsMss

PRB: "Routine Not Found" Errors in Windows Help
PSS ID Number: Q108722
--
The information in this article applies to:

 - Microsoft Win32s versions 1.0, 1.1, and 1.2
--

SYMPTOMS
========

When Freecell is running on Win32s, you may get some errors when you try to
use Freecell Help. This has nothing to do with whether or not Win32s is
installed correctly.

When you first open Help in Freecell running on Win32s, you will get a
message box that says, "Routine Not Found." You will get that same
message box when you choose the Find button.

When you choose any term in Freecell Help that has a dotted underline (a
pop-up hot key), a window pops up but then quickly disappears. You will
then get a message box that reads, "Help Topic Does Not Exist."

CAUSE
=====

FREECELL.HLP was meant to be used with WINHLP32.EXE. FREECELL.HLP uses the
advanced features of WINHLP32.EXE for full-text searching. WINHELP.EXE,
which runs on Windows 3.1, does not support full-text searching.
WINHLP32.EXE does not run on Win32s or Windows 3.1. As a result, everytime
FREECELL.HLP tries to bind the Find button to the full-text searching
functions, it fails, and WinHelp pops up an error message box.

RESOLUTION
==========

You can still read the information in the help file. Although you cannot
use the Find button to do full-text searches, you can use the Search
button to do keyword searches. WINHLP32.EXE will not work on a MS-DOS +
Windows + Win32s operating system. If you need to read the pop-up
definitions or use the Find button, you can do so if you run Freecell Help
on the Windows NT operating system.

Additional reference words: 1.00 1.10 1.20
KBCategory: kbprg kbprb
KBSubcategory: W32s

PRB: 16-bit Module Name Not Included in Toolhelp32 Snapshots
PSS ID Number: Q137288

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SYMPTOMS
========

The snapshots returned by Toolhelp32 identify 16-bit processes as the
KERNEL32 module. In other words, the szExePath field of the MODULEENTRY32
structure contains KERNEL32.DLL for 16-bit Windows-based applications. The
correct module is given for Win32-based applications.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

16-bit modules are very different from 32-bit modules and code that
manipulates the internals of one kind usually must be rewritten for the
other kind. The most common exception is code that prints out the name of
the .exe file. This information can be obtained, for both 16-bit and 32-bit
applications, from the szExeFile member of the PROCESSENTRY32 structure.

NOTE: The szExeFile field was added after the first beta of Windows 95,
so some prerelease SDK header files do not include this field. It is
important that you use the latest SDK header files for development.

REFERENCES
==========

The PVIEW95 SDK sample uses the module fields in the MODULEENTRY32 and
PROCESSENTRY32 structures.

Additional reference words: 4.00 Windows 95
KBCategory: kbprg kbprb
KBSubcategory:

PRB: _getdcwd() Returns the Root Directory Under Win32s
PSS ID Number: Q98286
--
The information in this article applies to:

 - Microsoft Win32s versions 1.1 and 1.2
--

SYMPTOMS
========

In the following code segment, _getdcwd() always returns the root:

 _getdcwd(3, cBuf, MAX_PATH);
 MessageBox(hWnd, cBuf, "Drive 3 <C drive>", MB_OK);

Also, in the following code segment, _chdrive() and _getcwd() always return
the root:

 _chdrive(3);
 _getcwd(cBuf, MAX_PATH);
 MessageBox(hWnd, cbuf, "Drive 3 <C drive>", MB_OK);

CAUSE
=====

When a Win32-based application starts on Win32s, the root is set as the
current directory for any drive except the default drive.

RESOLUTION
==========

The following code fragments work as expected under Win32s:

 _getdcwd(0, cBuf, MAX_PATH);
 MessageBox(hWnd, cBuf, "Drive 0 <default drive>", MB_OK);

 -or-

 GetCurrentDirectory(sizeof (cBuf), cBuf);
 MessageBox(hWnd, cBuf, "SCD", MB_OK);

MORE INFORMATION
================

Windows NT uses the current directory of a process as the initial current
directory for the current drive of a child process. So for example, if the
current directory in the command prompt (CMD.EXE) is C:\WINNT then the
current directory of the child process will be C:\WINNT.

However, on Win32s, the current directory for any drive except the default
drive is set to the root and not the current directory of the parent
process. A Win32-based application running on Win32s calling _chdrive() or
SetCurrentDirectory() to change the drive GetCurrentDirectory or _getcwd()

will then return the root. The _getdcwd() function is a composite of
changing drives, getting the current directory of that drive, and change
back to the original drive. Therefore, _getdcwd() will always return the
root on Win32s.

Running the following sample to display the current directory of drives C
and D under Windows NT properly displays the full path of the drive.
Running the sample under Win32s always displays the root ("C:\", "D:\").

Sample Code

#include <direct.h>

...

 status = _getdcwd(3, szPath, MAX_PATH); // drive 3 == C:
 if(status != NULL)
 {
 MessageBox(hWnd, szPath, "Current working directory on C:", MB_OK);
 }

 status = _getdcwd(4, szPath, MAX_PATH); // drive 4 == D:
 if(status != NULL)
 {
 MessageBox(hWnd, szPath, "Current working directory on D:", MB_OK);
 }

...

Additional reference words: 1.10 1.20
KBCategory: kbprg kbprb
KBSubcategory: W32s

PRB: Access Denied When Opening a Named Pipe from a Service
PSS ID Number: Q126645

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51

SYMPTOMS
========

If a service running in the Local System account attempts to open a named
pipe on a computer running Windows NT version 3.5, the operation may fail
with an Access Denied error (error 5). This can happen even if the pipe was
created with a NULL DACL.

NOTE: For more information about placing a NULL DACL on a named pipe,
please see the following article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q102798
 TITLE : Security Attributes on Named Pipes

CAUSE
=====

In Windows NT version 3.1, a process running in the Local System account
could connect to a resource using a Null Session. For security reasons, use
of the Null Session is restricted by default on Windows NT version 3.5.

RESOLUTION
==========

You can allow access to a named pipe using the Null Session by adding
the pipe name to the following registry entry on the machine that
creates the named pipe:

 \HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\LanmanServer\
 Parameters\NullSessionPipes

The pipe name added to this entry is the name after the last backslash
in the string used to open the pipe. For example, if you use the following
string to open the pipe:

 \\hardknox\pipe\mypipe

you would add mypipe to the NullSessionPipes entry on the computer named
hardknox.

You must either reboot or restart (stop and then start) the Server service
for changes in this entry to take effect. Also, the named pipe will still
need to have a NULL DACL.

In Windows NT 3.51, by customer request, it is no longer necessary to
reboot. Once a named pipe is added to the key listed above, null-session
connections to that pipe will immediately be accessible.

This new functionality allows programs to permit null session access
to named pipes that do not have names known prior to booting the
system.

MORE INFORMATION
================

Usually, when a session is established between a computer supplying a
resource (server) and a computer that wants to use the resource (client),
the client is identified and credentials are verified. When a Null Session
is used, there is no validation of the client; everyone is allowed access.

If you allow a pipe to be used by a Null Session, you should either:

 - Verify that the data supplied by the pipe is truly public.

 -or-

 - Use an alternative method for verifying clients.

REFERENCES
==========

The "Windows NT Registry Entries" help file in the Windows NT version 3.5
Resource Kit.

Additional reference words: 3.50
KBCategory: kbprg kbprb
KBSubcategory: BseSecurity

PRB: AccessCheck() Returns ERROR_INVALID_SECURITY_DESCR
PSS ID Number: Q115946

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SYMPTOMS
========

In certain cases, the AccessCheck() API fails and GetLastError() returns
the message "ERROR_INVALID_SECURITY_DESCR". This error message indicates
that the security descriptor passed to AccessCheck() was in an invalid
format.

CAUSE
=====

This is expected behavior for the AccessCheck() function. AccessCheck()
was designed for use by programs that create and maintain their own
security descriptors. These security descriptors would always have the
owner, DACL, and group information.

RESOLUTION
==========

If the security descriptor is indeed valid, you can eliminate the error
by ensuring that the security descriptor has been opened for access to
the following types of security information:

 OWNER_SECURITY_INFORMATION
 GROUP_SECURITY_INFORMATION
 DACL_SECURITY_INFORMATION

You can double check the validity of the security descriptor by calling
the IsValidSecurityDescriptor() API.

Additional reference words: 3.10 3.50
KBCategory: kbprg kbprb
KBSubcategory: BseSecurity

PRB: After CreateService() with UNC Name, Service Start Fails
PSS ID Number: Q127862

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.5

SYMPTOMS
========

When giving a Universal Naming Convention (UNC) name to CreateService(),
the call succeeds, but service start fails with ERROR_ACCESSS_DENIED (5).
The access denied message is given, even though the service runs under an
account that has logon as service rights and has full access to the service
image path.

CAUSE
=====

The service control manager calls CreateProcess() to start the service and
the service controller runs in the LocalSystem security context. When you
call CreateProcess() with a UNC name from a process running in the
LocalSystem context, you get ERROR_ACCESS_DENIED. This is because
LocalSystem has restricted (less than guest) access to remote machines. A
null session is set up for LocalSystem remote access, which has reduced
rights (less in Windows NT version 3.5 than in Windows NT version 3.1).

RESOLUTION
==========

There are two possible solutions:

 - When specifying the fully qualified path to the service binary file,
 do not use a UNC name. It may be desirable to copy the service binary
 file to the local machine. This has the added benefit that the service
 will no longer be dependent on network operations.

 -or-

 - If the service binary is on \\MACHINEA\SHARENAME, add SHARENAME to

 HKEY_LOCAL_MACHINE\SYSTEM\
 CurrentControlSet\
 Services\
 LanmanServer\
 Parameters\
 NullSessionShares

 on MACHINEA. This will let requests to access this share from null
 sessions succeed.

 WARNING: This will allow everyone access to the share. If you want to
 maintain security for the share, create an account with the access
 required.

Additional reference words: 3.50
KBCategory: kbprg kbprb
KBSubcategory: BseService

PRB: Antialiased Polygons Not Drawn in OpenGL Antipoly Sample
PSS ID Number: Q139653

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

The antipoly sample in OpenGL SDK BOOK directory is unable to draw
antialised polygons with the generic implementation of Windows NT and
Windows 95 OpenGL.

CAUSE
=====

The technique used in this sample uses alpha values rather than depth
values to determine what to write to the color buffer. You need to first
turn off the depth buffer, choose the (GL_SRC_ALPHA_SATURATE, GL_ONE) blend
function, and then draw polygons from front to back. But the generic
Windows NT and Windows 95 OpenGL implementation does not provide alpha
buffer. The cAlphaBits field of the pixel format descriptor for all generic
pixel formats is 0.

RESOLUTION
==========

The sample will work if an OpenGL accelerator card is present and
additional device pixel formats provided by the OpenGL accelerator card
support alpha buffer.

STATUS
======

This behavior is by design.

Additional reference words: 4.00 Windows 95
KBCategory: kbprg kbprb
KBSubcategory: GdiOpenGL

PRB: App Desktop Toolbars Must Have WS_EX_TOOLWINDOW Style
PSS ID Number: Q132965

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

A problem can occur when an Application Desktop Toolbar (AppBar) is
registered and the original position is set. The system reserves the
desktop space the AppBar requested by moving all other shell objects and
windows out of that rectangle. The problem is that the system then moves
the AppBar window out of that rectangle as well.

CAUSE
=====

When an AppBar requests some area on the desktop to occupy, the shell
enumerates the windows in the task list and moves those windows outside of
the newly reserved area. If your AppBar window appears in the task list it
too is moved outside of the area.

RESOLUTION
==========

When creating an Application Desktop Toolbar, the AppBar window must have
the WS_EX_TOOLWINDOW window style for the shell to handle the AppBar window
correctly. The WS_EX_TOOLWINDOW style prevents the AppBar window from
appearing in the task list. The WS_EX_PALETTEWINDOW style can also be used
because it includes the WS_EX_TOOLWINDOW style.

STATUS
======

This behavior is by design.

Additional reference words: AppBar 4.00 Windows 95
KBCategory: kbui kbprb
KBSubcategory: UsrShell

PRB: Applications Cannot Change the Desktop Bitmap
PSS ID Number: Q74366

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

The desktop bitmap is not updated when an application updates the Wallpaper
entry of the [Desktop] section of WIN.INI and then sends a WM_WININICHANGE
message to the desktop window.

RESOLUTION
==========

By design, there is no supported method for an application to dynamically
change the desktop bitmap under Windows 3.0 and 3.1.

MORE INFORMATION
================

Please note that an application could accidentally (or maliciously)
reference a desktop bitmap in a format that would GP fault the system. For
additional information, please see the following article(s) in the
Microsoft Knowledge Base:

 ARTICLE-ID: Q69292
 TITLE : PRB: Video Driver GP Faults When Handling Large Bitmaps

Because the entry in WIN.INI has changed, this means that Windows will GP
fault every time the user tries to start it in the future, making Windows
no longer available.

In Windows 3.1, the application can call

 SystemParametersInfo(SPI_SETDESKWALLPAPER,....)

which has safety checks built in.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95 WM_WININICHANGE
KBCategory: kbui kbprb
KBSubCategory: UsrIni

PRB: Area Around Text and Remainder of Window Different Colors
PSS ID Number: Q22242

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

When text is painted into a window, an area around the text is a
different color than the remainder of the window.

CAUSE
=====

The area around the text is painted with a solid color while the
remainder of the window is painted using a dithered color.

RESOLUTION
==========

To make the area around the text and the remainder of the window
have the same color, perform one of the following two steps:

 - Use a solid color for the window background, and use the same
 color for the text background. To ensure that a color is a solid
 color, use the GetNearestColor function. This function returns
 the nearest solid color available to represent the specified
 color.

 -or-

 - Call the SetBkMode function to specify TRANSPARENT mode for the
 text. Doing so prevents Windows from painting the area behind
 the text. The window background color shows through instead.

MORE INFORMATION
================

By default, when an application paints text into its window, Windows
fills the area around the character with the current background color.
Windows always uses a solid color for this purpose.

When an application registers a window class, it specifies a handle to
a brush that Windows uses to paint the window background. On some
output devices, brushes can create dithered colors. On one of these

devices, the area behind painted text might have a different color
than the remainder of the window.

The following code specifies the window background color:

 #define ELANGREEN 0x003FFF00
 pTemplateClass->hbrBackground = CreateSolidBrush((DWORD)ELANGREEN);

The following code specifies the color used to paint around text and
draws some text into a device context:

 #define SZ -1
 SetBkColor(hDC, (DWORD)ELANGREEN);
 DrawText(hDC, (LPSTR)"text", SZ, (LPRECT)&Rect, DT_BOTTOM);

The color used to paint the area around the text has a yellow cast,
which gives it a slightly different appearance than the window
background color.

A brush may be able to represent a wider color range than the solid
colors because a brush covers an area while a solid color may be used
to paint nominal-width lines (for example, lines that are one device
unit wide) that must be the same color at all locations and angles.
Therefore, the device-driver writer has the option of providing
dithered colors for brushes, but has no such freedom when it comes to
the solid colors for drawing lines.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbgraphic kbprb
KBSubcategory: GdiDrw

PRB: Average & Maximum Char Widths Different for TT Fixed Font
PSS ID Number: Q92410

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

The tmAveCharWidth and tmMaxCharWidth fields of the TEXTMETRIC
structure are not equal for a fixed-pitch TrueType (TT) font such
as Courier New.

RESOLUTION
==========

This is by TrueType design. The tmMaxCharWidth denotes the maximum
possible ink width of the font rather than maximum cell width of
the font.

MORE INFORMATION
================

TrueType fonts use ABC character spacing. The "A" width is the
distance that is added to the current position before placing the
TrueType glyph. The "B" width is the width of the black part (ink
width) of the TT glyph. The "C" width is the distance from the end of
the "B" width to the beginning of the next character. Advanced width
(cell width) is equal to A+B+C.

The physical TT fonts that are passed to drivers have just the "B"
part of the characters, so all fonts at the level of the driver appear
to be proportional width fonts. The tmMaxCharWidth is the least width
in which the "B" part of all characters will fit. The tmAveCharWidth
is the average advance width (A+B+C). For a fixed-pitch TT font such
as Courier New, the A+B+C width is the same for all characters;
however, the maximum width as defined above can be different.

tmMaxCharWidth is greater than tmAveCharWidth only if A+C is negative.
This is possible for a fixed-pitch font.

Please see section 18.2.4.1 of the Windows 3.1 SDK "Guide to
Programming" for more information about ABC character spacing.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbgraphic kbprb

KBSubcategory: GdiTt

PRB: Bad Colors or GPF Using Logical Palettes w/ DIB Sections
PSS ID Number: Q137232

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

SYMPTOMS
========

The program displays the wrong colors or causes a general protection (GP)
fault when using a DIB section and a custom palette in a memory DC.

CAUSE
=====

There is a problem in Windows 95 where an internal palette structure is not
set up until the palette is selected into a screen DC.

RESOLUTION
==========

If you use logical palettes with bitmaps created by CreateDIBSection,
select the palette into a screen DC when the palette is created. Then the
palette can be used normally with Screen DCs as well as with
DIB sections.

STATUS
======

Microsoft is researching this behavior and will post new information here
in the Microsoft Knowledge Base when it becomes available.

Additional reference words: 4.00 Windows 95 SelectObject SelectPalette
CreatePalette CreateCompatibleDC GPF
KBCategory: kbgraphic kbprb
KBSubcategory: GdiPal

PRB: Bad Results Using Both ReadConsole and ReadConsoleInput
PSS ID Number: Q137195

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

Unpredictable results occur if you use ReadConsole and ReadConsoleInput
together in a Windows 95-based application.

RESOLUTION
==========

Do not mix the two functions when using a single console.

STATUS
======

This behavior is by design.

Additional reference words: 4.00 Windows 95
KBCategory: kbprg kbprb
KBSubcategory: BseCon

PRB: Bitmap Displays Upside Down Using StretchDIBits
PSS ID Number: Q151920

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for:
 - Windows NT, version 3.51
 - Windows 95

SYMPTOMS
========

Calling StretchDIBits on a DIB causes it to display upside down.

CAUSE
=====

Two situations could cause a bitmap to display upside down in Win32:

1. The signs of the cxSrc and cxDest parameters differ. The documentation
 for StretchDIBits states that the function creates a mirror image of a
 bitmap along the x-axis if the signs of the cxSrc and cxDest parameters
 differ. Whether intentional or unintentional, this could cause a bitmap
 to display upside down.

2. The sign of the biHeight value in the BITMAPINFOHEADER does not
 correctly reflect how the bitmap bits are stored in the DIB file. In
 Win16, all DIBs are stored bottom-up, with the bottom-most scan line
 stored first in the DIB file. In Win32, DIBs may also be stored top-
 down, with the top-most scan line stored first. Top-down DIBs are
 denoted by a negative biHeight value in the BITMAPINFOHEADER structure;
 bottom-up DIBS are denoted by a positive biHeight value:

 DIB stored as Should have a biHeight value of
 ------------- -------------------------------
 top-down negative
 bottom-up positive

Make sure the biHeight value is appropriately set as positive or negative,
depending on how the bitmap bits were stored in the DIB file. A mismatch in
the way this value is set could result to an upside down bitmap because the
DIB engine will interpret the bits incorrectly. For example, a positive
biHeight value for a DIB stored as top-down should cause a bitmap to
display upside down.

STATUS
======

This behavior is by design.

Additional reference words: 4.00 3.51 inverted reverse
KBCategory: kbgraphic kbprb
KBSubcategory: GdiBmp

PRB: BSTR Redefinition If SHLOBJ.H Included in MFC Apps
PSS ID Number: Q132966

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

When you include SHLOBJ.H in an MFC application, the following compiler
error occurs:

 error C2371: 'BSTR' : redefinition

CAUSE
=====

The SDK header file OAIDL.H and the MFC library both define a type BSTR.

RESOLUTION
==========

To work around this problem, add the following definition before including
any MFC headers. In an AppWizard-generated application this can be done at
the beginning of the STDAFX.H include file:

 #define _AFX_NO_BSTR_SUPPORT

Additional reference words: MFC BSTR 4.00 Windows 95
KBCategory: kbui kbprb
KBSubcategory: UsrShell

PRB: Building SDK SNMP Samples Results in Unresolved Externals
PSS ID Number: Q129240

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.5

SYMPTOMS
========

Building the SNMP samples in the Win32 SDK for Windows NT version 3.5
(TESTDLL.DLL or SNMPUTIL.EXE) using Visual C++ version 2.0 results in the
the linker complaining of unresolved externals _mb_cur_max_dll and
_pctype_dll.

CAUSE
=====

The application was built to use the C run-time in a DLL. In the Win32 SDK,
the import library is CRTDLL.LIB, and in Visual C++, the import library is
MSVCRT.LIB. The "___mb_cur_max_dll" and "__pctype_dll" symbols are defined
in the CRTDLL.LIB file, but not in the MSVCRT.LIB file.

For more information, please see the following article in the Microsoft
Knowledge Base:

 ARTICLE-ID: Q119503
 TITLE : PRB: Unresolved ___mb_cur_max_dll and __pctype_dll

RESOLUTION
==========

Choose Settings from the Project menu. Then select C/C++, and go to the
Code Generation category. For the run-time library listed, use
Multithreaded using DLL.

Additional reference words: 3.50
KBCategory: kbnetwork kberrmsg kbprb
KBSubcategory: NtwkSnmp

PRB: Byte-Range File Locking Deadlock Condition
PSS ID Number: Q117223

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SYMPTOMS
========

It is possible for a thread in a multithreaded Win32-based application to
block while doing a LockFile() or LockFileEx() API call, even when the area
of memory the thread has requested is not locked by another thread.

NOTE: If performance-monitoring tools (such as PERFMON) are used to examine
the status of existing threads and the Thread State indicates that the
thread is waiting and the Thread Wait Reason shows that it is the executive
that the thread is waiting on, this is probably not an indication that a
deadlock has occurred, because threads are often in this state for other
reasons. Also, if the Thread State indicates that the thread is not
waiting, then a deadlock has probably not occurred.

CAUSE
=====

There is a small window of time during which a multithreaded application is
vulnerable to this condition. Specifically, if one thread (call it Thread1)
is in the process of unlocking a currently locked byte range within a file
while a second thread (Thread2) is in the process of obtaining a lock on
that same byte range using the same file handle and without specifying the
flag LOCKFILE_FAIL_IMMEDIATELY, Thread1 can block, waiting for the region
to become available. Ordinarily, when unlocking takes place, blocked
threads are released; but in this critical window of time, it is possible
for Thread2 to unlock the byte range without Thread1 being released. Thus,
Thread1 never resumes operation despite the fact that there is no apparent
fault in the logic of the program.

RESOLUTION
==========

The deadlock condition described above can only come about if multiple
threads are concurrently doing synchronous I/O using the same file handle.

To avoid the problem, you have three options:

 - Each thread can obtain its own handle to the file either through the use
 of the DuplicateHandle() API or through multiple calls to the
 CreateFile() API.

 -or-

 - The threads can perform asynchronous I/O. This also requires the
 application developer to provide some form of explicit synchronization
 to coordinate access to the file by the threads.

 -or-

 - The threads can specify LOCKFILE_FAIL_IMMEDIATELY and then loop until a
 retry succeeds if the lock request fails. This option is the least
 desirable because it incurs significant CPU use overhead.

REFERENCES
==========

For more information about threads, files, and file handles, see the
following sections in the "Win32 SDK Programmer's Reference," volume 2,
part 3, "System Services":

 - Chapter 43.1.6, "Synchronizing Execution of Multiple Threads"

 - Chapter 45.2.2, "Reading, Writing, and Locking Files"

 - Chapter 48.3, "Kernel Objects"

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubCategory: BseMisc

PRB: C2371 BSTR Redefinition When VFW.H Included in MFC App
PSS ID Number: Q129953
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), version 3.5
 - Microsoft Visual C++, 32-bit Edition, versions 2.0 and 2.1
--

SYMPTOMS
========

The following error message occurs when compiling an application with
Microsoft Visual C++, version 2.0 or 2.1, which uses the Microsoft Video
for Windows header file, VFW.H, and the Microsoft Foundation Classes (MFC):

 c:\msvc20\include\oleauto.h(214) : error C2371: 'BSTR' : redefinition;
 different basic types

This error message does not occur when using Microsoft Visual C++ version
1.5 for Windows with the Microsoft Video for Windows 1.1 DK installed while
running under Microsoft Windows operating system
version 3.1.

RESOLUTION
==========

If the application does not require binary string (BSTR) support you can
eliminate this error message by defining "_AFX_NO_BSTR_SUPPORT" before the
MFC include files. For example, place the code below at the beginning of
the STDAFX.H file:

 #define _AFX_NO_BSTR_SUPPORT

If the application does require BSTR support, then you can eliminate this
error message by including the code below before including the VFW.H file:

 #define OLE2ANSI

MORE INFORMATION
================

This error message occurs by design. MFC versions 3.0 and 3.1 require
either that "OLE2ANSI" is defined when including the object linking and
embedding (OLE) headers or that "_AFX_NO_BSTR_SUPPORT" is defined. You
cannot use both ANSI-BSTRs (which is the default) and Unicode-BSTRs; you
must use one or the other.

The AFX.H file defines the BSTR type in order to allow CStrings to support
BSTRs. The VFW.H file unconditionally includes the OLE2.H file, which
eventually includes the OLEAUTO.H file, which also defines the BSTR type.
"_AFX_NO_BSTR_SUPPORT" disables CString support for BSTRs.

Steps to Reproduce Problem

1. Generate a default application with AppWizard.
2. Add the statement "#include vfw.h" to the end of the STDAFX.H file.
3. Compile the application.

The VFW.H file is included with the Microsoft Visual C++, 32-bit Edition,
and the Microsoft Win32 SDK for Windows NT.

Additional reference words: 3.10 3.50 2.00 2.10 CString port porting VfWDK
KBCategory: kbmm kbprb kberrmsg
KBSubcategory: MMVIDEO

PRB: Calling LoadMenuIndirect() with Invalid Data Hangs System
PSS ID Number: Q131281

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

Under Windows 95 if you call LoadMenuIndirect() with invalid data, the
system hangs (stops responding).

CAUSE
=====

Invalid data anywhere in the array of MENUITEMTEMPLATE structures passed to
the LoadMenuIndirect() function may cause this problem. An example of this
might be an extra NULL byte after a MENUITEMTEMPLATE structure.

Under Windows NT version 3.5, passing the same invalid data in the
MENUITEMTEMPLATE structure causes LoadMenuIndirect() to return NULL, with
GetLastError() reporting an ERROR_INVALID_DATA value.

STATUS
======

This behavior is by design.

Additional reference words: 4.00 freeze lock up Menus
KBCategory: kbui kbprb
KBSubcategory: UsrMen

PRB: Can't Center Explorer-Style FileOpen Common Dialog Box
PSS ID Number: Q140722

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows 95
 and Windows NT 3.51

SYMPTOMS
========

Generally, an application that attempts to alter the default behavior of
a dialog box before it even comes up on the screen, would process the
WM_INITDIALOG message. For common dialogs, this message is processed in the
common dialog's hook procedure. However, attempting to center the new
Explorer-Style FileOpen Common Dialog in Windows 95 in the hook procedure's
WM_INITDIALOG case will result in an off-center dialog box.

CAUSE
=====

This problem arises with the new Explorer-Style common dialog only when the
OFN_ENABLETEMPLATE flag is set in the OPENFILENAME structure, and a dialog
template is specified in lpTemplateName that includes the new controls that
you want to add to the dialog box.

Typically, the code to center a dialog box would first get the dimensions
of the dialog box by using GetWindowRect so it could be centered on the
screen appropriately. At WM_INITDIALOG time, the FileOpen dialog has not
been resized to accomodate the new controls specified in the lpTemplateName
member of the OPENFILENAME struct; therefore, GetWindowRect() returns the
dimensions of the original FileOpen dialog, not that of the actual
customized dialog that comes up on the screen. This then causes the dialog
box to come up a few pixels off-center.

RESOLUTION
==========

Call GetWindowRect() and the rest of the code to center the dialog box, in
the hook procedure's WM_NOTIFY case, with code set to CDN_INITDONE, a new
common dialog notification code for Windows 95. By this time, all the
controls have been added in, and the dialog has been resized accordingly.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

Here's how the Win32 SDK COMDLG32 sample can be modified to do this. Note
that COMMDLG creates the dialog specified by lpTemplateName as a child of

the standard FileOpen common dialog box. As a result, the hDlg passed to
the application's hook function will be the child of the standard FileOpen
dialog box. To get a handle to the standard dialog box from the hook
function, an application needs to call GetParent (hDlg).

Code Sample Modification of Win32 SDK COMDLG32 Sample

BOOL NEAR PASCAL TestNotify(HWND hDlg, LPOFNOTIFY pofn)
{
 switch (pofn->hdr.code)
 {

 case CDN_INITDONE:
 {
 CenterWindow (GetParent (hDlg), NULL);
 break;
 }

 :
 :
}

// center with respect to another window
// Specifying NULL for hwndParent centers hwndChild relative to the screen.
BOOL CenterWindow(HWND hwndChild, HWND hwndParent)
{
 RECT rcChild, rcParent;
 int cxChild, cyChild, cxParent, cyParent;
 int cxScreen, cyScreen, xNew, yNew;
 HDC hdc;

 // Get the Height and Width of the child window
 GetWindowRect(hwndChild, &rcChild);
 cxChild = rcChild.right - rcChild.left;
 cyChild = rcChild.bottom - rcChild.top;

 if (hwndParent)
 {
 // Get the Height and Width of the parent window
 GetWindowRect(hwndParent, &rcParent);
 cxParent = rcParent.right - rcParent.left;
 cyParent = rcParent.bottom - rcParent.top;
 }

 else
 {
 cxParent = GetSystemMetrics (SM_CXSCREEN);
 cyParent = GetSystemMetrics (SM_CYSCREEN);
 rcParent.left = 0;
 rcParent.top = 0;
 rcParent.right = cxParent;
 rcParent.bottom= cyParent;
 }

 // Get the display limits
 hdc = GetDC(hwndChild);
 cxScreen = GetDeviceCaps(hdc, HORZRES);
 cyScreen = GetDeviceCaps(hdc, VERTRES);
 ReleaseDC(hwndChild, hdc);

 // Calculate new X position, then adjust for screen
 xNew = rcParent.left + ((cxParent - cxChild) / 2);
 if (xNew < 0)
 {
 xNew = 0;
 }
 else if ((xNew + cxChild) > cxScreen)
 {
 xNew = cxScreen - cxChild;
 }

 // Calculate new Y position, then adjust for screen
 yNew = rcParent.top + ((cyParent - cyChild) / 2);
 if (yNew < 0)
 {
 yNew = 0;
 }
 else if ((yNew + cyChild) > cyScreen)
 {
 yNew = cyScreen - cyChild;
 }

 // Set it, and return
 return SetWindowPos(hwndChild,
 NULL,
 xNew, yNew,
 0, 0,
 SWP_NOSIZE | SWP_NOZORDER);
}

Additional reference words: 4.00
KBCategory: kbprg kbprb kbcode
KBSubcategory: UsrCmnDlg

PRB: Can't Disable CTRL+ESC and ALT+TAB Under Windows NT
PSS ID Number: Q125614

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.5

SYMPTOMS
========

CTRL+ESC and ALT+TAB task switching cannot be disabled by an application
running under Windows NT.

Capturing WM_SYSCOMMAND messages and not sending them on for processing by
DefWindowProc() allowed task switching to be disabled in Windows version
3.1, but it doesn't work under Windows NT.

CAUSE
=====

A primary reason for this change is to avoid dependence on an application
for processing of these key combinations. This way a hung application can
be switched away from by using either CTRL+ESC or ALT+TAB.

RESOLUTION
==========

CTRL+ESC may disabled on a system-wide basis by replacing the NT Task
Manager. This is not recommended.

ALT+TAB and ALT+ESC may be disabled while a particular application is
running if that application registers hotkeys for those combinations with
Register HotKey().

STATUS
======

This behavior is by design.

REFERENCES
==========

The first reference below describes the steps that must be taken to replace
TASKMAN.EXE. The two additional references provide more information on the
Windows NT Task Manager and its relationship to the Program Manager.

ARTICLE-ID:Q89373
TITLE :Replacing the Windows NT Task Manager

ARTICLE-ID:Q100328
TITLE :Replacing the Shell (Program Manager)

ARTICLE-ID:Q101659
TITLE :How Windows NT, 16-Bit Windows 3.1 Task Managers Differ

Additional reference words: 3.50
KBCategory: kbusage kbprb
KBSubcategory: UsrMisc

PRB: Can't Increase Process Priority
PSS ID Number: Q110853

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SYMPTOMS

An attempt to increase process priority to the real-time priority
REALTIME_PRIORITY_CLASS may not set the PriorityClass to the expected
level.

CAUSE

Only accounts with the "Increase Scheduling Priority" permission can
increase the priority to real-time. Only Administrators and "Power Users"
have this permission by default.

RESOLUTION

Either run the program from an Administrator or Power User account, or
grant the Increase Scheduling Priority permission to any user group that
must run the program.

STATUS

This behavior is by design.

MORE INFORMATION
================

The Increase Scheduling Priority permission can be granted to a user or
group through the User Manager. To do this:

1. Open the Administrative Tools group in Program Manager.
2. Run the User Manager application.
3. Choose User Rights from the Policies menu.
4. Select the Show Advanced User Rights check box.
5. Select Increase Scheduling Priority from the drop-down list box.
6. Choose the Add button to add users or groups to the list of entities
 that have this right.

Note that the call to SetPriorityClass() may return success even though the
priority was not set to REALTIME_PRIORITY_CLASS, because if you don’t have
the Increase Scheduling Priority permission, a request for
REALTIME_PRIORITY_CLASS is interpreted as a request for the highest

priority class allowed in the current account. If it is important to know
the actual priority class that was set, use the GetPriorityClass()
function.

Additional reference words: 3.10 3.50
KBCategory: kbprg kbprb
KBSubcategory: BseProcThrd

PRB: Can't Remove Minimize or Maximize Button from Caption Bar
PSS ID Number: Q130760

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

Under Windows 95, applications cannot create an overlapped or a popup
window that contains only the Minimize or the Maximize button.

CAUSE
=====

This is by design. Windows can have both buttons or none depending on the
styles specified while creating the window, but specifying just one style
(either the WS_MAXIMZIEBOX or WS_MINIMIZEBOX) creates both buttons on the
caption, with the other one disabled.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

Under Windows version 3.1 or Window NT, applications could remove either
the Maximize or Minimize buttons on the caption bar. (This was usually done
when the appliction removed a corresponding menu item from the system menu
of a window.)

Applications running under Windows 95 that try to remove one of the buttons
(not both), will not succeed. The system displays both buttons and disable
the one whose style was not specified during creation. This is by design,
and there is no way to work around it, unless the application draws its own
caption bar.

Applications that removed the maximize or minimize menu items under Windows
version 3.1, should just gray them out (disable them) under Windows 95 to
maintain a uniform user interface.

Under Windows 95, applications can create a window (overlapped or popup)
with just the Close button (the X button) by creating the window without
specifying the WS_MAXIMIZEBOX or WS_MINIMIZEBOX styles. Calling
SetWindowLong(GWL_STYLE) to change or remove the minimize of the maxmize
buttons dynamically still displays both buttons with one of them disabled.

Additional reference words: 4.00 user

KBCategory: kbui kbprb
KBSubcategory: UsrWndw

PRB: Can't Use TAB to Move from Standard Controls to Custom
PSS ID Number: Q131283

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

As you attempt to customize the new Explorer-style File Open or Save As
common dialog, pressing the TAB key fails to move the focus from the
standard dialog's controls to the new controls specified in the custom
template.

CAUSE
=====

The custom dialog box template failed to specify the DS_CONTROL style.

RESOLUTION
==========

When creating a custom dialog box template to be used with the new FileOpen
or Save As common dialog, you must specify the DS_CONTROL style.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

With the new way of customizing the File Open or Save As common dialog in
Windows 95, you can customize applications to provide a custom dialog box
template that adds controls to the default Open or Save As dialog box. This
custom dialog box is created as a child of the default dialog box and thus
requires a WS_CHILD style.

DS_CONTROL is a new style provided in Windows 95. It makes a modal dialog
created as a child of another dialog interact well with its parent dialog.
This style ensures that the user can move between the controls of the
parent dialog and the child dialog - or in this case between the standard
Open or Save As common dialog and the custom dialog provided by the
application.

NOTE: This article does not apply to Windows NT. This information applies
only to the new way of customizing the Explorer-style File Open or Save As
common dialog in Windows 95.

Additional reference words: 4.00
KBCategory: kbui kbprb
KBSubcategory: UsrCmnDlg

PRB: Cannot Alter Messages with WH_KEYBOARD Hook
PSS ID Number: Q33690

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

After creating a program that uses the WH_KEYBOARD hook function to
intercept a user's keystrokes and changing the wParam value before passing
the hook code on to DefHookProc(), whichever application currently has the
focus still receives the original character typed in rather than the
translated character.

CAUSE
=====

Keyboard messages cannot be altered with the WH_KEYBOARD hook. All that can
be done is to "swallow" the message (return TRUE) or have the message
passed on (FALSE). In a keyboard hook function, when you return
DefHookProc(), you are passing the event to the next hook procedure in the
potential hook chain, and giving it a chance to look at the event to decide
whether or not to discard it. You are not passing the message to the system
as if you had called DefWindowProc() from a Window procedure.

RESOLUTION
==========

NOTE: In the discussion below, ignore the references to the WH_CALLWNDPROC
hook for Win32-based applications. Win32 does not allow an application to
change the message in a CallWndProc, as 16-bit Windows does.

To change the value of wParam (and hence the character message that is
received by the window with the focus), you must install the WM_GETMESSAGE
and WH_CALLWNDPROC hooks. The WH_GETMESSAGE hook traps all messages
retrieved via GetMessage() or PeekMessage(). This is the way actual
keyboard events are received: the message is placed in the queue by Windows
and the application retrieves it via GetMessage() or PeekMessage().
However, because applications can send keyboard messages with
SendMessage(), it is best to also install the WH_CALLWNDPROC hook. This
hook traps messages sent to a window via SendMessage().

These hooks pass you the address of the message structure so you can change
it. In Windows 3.0, when you return DefHookProc() within a WH_GETMESSAGE or
WH_CALLWNDPROC hook procedure, you are passing the address of the
(potentially altered) contents of the message structure on to the next hook

function in the chain. In Windows 3.1, you should use the CallNextHookEx()
function to pass the hook information to the next hook function. If you
alter the wParam before passing on the message, this will change the
character message eventually received by the application with the focus.

NOTE: For Windows 3.0, keep in mind that the hook callback procedure must
be placed in a DLL with fixed code so that it will be below the EMS line
and thus will always be present. If the hook callback procedure is not in a
fixed code segment, it could be banked out when it is called, and this
would crash the system. System-wide hooks in Windows 3.1, however, must
still reside in a DLL.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbui kbprb
KBSubcategory: UsrHks

PRB: Cannot Change Icon at Runtime in Visual Basic 3.0 Apps
PSS ID Number: Q135142

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SYMPTOMS
========

You can't change the Icon property of a form at run time in a Visual Basic
version 3.0 application.

CAUSE
=====

Windows version 3.1 had code that looked at the first 100 icons in Visual
Basic applications. Windows 95 code now looks only at the first five icons
in Visual Basic applications. This change was made both for performance
reasons and because later versions of Visual Basic (4.0 and beyond)
no longer need this special code.

RESOLUTION
==========

Update the Visual Basic version 3.0 application to a Visual Basic version
4.0 (or later) application.

STATUS
======

This behavior is by design.

Additional reference words: 95 development program 4.00
KBCategory: kbui kbprg kbinterop kbprb
KBSubcategory:

PRB: Cannot Change IME Status Setting on Windows NTJ or Win95J
PSS ID Number: Q152585
--
The information in this article applies to:

 - Microsoft Win32 Application Programming Interface included with:
 - Microsoft Windows NT, version 3.51
 - Microsoft Windows 95, version 4.0
--

SYMPTOMS
========

On the Japanese version of Windows NT 3.51 and Windows 95, using the
MSIME95 as the Input Method Editor, if a process creates a second thread,
the second thread, in turn, creates a window, while the primary thread's
main window remains the foreground window. When this occurs, the user
cannot change the IME status settings for the primary thread.

However, at this time, if a window of another thread is set as the
foreground window by a mouse click to another window or by calling Windows
API, then the window of the primary thread is reset as the main window, and
the user will be able to change the IME status settings again by clicking
the IME status window buttons.

RESOLUTION
==========

To prevent this problem from occurring, immediately after the window of the
second thread is created, use SetForegroundWindow() to set the window of
the second thread as the foreground window very briefly, and then set the
main window of the primary thread as the foreground window again, as
follows:

 SetForegroundWindow(hSecondThreadWnd);
 SetForegroundWindow(hMainThreadWnd);

STATUS
======

This behavior is by design.

Additional reference words: 3.51 4.00 Input method editor FE
KBCategory: kbprg kbprb
KBSubcategory: wintldev

PRB: Cannot Load Module with Resource ID > 32767 (0x7FFF)
PSS ID Number: Q137248

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

The GetLastError() function returns error 11 ("An attempt was made to load
a program with an incorrect format."), and the LoadLibrary(), WinExec() or
CreateProcess() function fails if the module you are trying to load
contains a resource identifier (ID) that is greater than 32767 (0x7FFF).

CAUSE
=====

Microsoft Windows 95 uses the high bit in the 16-bit resource ID to
determine if the resource ID is a numeric value or a string. When this
bit is set, the operating system determines that the ID is a string.
Therefore, it appears that the file is corrupted.

RESOLUTION
==========

All applications must ensure that all of the resource IDs in their modules
are less than 0x7FFF. These are resource IDs only (DIALOG, MENU, ICON,
CURSOR, STRINGTABLE, BITMAP, ACCELERATOR, FONT, and so on); control and
menu IDs are not included in this restriction.

Additional reference words: 1.30 4.00
KBCategory: kbui
KBSubcategory: UsrCtl W32s

PRB: CBS_SIMPLE ComboBox Repainting Problem
PSS ID Number: Q128110

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.5
 - Microsoft Win32s version 1.2

SYMPTOMS
========

When a CBS_SIMPLE combo box has a WS_CLIPCHILDREN parent, the area below
the edit control and left to the list box is not repainted correctly. This
problem exists for 16-bit as well as 32-bit applications.

RESOLUTION
==========

To work around this problem, subclass the combo box, calculate the blank
area, and then repaint to the desired color.

The following ComboBox subclass procedure is written for a 16-bit
application, but you can use the same idea in 32-bit applications.

Sample Code

LRESULT CALLBACK NewComboProc(
 HWND hWnd,
 UINT uMessage,
 WPARAM uParam,
 LPARAM lParam)
{
HDC myDC;
HPEN hPen, hOldPen;
HBRUSH hBrush;
HBRUSH hOldBrush;
COLORREF myColor=RGB(255,255,255); //It can be any color. Here
 //the area is painted white.

HWND hEdit, hList;
RECT comboRect, editRect, listRect;
char *wndClassName="Edit";

if (uMessage == WM_PAINT)
 {
 CallWindowProc(lpfnOldComboProc, hWnd, uMessage, uParam,
 lParam);
 myDC = GetDC(hWnd);

 hBrush = CreateSolidBrush(myColor);
 hPen = CreatePen (PS_SOLID, 1, myColor);
 hOldBrush = SelectObject(myDC, hBrush) ;
 hOldPen = SelectObject(myDC, hPen);

 //This code obtains the handle to the edit control of the
 //combobox.

 hEdit = GetWindow(hWnd, GW_CHILD);
 GetClassName (hEdit, wndClassName, 10);
 if (!lstrcmp (wndClassName, "Edit"))

 hList=GetWindow(hEdit, GW_HWNDNEXT);

 else
 {
 hList=hEdit;
 hEdit=GetWindow(hList, GW_HWNDNEXT);
 }

 //The dimensions of the Edit Control, ListBox control and
 //the Combobox are calculated and then used
 //as the base dimensions for the Rectangle() routine.

 GetClientRect (hWnd, &comboRect);
 GetClientRect (hEdit, &editRect);
 GetClientRect (hList, &listRect);
 Rectangle (myDC,
 comboRect.left,
 editRect.bottom,
 comboRect.right-listRect.right,
 comboRect.bottom);
 //Also paint the gap, if any exists, between the bottom
 //of the listbox and the bottom of the ComboBox rectangle.
 Rectangle (myDC,
 comboRect.right-listRect.right,
 editRect.bottom +
 listRect.bottom,
 comboRect.right,
 comboRect.bottom);

 DeleteObject(SelectObject(myDC, hOldBrush)) ;
 DeleteObject(SelectObject(myDC, hOldPen)) ;
 ReleaseDC(hWnd, myDC);
 return TRUE;
 }

return CallWindowProc(lpfnOldComboProc, hWnd, uMessage, uParam,
 lParam);
}

STATUS
======

This behavior is by design.

MORE INFORMAITON
================

Steps to Reproduce Behavior

To reproduce this behavior, use AppStudio to create a dialog with the
WS_CLIPCHILDREN style, put a CBS_SIMPLE combobox in the dialog, and click
the test button so you can test the dialog. Then move something on top of
the dialog, and move the object on top of the combobox away. You can then
see that area to the left of the listbox is not repainted correctly.

Additional reference words: 3.10 3.50 1.20
KBCategory: kbui kbcode kbprb
KBSubcategory: UsrCtl

PRB: CBT_CREATEWND Struct Returns Invalid Class Name
PSS ID Number: Q106079

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The CBT_CREATEWND structure contains information passed to a WH_CBT
hook callback function before a window is created in the system. The
lpszClass field of this CBT_CREATEWND structure may return an invalid
class name, particularly for windows created internally by the system.

SYMPTOMS
========

The code to get to the window class name via the CBT_CREATEWND
structure in a CBT callback function may look like the following:

 int FAR PASCAL CBTProc (int nCode, WPARAM wParam, LPARAM lParam)
 {
 LPCBT_CREATEWND CreateWndParam;

 if (nCode >= 0)
 {
 switch (nCode)
 {
 case HCBT_CREATWND:
 CreateWndParam = (LPCBT_CREATEWND)lParam;
 OutputDebugString ("ClassName = ");
 OutputDebugString (lParam->lpcs->lpszClass);
 OutputDebugString ("\r\n");
 break;
 :
 :
 }
 }

 return (int)CallNextHookEx (hHook, nCode, wParam, lParam);
 }

However, this code may or may not output the correct class name,
depending on what the call to CreateWindow() (for the window about to
be created) looks like.

RESOLUTION

==========

Windows provides the GetClassName() function to allow applications to
retrieve a window's class name. This function takes the handle to the
window as a parameter, as well as a buffer to receive the
null-terminated class name string. This function is a more reliable
and a more recommended means to obtain window class name information
than the CBT callback function's CBT_CREATEWND structure.

MORE INFORMATION
================

Whenever a window is about to be created, Windows checks to see if a
WH_CBT hook is installed anywhere in the system. If it finds one, it
calls the CBTProc() callback function with hook code set to
HCBT_CREATEWND, and with the lParam parameter containing a long
pointer to a CBT_CREATEWND structure.

The CBT_CREATEWND structure is defined in WINDOWS.H as follows

 typedef struct tagCBT_CREATEWND {
 CREATESTRUCT FAR* lpcs;
 HWND hwndInsertAfter;
 } CBT_CREATEWND;

with the CREATESTRUCT structure defined in the same file as:

 typedef struct tagCREATESTRUCT {
 void FAR* lpCreateParams;
 :
 LPCSTR lpszClass; // Null-terminated string specifying window
 // class name
 DWORD dwExStyle;
 } CREATESTRUCT;

When Windows internally creates windows (such as predefined controls
in a dialog box, for example), it uses atoms for lpszClass instead of
the actual string to minimize overhead. This makes it a little less
straightforward (sometimes impossible) to get to the actual class name
directly from the lpszClass field of the CREATESTRUCT structure.

To cite one particular example, when an application is minimized in
Windows, Windows calls CreateWindow() for the icon title, specifying a
class name of

 (LPSTR)MAKEINTATOM (ICONTITLECLASS == 0x8004)

where MAKEINTATOM() is defined in WINDOWS.H as:

 #define MAKEINTATOM (i) ((LPCSTR) MAKELP (NULL, i))

Given this, to get to the actual class name, GetAtomName() must be
called in this manner:

 char szBuf [10];

 GetAtomName (LOWORD (lpszClass), szBuf, 10);
 OutputDebugString (szBuf);

This outputs a class name of #32772 for the IconTitleClass.

For predefined controls, such as "static", "button", and so forth, in
a dialog box, the Dialog Manager calls CreateWindow() on each control,
similarly using atoms for lpszClass. The Dialog Manager, however,
creates these atoms in a local atom table in USER's default data
segment (DS), thus making it impossible for other applications to get
to these class names.

[Note the difference between local and global atom tables, where
global atom tables are stored in a shared DS, and are therefore
accessible to all applications, while local atom tables are stored in
USER's default DS. DDE uses global atom tables so that Excel, for
example, can use GlobalAddAtom() to add a string to the atom table,
and another program could use GlobalGetAtomName() to obtain the
character string for that atom.]

More information on atoms can be found by searching on the following
word in the Microsoft Knowledge Base:

 atoms

More Information can also be found in the Windows version 3.1 online
Help file under the heading Function Groups, under the Atom Functions
subheading.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui kbprb kbcode
KBSubcategory: UsrHks

PRB: CFileDialog::DoModal() Does Not Display FileOpen Dialog
PSS ID Number: Q131225

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

Calling CFileDialog::DoModal() returns without displaying the FileOpen
common dialog.

CAUSE
=====

The CFileDialog class will automatically use the new Explorer-style
FileOpen common dialog under Windows 95. This can break existing code which
customizes these dialogs with custom templates, because the mechanism has
changed in Windows 95.

NOTE: This does not apply to Windows NT 3.51, as this version of Windows NT
will not display the new Explorer-style dialog.

RESOLUTION
==========

An application that depends on the old behavior of customizing the File
Open common dialogs will need to reset the OFN_EXPLORER bit in the Flags
member of the OPENFILENAME structure before calling CFileDialog::DoModal.

MORE INFORMATION
================

The DIRPKR sample in particular, exhibits the symptoms described above, and
will need to be modified to display the dialog box correctly in Windows 95.
It works as is under Windows NT 3.51.

Sample Code

 CMyFileDlg cfdlg(FALSE, NULL, NULL, OFN_SHOWHELP | OFN_HIDEREADONLY |
 OFN_OVERWRITEPROMPT | OFN_ENABLETEMPLATE,
 NULL, m_pMainWnd);

 cfdlg.m_ofn.hInstance = AfxGetInstanceHandle();
 cfdlg.m_ofn.lpTemplateName = MAKEINTRESOURCE(FILEOPENORD);
 cfdlg.m_ofn.Flags &= ~OFN_EXPLORER;

 if (IDOK==cfdlg.DoModal())
 {

 :
 :
 }

NOTE: For versions of Visual C++ 2.x, the OFN_EXPLORER flag has not been
defined. You can use this code instead:

 cfdlg.m_ofn.Flags &= ~(0x00080000);

REFERENCES
==========

This information was derived from Visual C++ 2.1 Technical Note 52:
"Writing Windows 95 Applications with MFC 3.1"

Additional reference words: 2.10 4.00
KBCategory: kbui
KBSubcategory: UsrCmnDlg

PRB: COMM (TTY) Sample Does Not Work on Windows 95
PSS ID Number: Q128787

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

The Win32 COMM (old TTY) sample that ships with Visual C++ version 2.x and
the Windows 95 SDK (pre-release) does not work correctly under Windows 95
M8 builds and later. The problem involves assigning values to the Offset
member of the OVERLAPPED structure which is one of the arguments to the
WriteFile function call.

The observed behavior is that the COMM sample writes only one byte to the
serial port. No other data is transmitted after the first byte.

CAUSE
=====

The documentation for the OVERLAPPED structure explicitly states that the
Offset and OffsetHigh members must be set to 0 when reading from or writing
to a named pipe or communications device. This was not done in the sample.

RESOLUTION
==========

1. Delete the following line from the WriteCommByte() function in the
 sample:

 WRITE_OS(npTTYInfo).Offset += dwBytesWritten ;

2. Add the following lines to the CreateTTYInfo() function:

 WRITE_OS(npTTYInfo).Offset = 0 ;
 WRITE_OS(npTTYInfo).OffsetHigh = 0 ;

STATUS
======

This is a problem with the sample, not with Windows 95. Windows 95
correctly implements WriteFile() and use of the OVERLAPPED structure.

Additional reference words: 4.00
KBCategory: kbprg kbprb
KBSubcategory: BseComm

PRB: Connect() Fails, WSAGetLastError() returns WSAENETUNREACH
PSS ID Number: Q140014

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.51

SYMPTOMS
========

A Win32 Winsock client issues a connect() call over SPX or SPXII protocols
and the call fails with SOCKET_ERROR with WSAGetLastError() returning error
WSAENETUNREACH(10051).

CAUSE
=====

Either the IPX network number specified in the SOCKADDR_IPX address
structure for the server is incorrect (network unreachable), or the server
is not listening on the specified socket number.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

If a Win32 Winsock clients issues a connect() call over TCP/IP protocol
for a server and the server is not listening on the specified port,
connect() returns SOCKET_ERROR and WSAGetLastError() returns error
WSAECONNREFUSED(10061). However, the IPX/SPX implementation of
Windows sockets on the Windows NT platform returns error WSAENETUNREACH for
the same scenario.

Additional reference words: 3.51
KBCategory: kbprg kbnetwork kbprb
KBSubcategory: NtwkWinsock

PRB: Context Help Not Compatible with Min or Max Button
PSS ID Number: Q135787

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s version 1.3

SYMPTOMS
========

In Windows 95, the WS_EX_CONTEXTHELP extended window style is not
compatible with the WS_MINIMIZEBOX or WS_MAXIMIZEBOX styles. The context
help icon isn't displayed on the caption as long as one or both of the
minimize or maximize boxes is displayed. The same thing happens with dialog
boxes using the DS_CONTEXTHELP and the WS_MINIMIZEBOX or WS_MAXIMIZEBOX
styles.

Note that the window must have the WS_SYSMENU style.

STATUS
======

This behaviour is by design.

Additional reference words: 4.00 1.30
KBCategory: kbui kbprb
KBSubcategory: UsrWndw

PRB: Controls Do Not Receive Expected Messages
PSS ID Number: Q121094

The information in this article applies to:

 - Microsoft Win32s, versions 1.1, 1.15, and 1.2

SYMPTOMS
========

A Win32-based application works as expected under Windows NT, but under
Win32s, control messages are not received by the application as expected.

Here are some possible scenarios symptomatic of this problem:

 - Sending LB_GETSELITEMS to a superclassed list box does not work.

 - The custom control procedure does not receive messages such as
 CB_ADDSTRING, CB_INSERTSTRING, or CB_SHOWDROPDOWN.

 - The wrong control message is received.

CAUSE
=====

This is a Win32s limitation. When a Win32-based application sends a
message, Win32s processes the message and passes it to Windows. Windows is
responsible for delivering the message. Win32s truncates wParam from a
DWORD to a WORD. Most messages do not use the high word of wParam, however,
if you do use the high word of wParam, be aware that it will be lost under
Win32s.

In the course of processing known messages (messages that are not user-
defined), Win32s translates any pointers in lParam. In addition, if a
message is new to Win32, the corresponding Windows message is used instead.
For example, the Windows WM_CTLCOLOR was replaced in Win32 with
WM_CTLCOLORBTN, WM_CTRLCOLORDLG, WM_CTLCOLOREDIT, and so on. Therefore, if
a Win32-based application uses WM_CTRLCOLORBTN, Win32s passes WM_CTLCOLOR
to Windows with a type of CTLCOLOR_BTN.

Control messages are not unique on Windows version 3.1 as they are on
Windows NT. Control messages on Windows have values above WM_USER, however,
messages for one control may share the same number as a message of another
control. For example, both CB_ADDSTRING and LB_DELETESTRING are defined as
WM_USER+3. Therefore, when Win32s receives the WM_USER+3 message, it needs
to determine the correct control message. Win32s looks at the window class
of the window that will receive the message and maps the message
accordingly. If the window class is not a recognized control class, as in
the case of a superclassed control, the message is not mapped, which
results in unexpected behavior.

RESOLUTION
==========

In order to get the desired behavior under Win32s, make the custom control
use a recognized control class (such as "combobox") and subclass the window
procedure instead of superclassing. If you need to subclass before the
WM_CREATE/WM_NCCREATE messages, use a CBT hook. You will not be able to
change the class icon and cursor, but the messages will be handled
correctly.

If you need to use a custom control, create and use user-defined messages
instead of the control messages.

STATUS
======

This behavior is by design.

Additional reference words: 1.10 1.15 1.20
KBCategory: kbprg kbprb
KBSubCategory: W32s

PRB: CreateDialogIndirect() Fails Under Windows 95
PSS ID Number: Q137618
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 4.0
--

SYMPTOMS
========

Programs that use CreateDialogIndirect() to create their dialog boxes at
run time in Windows 95 may have trouble if the program has been ported
from Windows NT or Windows 3.1.

CAUSE
=====

The dialog resource for Windows 95 is the
same as Windows NT; that is, all strings must be in Unicode, and all
structures must be DWORD aligned.

Programs ported from Windows NT may find that when they insert strings into
the dialog template resource, they used lstrcpyW() to force the string to
be Unicode or the program itself was called compiled for Unicode. However,
lstrcpyW() is not implemented in Windows 95, so it returns
ERROR_NOT_IMPLEMENTED. To generate Unicode strings in Windows 95, the
program must use MultiByteToWideChar().

Programs ported from 16-bit Windows 3.1 will probably have problems with
the Unicode strings mentioned above and also with the structure alignment.
In 16-bit Windows, dialog box resource structures are aligned on byte
boundaries, so there's no work for the programmer to do. However, in
Win32, all structures must be aligned on DWORD (four-byte) boundaries.
AlignPtr() is a simple helper routine that takes a pointer and returns the
nearest pointer aligned on a DWORD boundary. The program should call this
between all the dialog resource structures.

RESOLUTION
==========

Use MultiByteToWideChar() to generate Unicode strings in Windows 95, and
call AlignPtr(), which takes a pointer and returns the nearest pointer
aligned on a DWORD boundary, between all the dialog resource structures to
align all structures on DWORD boundries.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

//
// AlignPtr - Helper routine. Take an input pointer, return closest
// pointer that is aligned on a DWORD (4 byte) boundary.
//

LPWORD AlignPtr (LPWORD lpIn)
{
 ULONG ul;

 ul = (ULONG) lpIn;
 ul +=3;
 ul >>=2;
 ul <<=2;
 return (LPWORD) ul;
}

Additional reference words: porting Win95 4.00 CreateDialogIndirectParam
KBCategory: kbprg kbprb
KBSubcategory: UsrDlg

PRB: CreateEllipticRgn() and Ellipse() Shapes Not Identical
PSS ID Number: Q83807

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

When CreateEllipticRgn() is used to create a region in the shape of an
ellipse and Ellipse() is called with the same parameters to draw an ellipse
on the screen, the calculated region does not match the drawn ellipse
identically.

CAUSE
=====

Ellipse() includes the lower-right point of the bounding rectangle in its
calculations, while the CreateEllipticRgn function excludes the lower-right
point.

RESOLUTION
==========

To draw a filled ellipse on the screen that matches an elliptic region,
create the region with CreateEllipticRgn() and call FillRgn() to fill the
region with the currently selected brush.

MORE INFORMATION
================

The region created by the CreateEllipticRgn() is slightly smaller than
the elliptical area created by Ellipse(). Unfortunately, decreasing the
width and height of the bounding rectangle by 1 pixel does not solve
the problem. Although changing the parameters of the Ellipse() API
in this way produces a smaller ellipse, the new ellipse does not match
the region created with CreateEllipticRgn().

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbgraphic kbprb
KBSubcategory: GdiDrw

PRB: CreateFile Fails on Win32s w/ UNC Name of Local Machine
PSS ID Number: Q129543

The information in this article applies to:

 - Microsoft Win32s version 1.2

SYMPTOMS
========

CreateFile() fails on Win32s if the file name is a UNC name that refers to
the local machine.

CAUSE
=====

This is a limitation of Windows for Workgroups version 3.11. The same
problem occurs with 16-bit Windows-based applications using OpenFile().

RESOLUTION
==========

Do not use a UNC name to open a file on the local machine.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

There is a similar limitation with Windows version 3.1 and LAN Manager. If
you create a network drive and try to open a file on the same network share
using a UNC name, it will fail. This also happens with 16-bit
Windows-based applications.

Additional reference words: 1.20
KBCategory: kbprg kbprb
KBSubcategory: W32s

PRB: CreateFile() Does Not Handle OEM Chars as Expected
PSS ID Number: Q129544

The information in this article applies to:

 - Microsoft Win32s, versions 1.2 and 1.25a

SYMPTOMS
========

When CreateFile() is passed a filename string that contains an OEM
character, the name of the file created is not as expected. In particular,
a file created with CreateFile() cannot be opened with OpenFile() when
OpenFile() is passed the same filename string.

For example, suppose that the ANSI filename string contains a lower-case e
accent character (0x0e9). The file created by CreateFile() contains an
upper-case E and the file created by OpenFile() contains an upper-case E
accent character.

CAUSE
=====

CreateFile() is implemented with calls to MS-DOS. MS-DOS converts the given
file names to upper-case letters. OpenFile() is implemented with a thunk to
the 16-bit Windows OpenFile(). OpenFile() converts the file name to
upper-case before calling MS-DOS. The conversion that the 16-bit OpenFile()
is doing is different from the conversion performed by MS-DOS for the OEM
characters. The result is that different filenames are created for the same
string passed to CreateFile() and OpenFile() if the name contains OEM
characters.

RESOLUTION
==========

To make the file name created by CreateFile() consistent with the file name
created by OpenFile(), call AnsiUpper() on the file name string before
calling CreateFile().

STATUS
======

This behavior is by design. This will not be changed in Win32s now, because
it may break existing Win32-based applications.

MORE INFORMATION
================

The 16-bit OpenFile() will fail to find an existing file if the file
contains OEM characters but not an explicit full path. This also occurs
with the 32-bit OpenFile(), because it is thunked to the 16-bit OpenFile().

SearchFile() will also fail to find files if the file name contains OEM

characters or if the search path (lpszpath != NULL) contains OEM
characters.

NOTE: In 16-bit Windows and Win32s 1.2 and earlier, OpenFile() returns the
filename in OEM characters. However, the Win32 API documentation states
that OpenFile() should return an ANSI string. Starting with the next
version of Win32s, OpenFile() will return an ANSI string, as it does under
Windows NT.

Additional reference words: 1.20
KBCategory: kbprg kbprb
KBSubcategory: W32s

PRB: CreateProcess() of Windows-Based Application Fails
PSS ID Number: Q127860

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.5

SYMPTOMS
========

When you spawn a 16-bit Windows-based application using CreateProcess()
where neither lpApplicationName and lpCommandLine are NULL, WOW gives a
popup saying:

 Cannot find file (or one of its components). Check to ensure the path
 and filename are correct and that all required libraries are available.

CAUSE
=====

NTVDM expects the first token in the command line (lpCommandLine) to be the
program name, although the Win32 subsystem does not. The current design
will not be changed.

RESOLUTION
==========

Make lpApplicationName NULL and put the full command line in lpCommandLine.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

The documentation for CreateProcess() states:

 If the process to be created is an MS-DOS-based or Windows-based
 application, lpCommandLine should be a full command line in which
 the first element is the application name.

In this case (lpApplicationName is not NULL), lpCommandLine not only
should be a full command line, but it must be a full command line.

Additional reference words: 3.50
KBCategory: kbprg kbprb
KBSubcategory: BseProcThrd

PRB: Data Section Names Limited to Eight Characters
PSS ID Number: Q100292
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5
--

SYMPTOMS
========

Data sections can be named by using #pragma data_seg. This method is
commonly used so that the named data sections can be shared using the
SECTIONS statement in the DEF file. However, if the length of the name
specified in the pragma exceeds eight characters, then the section is not
properly shared.

CAUSE
=====

The linker does not support sections with longer names. The longer names
require use of the COFF strings table, so the rewrite is not trivial.

MORE INFORMATION
================

Note that in addition, the first character of a section name must be a
period. Therefore, the section name, as specified in both the pragma and
the DEF file, can be a maximum of a period followed by seven characters.

For more information on the shared named-data section, please see the
following article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q89817
 TITLE : How to Specify Shared and Nonshared Data in a DLL

Additional reference words: 3.10 3.50
KBCategory: kbtool kbprb
KBSubcategory: TlsMisc

PRB: DDEML Fails to Call TranslateMessage() in its Modal Loop
PSS ID Number: Q102576

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

During a synchronous transaction, DDEML causes the client to enter a
modal loop until the transaction is processed. While DDEML dispatches
messages appropriately, it fails to call TranslateMessage() while
inside this modal loop. This problem does not apply to asynchronous
transactions, where no such modal loop is entered.

SYMPTOMS
========

A common symptom of this problem is seen as the client processes user
input while inside DDEML's modal loop in a synchronous transaction.
WM_KEYDOWN and WM_KEYUP messages are received, with no corresponding
WM_CHAR message for the typed character.

CAUSE
=====

No WM_CHAR message is received because the WM_KEYDOWN message is never
translated. For this to take place, a call to TranslateMessage() must
be made inside the modal loop.

RESOLUTION
==========

This limitation is by design. DDEML applications can work around this
limitation by installing a WH_MSGFILTER hook, watching out for code ==
MSGF_DDEMGR.

The WH_MSGFILTER hook allows an application to filter messages while
the system enters a modal loop, such as when a modal dialog box (code
== MSGF_DIALOGBOX) or a menu (code == MSGF_MENU) is displayed; and
similarly, when DDEML enters a modal loop in a synchronous transaction
(code == MSGF_DDEMGR).

The Windows 3.1 Software Development Kit (SDK) DDEML\CLIENT sample
demonstrates how to do this in DDEML.C's MyMsgFilterProc() function:

/**

 *
 * FUNCTION: MyMsgFilterProc
 *
 * PURPOSE: This filter proc gets called for each message we handle.
 * This allows our application to properly dispatch messages
 * that we might not otherwise see because of DDEMLs modal
 * loop that is used while processing synchronous transactions.
 *
***/

 DWORD FAR PASCAL MyMsgFilterProc(int nCode, WORD wParam,

 DWORD lParam)
 {
 wParam; // not used

 #define lpmsg ((LPMSG)lParam)

 if (nCode == MSGF_DDEMGR) {

 /* If a keyboard message is for the MDI, let the MDI client
 * take care of it. Otherwise, check to see if it's a normal
 * accelerator key. Otherwise, just handle the message as usual.
 */

 if (!TranslateMDISysAccel (hwndMDIClient, lpmsg) &&
 !TranslateAccelerator (hwndFrame, hAccel, lpmsg)){
 TranslateMessage (lpmsg);
 DispatchMessage (lpmsg);
 }
 return(1);
 }
 return(0);
 #undef lpmsg
 }

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui kbprb kbcode
KBSubcategory: UsrDde

PRB: DDEML with Excel Error: Remote Data Not Accessible
PSS ID Number: Q95982

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

When data is linked between a Microsoft Excel spreadsheet and a DDEML
server application, with both applications open, the following error
message may appear:

 Remote data not accessible; start application <SERVER FILENAME>.EXE?

CAUSE
=====

Excel broadcasts an initiate to all windows, for every service/topic name
pair it finds, in an attempt to initiate a conversation with the server
application. (This can be easily verified by running DDESPY and watching
Excel broadcast its initiates.) If Excel can't get a response, or gets a
NACK (negative ACK), Excel attempts to EXEC() a new instance of the server
application.

RESOLUTION
==========

A DDEML server application should return TRUE, in response to the
XTYP_CONNECT transaction it receives, for every service/topic name pair it
supports. Refer to page 518 of the Microsoft Windows Software Development
Kit (SDK) version 3.1 "Programmer's Reference, Volume 3: Messages,
Structures, and Functions" for more information on the XTYP_CONNECT
transaction.

MORE INFORMATION
================

The DDEML server application responds to Excel's initiate by sending the
XTYP_CONNECT transaction to the DDE callback function of each server
application, passing the service and topic names to the server.

If the server application fails to return TRUE to the service/topic name it
supports, Excel concludes that it is trying to initiate a DDE link to an
application that is not available, and brings up the message box above,
thus giving the user an option to start the application.

Additional reference words: 3.50 3.51 4.00 95
KBCategory: kbui kbprb
KBSubcategory: UsrDde

PRB: DDESpy Track Conversations Strings Window Empty
PSS ID Number: Q88197
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
--

SYMPTOMS
========

In the DDESpy application, provided with version 3.1 of the
Microsoft Windows Software Development Kit (SDK), DDE messages
appear in the main window, while the Track Conversation Strings
window remains empty.

CAUSE
=====

Either the DDESpy application was started after the client and
server applications, or neither application uses functions in the
Dynamic Data Exchange Management Library (DDEML) to conduct DDE.

RESOLUTION
==========

Start the DDESpy application before starting the client and server
applications. Make sure that the client or the server (or both)
uses the DDEML.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool kbprg kbprb
KBSubcategory: TlsSpy

PRB: Debugger Reports "WARNING: symbols checksum is wrong"
PSS ID Number: Q148220
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for
 Microsoft Windows NT versions 3.51 and 4.00
--

SYMPTOMS
========

When debugging a Win32 application on the uniprocessor version of Windows
NT, WinDbg displays warning messages that say:

 *** WARNING: symbols checksum is wrong 0x0005e382 0x00062261 for
 D:\WINNT\symbols\dll\NTDLL.DBG.

The actual path for Ntdll.dbg will vary depending on where Windows NT is
installed on your system. This warning may be generated for symbol files of
other system files such as Kernel32.dll also.

CAUSE
=====

WinDbg verifies that the checksum of the DLL matches the checksum stored in
the corresponding debugging symbol (.dbg) file to warn you when your
debugging symbols don't match the modules being debugged. If the symbols
truly are mismatched, then WinDbg will show incorrect function names when
you obtain stack traces and set breakpoints.

During installation, Windows NT runs with the multiprocessing kernel and
system files. At the end of the installation procedure on uniprocessor
Intel x86 machines, the setup program modifies the kernel and other system
files to remove spin lock code needed only on multiprocessor systems.

Because the debugging symbol files were created with the multiprocessing
system files, this modification causes the checksums of system files to
differ from the checksums in the debugging symbol files. It does not change
the file size of the system DLLs, any system code, or the addresses of
system entry points. The symbol files are still correct, but because the
checksums differ, WinDbg reports a warning.

RESOLUTION
==========

The warning describes a benign condition, so you may safely ignore it.

STATUS
======

This behavior is by design.

Additional reference words: 4.00 3.51 KERNEL32

KBCategory: kbprg kbprb
KBSubcategory: TlsWindbg

PRB: Debuggers Cannot Reliably Use Debug Register Breakpoints
PSS ID Number: Q137199

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SYMPTOMS
========

Debug register breakpoints are breakpoints that trigger on write or read of
a specific memory location. If you use debug register breakpoints in
application debuggers such as CodeView, Visual C++, or Windbg, other
applications in the system could fault.

CAUSE
=====

Debug registers are not saved and restored on a per application basis in
Windows 95; they are global to the system.

A debug register running at the same address (but in another memory
context) could trigger that debug breakpoint. Because there may not be
a debugger registered to handle the breakpoint in the second application,
Windows 95 interprets this as an unhandled exception. In most cases,
this causes Windows 95 to terminate the second application, even though
it had nothing to do with the problem.

RESOLUTION
==========

To work around this problem, use a system level debugger such as Soft-ICE
or WDEB386, or avoid using debug register breakpoints.

STATUS
======

This behavior is by design.

Additional reference words: 4.00
KBCategory: kbtool kbprb
KBSubcategory: TlsWindbg

PRB: Debugging an Application Driven by MS-TEST
PSS ID Number: Q100957
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0
--

SYMPTOMS
========

When an application driven by MS-TEST is being debugged by WinDbg or NTSD
(for example, after an exception has occurred), both the application and
the debugger hang.

CAUSE
=====

The debugger is hooked and ends up hanging.

RESOLUTION
==========

It is not possible to use NTSD or WinDbg to debug an application that is
driven by MS-TEST. Use Dr. Watson (drwtsn32) instead. Note that you must
turn off Visual Notification.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool kbprb
KBSubcategory: TlsWindbg

PRB: Debugging the Open Common Dialog Box in WinDbg
PSS ID Number: Q99952
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0
--

SYMPTOMS
========

When debugging an application that uses the Open common dialog box (created
by the GetOpenFileName() function) in WinDbg, the program stops and the
following information is displayed in the Command window:

 Thread Terminate: Process=0, Thread=2, Exit Code=1

CAUSE
=====

The Open common dialog box causes a thread to be created. At this point in
the debugging, that thread has terminated. By default, WinDbg halts
whenever a thread terminates.

RESOLUTION
==========

Execute the go command (type "g" at the command prompt). Execution will
continue.

MORE INFORMATION
================

To prevent WinDbg from halting when a thread is terminated, select Debug
from the Options menu and check "Go on thread terminate."

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool kbprb
KBSubcategory: TlsWindbg

PRB: Demand-started Service Causes Machine to Hang
PSS ID Number: Q152661
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK),for Windows NT,
 versions 3.50, 3.51
--

SYMPTOMS
========

A service is specified to start in the security context of a user. When the
service is auto-started, it starts correctly. If it is demand-started (by
the StartService API), the machine hangs. This state is demonstrated by the
operating system becoming unresponsive. If you are starting the service
from the service control panel applet, the hour-glass cursor fails to
appear or, after a long delay, the "Attempting to Start Service" dialog box
appears.

CAUSE
=====

The problem is caused by an incorrectly written third-party network
provider. The service control manager must check with each installed
network provider in order to authenticate that the user name and password
for the service are valid. If a network provider has trouble validating the
user's credentials, the service control manager fails to start the service.

RESOLUTION
==========

Remove the third-party network provider from the system. Please refer to
your network provider documentation for more information on how to remove
it from the system. Contact the network provider vendor for an update that
resolves the problem.

STATUS
======

This behavior is by design.

Additional reference words: 3.50 3.51
KBCategory: kbprg kb3rdparty kbprb
KBSubcategory: bseService

PRB: Description for Event ID Could Not Be Found
PSS ID Number: Q129003

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.5

 - Microsoft Visual C++, 32-bit Edition, version 2.0

SYMPTOMS
========

After building and executing the Win32 LOGGING sample that accompanies
Visual C++ version 2.0 and the Microsoft Developer's Network Library CD,
you find that the descriptions for the logged events contain the following:

 The Description for Event ID (#) in Source (application name) could not
 be found. It contains the following string(s):

CAUSE
=====

The resource file containing the descritions that correspond to the Event
IDs are not bound to the MESSAGES.DLL.

RESOLUTION
==========

Add the MESSAGES.RC file to the Visual C++ version 2.0 project:

1. Run MAKEMC.BAT first. MAKEMC.BAT creates the MSG00001.BIN, MESSAGES.RC,
 and MESSAGES.H files.

2. Open Visual C++ version 2.0 and add MESSAGES.RC to the MESSAGES project
 (MESSAGES.MAK).

3. Rebuild both the MESSAGES and the LOG projects.

NOTE: If you ran the sample a couple of times from different places, you
may need to delete the LOG registry key if it contains an incorrect
location for the MESSAGES.DLL file.

Additional reference words: 3.50 3.51 Event Logging Log MSDN
KBCategory: kbprg kbprb
KBSubcategory: BseMisc

PRB: Device and TrueType Fonts Rotate Inconsistently
PSS ID Number: Q82932

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

In an application for the Microsoft Windows graphical environment
that uses a mapping mode other than MM_TEXT and a text alignment
other than the default (TA_LEFT, TA_TOP), device fonts and TrueType
fonts rotate in the opposite directions. Device fonts may exhibit
other unusual behaviors. Differences in rotated text may appear on
the screen or in printed output.

RESOLUTION
==========

To create a font that rotates based on the coordinate system in
which the font is used, the application must set the CLIP_LH_ANGLES
(0x10) bit in the lfClipPrecision field of the LOGFONT data
structure. This technique is backward-compatible with Windows 3.0
because the CLIP_LH_ANGLES bit is ignored in version 3.0.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbgraphic kbprb
KBSubcategory: GdiTt

PRB: DeviceIoControl Int 13h Does Not Support Hard Disks
PSS ID Number: Q137176

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

Win32-based applications running under Windows 95 use CreateFile to open
VWIN32 and then use DeviceIoControl with the VWIN32_DIOC_DOS_INT13 flag to
perform low-level BIOS disk functions. The functions work on floppy
disks but always fail on hard disks.

CAUSE
=====

Windows 95, like previous versions of Windows, does not support
calling BIOS disk functions to gain access to hard disks from protected
mode Windows- and Win32-based applications. The cause of this lack of
support for hard disks is that BIOSXLAT.VXD does not translate BIOS
requests from protected-mode into V86 mode, and this causes the ROM BIOS to
be called with an invalid address.

RESOLUTION
==========

To work around this problem, Win32-based applications must thunk to a
Windows 16-bit DLL and have that DLL call the DOS Protected Mode Interface
(DPMI) Simulate Real Mode Interrupt function to call Int 13h BIOS disk
functions on hard disks. When you use DPMI to call Int 13h BIOS disk
functions, you bypass BIOSXLAT.VXD and call the real-mode BIOS. Note
that you cannot call DPMI from 32-bit code.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

The following example code shows how a Win32-based application running
under Windows 95 can read the first physical sector of a hard disk, which
contains the disk's partition tables. This code requires a flat thunk, so
parts of it must be placed in a Win32 DLL and other parts must be placed
in a Windows 16-bit DLL. The relevant code for each DLL is labeled.

Execution starts from a Win32-based application calling the Win32 DLL and
proceeds as follows. The Win32 DLL function, CallReadPhysicalSector1, calls

the 16-bit DLL's ReadPhysicalSector1 function by way of a thunk. Then
ReadPhysicalSector1, which is exported by the 16-bit DLL, calls DPMI
to call the BIOS Read Track function to read the first sector of the
specified hard disk. After ReadPhysicalSector1 returns, the contents
of the first sector of the hard disk, including the hard disk's
partition table and bootstrap program, will be in the buffer pointed
to by lpBuff.

Code Sample

//--
// Code in the 32-bit DLL

// Prototype for function in 16-bit DLL.
BOOL FAR PASCAL ReadPhysicalSector1 (BYTE bDrive,
 LPBYTE lpBuffer,
 DWORD cbBuffSize);

/*--
 CallReadPhysicalSector1()

 Reads the first sector of the first hard disk.

 Return Value
 Returns TRUE if the first sector was read, and FALSE if it
 wasn't.
--*/
__declspec(dllexport) BOOL WINAPI CallReadPhysicalSector1()
{
 char lpBuff[512];
 BOOL fResult;

 // Read the first sector of the first hard disk.
 fResult = ReadPhysicalSector1 (0x80, lpBuff, 512);

 if (fResult)
 {
 // lpBuff contains the sector data. Use it here
 }

 return fResult;
}

//--
// Thunk Script

enablemapdirect3216 = true;

typedef unsigned long DWORD;
typedef unsigned char BYTE, * LPBYTE;
typedef bool BOOL;

BOOL ReadPhysicalSector1 (BYTE bDrive,

 LPBYTE lpBuffer,
 DWORD cbBuffSize)
{
 lpBuffer = inout;
}

//--
// Code in the 16-bit DLL

// Converts two BYTEs into a WORD. This is useful for working with
// a RMCS, but was not provided in WINDOWS.H.

//#define MAKEWORD(low, high) \
 ((WORD)((((WORD)(high)) << 8) | ((BYTE)(low))))

#define SECTOR_SIZE 512 // Size, in bytes, of a disk sector
#define CARRY_FLAG 0x0001

typedef BYTE FAR *LPBYTE;

typedef struct tagRMCS
{
 DWORD edi, esi, ebp, RESERVED, ebx, edx, ecx, eax;
 WORD wFlags, es, ds, fs, gs, ip, cs, sp, ss;
} RMCS, FAR* LPRMCS;

BOOL FAR PASCAL SimulateRM_Int (BYTE bIntNum, LPRMCS lpCallStruct);
void FAR PASCAL BuildRMCS (LPRMCS lpCallStruct);
BOOL FAR PASCAL __export ReadPhysicalSector1 (BYTE bDrive,
 LPBYTE lpBuffer,
 DWORD cbBuffSize);

/*--
 ReadPhysicalSector1()

 Calls DPMI to call the BIOS Int 13h Read Track function to read the
 first physical sector of a physical drive. This function is used to
 read partition tables, for example.

 Parameters
 bDrive
 The Int 13h device unit,
 0x00 for floppy drive 0
 0x00 for floppy drive 1
 0x80 for physical hard disk 0
 0x81 for physical hard disk 1
 etc.

 lpBuffer
 Pointer to a buffer that receives the sector data. The buffer
 must be at least SECTOR_SIZE bytes long.

 cbBuffSize
 Actual size of lpBuffer.

 Return Value
 Returns TRUE if the first sector was read into the buffer pointed
 to by lpBuffer, or FALSE otherwise.

 Assumptions
 Assumes that sectors are at least SECTOR_SIZE bytes long.
--*/

BOOL FAR PASCAL __export ReadPhysicalSector1 (BYTE bDrive,
 LPBYTE lpBuffer,
 DWORD cbBuffSize)
{
 BOOL fResult;
 RMCS callStruct;
 DWORD gdaBuffer; // Return value of GlobalDosAlloc().
 LPBYTE RMlpBuffer; // Real-mode buffer pointer
 LPBYTE PMlpBuffer; // Protected-mode buffer pointer

 /*
 Validate params:
 bDrive should be int 13h device unit -- let the BIOS validate
 this parameter -- user could have a special controller with
 its own BIOS.
 lpBuffer must not be NULL
 cbBuffSize must be large enough to hold a single sector
 */

 if (lpBuffer == NULL || cbBuffSize < SECTOR_SIZE)
 return FALSE;

 /*
 Allocate the buffer that the Int 13h function will put the sector
 data into. As this function uses DPMI to call the real-mode BIOS, it
 must allocate the buffer below 1 MB, and must use a real-mode
 paragraph-segment address.

 After the memory has been allocated, create real-mode and
 protected-mode pointers to the buffer. The real-mode pointer
 will be used by the BIOS, and the protected-mode pointer will be
 used by this function because it resides in a Windows 16-bit DLL,
 which runs in protected mode.
 */

 gdaBuffer = GlobalDosAlloc (cbBuffSize);

 if (!gdaBuffer)
 return FALSE;

 RMlpBuffer = (LPBYTE)MAKELONG(0, HIWORD(gdaBuffer));
 PMlpBuffer = (LPBYTE)MAKELONG(0, LOWORD(gdaBuffer));

 /*
 Initialize the real-mode call structure and set all values needed
 to read the first sector of the specified physical drive.

 */

 BuildRMCS (&callStruct);

 callStruct.eax = 0x0201; // BIOS read, 1 sector
 callStruct.ecx = 0x0001; // Sector 1, Cylinder 0
 callStruct.edx = MAKEWORD(bDrive, 0); // Head 0, Drive #
 callStruct.ebx = LOWORD(RMlpBuffer); // Offset of sector buffer
 callStruct.es = HIWORD(RMlpBuffer); // Segment of sector buffer

 /*
 Call Int 13h BIOS Read Track and check both the DPMI call
 itself and the BIOS Read Track function result for success. If
 successful, copy the sector data retrieved by the BIOS into the
 caller's buffer.
 */

 if (fResult = SimulateRM_Int (0x13, &callStruct))
 if (!(callStruct.wFlags & CARRY_FLAG))
 {
 _fmemcpy (lpBuffer, PMlpBuffer, (size_t)cbBuffSize);
 fResult = TRUE;
 }
 else
 fResult = FALSE;

 // Free the sector data buffer this function allocated
 GlobalDosFree (LOWORD(gdaBuffer));

 return fResult;
}

/*--
 SimulateRM_Int()

 Allows protected mode software to execute real mode interrupts such
 as calls to DOS TSRs, DOS device drivers, etc.

 This function implements the "Simulate Real Mode Interrupt" function
 of the DPMI specification v0.9.

 Parameters
 bIntNum
 Number of the interrupt to simulate

 lpCallStruct
 Call structure that contains params (register values) for
 bIntNum.

 Return Value
 SimulateRM_Int returns TRUE if it succeeded or FALSE if it
 failed.

 Comments

 lpCallStruct is a protected-mode selector:offset address, not a
 real-mode segment:offset address.
--*/

BOOL FAR PASCAL SimulateRM_Int (BYTE bIntNum, LPRMCS lpCallStruct)
 {
 BOOL fRetVal = FALSE; // Assume failure

 _asm {
 push di

 mov ax, 0300h ; DPMI Simulate Real Mode Int
 mov bl, bIntNum ; Number of the interrupt to simulate
 mov bh, 01h ; Bit 0 = 1; all other bits must be 0
 xor cx, cx ; No words to copy
 les di, lpCallStruct
 int 31h ; Call DPMI
 jc END1 ; CF set if error occurred
 mov fRetVal, TRUE
 END1:
 pop di
 }
 return (fRetVal);
 }

/*--
 BuildRMCS()

 Initializes a real mode call structure to contain zeros in all its
 members.

 Parameters:
 lpCallStruct
 Points to a real mode call structure

 Comments:
 lpCallStruct is a protected-mode selector:offset address, not a
 real-mode segment:offset address.
--*/

void FAR PASCAL BuildRMCS (LPRMCS lpCallStruct)
 {
 _fmemset (lpCallStruct, 0, sizeof (RMCS));
 }

REFERENCES
==========

Information on using DPMI may be found in the DOS Protected Mode
Interface (DPMI) Specification Version 0.9.

Flat thunks are documented in "The Microsoft Programmer's Guide To
Windows 95" topic in the Win32 Software Development Kit online
documentation.

Additional reference words: 4.00 Windows 95 sector table physical
KBCategory: kbprg kbprb
KBSubcategory: BseFileio

PRB: Dialog Box and Parent Window Disabled
PSS ID Number: Q11337

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

When an application uses one of the DialogBox family of functions
to create a modal dialog box, both the parent window and the dialog
box are disabled (unable to accept keyboard or mouse input).

CAUSE
=====

In the application's resource file, the dialog box resource has the
WS_CHILD style.

RESOLUTION
==========

To avoid this problem, use the WS_POPUP style instead of the
WS_CHILD style.

MORE INFORMATION
================

When an application creates a modal dialog box using one of the
DialogBox family of functions, Windows disables the dialog box's
parent window. If the parent window has any child windows, the child
windows are also disabled.

An application can use the WS_CHILD style for dialog boxes created by
one of the CreateDialog family of functions. However, problems and
inconsistencies arise if the application uses the IsDialogMessage
function to process dialog box input for either the parent or the
child.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
CreateDialogIndirect CreateDialogIndirectParam CreateDialogParam
DialogBoxIndirect DialogBoxIndirectParam DialogBoxParam
KBCategory: kbui kbprb
KBSubcategory: UsrDlgs

PRB: Dialog Editor Does Not Modify RC File Dialog Box Resource
PSS ID Number: Q32019
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.1 and 3.5
--

SYMPTOMS
========

If the Windows Dialog Editor (DIALOG.EXE) is used to edit a dialog
box, when the associated application is built, the previous version
of the dialog box is used.

CAUSE
=====

The dialog resource used by the program is stored in the
application's resource file (which has the extension RC). The
Dialog Editor stores the updated dialog box resource in a file with
the .DLG extension.

RESOLUTION
==========

Modify the resource file to use the RCINCLUDE statement to include
the updated dialog box resource, as follows:

 RCINCLUDE DIALOG.DLG

MORE INFORMATION
================

Suppose an application is written that uses a dialog box. The
developer creates a dialog box template manually in the application's
resource file. After building the application, the developer decides
to modify the dialog box using the Dialog Editor.

When the Dialog Editor edits an existing dialog box, it reads the
application's compiled resources stored in a compiled resource file
(with the extension .RES). However, when the developer saves any
changes, the Dialog Editor creates a file with the .DLG extension.

When the application is built for a second time, the Resource Compiler
uses the original definition for the dialog box stored in the resource
file. The resolution provided above avoids this problem because the
Resource Compiler always includes the latest version of the dialog box
template.

For more information about this topic, please see the following article in
the Microsoft Knowledge Base:

 ARTICLE-ID: Q40958
 TITLE : PRB: DIALOG.EXE Reads Compiled .RES Files, Not .DLG Files

Additional reference words: 3.00 3.10 3.50
KBCategory: kbtool kbprg kbprb
KBSubcategory: TlsDlg

PRB: Dialog Editor Does Not Retain Unsupported Styles
PSS ID Number: Q74264

The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SYMPTOMS
========

The Windows Dialog Editor does not retain control/dialog styles that it
does not support.

RESOLUTION
==========

The styles in question must be manually added to the dialog script before
using the resource compiler to compile the resource script.

MORE INFORMATION
================

Any style that cannot be explicitly set in the Dialog Editor Styles dialog
box will not be present in the script file generated by the the Dialog
Editor. For example, the edit control style, ES_OEMCONVERT is not available
in the Dialog Editor Styles dialog box. If this style is manually added to
the dialog script, compiled, and then loaded into the Dialog Editor, the
ES_OEMCONVERT style will be removed.

Any styles that are not supported by the Dialog Editor must be manually
added to the dialog script. To modify the dialog script, use a text editor
to combine the desired styles using the bitwise OR operator("|"). This
modified script should then be included into the application's resource
script. If the application's .RES file is later loaded into the Dialog
Editor, the unsupported styles will be removed and will need to be added
again as described above.

The following is a list of styles that are known not to be supported by the
Dialog Editor:

Style

CBS_OEMCONVERT
ES_OEMCONVERT
SBS_BOTTOMALIGN
SBS_LEFTALIGN
SBS_RIGHTALIGN
SBS_SIZEBOX
SBS_SIZEBOXBOTTOMRIGHTALIGN
SBS_SIZEBOXTOPLEFTALIGN

SBS_TOPALIGN
SS_LEFTNOWORDWRAP
SS_NOPREFIX
SS_USERITEM

In addition to the above control styles, any menu definitions added to
the dialog script via the MENU resource statement will be deleted by
the Dialog Editor.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbtool kbprb
KBSubcategory: TlsDlg

PRB: DIALOG.EXE Reads Compiled .RES Files, Not .DLG Files
PSS ID Number: Q40958
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.1 and 3.5
--

SYMPTOMS
========

Create a dialog box using DIALOG.EXE, the Dialog Editor. From
MS-DOS, change an attribute (for example, position of control) of
the dialog box by modifying the .DLG file produced by DIALOG.EXE.
Invoke DIALOG.EXE again, the changes that were made are not
evident.

CAUSE
=====

The Dialog Editor produces .DLG and .RES files for the dialog box
created. When using the Dialog Editor to modify an existing dialog
box, the Dialog Editor will look at the .RES file for information
about the makeup of the dialog box. The .DLG file is completely
ignored at this point. This is why the Dialog Editor does not
recognize any .DLG changes.

RESOLUTION
==========

For the modifications to be recognized, the Resource Compiler (RC)
must be used with the -r switch to compile the .DLG file. The new
.RES file can then be loaded into the Dialog Editor and the changes
will be recognized.

Additional reference words: 3.00 3.10 3.50
KBCategory: kbtool kbprg kbprb
KBSubcategory: TlsDlg

PRB: DialogBox() Call w/ Desktop Window Handle Disables Mouse
PSS ID Number: Q129597

The information in this article applies to:

 - Microsoft Win32s, version 1.2

SYMPTOMS
========

Under Windows NT and Windows 95, you can call DialogBox() using the return
from GetDesktopWindow() as the parent window handle. However, doing the
same thing under Win32s will disable the mouse. Clicking any mouse button
results in a beep, and you must reboot the computer to enable the mouse
again.

CAUSE
=====

This is a bug in Windows, not Win32s. The same thing occurs from a 16-bit
Windows-based application. Internally, Windows disables the parent window
by calling EnableWindow(hwndParent, FALSE). If the handle is the desktop
window handle, the desktop window is disabled. This disables the mouse as
well, due to the bug in the Windows code.

RESOLUTION
==========

Do not call DialogBox() with the desktop window handle as the parent window
handle.

Additional reference words: 1.20 HWND_DESKTOP
KBCategory: kprg kbprb
KBSubcategory: W32s

PRB: Display Problems with Win32s and the S3 Driver
PSS ID Number: Q117153
--
The information in this article applies to:

 - Microsoft Win32s versions 1.1, 1.15, and 1.2
--

SYMPTOMS
========

Applications running on Windows 3.1 exhibit no problems when using an S3
driver, with a resolution of 1024x768 and 256 colors. However, the display
is corrupted when Win32-based applications, such as FreeCell, run on Win32s
in the same configuration.

CAUSE
=====

This is a known problem with the S3 driver.

A general protection (GP) fault occurs when the display driver is
performing a bit-block transfer (BitBlt). This happens whether or not
Win32s is running. However, when Win32s is not running, Windows recovers
from the faults. When a Win32-based application is running, Win32s catches
all exceptions and transfers control to the nearest try/except frame. As a
result, the BitBlt is interrupted.

RESOLUTION
==========

Certain S3 drivers which exhibit these problems can be made to work with
Win32s by making the following edit to your SYSTEM.INI file before running
any Win32-based applications:

In the SYSTEM.INI file, you will find an entry in the [display] section

 aperture-base=100

Change this entry to

 aperture-base=0

Restart Windows and the display problems will no longer occur.

If this does not help, obtain the latest S3 drivers. It is reported that S3
driver version 1.3 does not have this problem.

Additional reference words: 1.10 1.20
KBCategory: kbprg kbprb
KBSubcategory: W32s

PRB: Dithered Brushes Are Not Supported in DIB Sections
PSS ID Number: Q137370

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)
 versions 3.5, 3.51, 4.0

SYMPTOMS
========

Dithered brushes do not work in device contexts that have DIB sections
selected into them. If you create an HBITMAP using CreateDIBSection(),
select it into a memory DC, and then attempt to use a dithered brush
returned by CreateSolidBrush() to draw into the DIB section, the brush will
not be drawn with a dithered color.

CAUSE
=====

To handle dithered brushes, the GDI relies on certain colors being
available in particular positions in the palette. DIB sections do not have
to have these colors in their color table, so the GDI cannot rely on the
necessary colors being available for dithering.

STATUS
======

This behavior is by design.

Additional reference words: 4.00 3.50 bitmap solid fillrect hbrush
KBCategory: kbgraphic kbprb
KBSubcategory: W32

PRB: DLL Load Fails Under Win32s When Apps Share a DLL
PSS ID Number: Q131224
--
The information in this article applies to:

 - Microsoft Win32s versions 1.2 and 1.25a
--

SYMPTOMS
========

LoadLibrary fails under Win32s in the following situation:

1. App1 is executed and loads MYDLL.DLL.

2. App2 is executed and loads MYDLL.DLL as well.

3. App1 is terminated and unloads MYDLL.DLL.

App2 can GP fault when MYDLL.DLL is accessed. In addition, if App1 is
restarted and attempts to load MYDLL.DLL, the call to LoadLibrary fails and
GetLastError reports ERROR_DLL_INIT_FAILED.

This problem does not occur under Windows NT or Windows 95.

CAUSE
=====

By default, Visual C++ create a DLL that statically links to the C Run-time
(CRT). This version of the CRT is not compatible with Win32s. Problems
occur when global data for the CRT is initialized, because of the shared
address space under Windows.

The static CRT library uses global variables to manage memory allocations.
In the scenario above, App2 can fault when allocating memory, if the global
variables used to access memory refer to memory that was allocated App1
which has since terminated, because the allocated memory was returned to
the heap.

RESOLUTION
==========

Use the /MD (Multithreaded using CRT in a DLL) option when compiling the
DLL and add the MSVCRT.LIB import library to the library list. Include the
Win32s version of MSVCRT20.DLL which is included in Visual C++ 2.x (it is
redistributable) in your project. Then the DLL will use the DLL version of
the CRT libraries that is compatible with Win32s and the problem will not
occur.

MORE INFORMATION
================

When a DLL that uses the CRT is loaded into memory, all global variables

for the DLL and for the CRT libraries are initialized. Under Windows NT and
Windows 95, the application is given its own copy of the global data for
the DLL. When other applications use the same DLL, they each receive their
own copy of the global variables as well. This eliminates conflicts,
because the data is not shared.

Under Win32s, DLLs are loaded into the same shared memory space and all
global variables for a DLL are shared. This means that the CRT global data
is also shared. The version of MSVCRT20.DLL that targets Win32s was written
to take this into account and avoid conflicts.

The Windows NT/Windows 95 version of MSVCRT20.DLL can be found in the
MSVC20\REDIST directory of the CD. The Win32s version can be found in the
WIN32S\REDIST directory.

Additional reference words: 1.20 2.00
KBCategory: kbprg kbprb
KBSubcategory: W32s

PRB: Dotted Line Displays as Solid Line
PSS ID Number: Q24179

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

When an application creates a dotted line using a dotted pen and
the R2_NOT mode, a solid line is drawn on the screen.

CAUSE
=====

The background mode is OPAQUE. This is the default background mode.
In this mode, the line is painted with the background color first,
followed by the pen.

RESOLUTION
==========

Use the SetBkMode() function to set the mode to TRANSPARENT. In
this mode, only the pen is used; the background is not disturbed.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbgraphic kbprb
KBSubcategory: GdiPnbr

PRB: Edit Control Margins too Large in Windows 95
PSS ID Number: Q138419

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SYMPTOMS
========

After you change the font in an edit control in Windows 95, the left and
right margins are unusually large.

CAUSE
=====

When the edit control receives the WM_SETFONT message, it calculates the
left and right margins based on the average character width of the new
font. The control does not do this when it is created. This results in the
margins changing drastically when the font is changed.

RESOLUTION
==========

Get the margins of the edit control before sending the WM_SETFONT message,
and then set the margins back to their original sizes. The following code
fragment demonstrates how to do this:

{
DWORD dwMargins;

dwMargins = SendDlgItemMessage(hWnd,
 IDC_EDIT,
 EM_GETMARGINS,
 0,
 0);

SendDlgItemMessage(hWnd,
 IDC_EDIT,
 WM_SETFONT,
 (WPARAM)<new font handle>,
 0);

SendDlgItemMessage(hWnd,
 IDC_EDIT,
 EM_SETMARGINS,
 EC_LEFTMARGIN | EC_RIGHTMARGIN,
 MAKELPARAM(LOWORD(dwMargins), HIWORD(dwMargins)));

}

STATUS
======

This behavior is by design.

Additional reference words: 1.30 4.00 Windows 95
KBCategory: kbprg kbui kbprb kbcode
KBSubcategory: UsrCtl W32s

PRB: Editing Labels in a TreeView Gives WM_COMMAND|IDOK Errors
PSS ID Number: Q130692

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s version 1.3

SYMPTOMS
========

WM_COMMAND|IDOK errors are received while editing labels in a TreeView
control.

CAUSE
=====

While editing labels in a TreeView control, the edit control created by the
TreeView control can, and usually does, have an identifier of 1. This
identifier is the same as IDOK. This can cause the parent window or dialog
box to receive WM_COMMAND messages with an identifier of 1. Then the
TreeView control passes on the EN_UPDATE and EN_CHANGE notifications from
the edit control to the TreeView's parent.

This was a design decision made to meet system requirements and cannot be
changed. If the parent window is going to perform some action in response
to a command with an identifier of 1, this problem can occur. This problem
is especially significant in dialog boxes that use the standard IDOK for a
command button control.

RESOLUTION
==========

Avoid using command and control identifiers with an identifier of 1 (IDOK).
To be safe, the application should not use any identifiers less than 100
when used in conjunction with a TreeView control.

Another way to avoid this problem is to check the notification codes in the
WM_COMMAND messages. Then respond only to the proper notification codes
such as BN_CLICKED.

STATUS
======

This behavior is by design.

Additional reference words: 1.30 4.00 95
KBCategory: kbui kbprb
KBSubcategory: UsrCtl W32s

PRB: EndPage() Returns -1 When Banding
PSS ID Number: Q118873

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

When an application that implements banding calls EndPage(), EndPage()
returns SP_ERROR (-1).

CAUSE
=====

EndPage() returns -1 if there has been no corresponding call to
StartPage(). Windows keeps track of whether StartPage() has been called by
maintaining an internal flag that is set when StartPage() is called and
then is cleared when EndPage() is called.

This flag is also cleared when the NEXTBAND escape is called and there are
no more bands on the page to be printed. At this point, Windows clears the
internal flag and tells the device that a page has been finished. Because
the internal flag has been cleared, a subsequent call to EndPage()
returns -1.

RESOLUTION
==========

Though EndPage() returns -1 when it is called from printing code that
implements banding, it does no harm. An application can safely call
StartPage() and EndPage() when banding and ignore the -1 error returned
from EndPage().

NOTE: It is not recommended that a Win32-based application use banding.
Windows NT, spools in a journal file and Windows 95 spools in an enhanced
metafile, so all GDI calls are supported without banding.

Additional reference words: 3.10 3.50 4.00 NEWFRAME
KBCategory: kbprint kbprb
KBSubcategory: GdiPrn

PRB: Error 1 (NRC_BUFLEN) During NetBIOS Send Call
PSS ID Number: Q124879
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0
--

SYMPTOMS
========

When making a NetBIOS Send call, the call with fail with error code 1
(NRC_BUFLEN). This error code indicates that the buffer length is
invalid.

CAUSE
=====

NRC_BUFLEN will be returned if the buffer length specified in the
NetBIOS Control Block (NCB) is incorrect. Less obvious is the fact that
this error will also be returned if the buffer pointed to by the NCB is
protected from write operations.

RESOLUTION
==========

Although the NetBIOS code does not write to the buffer supplied in the NCB,
write access is required. You can solve the problem by changing the
protection on your buffer to include write access.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbnetwork kbnetwork kberrmsg
KBSubcategory: NtwkNetbios

PRB: Error Message Box Returned When DLL Load Fails
PSS ID Number: Q117330

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

Under Windows NT, when you load a DLL, a message box titled "Invalid DLL
Entrypoint" is displayed and has the following text:

 The dynamic link library <name> is not written correctly.
 The stack pointer has been left in an inconsistent state.
 The entry point should be declared as WINAPI or STDCALL.
 Select YES to fail the DLL load. Select NO to continue
 execution. Selecting NO may cause the application to operate
 incorrectly.

Under Windows 95, the message box is titled "Error starting program" and
the text is:

 The <dll file name> file cannot start. Check the file to
 determine the problem.

The user is not given a choice to continue, only an OK button. Pressing the
OK button fails program load.

CAUSE
=====

The system expects DLL entrypoints to use the _stdcall convention. If you
use the _cdecl convention, the stack is not properly restored and
subsequent calls into the DLL can cause a general protection fault (GPF).

This error message is new to Windows NT, version 3.5. Under Windows NT,
version 3.1, the DLL is loaded without an error message, but the
application usually causes a GPF when calling a DLL routine.

RESOLUTION
==========

Correct the prototype of your entrypoint. For example, if your entrypoint
is as follows:

 BOOL DllMain(HANDLE hDLL, DWORD dwReason, LPVOID lpReserved)

change it to the following:

 BOOL WINAPI DllMain(HANDLE hDLL, DWORD dwReason, LPVOID lpReserved)

Then, link with the following linker option to specify the entry point if
you are using the C run-time:

 -entry:_DllMainCRTStartup$(DLLENTRY)

MORE INFORMATION
================

If you are using the Microsoft C run-time, you need to use the entry point
given in the RESOLUTION section in order to properly initialize the C run-
time. For additional information, please see the following article in the
Microsoft Knowledge Base:

 ARTICLE-ID: Q94248
 TITLE : Using the C Run Time

REFERENCES
==========

For more information on the DLL entrypoint, please search on the topic
"DllEntryPoint" (without the quotes) in the Win32 API help file.

Additional reference words: 3.50 4.00 libmain
KBCategory: kbprg kbprb
KBSubcategory: BseDll

PRB: Error on Win32s: R6016 - not enough space for thread data
PSS ID Number: Q126709

The information in this article applies to:

 - Microsoft Win32s, versions 1.2 and 1.25

SYMPTOMS
========

Spawning and closing an application repeatedly succeeds around 60 times,
then the spawn fails with this error:

 R6016 - not enough space for thread data

CAUSE
=====

The thread local storage (TLS) is not freed by the system.

The failure occurs only if there is another Win32-based application active
while you are doing the spawns. The message itself is not generated by
Win32s. It is generated by the Microsoft C Run-time (CRT) libraries
LIBC.LIB and LIBCMT.LIB.

RESOLUTION
==========

In Win32s version 1.25, TLS indices are freed during module cleanup. The
TLS index is owned by the application's main module, so that it is freed
when the application terminates. This solves the problem for LIBC and
LIBCMT.

There is a similar problem with MSVCRT20.DLL. This DLL version of the CRT
allocates a new TLS index each time a process attaches to it. MSVCRT20
doesn't free the TLS indices when unloading. The system should free them.
If only one application uses MSVCRT20 at a time, then the application can
be spawned successfully up to about 60 times on Win32s version 1.20. On
Win32s version 1.25, there is no limitation.

If there is already an active application that uses MSVCRT20, it is not
possible to spawn and close a second application that uses MSVCRT20 more
than about 60 times under Win32s version 1.25. This is because MSVCRT20
allocates a TLS index each time a process attaches to it. Win32s will free
all of the TLS indices only when MSVCRT20 is unloaded.

MORE INFORMATION
================

On Win32s, TLS allocation should be done once and not per process. Each
process can use the index to store per-process data, just as a thread
uses a TLS index on Windows NT. This is easy to do, because DLL data is
shared between all processes under Win32s.

The following example demonstrates how to do the TLS allocation once on
Win32s:

 BOOL APIENTRY DllMain(HINSTANCE hinstDll, DWORD fdwReason,
 LPVOID lpvReserved)
 {
 static BOOL fFirstProcess = TRUE;
 BOOL fWin32s = FALSE;
 DWORD dwVersion = GetVersion();
 static DWORD dwIndex;

 if (!(dwVersion & 0x80000000) && LOBYTE(LOWORD(dwVersion))<4)
 fWin32s = TRUE;

 if (dwReason == DLL_PROCESS_ATTACH) {
 if (fFirstProcess || !fWin32s) {
 dwIndex = TlsAlloc();
 }
 fFirstProcess = FALSE;
 }
 .
 .
 .
 }

Additional reference words: 1.20
KBCategory: kbprg kbcode kbprb
KBSubcategory: W32s

PRB: Error with GetOpenFileName() and OFN_ALLOWMULTISELECT
PSS ID Number: Q99338

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.5

SYMPTOMS
========

Assume that the GetOpenFileName() function is called with the Flags
parameter set to OFN_ALLOWMULTISELECT (allow for multiple selections
in the list box) and OFN_NOVALIDATE (allow for invalid characters in
the filename), the lpstrFile parameter points to a 2K buffer, and the
corresponding nMaxFile is set appropriately to 2048.

When the GetOpenFileName() function call returns, the complete
selection in the list box is not copied to the lpstrFile buffer, but
the string in the buffer is truncated.

CAUSE
=====

This is a problem with the GetOpenFileName() function in the current
version of COMMDLG.DLL in that the OFN_NOVALIDATE flag cannot be used
when multiple selections are allowed.

RESOLUTION
==========

The following are two suggested solutions to this problem:

One solution for this problem is to not use the OFN_NOVALIDATE flag
with the OFN_ALLOWMULTISELECT flag. That is, if only the
OFN_ALLOWMULTISELECT flag is used, then multiple selections will be
copied properly to the text buffer. Note that there is a buffer size
limit of 2K bytes for the lpstrFile buffer, and characters are
truncated after 2K bytes when the OFN_ALLOWMULTISELECT flag is used.

There is another solution, if both the OFN_ALLOWMULTISELECT and
OFN_NOVALIDATE flags must be used simultaneously with
GetOpenFileName(). Note that the entire string is always copied into
the edit control even though the text gets truncated during the
process of copying the text to the lpstrFile buffer. Therefore, one
could write a hook procedure and read the entire string from the edit
control and use it appropriately instead of using the lpstrFile
buffer.

Additional reference words: 3.10 3.50

KBCategory: kbui kbprb
KBSubcategory: UsrCmnDlg

PRB: ERROR_INVALID_PARAMETER from WriteFile() or ReadFile()
PSS ID Number: Q110148

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

The WriteFile() or ReadFile() function call may fail with the error
ERROR_INVALID_PARAMETER if you are operating on a named pipe and using
overlapped I/O.

CAUSE
=====

A possible cause for the failure is that the Offset and OffsetHigh members
of the OVERLAPPED structure are not set to zero.

RESOLUTION
==========

Set the Offset and OffsetHigh members of your OVERLAPPED structure to zero.

STATUS
======

This behavior is by design. The online help for both WriteFile() and
ReadFile() state that the Offset and OffsetHigh members of the OVERLAPPED
structure must be set to zero or the functions will fail.

MORE INFORMATION
================

In many cases the function calls may succeed if you do not explicitly set
OVERLAPPED.Offset and OVERLAPPED.OffsetHigh to zero. However, this is
usually either because the OVERLAPPED structure is static or global and
therefore is initialized to zero, or the OVERLAPPED structure is automatic
(local) and the contents of that location on the stack are already zero.
You should explicitly set the OVERLAPPED.Offset and OVERLAPPED.OffsetHigh
structure members to zero.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg kbprb
KBSubcategory: BseFileio

PRB: Errors When Windbg Switches Not Set for Visual C++ App
PSS ID Number: Q131111

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.5

SYMPTOMS
========

If two switches are not set correctly, Windbg gives the following error
message when the module is loaded:

 (symbol format not supported)

In addition, Windbg gives the following error message for any breakpoints
set in the module:

 Unresolved Breakpoint

CAUSE
=====

For Windbg to understand the symbolic format generated from Microsoft
Visual C++ version 2.0, two linker switches have to be set correctly:

 - /DEBUG is set in the Project Settings dialog box, under the Link tab.
 Choose the Debug category. Then select the Generate Debug Info check
 box, and choose Microsoft Format.

 - /PDB:none is set in the Project Settings dialog box, under the Link tab.
 Choose the Customize category. Then clear the Use Program Database check
 box.

STATUS
======

This behavior is by design.

Additional reference words: 3.50
KBCategory: kbtool kbprb
KBSubcategory: TlsWindbg

PRB: Excel's =REQUEST() from DDEML Application Returns #N/A
PSS ID Number: Q107980

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

When executing the =REQUEST() macro to request data from a DDEML server
application, Excel returns a value of "#N/A", although the server
application returned a valid data handle from the request.

CAUSE
=====

When Excel executes a =REQUEST, it requests data in the most efficient
format available. Verifying through DDESPY when Excel executes the =REQUEST
macro, one can see that Excel sends out a request for data for each format,
in this order:

 XLTable (Excel fast table format)
 BIFF4 (Excel 4.0 file format)
 BIFF3 (Excel 3.0 file format)
 SYLK (Symbolic Link)
 WK1 (Lotus 1-2-3 release 2 format)
 CSV (comma-delimited text)
 TEXT (CF_TEXT)
 RTF (rich text format)
 DIF (data interchange format)

Knowing what formats it can handle best, Excel requests data in the most
efficient format first, and so on, until it finds one that the server
application supports. At this point, Excel stops sending further requests.

In response to a request, a DDEML server application that supports only one
format (for example, the CF_TEXT format) may return a data handle in
CF_TEXT format, regardless of the format being requested. When Excel sends
its first request for data in XLTable format, this server application
returns a data handle in CF_TEXT format, as demonstrated in the code below:

 case XTYP_REQUEST:
 if ((ghConv == hConv) &&
 (!DdeCmpStringHandles (hsz1, hszTopicName)) &&
 (!DdeCmpStringHandles (hsz2, hszItemName))) {

 lstrcpy (szBuffer, "The Simpsons");

 return (DdeCreateDataHandle (idInst,
 szBuffer,
 lstrlen (szBuffer)+1,
 0L,
 hszItemName,
 CF_TEXT,
 0);
 }
 return (HDDEDATA)NULL;

Because Excel expected to receive data in the format it had requested (that
is, XLTable format), and instead received date in CF_TEXT format, Excel
returns #N/A, not knowing how to handle the data it received.

RESOLUTION
==========

In response to a request, a DDEML server application should return a valid
data handle only for the format it supports. When processing an
XTYP_REQUEST transaction, the server application should first check whether
the data being requested is in its supported format; if so, the server
application should return an appropriate data handle. Otherwise, the server
application should return NULL.

The code above can be modified as follows to check for this condition:

 case XTYP_REQUEST:
 if ((ghConv == hConv) &&
 (!DdeCmpStringHandles (hsz1, hszTopicName)) &&
 (!DdeCmpStringHandles (hsz2, hszItemName)) &&
 (wFmt == CF_TEXT)) { // Add this to the if clause
 // to check if data is being requested
 // in one of its supported formats.

 lstrcpy (szBuffer, "Fred Flintstone");
 return (DdeCreateDataHandle (idInst,
 szBuffer,
 lstrlen (szBuffer)+1,
 0L,
 hszItemName,
 CF_TEXT,
 0);
 }
 return (HDDEDATA)NULL;

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui kbprb kbcode
KBSubcategory: UsrDde

PRB: ExitProgman DDE Service Does Not Work If PROGMAN Is Shell
PSS ID Number: Q69899

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

Calling the ExitProgman() function documented in the Microsoft Windows SDK
version 3.0 "Guide to Programming," section 22.4.4 (pages 22-19 through 22-
22) fails under certain circumstances.

CAUSE
=====

Calling this function will fail if the Program Manager is the Windows
shell.

RESOLUTION
==========

This behavior is by design. The Windows 3.1 documentation states:

 If Program Manager was started from another application, the ExitProgman
 command instructs Program Manager to exit and, optionally, save its
 groups information.

For another application to start Program Manager, the Program Manager
cannot be the shell.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui kbprb
KBSubcategory: UsrDde

PRB: ExitWindowsEx with EWX_LOGOFF Doesn't Work Properly
PSS ID Number: Q149690
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0
--

SYMPTOMS
========

When an application calls ExitWindowsEx with EWX_LOGOFF in Windows 95, the
application itself does not exit. Additionally, the use of the EWX_FORCE
flag in conjunction with EWX_LOGOFF will cause undefined behavior.

CAUSE
=====

It is the application's responsibility to terminate itself. However,
limitations of the implementation of ExitWindowsEx in Windows 95 require
that the application execute the ExitWindowsEx call and terminate itself in
a particular way.

RESOLUTION
==========

Code similar to the following will correctly perform a logoff in Windows
95:

 case IDM_LOGOFF:
 {
 DWORD dw;
 HANDLE hThread;

 g_hwndParent = hWnd;

 hThread = CreateThread(NULL,
 0,
 (LPTHREAD_START_ROUTINE)ShutdownThread,
 (LPVOID)0,
 0,
 &dw);

 if(hThread)
 CloseHandle(hThread);
 }
 break;

/**

 ShutdownThread()

**/

BOOL WINAPI ShutdownThread(DWORD dwCmd)
{
BOOL f;

f = ExitWindowsEx(EWX_LOGOFF, 0);

//if the shutdown worked, terminate the calling app
if(f)
 {
 if(g_hwndParent)
 {
 //shutdown the calling app ASAP, don't destroy the window
 PostMessage(g_hwndParent, WM_QUIT, 0, 0);
 }
 }

return f;
}

STATUS
======

This behavior is by design.

Additional reference words: 4.00
KBCategory: kbprg kbui kbprb
KBSubcategory: UsrCtl

PRB: ExtTextOutW or TextOutW Unicode Text Output Is Blank
PSS ID Number: Q145754
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows 95
--

SYMPTOMS
========

When you use ExtTextOutW or TextOutW to display a character that is in the
unicode range but not in the particular codepage with which the font file
is associated, a blank character is displayed.

CAUSE
=====

The Unicode font glyphs are stored inside the font file. However, one font
file does not contain all the glyphs required to display all 64K possible
Unicode characters.

Windows NT and Windows 95 support the Unicode Font file. Therefore all of
the Unicode glyphs can be rendered if the glyph is found in the font file.
However, Windows 95 does not support the Unicode characters other than the
characters for which the particular codepage of the font file is defined.
When Windows 95 opens a font file, it will first determine which encoding
standard the font file contains (for example the ANSI, SHIFTJIS, BIG5, or
HANGEUL character set) by looking at the LanguageID in the name table.
After Windows 95 determines the file's LanguageID, the font file can only
support that particular language, even though other glyphs may exist in the
font file. For example, a Japanese font file can not support Hangeul
because the Japanese codepage does not define any Hangeul characters. But a
Japanese font can support part of Cyrillic because the Japanese codepage
defines part of those.

On the other hand, Windows 95 supports multiple character sets from one
font file. For a given font file that supports multiple character sets,
Windows 95 will enumerate the multiple character sets as a seperate fonts.

The user can determine if a font supports multiple character sets in the
Font common dialog under the Script combo box. If the selected font
supports multiple character sets, then the Script combo box will have
entries for the various scripts available.

RESOLUTION
==========

The functionality as described above is by design and is different from the
Windows NT Unicode Font support. In Far East Windows NT versions, FontLinks
make it possible to have a font which can supports whole 64K Unicode
characters. The difference between Windows 95 and Windows NT is due to the
fact that the former is ANSI-based while the latter is Unicode-based.

However, Windows NT does not support a method to input all characters while
Windows 95 defines those methods as multilingual specification.

In furture versions of Windows 95 and Windows NT, the multilingual
specification will be merged into both platforms.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

See the Win32 SDK's Multilingual support sections for more information on
multiple character set handling and multilingual operation. Additionally,
see Developing International Software For Windows 95 and Windows NT,
Microsoft Press 1995.

Additional reference words: 4.00
KBCategory: kbprg kbprb
KBSubcategory: wintldev

PRB: FindExecutable() Truncates Result at First Space in LFN
PSS ID Number: Q140724

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface included with:

 - Microsoft Windows 95
 - Microsoft Windows NT versions 3.1, 3.5, 3.51

SYMPTOMS
========

The FindExecutable function is supposed to retrieve the fully qualified
path to the executable (.exe) file associated with the specified file name.
For example, the following call to FindExecutable() should return the path
to Winword.exe:

 FindExecutable ("C:\\README.DOC", NULL, szBuffer);

Assuming Winword.exe is currently in the C:\Msoffice\Winword directory, the
function, upon return, should fill szBuffer with the string
C:\Msoffice\Winword\Winword.Exe.

However, when you use FindExecutable() on a file whose associated
application is in a directory that has a long file name (LFN) that includes
a space, the function truncates the string up at the first space. Going
back to the previous code example, if Winword.exe is located in the
C:\Program Files\My Accessories directory, the function incorrectly returns
the truncated string C:\Program instead of the following expected string:

 C:\Program Files\My Accessories\Winword.Exe

CAUSE
=====

File associations are stored in the registry under HKEY_CLASS_ROOT, where
the executable name is actually stored under the key

 HKEY_CLASSES_ROOT\<file Type>\shell\open\command = <Name of Executable>

By design, long file names stored in the registry should be enclosed in
quotation marks. Otherwise, the system is made to treat the rest of the
characters following the space as arguments.

In the example, the path to WinWord.Exe should be stored in the registry
as:

 HKEY_CLASSES_ROOT\Word.Document.6\shell\open\command =
 "C:\Program Files\My Accessories\Winword.Exe" /n

which does causes FindExecutable to return the expected string.

Note that this problem does not occur when the short path name is stored in
the registry, instead of the long file name. Again, taking the same example
to WinWord.exe, this should not be a problem if the short path name
"C:\Progra~1\MYACCE~1\WINWORD.EXE" is stored in the registry instead of the
LFN version.

WORKAROUND
==========

In some situations, applications do not have control over what gets stored
in the registry. It may be the associated application's setup program that
wrote the incorrect LFN string (without quotation marks) to the registry.
Any application that would then call FindExecutable() on this associated
application will run into this problem.

One workaround to this problem might be to parse the string returned and
replace the \0 character with a space. Stepping through a debugger, after
FindExecutable() returns, you will quickly find that although the space has
been replaced with the NULL character (\0), the rest of the string is left
intact, so simply reverting the \0 character back to a space gives the
expected string.

STATUS
======

This behavior is by design.

Additional reference words: 4.00 3.10 3.50 invalid wrong
KBCategory: kbprg kbprb
KBSubcategory: UsrShell

PRB: FindText, ReplaceText Hook Function
PSS ID Number: Q96135

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

When adding a hook function to the FindText and/or ReplaceText common
dialog box, the dialog box is not shown. However, the hook function is
receiving messages and the dialog box window does exist.

CAUSE
=====

The hook function is returning FALSE after processing the WM_INITDIALOG
message.

RESOLUTION
==========

After processing the WM_INITDIALOG message in the hook function, return
TRUE. If your hook function is setting the focus to a specific control, and
therefore should return FALSE, add the following code:

 case WM_INITDIALOG:

 ...WM_INITDIALOG code...

 SetFocus(hCtrl);
 ShowWindow(hDlg, SW_NORMAL);
 UpdateWindow(hDlg);
 return(FALSE);

This code ensures that the dialog box is visible.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui kbprb kbcode
KBSubcategory: UsrCmnDlg

PRB: GetExitCodeProcess() Always Returns 0 for 16-Bit Processes
PSS ID Number: Q111559

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5
 - Microsoft Win32s versions 1.1, 1.15, and 1.2

SYMPTOMS

GetExitCodeProcess() always returns a status of 0 (zero) when the handle
for a 16-bit process is passed. This applies to both Windows NT and Win32s.

STATUS

This behavior is by design in the Microsoft products listed at the
beginning of this article. Microsoft may add functionality in future
versions that support exit codes from 16-bit processes.

Additional reference words: 3.10 3.50 1.10 1.20
KBCategory: kbprg kbprb
KBSubcategory: BseMisc W32s

PRB: GetLogicalDrives() Indicates that Drive B: Is Present
PSS ID Number: Q126626

The information in this article applies to:

 - Microsoft Win32s, versions 1.2 and 1.25

SYMPTOMS
========

GetLogicalDrives() returns a bitmask that indicates that drive B is an
available drive present on the system, even though there is no physical
drive B.

CAUSE
=====

Drive B is a ghosted drive, so you can use it even if it does not exist.
This is useful for performing a diskcopy.

RESOLUTION
==========

Use GetDriveType() to determine whether drive B: is present as a physical
device.

STATUS
======

This behavior is by design.

Additional reference words: 1.20 1.25
KBCategory: kbprg kbprb
KBSubcategory: W32s

PRB: GetOpenFileName nMaxFile Interpreted Incorrectly
PSS ID Number: Q137194

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

In a 16-bit Windows-based application, call GetOpenFileName with a string
buffer of 10 characters and set nMaxFile to 10. Double-click a file whose
full path name is 10 characters long. The file name is returned and the
11th character in the buffer is set to 0. This is a problem because the
application has written beyond the specified length of the buffer.

CAUSE
=====

Windows 3.1 had this same problem, so this behavior was maintained in
Windows 95 for compatibility reasons.

RESOLUTION
==========

Applications should make sure that they can handle having this API
overwrite one more byte than the size that they passed in.

STATUS
======

This behavior is by design.

Additional reference words: 4.00
KBCategory: kbui kbprb
KBSubcategory: UsrCmnDlg

PRB: GetOpenFileName() and Spaces in Long Filenames
PSS ID Number: Q108233

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SYMPTOMS
========

GetOpenFileName() is the application programming interface (API) for the
open file common dialog box. This API displays the long filenames (LFNs) on
NTFS and HPFS.

When using the OFN_ALLOWMULTISELECT flag with the GetOpenFileName() API,
the dialog box automatically presents the 8.3 names for all LFNs that
contain embedded spaces.

CAUSE
=====

The original design of GetOpenFileName() uses a filename list that is
space-delimited when the OFN_ALLOWMULTISELECT flag is specified. Thus,
there is no programmatic way to determine which string tokens are complete
filenames or fragments of a complete name with spaces.

STATUS
======

This behavior is by design. Microsoft is considering changing this behavior
in a future release of Windows NT.

MORE INFORMATION
================

Historically, FAT filenames that contained embedded spaces were branded as
"illegal," even though the specifications of the FAT file system do not
impose such a restriction. For example, many of the MS-DOS command-line
utilities do no allow the user to specify filenames with embedded spaces,
because of difficulties that would be introduced in parsing the command
line. Under Windows NT, the command utilities have been enhanced to support
such names if they are in quotation marks.

Additional reference words: 3.10 3.50
KBCategory: kbui kbprb
KBSubcategory: UsrCmnDlg

PRB: Getsockopt() Returns IP Address 0.0.0.0 for UDP
PSS ID Number: Q129065
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.11 and 4.0
 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5
--

SYMPTOMS
========

By following the steps listed below, you might think you should get back
the interface address over which the connection was made. However, it
actually returns the address 0.0.0.0.

1. Open a UDP socket.

2. Bind it to INADDR_ANY.

3. Call connect() to make a UDP connection.

4. Call getsockname() on your socket.

However, if it was a TCP socket, you would get back the IP address of the
interface.

CAUSE
=====

UDP

This is the behaviour expected from some flavors of UNIX, notably those
derived from BSD. When an application calls connect() on a UDP socket that
is bound to INADDR_ANY, the operating system associates the remote address
with the local socket. This saves the programmer from having to specify the
remote IP address in each sendto() or recvfrom(). Instead they may use
send() and recv(). Note that this is just a convenience provided by the
operating system; there is no network traffic associated with this call. At
this point, the underlying IP software determines the interface over which
packets will be sent. As described earlier, under BSD UNIX, calling
getsockname() will return the IP address of the interface to the
application.

This however, is not expected behaviour under Windows NT, Windows 95, or
Microsoft TCP IP/32 for Windows for Workgroups version 3.11. Calling
getsockname() will return the IP address 0.0.0.0 (INADDR_ANY). Applications
should not assume that they can get the IP address of the interface.

TCP

The behaviour is different if it was a TCP socket. In this case, calling
getsockname() on a connected socket that was bound to INADDR_ANY will
return the IP address of the interface over which the connection was made.
The state of the connection can also be observed by typing 'netstat' at a
command prompt.

NOTE: To enumerate all the IP addresses on an IP host, the
application should call gethostname(), call gethostbyname(), and then
iterate through the h_addr_list[] member of the hostent struct returned by
gethostbyname() as in this example:

 char Hostname[100];
 HOSTENT *pHostEnt;
 int nAdapter = 0;

 gethostname(Hostname, sizeof(Hostname));
 pHostEnt = gethostbyname(Hostname);

 while (pHostEnt->h_addr_list[nAdapter])
 {
 // pHostEnt->h_addr_list[nAdapter] -the current address in host order
 nAdapter++;
 }

STATUS
======

This behavior is by design.

Additional reference words: 3.11 4.00 3.10 3.50 3.51
KBCategory: kbnetwork kbprb
KBSubcategory: NtwkWinsock

PRB: GetVolumeInformation() Fails with UNC Name
PSS ID Number: Q119219

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

GetVolumeInformation() fails and GetLastError() returns 123
(ERROR_INVALID_NAME) if a UNC name is used. The UNC name has the form
\\<SERVER>\<SHARE>.

RESOLUTION
==========

GetVolumeInformation() requires an extra backslash with UNC names, so that
the name has the form \\<SERVER>\<SHARE>\.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg kbprb
KBSubcategory: BseMisc

PRB: GlobalAlloc() Pagelocks Blocks on Win32s
PSS ID Number: Q114611
--
The information in this article applies to:

 - Microsoft Win32s, versions 1.1, 1.15, and 1.2
--

SYMPTOMS
========

If a Win32-based application running in Win32s uses GlobalAlloc() to
allocate memory from the global heap with GMEM_FIXED, with GPTR, with
GMEM_ZEROINIT, or without specifying GMEM_MOVEABLE the memory allocated
will be fixed and page-locked.

CAUSE
=====

When a Win32 application running under Win32s on Windows 3.1 calls
GlobalAlloc() the call is translated via a thunk supplied by Win32s in a 16-
bit DLL. The 16-bit DLL then calls the Windows 3.1 function GlobalAlloc().
When GlobalAlloc() is called from a DLL in Windows 3.1 the allocated memory
will be fixed and page-locked unless GMEM_MOVEABLE is specified.

RESOLUTION
==========

The GlobalAlloc() flags should always include GMEM_MOVEABLE if memory does
not need to be fixed and page-locked. This is expected behavior for Windows
3.1.

MORE INFORMATION
================

A Windows-based application will not fix or page-lock memory even when
specifically using the GMEM_FIXED flag. This behavior is unique to Windows
version 3.1; using GlobalAlloc() with GMEM_FIXED to allocate fixed and page-
locked memory must be done in a DLL.

In Windows 3.1, the GMEM_FIXED flag is defined as 0x0000. Using
GMEM_ZEROINIT without GMEM_MOVEABLE will command GlobalAlloc() to allocate
using GMEM_FIXED by default. Since Win32s passes all GlobalAlloc() calls to
the Windows 3.1 GlobalAlloc() by a DLL, GlobalAlloc() called from either a
Win32 application or a Win32 DLL will allocate the block fixed and page-
locked unless the GMEM_MOVEABLE flag is specified.

The following code illustrates this case:

 {
 HGLOBAL hMem;

 // allocate a block from the global heap

 hMem = GlobalAlloc(GMEM_ZEROINIT, 512);

 .
 .
 .

 }

Although this source code is compatible between applications for Windows
3.1 and applications for Windows NT running on Win32s, the result is
different. A 16-bit application running on Windows 3.1 will allocate the
memory as moveable and zero the contents. A Win32 application running on
Win32s will allocate the memory as fixed and page-locked and zero the
contents.

REFERENCES
==========

Appendix B, titled "System Limits", of the "Win32s Programmer's Reference
Manual" briefly mentions on page 56 not to use GMEM_FIXED in GlobalAlloc()
called by 32-bit applications.

Additional reference words: 1.10 1.20 3.10
KBCategory: kbprg kbprb
KBSubcategory: W32s

PRB: GP Fault Caused by GROWSTUB in POINTER.DLL
PSS ID Number: Q117864
--
The information in this article applies to:

 - Microsoft Win32s versions 1.1, 1.15, and 1.2
--

SYMPTOMS
========

As soon as your Win32-based application starts, there is a GP fault caused
by GROWSTUB in POINTER.DLL.

CAUSE
=====

This problem is caused by a bug in GROWSTUB, which is part of the Microsoft
Mouse driver version 9.01.

RESOLUTION
==========

Microsoft Mouse driver version 9.01b corrects this problem. Driver 9.01b is
available via part number: 135-099-351 "Intellepoint Mouse Driver
2.0(dual)". This driver does not introduce new functionality, therefore,
you need only upgrade if you have run into this problem.

For more information, please see the following article in the Microsoft
Knowledge Base:

 ARTICLE-ID: Q119775
 TITLE : HD1061: POINTER.DLL Corrects GP Fault with Win32 Apps

You can also avoid the problem by removing POINTER.EXE from the load= line
in your WIN.INI file.

Additional reference words: 1.10
KBCategory: kbprg kbprb
KBSubcategory: W32s

PRB: GP Fault in DDEML from XTYP_EXECUTE Timeout Value
PSS ID Number: Q83999

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

A general protection (GP) fault occurs in DDEML When the following occurs:

1. A DDEML (Dynamic Data Exchange Server Library) server
 application requires more time to process a XTYP_EXECUTE
 transaction than the timeout value specified by a DDEML client
 application

2. The server application creates windows as part of its processing

3. The client application abandons the transaction because the
 transaction timed out

CAUSE
=====

The server application receives a window handle with the same value
as the hidden window created to control the transaction.

RESOLUTION
==========

Specify a timeout value in the client application longer than the
time required by the server application to complete the task.

MORE INFORMATION
================

To use DDEML, an application (either a client or a server) registers a
callback function with the library. The DDEML calls the callback
function for any DDE activity. A DDE transaction is similar to a
message; it contains a named constant, accompanied by other
parameters.

A client application issues a XTYP_EXECUTE transaction to instruct the
server application to execute a command. When a client calls the
DdeClientTransaction function to issue a transaction, it can specify a
timeout value, which is the amount of time (in seconds) the client is
willing to wait while the server processes the transaction. If the

server fails to execute the command within the specified timeout
value, the DDEML sends a message to the client that the transaction
timed out. Upon receipt of this message, the client can inform the
user, reissue the command, abandon the transaction, or take other
appropriate actions.

If a client application specifies a short timeout period (one second,
for example) and the server requires fifteen seconds to execute a
command, the client will receive notification that the transaction
timed out. If the client terminates the transaction, which is an
appropriate action, the DDEML will GP fault.

When the client sends an XTYP_EXECUTE transaction, the DDEML creates a
hidden window for the conversation. If the client calls the
DdeAbandonTransaction function to terminate the transaction, the DDEML
destroys the associated hidden window.

At the same time, the server application processes the execute
transaction, which might involve creating one or more windows. If the
server creates a window immediately after the DDEML destroys a window,
the server receives a window handle with the same value as that of the
destroyed window. After the server completes processing the execute
transaction, it returns control to the DDEML.

Normally, the DDEML determines that the callback function is returning
to a conversation that has been terminated. It calls the IsWindow
function with the window handle for the transaction's hidden window to
ensure that the handle remains valid.

Because the window handle has been allocated to the server
application, the IsWindow test succeeds. However, this handle no
longer corresponds to the transaction's hidden window. Therefore, when
the DDEML attempts to retrieve the pointer kept in the hidden window's
window extra bytes, the pointer is not available. When the DDEML uses
the contents of this memory, a GP fault is likely to result.

The current way to work around this problem is to specify a timeout
value in the client application that is longer than the time required
by the server to complete its processing.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui kbprb
KBSubcategory: UsrDde

PRB: GPF When Spawn Windows-Based App w/ WinExec() in Win32s
PSS ID Number: Q121095

The information in this article applies to:

 - Microsoft Win32s, versions 1.1, 1.15, and 1.2

SYMPTOMS
========

Win32-based applications running under Win32s can spawn both Windows-based
and Win32-based applications by using either WinExec() or CreateProcess().
However, there is a case where spawning a Windows-based application with
WinExec() does not work as expected and may cause a general protection (GP)
fault.

CAUSE
=====

There is a bug in the C start-up code that comes with Microsoft C version
6.0. If you spawn an application built with Microsoft C version 6.0 by
calling LoadModule() with an explicit environment, the application does not
run correctly. This is true whether the application was spawned from a
Win32-based application or a Windows-based application. Win32s calls
LoadModule() with an explicit environment when you spawn a Windows-based
application with WinExec(). As a result, under Win32s version 1.1 and 1.15,
WinExec() will report success, but the Windows-based application built with
Microsoft C version 6.0 may cause a GP fault.

RESOLUTION
==========

The best solution is to rebuild the application with another compiler
package. However, because a number of Windows accessories (such as Notepad
and Write) were built with Microsoft C version 6.0 and you cannot modify
these applications, changes were introduced into Win32s version 1.2 to help
you work around this problem. These changes are detailed in the More
Information section below.

NOTE: Win32s uses a different mechanism to spawn Win32-based applications,
so the problems discussed in this article do not occur when spawning Win32-
based applications with WinExec().

MORE INFORMATION
================

In Win32s version 1.2, WinExec() does not pass the environment to the
spawned application (child). The child receives the standard global
environment strings. This allows the application to run, but the child does
not receive the modified environment from the parent. This seemed to be a
reasonable compromise, because most applications do not change the
environment for the child. If an application must modify the child's
environment, it can spawn the application using CreateProcess() and specify

an explicit environment. However, if the child was built using Microsoft C
version 6.0, it may cause a GP fault. In addition, if the parent exits, the
child's environment becomes invalid. These three problems are not specific
to Win32s and will happen with Windows-based applications as well.

Additional reference words: 1.00 1.15 1.20 GPF
KBCategory: kbprg kbprb
KBSubCategory: W32s

PRB: Help Error: Unable To Display the Find Tab (177)
PSS ID Number: Q142222

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

In Winhlp32.exe, you may encounter the following error when you click the
Find tab in the Help Topics dialog box:

 Unable to display the Find tab. (177)

This error may occur immediately upon clicking the Find tab, or it may
occur just after the word list has been built (during the first time the
help file is run).

CAUSE
=====

The cause of this error depends on when it occurs. If it occurs immediately
upon clicking the Find tab, the problem may be an old or corrupted .gid
file. Normally, when help is started for the first time, it builds the Full
Text Search database (.fts) and the index file (.gid). However, if a .gid
file already exists in the current directory, help may become confused and
display the error message when the Find tab is clicked.

If the error message occurs immediately after the word list has been built,
the problem is most likely due to help attempting to index a help file that
contains no keywords. This can happen if a helpfile is referenced by way of
an Index command in a contents file (.cnt) and that helpfile has no K
footnotes.

RESOLUTION
==========

If the problem is due to a damaged or corrupted .gid file, delete the
existing .gid and .fts files and re-launch the help file. Note that the
.gid file is a hidden file that resides in the same directory as the help
file.

If the problem is due to indexing a help file that contains no keywords,
either remove the help file from the index entirely or use the Link command
in the contents (.cnt) file to reference the help file. If you are unsure
whether or not a help file has keywords in it, you can either search the
.rtf files for K footnotes, or you can use the reporting mechanism in Help
Workshop. To do the latter, click Report on the File menu, specify the help
file to search, specify a file to output the results to, and choose K

keywords for Display options. This gives you a list of all of the keywords
in the specified helpfile.

Additional reference words: 4.00
KBCategory: kbtool kbprb
KBSubcategory: tlshlp

PRB: Icon Handlers in Start Menu Don't Match Those in Explorer
PSS ID Number: Q142276

The information in this article applies to:

 - Microsoft Win32 Software Development Kit for
 Microsoft Windows 95

SYMPTOMS
========

Icons shown on items in the start menu may not match those shown in Windows
Explorer for the same items if an icon handler is being used to generate
the icons and the GIL_DONTCACHE flag is present.

RESOLUTION
==========

There is a problem in the Start menu code handling the GIL_DONTCACHE flag.
If that flag is removed from the code, the start menu will work correctly.
If the GIL_DONTCACHE is being used to ensure that the right icons are
geting cached, you can solve that same problem by using
SHChangeNotify(SHCNE_UPDATEDIR, SHCNF_PATH, ...) to notify the shell
whenever the handler code makes a change to the icons.

STATUS
======

This behavior is by design.

Additional reference words: 4.00 shell extension icon handler
KBCategory: kbui kbprb
KBSubcategory:

PRB: Inadequate Buffer Length Causes Strange Problems in DDEML
PSS ID Number: Q107387

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

Specifying an inadequate buffer length for an XTYP_POKE or an
XTYP_EXECUTE command causes strange problems in DDEML.

Problems can range from a general protection (GP) fault or Exception
13, to DDEML timeout errors (such as DMLERR_EXECACKTIMEOUT or
DMLERR_POKEACKTIMEOUT) or a DDEML transaction failure (or
DMLERR_NOTPROCESSED). Sometimes, the application may seem to work for
the most part, and then occasionally crash.

Data can be passed to the server application via XTYP_POKE or
XTYP_EXECUTE in two ways:

 - Directly, as a pointer to the data or command string, as in the
 sample code below:

 char lpszString [80];

 lstrcpy (lpszString, "[FileOpen(""C:\README.DOC"")]");
 DdeClientTransaction (lpszString, // string buffer
 lstrlen (lpszString)+1, // string buffer length
 hConv,
 hszItem,
 CF_TEXT,
 XTYP_POKE,
 1000,
 NULL);

 -or-

 - By creating a data handle, and passing that on to the
 DdeClientTransaction() call:

 char lpszString [80];
 HDDEDATA hData;

 lstrcpy (lpszString, "[FileOpen(""C:\README.DOC"")]");
 hData = DdeCreateDataHandle (idInst,
 lpszString,

 lstrlen (lpszString)+1,
 0,
 NULL,
 CF_TEXT,
 0);
 if (!hData)
 DdeClientTransaction (hData, // string buffer
 -1, // indicates hData is a data handle
 hConv,
 hszItem,
 CF_TEXT,
 XTYP_POKE,
 1000,
 NULL);

CAUSE
=====

Because data is most commonly passed between applications in CF_TEXT
format, a common problem with the string buffer length is setting it
to lstrlen (lpszString), where lpszString is the buffer containing the
string the client needs to pass to the server. Because the lstrlen()
function does not include the terminating null character, this can
cause the system to append garbage characters to the end of the
string, thus sending an invalid string to the server application.

RESOLUTION
==========

When passing strings between two applications, the string buffer
length should be set to lstrlen (lpszString) +1, to include the
terminating null character ('\0').

Using DDESPY, it is easy to track down this problem, because one can
follow the string being passed from the client to the server
application. Garbage characters incorrectly being appended to the
string usually indicate a problem with specifying an inadequate string
buffer length.

Additional reference words: 3.10 3.50 3.51 4.00 95 gpf gp-fault
KBCategory: kbui kbprb kbcode
KBSubcategory: UsrDde

PRB: Inconsistencies in GDI APIs Between Win32s and Windows NT
PSS ID Number: Q123421

The information in this article applies to:

 - Microsoft Win32s version 1.2

SYMPTOMS
========

The StretchBlt() and StretchDIBits()/SetDIBits() GDI APIs do not behave
consistently under Win32s and Windows NT.

StretchBlt()

If the source width and height specified in the call to StretchBlt() are
greater than the actual bitmap width and height, StretchBlt() fails. The
same call to StretchBlt() succeeds under Windows NT.

StretchDIBits()/SetDIBits()

If the memory pointed to by the lpBits parameter is read-only, the call to
StretchDIBits()/SetDIBits() fails.

NOTE: When a Win32-based application uses the memory returned from
LockResource() as a parameter to SetDIBits(), by default, it's using
read-only memory, because the resource section is defined by default as
read-only.

CAUSE
=====

These problems are due to bugs in Windows. In the case of StretchDIBits()
and SetDIBits(), Windows mistakenly verifies that the buffer is writable.
This problem does not show up in a 16-bit Windows-based application running
under Windows because resources are loaded into read/write (global) memory.

RESOLUTION
==========

In Win32s version 1.25, Win32s will always make the resource section
read/write, regardless of what is specified in the section attributes. This
will work around the problem. In the meantime, use the following
resolutions:

StretchBlt()

To work around the problem, specify the proper width and height for the
source bitmap.

StretchDIBits()/SetDIBits()

To work around the problem, do one of the following:

 - Copy the memory to a temporary read/write buffer.

 -or-

 - Use the linker switch /SECTION:.rsrc,rw to make the resource section
 read/write. Windows NT will allocate separate resource sections for
 each copy of the application.

Additional reference words: 1.20
KBCategory: kbprg kbprb
KBSubcategory: W32s

PRB: InstallSHIELD Error: Setup Requires a Different Version
PSS ID Number: Q140617

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

After installing InstallSHIELD SDK Edition from Microsoft Visual C++
version 4.0, you may see the following error message when you try to run
the Template application:

 Setup requires a different version of Windows. Check to
 make sure that you are running Setup on the Windows platform
 for which it is intended.

 Error 102.

CAUSE
=====

The message occurs when a the _inst32i.ex_ does not exist in the directory
where Setup.exe is located.

RESOLUTION
==========

To correct the problem in both the Template application and in projects
created with InstallSHIELD SDK Edition, copy _inst32i.ex_ from the
\Ishield\Disk1 directory on the Visual C++ compact disc into the following
two locations on the hard drive:

 \Program Files\Stirling\InstallShield\Program

 -and-

 \Program Files\Stirling\InstallShield\Template\One\Disk1

STATUS
======

This behavior is by design.

MORE INFORMATION
================

This behavior occurs only when InstallSHIELD is installed from Microsoft
Visual C++ version 4.0. It does not occur when InstallSHIELD is installed

from the Microsoft Win32 SDK.

Additional reference words: 4.00
KBCategory: kbsetup kbprb
KBSubcategory: ishield

PRB: Inter-thread SetWindowText() Fails to Update Window Text
PSS ID Number: Q125687

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

Calling SetWindowText() to set a static control text from a thread other
than the one that created the control fails to display the new text
in Windows 95.

CAUSE
=====

When SetWindowText() is called from another thread, instead of sending a
WM_SETTEXT message to the appropriate window procedure, only
DefWindowProc() is called, so the edit and static controls do not paint the
control appropriately because the appropriate code is never executed, so
the text on the screen is never updated. In other words, calling
SetWindowText() updates the buffer internally, but the change is not
reflected on the screen.

RESOLUTION
==========

One obvious workaround is to refrain from calling SetWindowText() from
another thread, if possible.

If design considerations don't allow doing this, use one of these
workarounds:

 - Send a WM_SETTEXT message directly to the window or control.

 -or-

 - Call InvalidateRect() immediately after the SetWindowText(). This works
 because DefWindowProc() updates the buffer where the text is stored.

STATUS
======

This inter-thread SetWindowText() behavior is by design in Windows version
3.x. It was maintained in Windows 95 for backward compatibility purposes.
Applications written for Windows version 3.x can expect their inter-thread
SetWindowText() calls to behave as they did in Windows version 3.x.

MORE INFORMATION
================

Calling SetWindowText() from another thread in Windows NT displays the
window text correctly, so it works differently from Windows 95.

Additional reference words: 4.00
KBCategory: kbui kbprb
KBSubcategory: UsrWndw

PRB: IsCharAlpha Return Value Different Between Versions
PSS ID Number: Q84843

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

Under Windows version 3.1, the IsCharAlpha function returns TRUE
for the character values 8Ah, 8Ch, 9Ah, 9Ch, 9Fh, and DFh. Under
Windows version 3.0, the function returns FALSE for these character
values.

CAUSE
=====

These characters represent alphabetic characters that were added to
the Windows character set in Windows 3.1.

RESOLUTION
==========

Applications that use the IsCharAlpha function should behave
properly with the newly-defined characters. No changes should be
required.

MORE INFORMATION
================

Appendix C.1, page 596, of the "Microsoft Windows Software Development
Kit: Programmer's Reference, Volume 3: Messages, Structures, and
Macros" lists the Windows character set.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui kbprb
KBSubcategory: UsrLoc

PRB: IsGdiObject() Is Not a Part of the Win32 API
PSS ID Number: Q91072

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

There is no IsGdiObject() function in the Win32 API.

CAUSE
=====

The function was added to the Windows 3.1 API because passing a handle
to a non-GDI object to a GDI function causes a GP fault under Windows
3.0. Windows NT and Windows 95 detect whether the APIs are passed an
inappropriate handle, so the function can return an error.

RESOLUTION
==========

IsGdiObject() is not needed on Windows NT or Windows 95.

Additional reference words: 3.10 3.50
KBCategory: kbgraphic kbprb
KBSubcategory: GdiMisc

PRB: JournalPlayback Hook Can Cause Windows NT to Hang
PSS ID Number: Q124835

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SYMPTOMS
========

Incorrect use of the delay return value from a journal playback hook can
cause Windows NT to hang temporarily.

CAUSE
=====

The menu loop in Windows NT calls PeekMessage() with the PM_NOREMOVE flag,
does some processing, and then removes the message from the queue. This
sequence is repeated until the menu goes away. When JournalPlayback is
occurring, the PeekMessage(PM_NOREMOVE) results in a callback to the
application's JournalPlaybackProc with an HC_ACTION code. The subsequent
PeekMessage(PM_REMOVE) also calls the JournalPlaybackProc with an
HC_ACTION code. If the peek is successful, it is followed by an HC_SKIP
callback.

In order to have playback from a journal playback hook occur at a certain
rate, Microsoft designed it so that the value returned by the
JournalPlaybackProc can be non-zero. This value represents the number of
clock-ticks the system should wait before processing the event. What the
documentation doesn't make clear is that when the delay has expired,
another callback to the JournalPlaybackProc is made to obtain the same
event again; the event provided with the previous non-zero delay is not
used at all. All subsequent HC_ACTION calls that request the same event
should be returned with a zero delay value. Only after an HC_SKIP callback
has been made, may an HC_ACTION callback return a non-zero delay value
again. Some applications do not do this correctly, and simply alternate
between returning a delay and returning a non-delay.

This alternating delay/no delay method made the Windows NT menu loop hang
because the PeekMessage(PM_NOREMOVE) would get an input event (with no
delay), then the PeekMessage(PM_REMOVE) would get a non-zero return
value from the JournalPlaybackProc. This represents no message -- so
instead of issuing an HC_SKIP callback to the JournalPlaybackProc to
advance to the next event, the Windows NT menu loop code simply looped back
to the PeekMessage(PM_NOREMOVE) getting stuck in an infinite loop.

RESOLUTION
==========

To work around this problem, make sure the JournalPlaybackProc correctly
returns the delay only for the first request for an event.

Neither Windows version 3.1 nor Windows 95 have this problem.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

The following sample code demonstrates correct and incorrect methods of
handling delays in a journal playback hook.

Sample Code

LRESULT CALLBACK JournalPlaybackProc(
 int nCode,
 WPARAM wParam,
 LPARAM lParam)
{
 static BOOL fDelay;
 static EVENTMSG event;
 static LRESULT ticks_delay;
 BOOL fCallNextHook = FALSE;
 LRESULT lResult = 0;

 switch(nCode)
 {
 case HC_SKIP:
 fDelay = TRUE; // <<<< CORRECT PLACE TO RESET fDelay

 // Get the next event from the list. If the routine returns
 // FALSE, then we are done - release the hook.
 if(!GetNextEvent(&event, &ticks_delay))
 SetJournalHook(FALSE, NULL);
 break;

 case HC_GETNEXT:
 {
 // Structure information returned from previous GetNextEvent
 // call
 LPEVENTMSG lpEvent = (LPEVENTMSG) lParam;

 // Set the event
 *lpEvent = event;

 if(fDelay)
 {
 // Toggle pause variable so that the next call won't
 // pause. Return the pause length specified by ticks_delay
 // since this is the first time the event has been
 // requested.

 fDelay = FALSE; // <<<< CORRECT PLACE TO CLEAR fDelay
 return(ticks_delay);
 }
 break;
 }

 case HC_SYSMODALOFF:
 // System modal dialog is going away - something really got
 // hosed. Windows took care of removing our JournalPlayback
 // hook, so no need to call SetJournalHook(FALSE).

 fCallNextHook = TRUE;
 break;

 case HC_SYSMODALON:
 default:
 // Something is is not right here, let the next hook handle
 // it.

 fCallNextHook = TRUE;
 break;
 }

 // If the event wasn't processed by our code, call next hook
 if(fCallNextHook)
 lResult = CallNextHookEx(s_journalHook, nCode, wParam, lParam);

 // fDelay = TRUE; // <<<< WRONG PLACE TO RESET bDelay !!!
 return lResult;
}

Additional reference words: 3.10 3.50
KBCategory: kbui kbprb
KBSubcategory: UsrHks

PRB: Large DIBs May Not Display Under Win32s
PSS ID Number: Q126575

The information in this article applies to:

 - Microsoft Win32s versions 1.10, 1.15, or 1.20

SYMPTOMS
========

DIB functions fail when using large DIBs under Win32s.

CAUSE
=====

There is a two-megabyte limit on the size of the area of a DIB that can be
blitted using blting functions under Win32s. In versions of Win32s up to
1.2, Microsoft set this size to accommodate DIB blts of 1024*768*24 bits-
per-pixel. In version 1.25, the maximum size of the blitted area will be
enlarged to accommodate 1280*1024*24 bits-per-pixel.

The following functions are affected:

 SetDIBits
 SetDIBitsToDevice
 CreateDIBitmap
 StretchDIBits

WORKAROUND
==========

To work around the problem, break down large blts into bands that are
smaller than two megabytes. Please keep in mind that the biSizeImage field
of the BITMAPINFOHEADER used with the blting functions will need to be set
to a value smaller than the DIB size limit.

The following code demonstrates a simple implementation of StretchDIBits()
that can be used with large DIBs under Win32s.

/* Macro to determine the bytes in a DWORD aligned DIB scanline */
#define BYTESPERLINE(Width, BPP) ((WORD)((((DWORD)(Width) *
(DWORD)(BPP) + 31) >> 5)) << 2)

int NewStretchDIBits(
 HDC hdc, // handle of device context
 int XDest, // x-coordinate of upper-left corner of dest. rect.
 int YDest, // y-coordinate of upper-left corner of dest. rect.
 int nDestWidth, // width of destination rectangle
 int nDestHeight, // height of destination rectangle
 int XSrc, // x-coordinate of upper-left corner of source rect.
 int YSrc, // y-coordinate of upper-left corner of source rect.
 int nSrcWidth, // width of source rectangle
 int nSrcHeight, // height of source rectangle

 VOID *lpBits, // address of bitmap bits
 BITMAPINFO *lpBitsInfo, // address of bitmap data
 UINT iUsage, // usage
 DWORD dwRop // raster operation code
)
{
 BITMAPINFOHEADER bmiTemp;
 float fDestYDelta;
 LPBYTE lpNewBits;
 int i;

 // Check for NULL pointers and return error
 if (lpBits == NULL) return 0;
 if (lpBitsInfo == NULL) return 0;

 // Get increment value for Y axis of destination
 fDestYDelta = (float)nDestHeight / (float)nSrcHeight;

 // Make backup copy of BITMAPINFOHEADER
 bmiTemp = lpBitsInfo->bmiHeader;

 // Adjust image sizes for one scan line
 lpBitsInfo->bmiHeader.biSizeImage =
 BYTESPERLINE(lpBitsInfo->bmiHeader.biWidth,
 lpBitsInfo->bmiHeader.biBitCount);
 lpBitsInfo->bmiHeader.biHeight = 1;

 // Initialize pointer to the image data
 lpNewBits = (LPBYTE)lpBits;

 // Do the stretching
 for (i = 0; i < nSrcHeight; i++)
 if (!StretchDIBits(hdc,
 XDest, YDest + (int)floor(fDestYDelta * (nSrcHeight - (i+1))),
 nDestWidth, (int)ceil(fDestYDelta),
 XSrc, 0,
 nSrcWidth, 1,
 lpNewBits, lpBitsInfo,
 iUsage, SRCCOPY))
 break; // Error!
 else
 // Increment image pointer by one scan line
 lpNewBits += lpBitsInfo->bmiHeader.biSizeImage;

 // Restore BITMAPINFOHEADER
 lpBitsInfo->bmiHeader = bmiTemp;

 return(i);
}

STATUS
======

This behavior is by design.

Additional reference words: 1.15 1.20 1.10
KBCategory: kbprg kbprb kbcode
KBSubcategory: W32s

PRB: LB_DIR with Long Filenames Returns LB_ERR in Windows 95
PSS ID Number: Q131286

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s version 1.3

SYMPTOMS
========

Sending an LB_DIR message to a list box that specifies a long filename in
the lParam returns LB_ERR in Windows 95 but works fine in Windows NT
version 3.51.

CAUSE
=====

The implementation of list boxes in Windows 95 thunks down to 16-bit
USER.EXE, and the LB_DIR command has not been enhanced to support long
filenames.

RESOLUTION
==========

Convert the long filename to its short form before passing it as the lParam
to LB_DIR by using GetShortPathName(). Similarly, when calling DlgDirList()
to fill a list box with filenames, make sure the lpPathSpec parameter
refers to the short name of the file.

Sample Code

char szLong [256], szShort [256];
DWORD dwResult;
LONG lResult;

lstrcpy (szLong, "C:\\This Is A Test Subdirectory");
dwResult = GetShortPathName (szLong, szShort, 256);
if (!dwResult)
 dwResult = GetLastError ();

lstrcat (szShort, "*.*");
lResult = SendDlgItemMessage (hdlg,
 IDC_LIST1,
 LB_DIR,
 (WPARAM)(DDL_READWRITE),
 (LPARAM)(LPSTR)szShort);
if (LB_ERR == lResult)
 // an error occurred

NOTE: If a file with a long filename exists under the subdirectory
specified, Windows 95 displays the short name in the list box, whereas
Windows NT displays the long name.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

This is not a problem under Windows NT because it always supported long
filenames.

You can have an application check the system version and decide at run time
if it should call GetShortPathName before passing the filename as lParam to
the LB_DIR message. Windows NT will, however, take a short name and fill
the list box with the filenames.

Additional reference words: 4.00 1.30 LongFileName LFN DlgDirList CB_DIR
DlgDirListComboBox
KBCategory: kbui kbcode kbpb
KBSubcategory: UsrCtl

PRB: Listview Comes Up with No Images
PSS ID Number: Q125628

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

A list view is displayed with text and column headings, but the icons
are not displayed.

CAUSE
=====

The CImageList used to store the images for the list view is no longer in
scope.

RESOLUTION
==========

This can occur, for example, if you create a CImageList on the stack and
create your listview, but at the point the listview is displayed, the
image list has been destroyed. The ImageList functions will still return
success, but no images will be displayed.

To avoid the problem, make sure your image list stays in scope.

STATUS
======

This behavior is by design.

Additional reference words: 4.00 Windows 95
KBCategory: kbui
KBSubcategory: UsrCtl

PRB: ListView with LVS_NOSCROLL Won't Display Header
PSS ID Number: Q137520

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.51, 4.0
 - Microsoft Win32s version 1.3

SYMPTOMS
========

In report view, the header control is not displayed for a ListView control
created with the LVS_NOSCROLL style.

CAUSE
=====

The ListView control positions the header control when the scrolling is
updated. When the LVS_NOSCROLL style is specified, the control is never
scrolled, so the header control is not positioned.

RESOLUTION
==========

Call following function at the appropriate time to position the header
control properly. To use the function, create the ListView without the
LVS_NOSCROLL style, and then call this function whenever the ListView is
created, resized, the view is changed, or the parent window receives the
WM_SYSPARAMETERCHANGE message. Creating the control without the
LVS_NOSCROLL style will ensure that the first item in the list won't be
obscured by the header control. The function will automatically detect
which view is currently set and act appropriately.

/***

 PositionHeader

 Call this function when the ListView is created, resized, the
 view is changed, or a WM_SYSPARAMETERCHANGE message is recieved

***/

void PositionHeader(HWND hwndListView)
{
HWND hwndHeader = GetWindow(hwndListView, GW_CHILD);
DWORD dwStyle = GetWindowLong(hwndListView, GWL_STYLE);

/*
 To ensure that the first item will be visible, create the control
 without the LVS_NOSCROLL style and then add it here.
*/
dwStyle |= LVS_NOSCROLL;

SetWindowLong(hwndListView, GWL_STYLE, dwStyle);

/*
 Only do this if the ListView is in report view and you were able to
 get the header hWnd.
*/
if(((dwStyle & LVS_TYPEMASK) == LVS_REPORT) && hwndHeader)
 {
 RECT rc;
 HD_LAYOUT hdLayout;
 WINDOWPOS wpos;

 GetClientRect(hwndListView, &rc);
 hdLayout.prc = &rc;
 hdLayout.pwpos = &wpos;

 Header_Layout(hwndHeader, &hdLayout);

 SetWindowPos(hwndHeader,
 wpos.hwndInsertAfter,
 wpos.x,
 wpos.y,
 wpos.cx,
 wpos.cy,
 wpos.flags | SWP_SHOWWINDOW);

 ListView_EnsureVisible(hwndListView, 0, FALSE);
 }
}

STATUS
======

This behavior is by design.

Additional reference words: 4.00 1.30
KBCategory: kbprg kbui kbprb kbcode
KBSubcategory: UsrCtl

PRB: LoadCursor() Fails on IDC_SIZE/IDC_ICON
PSS ID Number: Q131280

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

LoadCursor() returns NULL when passed IDC_SIZE or IDC_ICON for a second
parameter.

CAUSE
=====

IDC_SIZE and IDC_ICON are obsolete. They are available only for backward
compatibility. Applications marked as a version 4.0 application are not
able to load these cursors under Windows 95.

STATUS
======

This behavior is by design.

Additional reference words: 4.00
KBCategory: kbui kbprb
KBSubcategory: UsrRsc

PRB: LoadLibrary() Fails with _declspec(thread)
PSS ID Number: Q118816

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s versions 1.1, 1.15, 1.2, and 1.25a

SYMPTOMS
========

Your dynamic-link library (DLL) uses __declspec(thread) to allocate thread
local storage (TLS). There are no problems running an application that is
statically linked with the DLL's import library. However, when an
application uses LoadLibrary() to load the DLL instead of using the import
library, LoadLibrary() fails on Win32s with "error 87: invalid parameter".
LoadLibrary() succeeds under Windows NT in this situation; however, the
application cannot successfully call functions in the DLL.

CAUSE
=====

This is a limitation of LoadLibrary() and __declspec(). The global variable
space for a thread is allocated at run time. The size is based on a
calculation of the requirements of the application plus the requirements of
all of the DLLs that are statically linked. When you use LoadLibrary(),
there is no way to extend this space to allow for the thread local
variables declared with __declspec(thread). This can cause a protection
fault either when the DLL is dynamically loaded or code references the
data.

RESOLUTION
==========

DLLs that use __declspec(thread) should not be loaded with LoadLibrary().

Use the TLS APIs, such as TlsAlloc(), in your DLL to allocate TLS if the
DLL might be loaded with LoadLibrary(). If you continue to use _declspec(),
warn users of the DLL that they should not load the DLL with LoadLibrary().

Additional reference words: 1.10 1.20 3.10 3.50 4.00 95
KBCategory: kbprg kbprb
KBSubcategory: BseDll

PRB: Local Reboot (CTRL+ALT+DEL) Doesn't Work Under Win32s
PSS ID Number: Q121092

The information in this article applies to:

 - Microsoft Win32s, versions 1.1, 1.15, and 1.2

SYMPTOMS
========

The Windows local reboot feature (CTRL+ALT+DEL) should terminate a hung
application. However, if the application is a Win32-based application,
using CTRL+ALT+DEL exits Windows.

CAUSE
=====

This is a limitation of Win32s. When the VxD that handles hung applications
tries to access the application stack, it uses ss:sp, instead of ss:esp, as
if the application were a 16-bit application. This causes the VxD to crash,
and when the VxD crashes, the whole system terminates.

STATUS
======

This behavior is by design.

Additional reference words: 1.10 1.15 1.20
KBCategory: kbenv kbprb
KBSubCategory: W32s

PRB: MCI Error Message with Quicktime for Windows
PSS ID Number: Q141366
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.5
--

SYMPTOMS
========

When attempting to play Quicktime for Windows .mov and .qt files, MCI
reports the following error:

 The specified device is not open or is not recognized by MCI

Or it returns a code of 0x107 (or 263 decimal).

NOTE: Quicktime for Windows is a third-party product manufactured by
a vendor independent of Microsoft; we make no warranty, implied or
otherwise, regarding its performance or reliability.

CAUSE
=====

The error indicates files required for Quicktime playback are missing
from your system including the MCI Quicktime driver. Windows 95 does
not automatically include support for Quicktime for Windows.

RESOLUTION
==========

Quicktime file playback requires the Quicktime for Windows files
available from the Quicktime World Wide Web (WWW) home page on the Internet
(http://quicktime.apple.com) or from Apple's FTP site on the Internet
(ftp.apple.com). The Quicktime package includes a setup application to ease
installation.

STATUS
======

Microsoft is researching this behavior and will post new information here
in the Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

The MCI command parser forwards commands to the specific driver for
each media type (AVIVideo, Wave, CDaudio, QTWVideo, and so on). Therefore,
it is up to the driver to interpret and implement different commands.

During application development, you can troubleshoot problems by simply
exchanging the Quicktime file (for example, Sample.mov) with an
AVI file (for example, Sample.avi) to test the sequence of MCI commands. If

the AVI file plays successfully, you have a Quicktime driver-specific
issue, best handled by Apple.

Additional reference words: 4.00 avivideo mci sendstring mcisendstring
KBCategory: kb3rdparty kbmm kbprb
KBSubcategory: MMVideo

PRB: MDI Program Menu Items Changed Unexpectedly
PSS ID Number: Q74789

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

In an application for the Microsoft Windows graphical environment
developed using the Windows multiple document interface (MDI), when
the Window menu changes to indicate the addition of MDI child
windows, another menu of the application is also changed.

For example, if the menu resembles the following before any windows
are opened

 FILE WINDOW
 Load Cascade
 Save Tile
 Save As... Arrange Icons
 Exit

the menu might resemble the following after the first window is
opened:

 FILE WINDOW
 Load Cascade
 1: MENU.TXT Tile
 Save As... Arrange Icons
 Exit -------------
 1: MENU.TXT

CAUSE
=====

One or more menu items have menu-item identifiers that are greater
than or equal to the value of the idFirstChild member of the
CLIENTCREATESTRUCT data structure used to create the MDI client
window.

RESOLUTION
==========

Change the value of the idFirstChild member to be larger than any
menu item identifiers.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui kbprb
KBSubcategory: UsrMdi

PRB: Memory DC Produces Monochrome Images
PSS ID Number: Q139165

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

When you create and use a memory Device Context (DC) to draw and store GDI
images, the bitmap displayed when transferred from the memory device
context to the physical display is monochrome. All colors are converted to
either black or white.

CAUSE
=====

When creating a compatible bitmap for the memory DC, the handle to the
memory DC is used as the first parameter to the call to
CreateCompatibleBitmap(). This creates a monochrome bitmap because a
memory DC created with CreateCompatibleDC() is given a 1x1 monochrome
bitmap as its default bitmap.

For example, the following code creates a monochrome bitmap and selects it
into a memory DC:

 HDC hdc, hdcMem;
 HBITMAP hBitmap;

 hdc = GetDC(hWnd);
 hdcMem = CreateCompatibleDC(hdc);
 hBitmap = CreateCompatibleBitmap(hdcMem, 400, 400);
 SelectObject(hdcMem, hBitmap);
 SetTextColor(hdcMem, RGB(0, 0, 255));

RESOLUTION
==========

Send a physical screen DC to the CreateCompatibleBitmap() function rather
than the memory DC that you plan on selecting the bitmap into.

The following example code properly sets up a color memory DC with a color
bitmap with the same bit depth as the physical display:

 HDC hdc, hdcMem;
 HBITMAP hBitmap;

 hdc = GetDC(hWnd);
 hdcMem = CreateCompatibleDC(hdc);
 hBitmap = CreateCompatibleBitmap(hdc, 400, 400);
 SelectObject(hdcMem, hBitmap);
 SetTextColor(hdcMem, RGB(0, 0, 255));

STATUS
======

This behavior is by design.

Additional reference words: 3.10 4.00
KBCategory: kbgraphic kbprb kbcode
KBSubcategory: GdiBmp

PRB: Menus for Notification Icons Don't Work Correctly
PSS ID Number: Q135788

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

When you display a context menu for a Notify Icon (see Shell_NotifyIcon),
clicking anywhere besides the menu or the window that created the menu (if
it is visible) doesn't cause the menu to disappear. When this behavior is
corrected, the second time this menu is displayed, it displays and then
immediately disappears.

RESOLUTION
==========

To correct the first behavior, you need to make the current window the
foreground window before calling TrackPopupMenu or TrackPopupMenuEx.

The second problem is caused by a problem with TrackPopupMenu. It is
necessary to force a task switch to the application that called
TrackPopupMenu at some time in the near future. This can be accomplished by
posting a benign message to the window or thread.

The following code will take care of all of this:

 SetForegroundWindow(hDlg);

 // Display the menu
 TrackPopupMenu(hSubMenu,
 TPM_RIGHTBUTTON,
 pt.x,
 pt.y,
 0,
 hDlg,
 NULL);

 PostMessage(hDlg, WM_USER, 0, 0);

STATUS
======

This behavior is by design.

Additional reference words: 4.00
KBCategory: kbui kbprb kbcode
KBSubcategory: UsrMisc

PRB: Messages Sent to Mailslot Are Duplicated
PSS ID Number: Q127905

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

One application creates a mailslot using CreateMailSlot() and reads from it
using ReadFile(). A second application opens the mailslot using
CreateFile() and writes to it using WriteFile(). The second application
writes one message to the mailslot, but the first application receives
three duplicates of the message.

CAUSE
=====

This is expected behavior if you have three network transports loaded.
There is no way to know which transport should be used to deliver to a
given mailslot on a remote machine, so all transports are used.

RESOLUTION
==========

Send a unique ID at the beginning of each message. The listening end can
detect duplicates and delete them. If you have multiple clients sending
messages, their messages may be interleaved in the mailslot. You may need
to track which client sent which message last, in order to successfully
detect duplicates.

STATUS
======

This behavior is by design.

Additional reference words: 3.50 4.00 95
KBCategory: kbprg kbprb
KBSubcategory: BseIpc

PRB: Module Relocation Fixups in Shared Sections Cause Problem
PSS ID Number: Q137235

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)

SYMPTOMS
========

If a shared section in a 32-bit PE module contains relocation fixups, those
fixups are applied to all instances of that shared section. This implies
that all instances of a module with such a section must be loaded at the
module's preferred image base; otherwise, the resulting relocated values
will be invalid. This is true in both Windows 95 and Windows NT.

CAUSE
=====

Because an explicitly shared section shares the same physical pages with
all instances of that module, fixups that are applied in a second or
subsequent instance of the module overwrite the values from the first
instance. The resulting values will be invalid for either one or all
instances.

RESOLUTION
==========

Do not place relocatable values in a shared section. A module can be forced
to be non-relocatable by removing fixup records, although this may result
in load failures for that module if it can't be loaded at its preferred
address.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

An example of something that causes a relocation fixup is a pointer in a
shared section. Storing hInstance variables in a shared section is another.

Additional reference words: 4.00 Windows 95
KBCategory: kbprg kbprb
KBSubcategory: BseMm

PRB: Most Common Cause of SetPixelFormat() Failure
PSS ID Number: Q126019

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

SetPixelFormat() will fail with incorrect class or window styles.

CAUSE
=====

Win32-based applications that use Microsoft's implementation of OpenGL to
render onto a window must include WS_CLIPCHILDREN and WS_CLIPSIBLINGS
window styles for that window.

RESOLUTION
==========

Include WS_CLIPCHILDREN and WS_CLIPSIBLINGS window styles when in a Win32-
based application, you use Microsoft's implementation of OpenGL to render
onto a window.

Additionally, the window class attribute should not include the CS_PARENTDC
style. The two window styles can be added to the dwStyles parameter of
CreateWindow() or CreateWindowEX() call. If MFC is used, override
PreCreateWindow() to add the flags. For example:

 BOOL CMyView::PreCreateWindow(CREATESTRUCT& cs)
 {
 cs.style |= (WS_CLIPCHILDREN | WS_CLIPSIBLINGS);

 return CView::PreCreateWindow(cs);
 }

For more information, please refer to "comments" section of the online
documentation on SetPixelFormat.

STATUS
======

This behavior is by design.

Additional reference words: 3.50 4.00 95
KBCategory: kbgraphic kbprb
KBSubcategory: GdiOpenGL

PRB: MoveFile Fails to Move UNC Names When NETX Is Installed
PSS ID Number: Q147437
--
The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API)
 included with Microsoft Windows 95
--

NOTE: Some products mentioned in this article are manufactured by vendors
independent of Microsoft; we make no warranty, implied or otherwise,
regarding these products' performance or reliability.

SYMPTOMS
========

When the network client is the real-mode Netware NETX redirector for
Netware 3.11, MoveFile() fails to rename files and directories when the
source and destination names are specified in Universal Naming Convention
(UNC) format. The return value of MoveFile() is FALSE, but GetLastError()
reports an error code of NO_ERROR (0).

The following code demonstrates the problem:

 MoveFile ("\\\\testsrv\\testshare\\srcdir",
 "\\\\testsrv\\testshare\\destdir");

This problem does not occur with the NETX for Netware 3.12 and later or
with protected-mode Netware clients.

CAUSE
=====

NETX for Netware 3.11 does not support renaming files and directories
using UNC names.

RESOLUTION
==========

There are several possible workarounds for this problem:

 - Map a drive letter to the server and share. Then use this drive letter
 to do the rename. Use WNetAddConnection() or WNetAddConnection2() to map
 the drive letter.

 -or-

 - Copy the source directory (and all subdirectories) to the destination
 directory, and then delete the source directory. This operation will be
 slow if the source directory contains a lot of files and subdirectories.

 -or-

 - Upgrade to the protected-mode Netware client, or use VLM instead of

 NETX.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

Although the bug occurs specifically when MoveFile() is used, some
runtime library functions call MoveFile(), and thus exhibit the same
behavior. The most notable is the C runtime library's rename()
function. For information about how your particular compiler's runtime
library implements rename(), refer to the documentation provided with
your compiler.

Additional reference words: 4.00 move rename Novell 3.11
KBCategory: kb3rdparty kbprb
KBSubcategory: NtwkMisc

PRB: Moving or Resizing the Parent of an Open Combo Box
PSS ID Number: Q76365

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

When the user resizes or moves the parent window of an open drop-
down combo box, the list box portion of the combo box does not move.

CAUSE
=====

The list box portion of the combo box does not receive a move
message. Therefore, it remains on the screen at its original
position.

RESOLUTION
==========

Close the drop down list before the combo box is moved. To perform
this task, during the processing of the WM_PAINT message, send the
combo box a CB_SHOWDROPDOWN message with the wParam set to FALSE.

Additional reference words: 3.00 3.10 3.50 4.00 95 combobox
KBCategory: kbui kbprb
KBSubcategory: UsrCtl

PRB: MS-SETUP Uses \SYSTEM Rather Than \SYSTEM32
PSS ID Number: Q98888
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5
--

SYMPTOMS
========

Call GetWindowsSysDir() in the SETUP.MST file of a 16-bit setup
application. The return value is C:\WINNT\SYSTEM\ instead of
C:\WINNT\SYSTEM32\. Note that this doesn't happen with the 32-bit Setup
Toolkit.

CAUSE
=====

Windows on Win32 (WOW) returns the SYSTEM directory, not the SYSTEM32
directory, to 16-bit applications such as MS-SETUP. This is done for
compatibility reasons.

RESOLUTION
==========

Determine whether the setup code is being run under WOW or Windows version
3.1 by checking the WF_WINNT bit (0x4000) in the return from GetWinFlags().
Choose either the return from GetWindowsSysDir() or <winows dir>\system32
as appropriate.

MORE INFORMATION
================

Note that there are additional considerations for network installs for
Win32s, because the SYSTEM directory may not be a branch off of the Windows
directory.

Additional reference words: 3.10 3.50
KBCategory: kbtool kbprb
KBSubcategory: TlsMss

PRB: Named Pipe Write() Limited to 64K
PSS ID Number: Q119218

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SYMPTOMS
========

WriteFile() returns FALSE and GetLastError() returns ERROR_MORE_DATA
when WriteFile() writes to a message-mode named pipe using a buffer greater
than 64K.

CAUSE
=====

There is a 64K limit on named pipe writes.

RESOLUTION
==========

The error is different from ERROR_MORE_DATA on the reader side, where bytes
have already been read and the operation should be retried for the
remaining message. The real error is STATUS_BUFFER_OVERFLOW. No data is
transmitted; therefore, the write operation must be retried using a smaller
buffer.

Additional reference words: 3.10 3.50
KBCategory: kbprg kbprb
KBSubcategory: BseIpc

PRB: NetBIOS Command NCBSEND Gets Return Code Error 0x3C
PSS ID Number: Q123457

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5

SYMPTOMS
========

While opening sessions, you start to get error 0x3C (lock of user area
failed) in the NcbSend command call.

CAUSE
=====

An application in Windows NT uses the NcbListen command to accept NetBIOS
calls. After a call is received, the application uses the NcbSend command
to send data back.

If the computer running Windows NT has 32 megabytes of main memory, an
application can request a large number (for example, 128) of sessions, by
using the NcbReset command, without difficulty.

However, with only 16 megabytes of main memory, an application can request
only a moderate number (for example, 80) of sessions. If more sessions are
opened they start to get error 0x3C (lock of user area failed) in the
NcbSend command call. The error persists until some of the sessions that
are currently open are closed, at which time NcbSend will get a good return
status.

STATUS
======

This behavior is by design. The system stops the process from using so many
resources that it jeopardizes the performance of other applications and/or
the system itself.

Additional reference words: 3.10 3.50
KBCategory: kbprg kbenv kbprb
KBSubcategory: NtwkNetbios

PRB: Netbios RESET Cannot Be Called with Pending Commands
PSS ID Number: Q125659

The information in this article applies to:

 - Microsoft Win32s, versions 1.2 and 1.25

SYMPTOMS
========

A Win32-based application cannot call the Netbios RESET command as long
as there are asynchronous commands still pending.

CAUSE
=====

This behavior is by design in Win32s.

RESOLUTION
==========

The application should cancel all pending commands, and wait for the post
routines of all the pending commands to be called. After that, the
application can issue a Netbios RESET command.

STATUS
======

This behavior is by design but may be designed differently in a future
version of Win32s.

Additional reference words: 1.20 1.25
KBCategory: kbprg
KBSubcategory: W32s

PRB: NetDDE Fails to Connect Under Windows 95
PSS ID Number: Q131025

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

An application using Network Dynamic Data Exchange (NetDDE) fails to
connect to another DDE application on another computer.

CAUSE
=====

One of the reasons could be that NETDDE.EXE (a system component) is not
running.

Network Dynamic Data Exchange (NetDDE) allows two DDE applications to
communicate with each other over the network. In Windows for Workgroups,
the NETDDE.EXE (a system component) was loaded by default. However under
Window 95, NETDDE.EXE is not loaded by default.

RESOLUTION
==========

An application using the netDDE services should check if the netDDE system
component is loaded. if NETDDE.EXE isn't running, the application should
run it.

Sample Code

The following sample code checks to see if NETDDE.EXE is loaded and tries
to load it if necessary. The sample code works for both 32-bit and 16-bit
applications.

BOOL IsNetDdeActive()
{
HWND hwndNetDDE;

// find a netDDE window
hwndNetDDE = FindWindow("NetDDEMainWdw", NULL);
// if exists then NETDDE.EXE is running
if(NULL == hwndNetDDE)
 {
 UINT uReturn;
 // otherwise launch the NETDDE.EXE with show no active
 uReturn = WinExec("NETDDE.EXE", SW_SHOWNA);
 // if unsucessful return FALSE.

 if(uReturn <= 31)
 return FALSE;
 }
// NetDDE is running
return TRUE;
}

STATUS
======

This behavior is by design.

Additional reference words: 4.00
KBCategory: kbui kbnetwork kbcode kbinterop
KBSubcategory: Usrdde

PRB: Number Causes Help Compiler Invalid Context ID Error
PSS ID Number: Q85490
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
--

SYMPTOMS
========

When the Windows Help Compiler compiles a help project file, the
following error message appears:

 Error P1083: Invalid context identification number

CAUSE
=====

The representation of the context identification number begins with
a zero and contains the digit 8 or 9.

RESOLUTION
==========

Remove the leading zeros from the number.

MORE INFORMATION
================

The Windows Help Compiler parses a number that has a leading zero as
an octal number. C compilers also interpret numbers in this manner.
Only the digits 0 through 7 are legal in an octal number.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool kbprg kbprb
KBSubcategory: TlsHlp

PRB: Only One Language Can Be Used on MessageBoxEx Pushbuttons
PSS ID Number: Q152670
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit for:
 - Microsoft Windows NT, version 3.51
 - Microsoft Windows 95, version 4.0
--

STMPTOMS
========

When MessageBoxEx is called, regardless of the value of wLanguageID (the
last parameter of MessageBoxEx), the pushbutton text can only be displayed
in the native language of the operating system.

On Windows NT, if the wLanguageID is the native language ID of the
operating system or the wLanguageID is MAKELANGID(LANG_NEUTRAL,
SUBLANG_DEFAULT), the pushbutton text is displayed in the native language
of that version of NT. Otherwise, the pushbuttons are blank.

For example, on US Windows NT 3.51:

 MessageBoxEx(hWnd, "string", "title", MB_RETRYCANCEL,
 MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US));

would display a MessageBox with two buttons reading: "retry" and "cancel."

However, on the same operating system:

 MessageBoxEx(hWnd, "string", "title", MB_RETRYCANCEL,
 MAKELANGID(LANG_FRENCH, SUBLANG_FRENCH));

would display a MessageBox with two blank buttons.

On Windows 95, regardless of what is specified in wLanguageID, the
pushbutton text is in the native language of that version of Windows 95.
For example, on US Windows 95, both:

 MessageBoxEx(hWnd, "string", "title", MB_RETRYCANCEL,
 MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US));

 -and-

 MessageBoxEx(hWnd, "string", "title", MB_RETRYCANCEL,
 MAKELANGID(LANG_FRENCH, SUBLANG_FRENCH));

would display a Message Box with two buttons reading: "retry" and "cancel."

STATUS
======

This behavior is by design.

Additional reference words: 3.51 4.00 resource NLS
KBCategory: kbprg
KBSubcategory: wintldev

PRB: OpenFile API returns ERROR_BUFFER_OVERFLOW Error
PSS ID Number: Q137233

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SYMPTOMS
========

If the OpenFile API is passed a path that is longer than MAXPATHNAME,
OpenFile returns ERROR_BUFFER_OVERFLOW.

One of the parameters to OpenFile is a pointer to the pathname to open.
Another parameter is a pointer to an OFSTRUCT structure that will receive
information. OFSTRUCT contains a fixed size buffer, szPathName that holds
MAXPATHNAME bytes. A path longer than that is not valid.

RESOLUTION
==========

Consider using CreateFile instead of OpenFile.

STATUS
======

This behavior is by design.

Additional reference words: 4.00 Windows 95
KBCategory: kbprg kbprb
KBSubcategory: BseFileio

PRB: OpenFile Does Not Work Well with SetFileAPIsToOEM
PSS ID Number: Q137201

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

After you call SetFileApisToOEM, OpenFile is supposed to accept OEM
strings for file manipulation. However, giving OpenFile an extended
character produces an unexpected filename. For example, with char 190,
the filename contains a '+' instead of the expected character.

CAUSE
=====

OpenFile converts the given OEM string internally to ANSI before
manipulating the filename or passing it down to the filesystem. This
conversion is not always successful, as not all OEM chars have equivalents
in the ANSI set.

RESOLUTION
==========

Use Createfile to open the file. CreateFile does not convert OEM to ANSI,
so this problem does not occur.

STATUS
======

This behavior is by design.

Additional reference words: 4.00 Windows 95
KBCategory: kbprg kbprb
KBSubcategory: BseFileio

PRB: Oracle7 for Win32s Hangs When Initialize Database Manager
PSS ID Number: Q127760

The information in this article applies to:

 - Microsoft Win32s versions 1.00, 1.10, 1.15, 1.20, and 1.25a

SYMPTOMS
========

There is a known problem with using Oracle7 for Win32s with the Windows
Sound System version 2.0. The problem occurs when starting up a database in
the Database Manager. Oracle7 may hang during this process. The machine
will need to be rebooted.

CAUSE
=====

The SNDEVNTS.DRV file is causing the problem by performing stack checking
on the application stacks of Oracle7. The stack checking is corrupting the
application stack of Oracle7 causing the application to hang.

RESOLUTION
==========

Download SEVNT022.EXE, a self extracting file from the Microsoft Software
Library (MSL) available on the following services:

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download SEVNT022.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the SOFTLIB\MSLFILES directory
 Get SEVNT022.EXE

Follow the installation directions contained in the README.TXT file.

Additional reference words: 1.00 1.10 1.20 SNDEVNTS.DRV
KBCategory: kb3rdparty kbfile kbprb
KBSubcategory: W32s

PRB: Page Fault in WIN32S16.DLL Under Win32s
PSS ID Number: Q115082
--
The information in this article applies to:

 - Microsoft Win32s, versions 1.1 and 1.15
--

SYMPTOMS
========

Start two instances of the Win32 application under Win32s. Close one
instance, then close the other instance. A page fault is generated in
WIN32S16.DLL. Under Win32s, version 1.1, a dialog box appears. Under
Win32s, version 1.15, the error only appears in the output from the debug
version of Win32s.

CAUSE
=====

This problem can be caused by using the static C run-time (CRT) libraries
or using MSVCRT10.DLL. Note that even if the application does not make any
CRT calls, one of its DLLs may call the CRT initialization and cleanup
code. The CRT code makes the following sequence of API calls:

 DeleteCriticalSection
 DeleteCriticalSection
 DeleteCriticalSection
 TlsFree
 VirtualFree
 VirtualFree
 VirtualFree

When the second application instance terminates, it faults before it makes
the call to TlsFree(). The CRT has two blocks, one that contains strings
from the environment and one that contains pointers to the first blocks.
These are allocated by the first process that attach to the DLL. Other
processes that attach do not allocate these blocks. When processes are
terminated, these two blocks are freed. However, this succeeds only when
the process that owns the memory frees them. Any other process that tries
to access these blocks will fail.

RESOLUTION
==========

Because there is no instance data by default under Win32s, DLLs should use
the CRT in a DLL instead of linking to the CRT statically. MSVCRT10.DLL
(which comes with Visual C++) is not compatible with Win32s because
MSVCRT10.DLL falsely assumes that Win32s implements instance data, which is
only available on Windows NT. Therefore, until an updated MSVCRT.LIB file
is released, use CRTDLL.LIB (which comes with the Win32 SDK) because Win32s
has its own CRTDLL.DLL file that was specifically designed for this use.

Microsoft Visual C++ 2.0 contains two versions of MSVCRT20.DLL: one version

is intended for use on Windows NT, the other is intended for use on Win32s.
To avoid this problem, use and ship the Win32s version of MSVCRT20.DLL in
your application.

MORE INFORMATION
================

The real problem is that memory is allocated for several applications. The
allocation is done by the first application. When this application
terminates, it takes with it all of its memory. This means that each time
the remaining applications try to access this memory, an error occurs.
Symptoms include data corruption, hanging, or the WIN32S16.DLL page fault
mentioned above.

Additional reference words: 1.10 1.15
KBCategory: kbprg kbprb
KBSubcategory: W32s

PRB: PaintRgn() Fills Incorrectly with Hatched Brushes
PSS ID Number: Q82169

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

When the TRANSPARENT background mode and a mapping mode other than
MM_TEXT are selected and an application calls the PaintRgn() API
to fill a complex region with a hatched brush, a disconnected
pattern results.

CAUSE
=====

The Windows Graphics Device Interface (GDI) draws a complex region
by filling the individual rectangles that make up the region. The
code to compute the position of each rectangle on the screen fails
when the screen coordinates are not in units of pixels. The error
is visible when a hatched brush style is used in TRANSPARENT mode.

RESOLUTION
==========

When a hatched brush and TRANSPARENT background mode are required,
use the MM_TEXT mapping mode.

Additional reference words: 3.10 4.00 95
KBCategory: kbgraphic kbprb
KBSubcategory: GdiDrw

PRB: Poor TCP/IP Performance When Doing Small Sends
PSS ID Number: Q126716
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0
--

SYMPTOMS
========

When doing multiple sends of less than the Maximum Transmission Unit
(MTU), you may see poor performance. On an Ethernet network, the MTU
for TCP/IP is 1460 bytes.

CAUSE
=====

When an application does two sends of less than a transport MTU, the
second send is delayed until an ACK is received from the remote host.
The delay occurs in case the application does another small send. TCP
can then coalesce the two small sends into one larger packet. This
concept of collecting small sends into larger packets is called Nagling.

RESOLUTION
==========

There are a number of ways to avoid Nagling in an application. Here are
two. The second is more complex but gives a better performance benefit:

 - Set the TCP_NODELAY socket option for the socket. This tells TCP/IP to
 send always, regardless of packet size. This will result in sub-optimal
 use of the physical network, but it will avoid the delay of waiting for
 an ACK.

 - Send larger blocks of data. The send() API call, when you include the
 overhead of the other network components involved, costs a couple of
 thousand instructions. One large send() call will be more efficient than
 two smaller send() calls, even if you need to do some buffer copies.

 Sending larger data blocks will also result in more efficient use of the
 physical network because packets will typically be larger and less
 numerous. This option is much better than the first (enabling
 TCP_NODELAY) and should be used if at all possible.

On Windows NT 3.51, if you are sending files, you should use the new
TransmitFile() API. This call reads the file data directly from the file
system cache and sends it out over the wire. The TransmitFile() call can
also take a data block that will be sent ahead of the file, if desired.

REFERENCES
==========

More information about Nagling and the Nagle algorithm can be found in RFC
1122.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbnetwork kbnetwork kbprb
KBSubcategory: NtwkWinsock

PRB: Pressing the ENTER Key in an MDI Application
PSS ID Number: Q99799

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

In a standard Microsoft Windows version 3.1 multiple document
interface (MDI) application, when a minimized MDI child is active and
the user presses the ENTER key, the child is not restored.

This is inconsistent with other MDI applications, such as File Manager
and Program Manager. An MDI child in one of these applications is
restored when it is the active MDI child and the ENTER key is pressed.
When a normal Windows-based application is minimized and the user presses
ENTER, that application is restored to a normal state.

RESOLUTION
==========

One quick workaround to this problem is to create an accelerator for
the ENTER key and restore the minimized MDI child when the key is
pressed.

MORE INFORMATION
================

It may be desirable to implement the same restore feature that File
Manager and Program Manager have implemented in order to enable the
user to restore an MDI child by pressing the ENTER key. If this
feature is implemented, then the MDI application can be consistent
with other popular applications such as File Manager, Microsoft Excel,
and Microsoft Word.

To achieve this effect in an MDI application, create an accelerator in
the accelerator table of the resource file for the application. This
can be done as follows:

MdiAccelTable ACCELERATORS
 {
 . . .
 . . .
 VK_RETURN, IDM_RESTORE, VIRTKEY
 }

After this accelerator has been installed in the MDI application, each
time the ENTER key is pressed by the user, an IDM_RESTORE command will
be sent to the MDI frame window's window procedure through a
WM_COMMAND message. When the MDI frame receieves this message, its
window procedure should retrieve a handle to the active MDI child and
determine if it is minimized. If it is minimized, then it can restore
the MDI child by sending the MDI client a WM_MDIRESTORE message. This
can all be done with the following code:

 case IDM_RESTORE:
 {
 HWND hwndActive;

 hwndActive = SendMessage(hwndClient,WM_MDIGETACTIVE,0,0L);
 if (IsIconic(hwndActive))
 SendMessage(hwndClient,WM_MDIRESTORE,hwndActive,0L);
 break;
 }

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui kbprb kbcode
KBSubcategory: UsrMdi

PRB: Print Common Dialog Box Doesn't Display Help Button
PSS ID Number: Q140271

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows 95

SYMPTOMS
========

When an application invokes the print common dialog box and specifies the
PD_SHOWHELP flag, the help button is not displayed on the dialog box when
the application is run in Windows 95.

CAUSE
=====

The Windows 95 common dialog code does not create the help button even
though the PD_SHOWHELP is supplied.

RESOLUTION
==========

To overcome this behavior, an application needs to install a common dialog
hook function and create the help button itself. The Help button event
handling code in Windows 95 will function properly. The following code
fragment demonstrates how to create and position the Help button on
the Print common dialog.

This behavior also occurs with the Page Setup common dialog box. The
following code will work on this dialog box also, but the positioning of
the button will have to be adjusted to place it properly.

/***
 DoPrintDialog()
***/

BOOL DoPrintDialog(HWND hwndParent, BOOL bSetup)
{
PRINTDLG pd;
BOOL bReturn;

/*
initialize PRINTDLG structure
*/
ZeroMemory(&pd, sizeof(pd));

pd.lStructSize = sizeof(PRINTDLG);
pd.hwndOwner = hwndParent;
pd.hDevMode = NULL;
pd.hDevNames = NULL;
pd.nFromPage = 0;
pd.nToPage = 0;

pd.nMinPage = 0;
pd.nMaxPage = 0;
pd.nCopies = 0;
pd.hInstance = g_hInst;

if(bSetup)
 {
 /*
 display the print setup dialog box
 */
 pd.Flags = PD_RETURNDC |
 PD_SHOWHELP |
 PD_PRINTSETUP |
 PD_ENABLESETUPHOOK;

 pd.lpfnSetupHook = PrintDlgHookProc;
 pd.lpSetupTemplateName = NULL;
 }
else
 {
 /*
 display the regular print dialog box
 */
 pd.Flags = PD_RETURNDC |
 PD_SHOWHELP |
 PD_ENABLEPRINTHOOK;

 pd.lpfnPrintHook = PrintDlgHookProc;
 pd.lpPrintTemplateName = NULL;
 }

bReturn = PrintDlg(&pd);

if(bReturn)
 {
 }

return bReturn;
}

/***
 PrintDlgHookProc()
***/

BOOL CALLBACK PrintDlgHookProc(HWND hWnd,
 UINT uMessage,
 WPARAM wParam,
 LPARAM lParam)
{
switch (uMessage)
 {
 case WM_INITDIALOG:
 {
 /*
 lParam is a pointer to the PRINTDLG structure

 */
 LPPRINTDLG lppd = (LPPRINTDLG)lParam;

 /*
 Only create the help button if it has been specified and it
 doesn't already exist - pshHelp is defined in Dlgs.h.
 */
 if((lppd->Flags & PD_SHOWHELP) &&
 (NULL == GetDlgItem(hWnd, pshHelp)))
 {
 RECT rc,
 rcGroup;
 HWND hwndHelp;
 HFONT hFont;

 /*
 Get the rectangle of the OK button as a template
 */
 GetWindowRect(GetDlgItem(hWnd, IDOK), &rc);
 MapWindowPoints(HWND_DESKTOP, hWnd, (LPPOINT)&rc, 2);

 /*
 Get the rectangle of the group box
 */
 GetWindowRect(GetDlgItem(hWnd, grp4), &rcGroup);
 MapWindowPoints(HWND_DESKTOP, hWnd, (LPPOINT)&rcGroup, 2);

 /*
 Put the width in right and the height in left
 */
 rc.right = rc.right - rc.left;
 rc.bottom = rc.bottom - rc.top;

 /*
 Align the button - this is reliable for the print and setup
 dialogs
 */
 rc.left = rcGroup.left;

 /*
 Create the help button
 */
 hwndHelp = CreateWindow(
 "button",
 "&Help Button",
 WS_CHILD | WS_VISIBLE | WS_TABSTOP | BS_PUSHBUTTON,
 rc.left,
 rc.top,
 rc.right,
 rc.bottom,
 hWnd,
 (HMENU)pshHelp,
 (HINSTANCE)GetWindowLong(hWnd, GWL_HINSTANCE),
 NULL);

 /*
 Get the font from the OK button and set the font of the help
 button
 */
 hFont = (HFONT)SendDlgItemMessage(hWnd, IDOK, WM_GETFONT, 0, 0);
 SendMessage(hwndHelp, WM_SETFONT, (WPARAM)hFont, 0);
 }
 }
 return TRUE;

 }
return FALSE;
}

STATUS
======

This behavior is by design.

Additional reference words: 1.30 4.00
KBCategory: kbui kbprb kbcode kbhowto
KBSubcategory: UsrCtl W32s

PRB: Printer Font too Small with ChooseFont() Common Dialog
PSS ID Number: Q89544

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

In an application for the Microsoft Windows graphical environment, the user
selects a printer font through the ChooseFont() common dialog box function.
When the application calls the CreateFontIndirect() to create the selected
font, even though the style and face name are correct, the point size is
much too small.

CAUSE
=====

The LOGFONT structure returned to the application is based on screen
metrics--even when the user selects a printer font. Because the resolution
(dots per inch) on a printer is generally much greater than that of the
screen, the resulting printer font is smaller than desired.

RESOLUTION
==========

Modify the lfHeight member of the LOGFONT data structure according to the
printer metrics.

MORE INFORMATION
================

The following code demonstrates how to modify the lfHeight member. The
lpcf variable contains a pointer to the CHOOSEFONT data structure. The
hDC member of the CHOOSEFONT data structure is a handle to the printer
device context.

 if (ChooseFont(lpcf))
 {
 if (lpcf->nFontType & PRINTER_FONT)
 {
 iLogPixelsy = GetDeviceCaps(lpcf->hDC, LOGPIXELSY);
 lpcf->lpLogFont->lfHeight =
 MulDiv(-iLogPixelsy, (lpcf->iPointSize / 10), 72);
 hPrinterFont =
 CreateFontIndirect((LPLOGFONT)(lpcf->lpLogFont));
 }

 else
 {
 // Create screen font
 }
 }
 else
 {
 // Process common dialog box error
 }

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui kbprb kbcode
KBSubcategory: UsrCmnDlg

PRB: Private Button Class Can't Get BM_SETSTYLE in Windows 95
PSS ID Number: Q130951

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

When an application creates a new button class, the new buttons do not
receive BM_SETSTYLE messages under Windows 95.

CAUSE
=====

In previous versions of Windows, the new button had only to return
DLGC_BUTTON in response to the WM_GETDLGCODE message. This was all that was
required to identify the window as a "button."

However, in Windows 95, returning DLGC_BUTTON to WM_GETDLGCODE is no longer
sufficient to identify the window as a "button." The dialog manager code in
Windows 95 is implemented in 16 bits. When a message is dispatched to a
32-bit window, the system automatically generates a thunk. Because the
system does not know that the new class is actually a "button," it does not
automatically perform the thunk - so the BM_SETSTYLE messages are not sent.

RESOLUTION
==========

To tell the system to treat the window as a "button," the window must call
one of the following APIs at least once:

IsDlgButtonChecked
CheckRadioButton
CheckDlgButton

The preferable method for doing this is to call IsDlgButtonChecked during
the WM_CREATE message. Once this is done, the window will receive all
standard button messages.

STATUS
======

This behavior is by design.

Additional reference words: 4.00
KBCategory: kbui kbprb
KBSubcategory: UsrCtl

PRB: Problem with Shared Data Sections in DLLs.
PSS ID Number: Q147136
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for:

 - Windows NT versions 3.5 and 3.51
 - Windows 95 version 4.0
--

SYMPTOMS
========

Because Win32 uses path and file names to identify loaded modules, running
an application that uses a DLL with a shared data section may not work
correctly if the DLL will be loaded using different paths.

RESOLUTION
==========

A memory-mapped file should be used to share data between processes.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

In Win32, module names include the path and file name, unlike 16-bit
Windows where all modules are identified with up to eight character names.

When you use a DLL with a shared data section, the path\file name
convention of identifying module names can cause shared sections to not be
shared. When the DLL is loaded a second time using a different path, the
operating system treats each instance of the DLL as a separate DLL. Because
the DLL is loaded twice as separate DLLs, no sections are shared, not even
code sections.

For example, when you map network drives E: and F: to the same share and
from each drive run an instance of an application that shares data by using
a shared data section in a DLL, the DLL is loaded separately with module
names like E:\path\filename and F:\path\filename. Each DLL will have its
own shared data section and therefore the processes will each see a
different copy of the data. In fact, shared data sections are implemented
as memory mapped files, so in this case, each instance of the DLL sets up
its own memory mapped file for a shared data section.

This problem can be diagnosed by putting a call to GetModuleFileName in the
DLL and examining the library names of each instance of the DLL. If the
names are different, shared sections will not work for the processes
calling them. The reason a file mapping is immune to the different path

names is because each process accesses a file mapping by name. File mapping
names are constant and independent of file paths.

Additional reference words: 3.50 4.00
KBCategory: kbprg kbprb
KBSubcategory:

PRB: Problems with the Microsoft Setup Toolkit
PSS ID Number: Q106382
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5
--

SYMPTOMS
========

1. When the /zi option is used with the Win32 DSKLAYT2.EXE to provide
 compression, it causes an access violation.

2. The Win32 Setup Toolkit does not contain a setup bootstrapper to
 copy the needed setup files to a temp drive and run the Setup
 program. Setup runs from floppy disks.

3. Install programs for applications that may run on Win32s must be
 created with the 16-bit version of the Setup Toolkit if the
 installation program will install Win32s. However, the 16-bit
 DSKLAY2.EXE cannot read the version information in a Win32 binary.

4. The Win32 DSKLAYT.EXE only shows 8.3 names in the list box.

5. The Setup program reports "out of memory" during installation, but there
 seems to be plenty of memory.

6. Installation fails from a CD-ROM. If the same files are copied from the
 CD to the hard disk, installation succeeds.

7. Setup programs created with the 32-bit setup toolkit will not run under
 Win32s.

RESOLUTIONS
===========

1. The fix for this problem is available in the Alpha SDK Update and later.

 Note that COMPRESS.EXE has been updated to use a better compression
 algorithm, and therefore /zi is no longer recommended for best
 compression. The option has been kept for compatibility reasons.

2. The bootstrapper is not necessary in a 32-bit environment. It is
 required for Windows because it is not possible to remove the
 floppy disk of a currently running Win16 application (the resources
 could not all be preloaded and locked).

3. If a Win32s installation is provided on a separate disk, the
 install program can be developed with the Win32 Setup Toolkit.

4. The program is actually a 16-bit program, and therefore it can
 display only the 8.3 name. Use 8.3 names for the source names and

 specify that the files be renamed (using the long names) when they
 are installed.

5. This error can be caused when a DLL on disk 1 is needed when
 when a different disk is currently inserted. To work around this
 problem, use LoadLibrary() to load the DLL.

6. This problem was corrected in the Win32 3.5 SDK.

7. This problem was corrected in the Win32 3.5 SDK.

Additional reference words: 3.10 3.50
KBCategory: kbtool kbprb
KBSubcategory: TlsMss

PRB: Processing the WM_QUERYOPEN Message in an MDI Application
PSS ID Number: Q99411

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

When a multiple document interface (MDI) child window processes the
WM_QUERYOPEN message to prevent the child from being restored out of a
minimized state, the system menu and restore button are not removed
from the menu bar when a maximized MDI child loses the focus or is
closed.

This problem occurs only when the maximized MDI child loses the focus
or is closed and the focus is given to an MDI child that returns 0
(zero) on the WM_QUERYOPEN message.

CAUSE
=====

When an MDI child is maximized, the system menu and restore button are
added to the frame menu as bitmap menu items. When a maximized MDI
child is destroyed or another MDI child is given the focus, the MDI
child given the focus afterwards is maximized to replace the old MDI
child. Windows cannot maximize an MDI child when it is processing the
WM_QUERYOPEN message, and therefore the child is not maximized.
Unfortunately, the system menu and restore button bitmaps are not
removed from the menu bar.

RESOLUTION
==========

To prevent this problem, restore the maximized MDI child before giving
the focus to another child.

MORE INFORMATION
================

It may sometimes be desirable to prevent an MDI child from being
restored during part or all of its life. This can be done by trapping
the WM_QUERYOPEN message by placing the following code in the window
procedure of the MDI child:

 case WM_QUERYOPEN:
 return 0;

Unfortunately, this causes the added restore and system menu bitmaps
to remain on the menu bar when a maximized MDI child loses the focus
or is closed and the focus is given to a child processing this
message. The following code can be used to restore a maximized MDI
child when it loses the focus:

 case WM_MDIACTIVATE:
 if ((wParam == FALSE) && (IsZoomed(hwnd)))
 SendMessage(hwndMDIClient, WM_MDIRESTORE, hwnd, 0L);

 return DefMDIChildProc (hwnd, msg, wParam, lParam);

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui kbprb kbcode
KBSubcategory: UsrMdi

PRB: Property Sheet w/ Multiline Edit Control Ignores ESC Key
PSS ID Number: Q130765

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

Pressing the ESC key when the focus is on a Multiline Edit control that is
a child of a property sheet page, does not dismiss the property sheet
control as expected.

CAUSE
=====

When the ESC key is pressed while focus is on a Mutiline Edit control, the
IDCANCEL notification (sent with a WM_COMMAND message) is sent to the
property sheet dialog proc whose template contains the Multiline Edit
control. Property sheet dialog procs do not process this message, so it is
not forwarded to the property sheet control.

RESOLUTION
==========

Trap the IDCANCEL notification that is sent along with the WM_COMMAND
message in the property sheet dialog proc that contains the multiline edit
control. Then forward the message to the property sheet control. (The
property sheet control is the parent of all the property sheet page
dialogs.) The following code shows how to do this:

Code Sample

//
// FUNCTION: SheetDialogProc(HWND, UINT, WPARAM, LPARAM)
//
// PURPOSE: Processes messages for a page in the PPT sheet control.
//
// PARAMETERS:
// hdlg - window handle of the property sheet
// wMessage - type of message
// wparam - message-specific information
// lparam - message-specific information
//
// RETURN VALUE:
// TRUE - message handled
// FALSE - message not handled
//

LRESULT CALLBACK SheetDialogProc(HWND hdlg,
 UINT uMessage,
 WPARAM wparam,
 LPARAM lparam)
{
 LPNMHDR lpnmhdr;
 HWND hwndPropSheet;
 switch (uMessage)
 {
 case WM_INITDIALOG:

 // Do whatever initializations you have here.
 return TRUE;

 case WM_NOTIFY:

 // more code here ...

 break;

 case WM_COMMAND:

 switch(LOWORD(wparam))
 {

 case IDCANCEL:

 // Forward this message to the parent window
 // so that the PPT sheet is dismissed
 SendMessage(GetParent(hdlg),
 uMessage,
 wparam,
 lparam);
 beak;

 default:
 break;
 }
 break;

 }

NOTE: This solution also works with wizard controls. This behavior is seen
under both Windows NT and Windows 95; the solution in this article works
for both platforms.

Additional reference words: 4.00 user styles
KBCategory: kbui kbprb kbcode
KBSubcategory: UsrCtl

PRB: Quotation Marks Missing from Compiled Help File
PSS ID Number: Q110540

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SYMPTOMS
========

After upgrading from Word for Windows 2.x to Word for Windows 6.x and
rebuilding a Windows Help file with HCP.EXE or HC31.EXE, all of the
quotation marks are missing from the Help file.

CAUSE
=====

Word 6.x uses a special .RTF keyword to represent the quotation mark
character, and the Help compiler does not understand the new .RTF keyword
so it drops the character. The same problem occurs for the curly double
quotation mark, single quotation mark, en dash (char 150), em dash (char
151), and the bullet character (char 149).

RESOLUTION
==========

You can prevent this problem by turning off the "Smart Quotes" option in
Word for Windows. The following three steps accomplish this:

1. Choose Options from Tools menu.
2. Select the AutoFormat tab.
3. In the Replace group box, clear the "Straight Quotes with Smart Quotes"
 check box, and choose OK.

If you wish to include smark quotes, bullets, em-dashes, and en-dashes in a
Help file, you can open the file as text only and replace the RTF keywords
with their ANSI hexidecimal equivalents, which are recognized by the help
compiler.

 Find String Replace String
 ----------- --------------
 \emdash \'97"
 \endash \'96"
 \bullet \'95"
 \rdblquote \'94"
 \ldblquote \'93"
 \rquote \'92"
 \lquote \'91"

Make sure that there is a blank character included at the end of the Find
String, but not in the Replace String.

This replacement must be made every time you edit and convert the text from
document to RTF format.

Additional reference words: 3.10 3.50 4.00
KBCategory: kbtool kbprg kbprb
KBSubcategory: TlsHlp

PRB: RasDial() Takes Longer to Dial Out
PSS ID Number: Q140018

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.51

SYMPTOMS
========

RasDial() takes more time to dial and authenticate a RAS (remote access
server) user if the RAS server being dialed is using older RAS protocols
and if the application is not using a phone book entry while calling
RasDial().

CAUSE
=====

Windows NT versions 3.5 and 3.51 use PPP (point-to-point protocol) as the
default protocol for dialing out. However, older versions of RAS servers
namely, RAS servers for Windows NT version 3.1 and point-to-point servers
for Windows for Workgroups do not implement the PPP protocol.

When an application calls RasDial() without specifying a phonebook entry,
RasDial() uses the default phonebook entry settings. The default framing
protocol for Windows NT versions 3.5 and 3.51 is PPP, so that is tried
first. If PPP doesn't work, the old RAS framing protocol is tried. The
failed attempt to connect with PPP accounts for the delay.

When a user creates a phonebook entry and dials an older RAS server, RAS
on the Windows NT client tries PPP as the framing protocol, which
eventually times out, and RAS falls back to old RAS protocol. RasDial()
marks the phonebook entry so that the next time it is dialed old RAS
protocol is tried first with fallback to PPP. Thus, the user sees the same
delay on the first call, but all subsequent calls are quick.

RESOLUTION
==========

Application programmers can create an entry with RASPHONE and override the
phone number at dial time, thus using the entry as a template with options
appropriate for the down-level server. If it is known that the server is
an older RAS server and will not be upgraded, you can clear all three check
boxes for all three protocols. Using RASPHONE, on the Edit menu, click
Network, and then clear the check boxes in the PPP group. This trick forces
old RAS protocol and eliminates the training call.

STATUS
======

This behavior is by design.

Additional reference words: 3.51

KBCategory: kbprg kbnetwork kbprb
KBSubcategory: NtwkRAS

PRB: RegCreateKeyEx() Gives Error 161 Under Windows NT 3.5
PSS ID Number: Q117261

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.5

SYMPTOMS
========

A call to RegCreateKeyEx() is successful under Windows NT version 3.1, but
the call fails with error 161 (ERROR_BAD_PATHNAME) under Windows NT version
3.5.

The sample code below demonstrates this problem.

CAUSE
=====

This is by design. Windows NT version 3.1 allows the subkey to begin with a
backslash ("\"), however Windows NT version 3.5 does not. The subkey is
given as the second parameter to RegCreateKeyEx().

RESOLUTION
==========

Remove the backslash from the beginning of the subkey name.

MORE INFORMATION
================

In the sample code below, RegCreateKeyEx() fails with error 161 while the
string defined by SUBKEY_FORMAT_STRING begins with a backslash, but
succeeds if the initial backslash is removed.

Sample Code

 #include <windows.h>
 #include <stdio.h>

 #define SUBKEY_FORMAT_STRING \
 "\\SYSTEM\\CurrentControlSet\\Services\\EventLog\\Application\\%s"

 void main(int argc, char *argv[])
 {
 DWORD dwErrorCode;
 char lpszSubKey[MAX_PATH];
 HKEY hKey;
 DWORD dwDisposition;

 sprintf(lpszSubKey, SUBKEY_FORMAT_STRING, argv[1]);

 printf("Trying to open: %s\n", lpszSubKey);

 dwErrorCode = RegCreateKeyEx(HKEY_LOCAL_MACHINE,
 lpszSubKey,
 0,
 "",
 REG_OPTION_NON_VOLATILE,
 KEY_ALL_ACCESS,
 NULL, //Security
 &hKey,
 &dwDisposition);

 if (dwErrorCode != ERROR_SUCCESS)
 printf("Code = %d.\n", dwErrorCode);

 RegCloseKey(hKey);
 }

NOTE: Double backslashes ("\\") are required in strings in C code to
represent a single backslash, since a backslash ordinarily indicates the
beginning of an escape sequence.

Additional reference words: 3.50
KBCategory: kbprg kbprb
KBSubcategory: BseMisc

PRB: RegisterClass()/ClassEx() Fails If cbWndExtra > 40 Bytes
PSS ID Number: Q131288

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

Under Windows 95, a call to RegisterClass() or RegisterClassEx() returns
NULL if a value greater than 40 is specified for the cbWndExtra or
cbClsExtra members of the WNDCLASS or WNDCLASSEX structure.

CAUSE
=====

Windows 95 checks to see if cbWndExtra or cbClsExtra is greater than 40. If
so, it outputs these debug messages and returns NULL to indicate failure:

 RegisterClassEx: Unusually large cbClsExtra (>40)
 RegisterClassEx: Unusually large cbWndExtra (>40)

RESOLUTION
==========

If more than 40 bytes are needed to store window-specific or class-specific
information, an application should allocate memory. Then set the cbWndExtra
or cbClsExtra to 4 bytes, and pass the pointer to the allocated memory by
using SetClassLong() as follows:

 SetClassLong (hWnd, GCL_CBCLSEXTRA, lpMemoryAllocated);
 SetClassLong (hWnd, GCL_CBWNDEXTRA, lpMemoryAllocated);

The pointer can then be retrieved when needed by using GetClassLong() as
follows:

 lpMemoryAllocated = GetClassLong (hWnd, GCL_CBCLSEXTRA);
 lpMemoryAllocated = GetClassLong (hWnd, GCL_CBWNDEXTRA);

STATUS
======

This behavior is by design. However, as of version 3.51, Windows NT does
not have this 40-byte limitation.

Additional reference words: 4.00
KBCategory: kbui kbprb
KBSubcategory: UsrCls

PRB: RestoreDC() Fails Across Printer Pages
PSS ID Number: Q139005

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API)
 included with Microsoft Windows 95 version 4.0

SYMPTOMS
========

The RestoreDC() function returns failure when attempting to restore a
printer Device Context (DC) that was saved by calling the SaveDC() function
in Windows 95 version 4.0.

NOTE: This occurs only for applications marked as 4.0 applications.

CAUSE
=====

RestoreDC() fails if the specified state instance does not exist on the GDI
instance stack. Specifically, RestoreDC() fails on a printer DC if the
StartPage() function is called between a call to the SaveDC() and a call to
RestoreDC(). The RestoreDC() function fails because the StartPage()
function in Windows 95 deletes any DC state instances that have been saved
for that DC.

RESOLUTION
==========

Applications use the StartPage() and EndPage() functions to indicate page
separations on printer DCs. It is therefore necessary for applications
written for Windows 95 to reinitialize a printer DC by selecting GDI
objects and resetting mapping modes and other DC and GDI object attributes
after every call to StartPage().

STATUS
======

This behavior is by design.

MORE INFORMATION
================

When Windows 95-based applications print, they spool to Enhanced Metafile
(EMF) spool files by default. Spooling to an EMF requires a clean DC so
that each call to the StartPage() function restores the printer DC to its
default state.

In addition to restoring the default state of the DC, Windows 95 also
empties the stack of DC states that may have been saved by calling the
SaveDC() function. This prevents applications from setting up a DC prior to
a call to StartPage() and restoring the selected objects and attributes

after the call to StartPage() with RestoreDC(). However, as long as the
SaveDC() and RestoreDC() functions are called between StartPage()/EndPage()
pairs, they will succeed and properly save and restore DC states for the
printer DC.

Typically, applications should allocate GDI resources prior to the start of
a document or page and reuse these resources to initialize a printer DC at
the start of every page in a document.

Additional reference words: 4.00 Windows 95 difference blank page output
KBCategory: kbprint kbgraphic kbprb
KBSubcategory: GdiDc GdiPrn

PRB: Result of localtime() Differs on Win32s and Windows NT
PSS ID Number: Q117893
--
The information in this article applies to:

 - Microsoft Win32s versions 1.1, 1.15, and 1.2
--

SYMPTOMS
========

Under Windows NT, localtime(time()) returns the correct local time.
However, under Win32s, the local time returned is not correct if the TZ
environment variable is set. For example, suppose that you are in the
Pacific time zone (GMT-08:00) and have set tz=pst8pdt. The time returned
under Win32s is off by 8 hours.

CAUSE
=====

This is by design.

The localtime() function depends on time zone information, which is not
available in Win32s. This is the reason that the Win32 API GetLocalTime()
is not supported under Win32s. The C Run-time functions, like localtime(),
use the tz environment variable for time zone information.

The time() function returns the current local time under Win32s, then the
call to localtime() adjusts the time by the offset of your time zone from
GMT, which it finds by reading the tz environment variable.

Under Windows NT, time() and GetSystemTime() return GMT, therefore
localtime(time()) is the current local time.

RESOLUTION
==========

To get the current local time under both Win32s and Windows NT, use the
following code to clear the tz environment variable and get the time:

 _putenv("TZ=");
 _tzset();

 localtime(time());

Note that _putenv() affects only the tz environment variable for the
application. All other applications use the global environment settings and
make their own modifications.

Additional reference words: 1.10 1.20
KBCategory: kbprg kbprb
KBSubcategory: W32s

PRB: RichEdit Control Doesn't Save REO_* Flags
PSS ID Number: Q135987

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s version 1.3

SYMPTOMS
========

A program can embed an OLE object in a RichEdit control by using one of the
REO_* flags (for example, REO_BELOWBASELINE) to change the standard
attributes for the embedded object. However, when the file is saved by
using the EM_STREAMOUT message and read back into the control by using the
EM_STREAMIN message, the REO_* flags are not applied to the object.

CAUSE
=====

The RichEdit control does not save the REO_* flags when it writes the
object to a file.

WORKAROUND
==========

To work around this behavior, have your program handle saving the OLE
objects contained in the RichEdit control to disk manually. Then the
program can have the RichEdit control save the rest of the contents without
the OLE objects by sending the EM_STREAMOUT message to the RichEdit control
with the SF_RTFNOOBJS flag. By specifying the SF_RTFNOOBJS flag, the
RichEdit control will leave a space character where the object was, so it
is important that your program save the position of the OLE objects as well
as the actual objects.

STATUS
======

This behavior is by design.

Additional reference words: 4.00 1.30 RTF Edit Windows 95
KBCategory: kbui
KBSubcategory: UsrCtl

PRB: RichEdit Control Hides Mouse Pointer (Cursor)
PSS ID Number: Q131381

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s version 1.3

SYMPTOMS
========

When the mouse pointer (cursor) is over a RichEdit control and the user
starts typing in the control, the RichEdit control hides the pointer.

CAUSE
=====

When the user is typing in a RichEdit control, the control automatically
hides the mouse pointer if it is is over the control. The control does this
intentionally so the cursor does not obscure the text in the control. When
the mouse is moved again, the pointer re-appears.

STATUS
======

This behavior is by design.

Additional reference words: 4.00 95 1.30
KBCategory: kbui kbprb
KBSubcategory: UsrCtl

PRB: RoundRect() and Ellipse() Don't Match Same Shaped Regions
PSS ID Number: Q119455

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

When CreateRoundRectrRgn() is used to create a region with the shape of a
rectangle that has rounded corners and RoundRect() is called with the same
parameters to draw the same rectangle that has rounded corners, the
calculated region does not match the drawn rectangle. The same can be said
of the ellipses created by CreateEllipticRgn() and Ellipse().

CAUSE
=====

This behavior is because of the design on Windows. The mismatch between
fills and frames is because of the way that the boundaries and fills must
be specified in order to get polygons to fit together properly. Windows NT
duplicates this behavior for compatibility.

RESOLUTION
==========

Perform the fill first, then draw the frame. Some of the frame pixels will
overwrite fill pixels and some will not; however, there will be no gap
between the frame and the fill, and the fill will not extend past the
frame. Use CreateRoundRectRgn() or CreateEllipticRgn() for the fill and
RoundRect() or Ellipse, respectively, for the frame. Use the same
parameters for both the region API and the filled-shape API.

NOTE: If you use a NULL pen when drawing the filled shape, the pixels will
match those drawn by creating a region through the corresponding region API
and then calling FillRgn() with the same parameters. It draws the frame
with the pen from the filled-shape API that causes the discrepancy.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbgraphic kbprb
KBSubcategory: GdiDrw

PRB: RPC App Using Auto Handles Can't Call Remote Procedure
PSS ID Number: Q140015

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.51

SYMPTOMS
========

An RPC application using auto handles cannot call a remote procedure on a
server that is in a different Windows NT computer domain than the client
workstation's Windows NT computer domain.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

The information in this article applies in the context of Microsoft locator
service and the workstations participating in a Windows NT domain model.

Auto handles implicitly make use of the RPC name service calls to locate
the server. The locator does a look up for the servers in the local domain
only. Thus, if a server is registered in a different domain, calling the
remote procedure will create an exception (typically error 1727), assuming
there are no RPC servers available that expose the same interface in the
local domain.

Additional reference words: 3.51
KBCategory: kbprg kbprb
KBSubcategory: NtwkRpc

PRB: RW1004 Error Due to Unexpected End of File (EOF)
PSS ID Number: Q106064
--
The information in this article applies to:

- Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0
--

SYMPTOMS
========

The resource compiler generates the following errors when the .RC file
includes a .H file whose last line is a define (that is, there was no
final carriage return at the end of the #define statement):

 fatal error RC1004: unexpected EOF

CAUSE
=====

The resource compiler preprocessor follows C syntax. A newline character is
required on a #define statement.

RESOLUTION
==========

Add a carriage return following the #define.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool kbprb
KBSubcategory: TlsRc

PRB: Saving/Loading Bitmaps in .DIB Format on MIPS
PSS ID Number: Q85844

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51

SYMPTOMS
========

In Win32, saving or loading a bitmap in .DIB file format is basically the
same as in Win16. However, care must be taken in DWORD alignment,
especially on the MIPS platform.

An exception occurs when loading or saving a bitmap on the MIPS platform.
In NTSD, the following error message is received:

 data mis-alignment

CAUSE
=====

A non-DWORD aligned actual parameter was passed to a function such as
GetDIBits().

The .DIB file format contains the BITMAPFILEHEADER followed immediately by
the BITMAPINFOHEADER. Notice that the BITMAPFILEHEADER is not DWORD
aligned. Thus, the structure that follows it, the BITMAPINFOHEADER, is not
on a DWORD boundary. If a pointer to this DWORD misaligned structure is
passed to the sixth argument of GetDIBits(), an exception will occur.

RESOLUTION
==========

To resolve this problem, copy the data in the structure over to a DWORD-
aligned memory and pass the pointer to the latter structure to the function
instead. See the sample code LOADBMP.C for detail.

MORE INFORMATION
================

The is a sample to illustrates this process. Refer to the LOADBMP.C file in
the MANDEL sample that comes with the Win32 SDK.

Additional reference words: 3.10 3.50
KBCategory: kbgraphic kbprb
KBSubcategory: GdiBmp

PRB: Screen Saver Description Not Displayed in Windows 95
PSS ID Number: Q137250

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s version 1.3

SYMPTOMS
========

In Windows 95, when viewing the list of screen savers in the Display
Properties dialog box, your screen saver is displayed with the file name
instead of the description string.

CAUSE
=====

Windows 95 is identifying the file name as being a long file name because
after calling FindFirstFile, it compares the file name to the alternate
file name with case sensitivity. If the case on the file names is
different, it identifies the file name as a long file name. The alternate
file name is always uppercase.

RESOLUTION
==========

There are two solutions. The first and best is to name the file with a long
file name that is identical to the description.

The second solution is to rename the file so that the case is the same. The
case can be seen using an MS-DOS box. The first file name seen is the
alternate file name and the second seen is the long file name. Use the
MS-DOS box to rename the file to all uppercase.

NOTE: The descriptive text for screen savers is not taken from
IDS_DESCRIPTION as stated in the documentation, but from the module name
defined in the .def file. This should be in this form:

 SCRNSAVE:<decriptive text>

Everything after the colon will be included as the descriptive text.

STATUS
======

This behavior is by design.

Additional reference words: 1.30 4.00
KBCategory: kbui kbprb
KBSubcategory: UsrCtl W32s

PRB: Search Button Disabled in Windows Help
PSS ID Number: Q71761
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0
--

SYMPTOMS
========

When a help file is loaded into the Windows Help program, the Search button
is disabled.

CAUSE
=====

There are two likely causes:

 1. The help file defines no keywords for searching.

 2. The keywords are defined using a lowercase "k" footnote.

RESOLUTION
==========

For cause 1, if searching is desired, define some keywords in the file. For
cause 2, modify the RTF text to use an uppercase "K" for keyword footnotes.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbtool kbprg kbprb
KBSubcategory: TlsHlp

PRB: SEH with Abort() in the try Body
PSS ID Number: Q91146

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

When using Structured Exception Handling, if the try body calls abort(),
the finally body is not executed.

CAUSE
=====

The finally body is not executed because the abort() never returns. It
calls ExitProcess(), which terminates the process.

RESOLUTION
==========

This behavior is by design.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg kbprb
KBSubcategory: BseExcept

PRB: SEH with return in the finally Body Preempts Unwind
PSS ID Number: Q91147

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

When using Structured Exception Handling (SEH), returning out of a finally
body results in a return from the containing procedure scope. For example,
in the following code fragment, the return in the finally block results in
a return from func():

 int func()
 {
 int status = 0;
 __try {
 ...
 status = test();
 ...
 }
 __finally {
 if (status != 0) {
 status = FAILURE;
 return status;
 }
 }
 return status;
 }

CAUSE
=====

A return from within a __finally is equivalent to a goto to the closing
brace in the enclosing function [for example, func()]. This is allowed,
but has consequences that should normally be avoided.

Exception handling has two stages. First, the exception stack is walked,
looking for an accepting __except. When an accepting handler has been
found, all __finallys between the top-of-exception-stack and the target
__except will be called. During this "unwind", the __finallys are
assumed to each execute and then return to their caller (the system
unwind code).

A return in a finally abnormally aborts this unwinding. Instead of
returning to the system unwinder, the __finally returns to the enclosing
function's caller [for example, func()'s parent]. The accepting __except
filter may set some status or perform an allocation in anticipation of

the __except handler being entered. In this case, the intervening
__finally with the return will stop the unwind, and the __except handler
is never entered.

RESOLUTION
==========

This is by design. It makes it possible for a finally handler to stop an
unwind and return a status. This is what is referred to as a collided
unwind.

Abnormal termination from try/except or try/finally blocks is not
generally recommended because it is a performance hit.

The example can be rewritten so that the unwind chain is not aborted:

 int func()
 {
 int status = 0;
 __try {
 ...
 status = test();
 ...
 }
 __except(status != 0) {

 /* null */
 }
 if (status != 0)
 status = FAILURE;
 return status;
 }

This does not have identical semantics because the exception filters
higher up the exception stack will not be executed. However, ensuring
that both phases of exception handling progress to the same depth is a
more robust solution.

MORE INFORMATION
================

Normally this behavior is transparent to any higher-level exception
handling code. If, however, a filter function, as a side effect, stores
information that it expects to process in an exception handler, then it may
or may not be transparent. Storing such information in a filter function
should be avoided because it is always possible that the exception handler
will not be executed because the unwind is preempted. In the absence of
storing such side effects, it will be transparent that an exception
occurred and an attempted unwind occurred if one of the descendent
functions has a try/finally block with an finally clause that preempts the
unwind.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg kbprb
KBSubcategory: BseExcept

PRB: SelectClipRgn() Cannot Grow Clip Region in WM_PAINT
PSS ID Number: Q118472

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

Setting a smaller clipping region in WM_PAINT by using SelectClipRgn()
works fine; however, setting a larger clipping region seems to have no
effect. GetClipBox() can be used to verify this after calling
SelectClipRgn().

CAUSE
=====

When you call SelectClipRgn() within a BeginPaint()/EndPaint() block in an
application's WM_PAINT case, the maximum size to which you can set your
clipping region is the size of the update region of your paint structure.
This is because the resulting clip region is the intersection of the update
region and the region specified in the call to SelectClipRgn(). In other
words, you can use SelectClipRgn() to shrink your update region, but not to
grow it. This behavior is by design.

RESOLUTION
==========

Invalidate the clipping region area you want before calling BeginPaint().
For example:

case WM_PAINT:
 InvalidateRect(hWnd,); // Invalidate the size you'll want
 // for the clip region.
 BeginPaint()
 SelectClipRgn();
 ... paint away ...
 EndPaint();
 break;

Something similar could be done in the Microsoft Foundation Classes (MFC),
such as:

void CMyView::OnPaint()
{
 InvalidateRect(...); // Invalidate the size you'll want.

 CPaintDC dc(this); // CPaintDC wraps BeginPaint()/EndPaint().
 // Do drawing here...
}

MORE INFORMATION
================

This is addressed in the documentation for the Windows NT SDK version 3.1
[Section 20.1.5, "Window Regions" in Chapter 20, "Painting and Drawing" in
the "Microsoft Win32 Programmer's Reference, Volume 1" or in the Win32 API
Reference online help (search on "Window Regions")] which states:

 In addition to the update region, every window has a visible region that
 defines the window portion visible to the user. The system changes the
 visible region for the window whenever the window changes size or
 whenever another window is moved such that it obscures or exposes a
 portion of the window. Applications cannot change the visible region
 directly, but Windows automatically uses the visible region to create
 the clipping region for any display DC retrieved for the window.

 The clipping region determines where the system permits drawing. When
 the application retrieves a display DC using the BeginPaint, GetDC, or
 GetDCEx function, the system sets the clipping region for the DC to the
 intersection of the visible region and the update region. Applications
 can change the clipping region by using functions such as SelectClipPath
 and SelectClipRgn, to further limit drawing to a particular portion of
 the update area.

Additional reference words: 3.10 3.50 4.00 SelectClipRegion big small large
KBCategory: kbgraphic kbprb
KBSubcategory: GdiMisc

PRB: Selecting Overlapping Controls in Dialog Editor
PSS ID Number: Q90384
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5,
 3.51, and 4.0
--

SYMPTOMS
========

Create a dialog box using the Dialog Editor. Place a button onto the dialog
box. Create a frame and place it so that it encompasses the button. It is
not possible to select that button with the mouse. However, if the frame is
created before the button and then moved or placed over the button, then it
is possible to select either the frame or the button.

CAUSE
=====

This behavior is by design. When controls are overlapped, the control that
is selected when the mouse is clicked is the one that comes last in
Z-order.

As a special case, it is possible to select a control placed "underneath" a
group box.

RESOLUTION
==========

From the Arrange menu, choose Order/Group. This will bring up a dialog box.
Change the Z-order of the button to be after that of the frame. The Z-order
may also be changed by manually editing the resource file. The controls
that are further down in the file will be "on top."

NOTE: If the frame is selected and is on top of the button, pressing
SHIFT+TAB selects the previous control, which will be the button. This does
not allow the position of the control to be changed with the mouse;
however, it does allow the text and size to be changed.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool kbprb
KBSubcategory: TlsDlg

PRB: SelectObject() Fails After ImageList_GetImageInfo()
PSS ID Number: Q131279

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

When you try to select the hBitmap returned by ImageList_GetImageInfo()
into a device context, the call to SelectObject() fails and returns NULL.

CAUSE
=====

Under the debug version of Windows 95, attempting to select the hBitmap
returned by ImageList_GetImageInfo() into a DC causes the GDI to output
the message "Bitmap already selected."

Image lists maintain memory DCs with the image and mask bitmaps already
selected. This is done to prevent applications from modifying the images
contained in the image list that are currently being used by the system.
Because a bitmap cannot be selected into more than one DC at a time,
applications that call SelectObject() on the same bitmap fail.

RESOLUTION
==========

An application can work around this in Windows 95 by calling CopyImage() on
the hBitmap, as demonstrated in the following sample code. This API is new
for Windows 95. Remember to delete the hBitmap copy when using this
function.

Sample Code

HDC hDC;
HBITMAP hBitmap, hOldBitmap;
IMAGEINFO imageInfo;

ImageList_GetImageInfo (hImgList, iWhichImage, &imageInfo);
hBitmap = CopyImage (imageInfo.hbmImage,
 IMAGE_BITMAP, 0, 0, LR_COPYRETURNORG);

hOldBitmap = SelectObject(hDC, hBitmap);
 :
 :

// Delete hBitmap when you finish using it.
DeleteObject (SelectObject (hDC, hOldBitmap));

STATUS
======

This behavior is by design.

Additional reference words: 4.00 unusable hDC Image Lists beta
KBCategory: kbui kbgraphic kbprb kbcode
KBSubcategory: UsrCtl

PRB: SetConsoleOutputCP() Not Functional
PSS ID Number: Q99795

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SYMPTOMS
========

SetConsoleOutputCP() apparently has no effect. The correct codepage is
returned from a call to GetConsoleOutputCP, but the displaying of the text
remains unchanged.

CAUSE
=====

SetConsoleOutputCP() was designed to change the mapping of the 256 8-bit
character values into the glyph set of a fixed-pitch Unicode font, rather
than loading a separate, non-Unicode font for each call to
SetConsoleOutputCP(). Unfortunately, a fixed-pitch Unicode font was not
available by release time, so you can't view the effects of the
SetConsoleOutputCP() application programming interface (API) because the
currently available console fonts are not Unicode fonts.

STATUS
======

This behavior is by design in Windows NT versions 3.1 and 3.5.

Additional reference words: 3.10 3.50
KBCategory: kbprg kbprb
KBSubcategory: BseCon

PRB: SetCurrentDirectory Fails on a CD-ROM Drive on Win32s
PSS ID Number: Q125013
--
The information in this articles applies to:

 - Microsoft Win32s, versions 1.0, 1.1, and 1.2
--

SYMPTOMS
========

In the following code, assuming that drive E corresponds to a CD-ROM drive,
SetCurrentDirectory() always fails to set the current directory to the root
directory on the CD-ROM drive. Instead the current directory remains
unchanged:

 char szCurDir[256];

 SetCurrentDirectory("E:\\");
 GetCurrentDirectory(sizeof(szCurDir),szCurDir);
 MessageBox(NULL, szCurDir, "SCD", MB_OK);

CAUSE
=====

SetCurrentDirectory() calls the MS-DOS Interrupt 21h, function 0x4300 to
get the file attributes of the specified drive to check whether the
specified parameter is a directory. This MS-DOS call always fails if you
try to get the attributes of the root directory on a CD-ROM drive, and
therefore SetCurrentDirectory() also fails on the root directory of a CD-
ROM drive.

STATUS
======

Microsoft is aware of this problem with SetCurrentDirectory() in Win32s. We
are researching this problem and will post new information here in the
Microsoft Knowledge Base as it becomes available.

RESOLUTION
==========

As a workaround for the problem with SetCurrentDirectory(), thunk to the 16-
bit environment and utilize MS-DOS functions from a 16-bit DLL. For
example, you can use Interrupt 21h, function 0x0E (Set Default Drive)
followed by Interrupt 21h, function 0x3Bh (Change Current Directory).

MORE INFORMATION
================

Note that SetCurrentDirectory() fails only on the root directory of a CD-
ROM drive. If you pass any directory path other than the root directory to
SetCurrentDirectory(), it will work properly.

This is a problem with MS-DOS and can be reproduced from an MS-DOS
application in Windows version 3.1.

Additional reference words: 1.00 1.10 1.20 win32s
KBCategory: kbprg kbprb
KBSubcategory: W32s

PRB: Setup Toolkit File Copy Progress Gauge not Updated
PSS ID Number: Q114609
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0
--

SYMPTOMS
========

The following may be noticed during the execution of a setup program
created with the Setup Toolkit:

1. The copy progress bar appears frozen even though the user may be
 prompted to change disks.

2. The filename shown at the top of the copy progress dialog box does
 not change for long periods of time.

CAUSE
=====

The "gas gauge" copy progress dialog box (or Copy Gauge dialog box
described on pages 106-107 of the "Setup Toolkit for Windows" manual) is
updated only when files are actually being copied to the hard disk. The
Setup Toolkit does not update the copy progress dialog box when it checks
the version of an existing file. This version check can take a significant
amount of time under certain circumstances. A version check is only
performed if "Check For Version" is marked in the DSKLAYT program AND the
file has a version information resource.

RESOLUTION
==========

There is no way to change this behavior. The dialog box is managed by
CopyFilesInCopyList(). The only way to avoid this behavior is to avoid
marking files with "Check For Version" in DSKLAYT.

MORE INFORMATION
================

Under certain circumstances, a file may need to be copied to the temporary
directory before its version can be checked. This occurs when the version
information in the .INF file matches the version information (exactly) in
the file already residing on the hard drive. In this case, the file will be
copied from the Setup disks to a temporary location (decompressed if
necessary), and other version information will be verified. This can be a
time-consuming process and the copy progress dialog box will not be updated
while this is occurring.

Additional reference words: 3.10 3.50 4.00 95 MSSETUP CopyFilesInCopyList

KBCategory: kbtool kbprg kbprb
KBSubcategory: TlsMss

PRB: SetWindowsHookEx() Fails to Install Task-Specific Filter
PSS ID Number: Q92659

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

In Windows version 3.1, the SetWindowsHookEx() function fails when
it is called to install a task-specific filter (hook) that resides
in a DLL.

CAUSE
=====

According to the documentation, the third parameter to the
SetWindowsHookEx() function must be the instance handle of the
application or the DLL that contains the filter function. However,
because of a problem in Windows 3.1, the SetWindowsHookEx() function
fails when it is called to install a task-specific filter using the
DLL's instance handle.

Note that such a problem does not exist when the SetWindowsHookEx()
function is called to install a system-wide filter in a DLL. The DLL's
instance handle is accepted as a valid parameter. The first argument
passed to the LibMain function of a DLL contains its instance handle.

RESOLUTION
==========

To install a task-specific filter that resides in a DLL, pass the module
handle of the DLL as the third parameter to the SetWindowsHookEx()
function. The module handle can be retrieved using the GetModuleHandle()
function. For example, to install a task-specific keyboard filter, the
code might resemble the following:

g_hHook = SetWindowsHookEx(WH_KEYBOARD,
 HookCallbackProc,
 GetModuleHandle("HOOK.DLL"),
 hTargetTask);

This resolution is compatible with future versions of Windows.

Additional reference words: 3.10 3.50 3.51 4.00 95 hook not allowed
KBCategory: kbui kbprb kbcode
KBSubcategory: UsrHks

PRB: ShellExecute() Succeeds But App Window Doesn't Appear
PSS ID Number: Q124133

The information in this article applies to:

 - Microsoft Win32s, versions 1.15, 1.15a, and 1.2

SYMPTOMS
========

The following call to ShellExecute() succeeds and the file association
is set in File Manager, but the application does not appear to execute
(the window is not shown):

 hShell = ShellExecute(hWnd,
 NULL,
 lpszFile,
 NULL,
 lpszDir,
 SW_SHOWDEFAULT);

CAUSE
=====

ShellExecute() is directly thunked to 16-bit Windows. Windows-based
applications do not support the SW_SHOWDEFAULT flag.

RESOLUTION
==========

Under Win32s, use SW_NORMAL instead of SW_SHOWDEFAULT when using
ShellExecute() with a 16-bit Windows-based application. You can use
SW_SHOWDEFAULT if the application specified is a Win32-based application.

STATUS
======

This behavior is by design.

Additional reference words: 1.20
KBCategory: kbprg kbprb
KBSubcategory: W32s

PRB: SHGetNameMappingPtr() and SHGetNameMappingCount()
PSS ID Number: Q142066

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows 95
 - Microsoft Visual C++, 32-bit edition, versions 2.2 and 4.0

SYMPTOMS
========

Referencing SHGetNameMappingPtr() or SHGetNameMappingCount() in your
code generates error C2065: 'DSA_GetItemPtr' : undeclared identifier
when building.

CAUSE
=====

These APIs are no longer supported. They being removed from the
documentation and headers for future SDK releases.

MORE INFORMATION
================

The SHFileOperation() API itself is unaffected by this.

Additional reference words: 4.00 2.20 4.40
KBCategory: kbprg kbdocerr kbprb
KBSubcategory:

PRB: Smart Quotes Not in Help Files Compiled From Word 6 RTF
PSS ID Number: Q114604
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
--

SYMPTOMS
========

When using the Microsoft Windows Help Compiler (any version) to compile a
.RTF file generated by Microsoft Word for Windows version 6.0, any double
quotation marks (") in the text may not show up in the compiled help file.

CAUSE
=====

Microsoft Word for Windows 6.0 automatically replaces double quotation
marks with "smart quotes". This causes your .RTF file to contain
the \ldblquote and \rdblquote tokens rather than the double quotation mark
characters. The Help Compiler does not recognize these tokens and therefore
ignores them.

RESOLUTION
==========

1. Stop Word for Windows from replacing quotation mark characters in the
 future by unchecking the "Replace Simple Quotes with Smart Quotes" check
 box under both of the following dialog boxes:

 a. Choose Options from the Tools menu, then choose Auto Format.

 b. Choose Auto Correct from the Tools menu.

2. Replace existing quotation mark characters by performing a search and
 replace. That is, search for and replace the smart quotes with the quote
 character (") (without the parenthesis).

MORE INFORMATION
================

In addition, apostrophes ('), also known as single quotes, may not show up
in the compiled help file. Follow the instructions above to replace the
apostrophes as well.

Additional reference words: 3.10 3.50 4.00 95 WINHELP HC HC31 HC30 HCP
KBCategory: kbtool kbprg kbprb
KBSubcategory: TlsHlp

PRB: SNMP Extension Agent Gives Exception on Windows NT 3.51
PSS ID Number: Q130562
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.5 and 3.51
--

SYMPTOMS
========

An SNMP extension agent built using Windows NT version 3.5 SDK headers and
libraries generates an exception when run under Windows NT version 3.51.

For example, the SDK toaster sample (\MSTOOLS\SAMPLES\WIN32\SNMP\TESTDLL)
works under Windows NT version 3.5 but generates an exception under Windows
NT version 3.51.

CAUSE
=====

The SNMP.LIB SDK library has changed between the release of Windows NT
version 3.5 and the release of Windows NT version 3.51. Memory is now
allocated dynamically with the Win32 API GlobalAlloc() rather than the
c-runtime malloc(). See the SNMP.H SDK header file for details.

An SNMP application that is allocating (or freeing) memory that is passed
to a function in SNMP.LIB should use SNMP_malloc() (or SNMP_free()). The
sample code for the extension DLL provided with the Windows NT version 3.51
beta SDK incorrectly uses malloc().

RESOLUTION
==========

Rebuild the extension agent with the Win32 SDK headers and libraries for
Windows NT version 3.51. Please make sure that the Win32 SDK headers and
libraries are used before Visual C++ headers and libraries.

Also, to allocate and free any memory, use the SNMP_malloc() and
SNMP_free() macros. Both are defined in SNMP.H.

NOTE: If you are using a beta version of Windows NT version 3.51, please
change all references to malloc() and free() in the samples to
SNMP_malloc() and SNMP_free(). This is a known problem with the testdll
sample (MSTOOLS\SAMPLES\WIN32\WINNT\SNMP\TESTDLL).

STATUS
======

This behavior is by design.

REFERENCES
==========

For more information, please see the following article in the Microsoft
Knowledge Base:

 ARTICLE-ID: Q124961
 TITLE : BUG: SNMP Sample Generates an Application Error

Additional reference words: 3.50
KBCategory: kbnetwork kbprb
KBSubcategory: NtwkSnmp

PRB: SnmpMgrGetTrap() Fails
PSS ID Number: Q130564
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.5
--

SYMPTOMS
========

If an SNMP manager application calls SnmpMgrGetTrap() to recieve traps and
there are traps available, it returns FALSE. If the application calls
GetLastError(), the error code returned is 42 (SNMP_MGMTAPI_TRAP_ERRORS).

RESOLUTION
==========

The SNMP Manager API SnmpMgrGetTrapListen() must be called before calling
SnmpMgrGetTrap(). The event handle returned by SnmpMgrGetTrapListen() can
then be ignored to poll for traps.

STATUS
======

This behavior is by design.

REFERENCES
==========

For more information, please see the Microsoft Windows NT SNMP Programmer's
Reference (PROGREF.RTF).

Additional reference words: 3.50
KBCategory: kbnetwork kbprb
KBSubcategory: NtwkSnmp

PRB: SnmpMgrStrToOid Assumes Oid Is in Mgmt Subtree
PSS ID Number: Q129063
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5
--

SYMPTOMS
========

When using the SNMP Manager API SnmpMgrStrToOid() and passing it a valid
Oid, the application is unable to get the requested variables.

CAUSE
=====

The SNMP Manager API SnmpMgrStrToOid assumes that the Oid that is supplied
to it is under the internet MIB of the mgmt subtree (1.3.6.1.2.1.x).

RESOLUTION
==========

To get variables that are not under the mgmt subtree, the Oid must be
preceeded by a period (.). For example, say an application is trying to get
the system group and the Oid passed to SnmpMgrStrToOid is this:

 1.3.6.1.2.1.1

Then the application will try to get the following, which does not exist:

 iso.org.dod.internet.mgmt.1.1.3.6.1.2.1.1

The correct way to get the system group is to pass this:

 .1.3.6.1.2.1.1

STATUS
======

This behavior is by design.

REFERENCES
==========

Microsoft Windows/NT SNMP Programmer's Reference (PROGREF.RTF).

Additional reference words: 3.10 3.50
KBCategory: kbnetwork kbprb kbdocerr
KBSubcategory: NtwkSnmp

PRB: Special Characters Missing from Compiled Help File
PSS ID Number: Q86719
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
--

SYMPTOMS
========

In version 2.0 of Microsoft Word for Windows, the RTF (rich-text format)
source file for a Microsoft Windows Help file contains curly (smart) single
or double quotation marks, bullets, or em or en dash characters. However,
even though the specified font contains these special characters, they are
missing when the compiled file is viewed in Help.

CAUSE
=====

Word for Windows stores special RTF tokens for these characters, which the
Microsoft Windows Help Compiler cannot process.

RESOLUTION
==========

In order to avoid these problems do one of the following:

 Format the character to use the Symbol font (without using
 Insert.Symbol).

 -or-

 Select the desired font (not Symbol) and choose the Symbol option from
 the Insert menu. Then choose Normal Text in the Symbols From list box.
 This will format the special character in the desired font.

 -or-

 Use a bitmap to represent the character or symbol. Use the "bmc"
 statement to include the bitmap into the text as a character. For more
 information on the bmc statement, see page 29 of the "Programming Tools"
 manual provided with version 3.1 of the Microsoft Windows SDK.

Additional reference words: 3.10 3.50 4.00 95 HC HC30.EXE HC31.EXE HCP.EXE
KBCategory: kbtool kbprg kbprb
KBSubcategory: TlsHlp

PRB: Spy Repeatedly Lists a Single Message
PSS ID Number: Q74278
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
--

SYMPTOMS
========

SPY sometimes reports messages as having been sent twice. Messages
from DDE conversations, especially the WM_DDE_DATA, WM_DDE_ACK, and
WM_DDE_POKE messages, are the most often duplicated. This behavior
can be seen by choosing All Windows from Spy's Windows menu,
selecting DDE messages in Spy's Options dialog, and then running
two applications that communicate using DDE.

CAUSE
=====

Spy displays a message each time it is retrieved. If an application
retrieves a message once by calling PeekMessage() with PM_NOREMOVE,
and then again with GetMessage(), Spy will report it twice. Spy
cannot determine that the message was already retrieved by the
application. Since the application is using the message twice, the
message should indeed be shown twice. This is a useful feature for
determining how an application is handling the DDE messages sent to
it.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbtool kbprg kbprb
KBSubcategory: TlsSpy

PRB: StartDoc() Fails with Non-Zeroed DOCINFO
PSS ID Number: Q135119

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

A call to StartDoc() fails, and no other reason for failure can
be found.

CAUSE
=====

The DOCINFO structure passed to StartDoc() is not initialized to zeros
before use.

RESOLUTION
==========

Perform the following three steps:

1. Call memset() to initialize the structure to zeros.

2. Set the cbSize member to the appropriate value.

3. Set the other relevant structure members' values.

Sample Code

Here is an example of what this code might be:

DOCINFO di;

// Get the DC, SetAbortProc(), and so on.

memset(&di, 0, sizeof(DOCINFO));
di.cbSize = sizeof(DOCINFO);
di.lpszDocName = "MyDoc";
if(StartDoc(hDC, &di) <= 0)
 HandleFailure();

MORE INFORMATION
================

As a general rule, any structure that has a member that indicates the size
of the structure should be initialized to all zeros before being used by

following the previous steps.

Additional reference words: 3.10 3.50 4.00 fail error print DC
KBCategory: kbprint kbprb kbcode
KBSubcategory: GdiPrn

PRB: Starting a Service Returns "Logon Failure" Error
PSS ID Number: Q120556

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SYMPTOMS
========

Starting a service from either the service control manager or from the
StartService API may return error 1069, "ERROR_SERVICE_LOGON_FAILED."

CAUSE
=====

This error occurs if the service was started from an account that does not
have the "Log on a service" privilege.

RESOLUTION
==========

An account can be granted the "Log on a service right" through the User
Manager Application. From the Policies menu, choose User Rights. In the
User Rights Dialog Box, select the "Show Advanced User Rights" check box.
Choose "Log on a service," in the "Right" scroll box. Then choose the Add
button to grant your account the "Log on a service" privilege.

Additional reference words: 3.10 3.50
KBCategory: kbprg kbprb
KBSubcategory: BseService

PRB: Successful LoadResource of Metafile Yields Random Data
PSS ID Number: Q86429

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

When an application for the Microsoft Windows graphical environment
calls the LoadResource() function to load a metafile from the
application's resources, locks the metafile with the LockResource()
function, and uses the metafile, the application receives random
data even though the LoadResource() and LockResource() functions
indicate successful completion.

CAUSE
=====

The application loaded the metafile previously and when the
application freed the metafile, it used the DeleteMetaFile() function
to invalidate the metafile handle.

RESOLUTION
==========

Modify the code that unloads the metafile from memory to call the
FreeResource() function.

MORE INFORMATION
================

The LoadResource() and FreeResource() functions change the lock count
for a memory block that contains the resource. If the application
calls DeleteMetaFile(), Windows does not change the lock count. When
the application subsequently calls LoadResource() for the metafile,
Windows does not load the metafile because the lock count indicates
that it remains in memory. However, the returned memory handle points
to the random contents of that memory block.

For more information on the resource lock count, query in the
Microsoft Knowledge Base on the following words:

 multiple and references and LoadResource

Most of the time, an application uses the DeleteMetaFile() function to
remove a metafile from memory. This function is appropriate for

metafiles created with the CopyMetaFile() or CreateMetaFile()
functions, or metafiles loaded from disk with the GetMetaFile()
function. However, DeleteMetaFile() does not decrement the lock count
of a metafile loaded as a resource.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95 EnumMetaFile
GetMetaFile GetMetaFileBits PlayMetaFile PlayMetaFileRecord SetMetaFileBits
SetMetaFileBitsBetter
KBCategory: kbui kbprb
KBSubcategory: UsrRsc

PRB: TAB Key, Mnemonics with FindText and ReplaceText Dialogs
PSS ID Number: Q96134

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

When implementing the FindText and/or ReplaceText common dialog box, the
dialog box is displayed but the TAB key and mnemonics do not work properly.

CAUSE
=====

The FindText and ReplaceText common dialog boxes are modeless dialog boxes.
Therefore, a call to IsDialogMessage must be made in the application's main
message loop in order for the TAB key and mnemonics to work properly.

RESOLUTION
==========

This problem can be corrected by adding a call to IsDialogMessage() in the
application's main message loop.

MORE INFORMATION
================

A typical message loop might resemble the following

 while (GetMessage(&msg,NULL,NULL,NULL))
 {
 if (ghFFRDlg==NULL || !IsDialogMessage(ghFFRDlg, &msg))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 }

where ghFFRDlg is a global window handle for the currently active modeless
common dialog box.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui kbprb
KBSubcategory: UsrCmnDlg

PRB: Tape Variable Blocksize Limited to 64K Bytes
PSS ID Number: Q152518
--
The information in this article applies to:

 - Microsoft Win32 Application Programming Interface, included with:
 Microsoft Windows NT, versions 3.51, 4.0
--

SYMPTOMS
========

When using the Variable Blocksize technique of writing data to a tape
device on Windows NT, block sizes may be limited to either 64K or 128K
bytes.

CAUSE
=====

SCSI Tape devices can only write to each tape block the number of bytes
transferable over the SCSI Bus in a single I/O operation. Each Host Bus
Adapter (HBA)-specific SCSI miniport driver specifies the maximum number of
pages that the HBA can scatter/gather for the DMA transfer. Multiplying the
page size times the number of scatter/gather entries will yield the
effective limit to the number of bytes that can be transmitted in a single
I/O operation.

On x86 Windows NT, PAGE_SIZE is 4K bytes and many popular SCSI HBAs
(including Adaptec xx40) support a maximum of 16-17 pages, yielding a limit
of 64K bytes transferred during a single I/O operation.

Some BusLogic HBAs support 31 scatter/gather entries yielding slightly less
than 128K bytes per I/O.

STATUS
======

This behavior is by design.

Additional reference words: 3.51 4.00
KBCategory: kbprg kbprb
KBSubcategory: bseFileio

PRB: Taskbar Anomolies When Application Larger than the Screen
PSS ID Number: Q142166

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95

SYMPTOMS
========

If your application is sized larger than the available screen size, the
taskbar does not act consistantly with respect to staying in the forground
or dropping to the background when the "Always on Top" setting is on.

Basically, if an application is larger than the screen resolution and the
left edge of the app is visible, the taskbar remains topmost once it has
been touched. If the left edge of the application is not visible, the
taskbar continues to fall behind the application each time it gets the
focus.

RESOLUTION
==========

Make sure when sizing your window to use GetSystemMetrics() with either
SM_C[X|Y]MAXIMIZED or SM_C[X|Y]FULLSCREEN as appropriate to get an
appropriate size for your window. Do not exceed the size specified
by SM_C[X|Y]SCREEN. This is especially important when responding to
WM_DISPLAYCHANGE messages.

STATUS
======

This behavior is by design.

Additional reference words: 4.00
KBCategory: kbui kbprb
KBSubcategory:

PRB: time() Incorrect If TZ Variable Not Defined
PSS ID Number: Q149702
--
The information in this article applies to:

 - Microsoft Win32s versions 1.30, 1.30c
--

SYMPTOMS
========

When you call the C run-time function, ctime() or localtime() from a 32-bit
applicaiton running under Win32s and the TZ environment variable is not set
to zero, the displayed time is incorrect. The following piece of code
demonstrates the problem.

#include <windows.h>
#include <stdio.h>
#include <time.h>

 time_t timet;
 char szMsg[256];

 time(&timet);
 wsprintf(szMsg, "The time is %s\n", ctime(&timet));
 MessageBox(NULL, szMsg, "Win32s Test - time() function", MB_OK);

CAUSE
=====

The function that causes the time shift is ctime(), not time(). Actually
ctime() calls localtime(), which subtracts nine hours by default if the TZ
environment variable is not defined. If TZ is set to zero, the time will be
displayed correctly.

STATUS
======

This behavior is by design.

Additional reference words: 1.30 1.30c kbinf crt time
KBCategory: kbprg kbprb
KBSubcategory: w32s

PRB: TrackPopupMenu() on LoadMenuIndirect() Menu Causes UAE
PSS ID Number: Q75254

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

When LoadMenuIndirect() is used to create a menu from a menu template and
the menu handle is passed to TrackPopupMenu(), Windows reports an
unrecoverable application error (UAE). Windows NT and Windows 95 display
the floating pop-up menu as a vertical bar.

CAUSE
=====

The menu handle returned from LoadMenuIndirect() does not point to a menu
with the MF_POPUP bit set.

RESOLUTION
==========

The following code fragment demonstrates the correct procedure to "wrap"
the menu created by LoadMenuIndirect() inside another menu. This procedure
sets the MF_POPUP bit properly.

 hMenu1 = LoadMenuIndirect(lpMenuTemplate);

 hMenuDummy = CreateMenu();
 InsertMenu(hMenuDummy, 0, MF_POPUP, hMenu1, NULL);

 hMenuToUse = GetSubMenu(hMenuDummy, 0);

Use hMenuToUse when TrackPopupMenu() is called. The values of hMenu1 and
hMenuToUse should be the same.

When the menu is no longer required, call DestroyMenu() to remove
hMenuDummy. This call will also destroy hMenu1 and free the resources it
used.

Additional reference words: 3.00 3.10 3.50 4.00 gpf
KBCategory: kbui kbprb kbcode
KBSubcategory: UsrMen

PRB: TransactNamedPipe() Returns Error 230
PSS ID Number: Q140022

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.5, 3.51

SYMPTOMS
========

When you use Named Pipes and run the client and server on the same
computer, if TransactNamedPipe() is called from the client side, the
error code returned is 230 (the pipe state is invalid).

CAUSE
=====

The client side is running in byte mode as opposed to message mode as
required by TransactNamedPipe().

RESOLUTION
==========

Use SetNamedPipeHandleState() to set the pipe mode to message mode on
the client side.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

If the client and server are running on the same computer, it is possible
to open the client side without explicitly specifying the computer name
using this format:

 \\.\pipe\test

This is processed by the Named Pipe File System (NPFS), which defaults to
byte mode. For this reason, if SetNamedPipeClientHandle() is not called on
the client side, calling TransactNamedPipe() will fail with the error 230.

Instead of using the previous format, a client application running on the
same computer (or on a different computer) can use the computer name as
shown here:

 \\Server\pipe\test

When the computer name is used like this, the request is processed through
the redirector, which defaults to message mode. Therefore, a call to
SetNamedPipeHandleState() is not required.

Please note that a robust application should call SetNamedPipeHandleState()
even if the client is running on a different computer or using the computer
name if running on the same computer.

Additional reference words: 3.50 3.51
KBCategory: kbnetwork kbdocerr kbprb
KBSubcategory: NtwkMisc

PRB: Trouble Enumerating a Remote Server's Ports in Windows 95
PSS ID Number: Q150522
--
The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included
 with Microsoft Windows 95
--

SYMPTOMS
========

In Windows 95, when a valid remote server name is specified in the first
parameter, the EnumPorts API fails and GetLastError reports error 0x87
(Invalid Parameter). The EnumPorts API succeeds in enumerating local ports
when NULL is passed as the first parameter.

CAUSE
=====

By design, the built-in print providers in Windows 95 do not support remote
enumeration of ports.

RESOLUTION
==========

Alternate print providers can be installed that do support remote
enumeration of ports. For information on creation and installation of print
providers in Windows 95, see the Windows 95 DDK.

STATUS
======

This behavior is by design.

Additional reference words: 4.0 remote network list port permission
KBCategory: kbgraphic kbprb
KBSubcategory: GdiPrint

PRB: Trouble Using DIBSection as a Monochrome Mask
PSS ID Number: Q149585
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for:

 - Windows NT versions 3.5 and 3.51
 - Windows 95
--

SYMPTOMS
========

When you use BitBlt() to create a monochrome mask on a 1bpp DIBSection,
target pixel color is chosen without regard for the background color in the
target device context. The AND mask that results is not what the programmer
intended, and subsequent transparent blts using that mask do not maintain
proper transparency.

CAUSE
=====

BitBlt() with a DIBSection as a target results in color matching without
regard for the current background color. This means that GDI decides
whether black or white would be a closer match for each color in the bitmap
and sets the target pixel accordingly.

RESOLUTION
==========

Either use a Device Dependent Bitmap (DDB) for the mask, or set the pixels
in the DIBSection manually. To perform this task manually would require
checking each pixel against the background color and setting the target
pixel to white for those that match.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

A commonly used method for creating an AND mask for transparent BitBlts
involves blting the color source image to a monochrome bitmap. When
converting color to monochrome, BitBlt() uses the background color (set
with SetBkColor()) to determine which pixels should be white and which
should be black. However, this is true only for device dependent bitmaps.
When the target of a BitBlt() is a DIBSection, color matching is always
performed. This means that, for a DIBSection, the background color is
ignored, and colors in the source image are matched to white or black based
on color matching.

Additional reference words: 3.51 3.50 4.00 CreateDIBSection StretchBlt
BitBlt mono transparency
KBCategory: kbgraphic kbprb
KBSubcategory: GdiBmp

PRB: Unable to Choose Kanji Font Using CreateFontIndirect
PSS ID Number: Q119914

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

You have difficulty getting the Japanese font handle in Microsoft Win32
Software Development Kit (SDK) for Japanese Windows 95. If you use
CreateFontIndirect() to create the font handle, only the English font is
selected. You are unable to select Kanji (the main system
of writing in Japan) fonts such as MS Mincho and MS Gothic.

CAUSE
=====

The lfCharSet field in the LOGFONT structure is not set to
"SHIFTJIS_CHARSET".

RESOLUTION
==========

Specify SHIFTJIS_CHARSET as the value for lfCharSet field.

MORE INFORMATION
================

In Windows 95, Japanese fonts cannot be selected without the lfCharSet
field being set to SHIFTJIS_CHARSET. This standard was not enforced in
Japanese Windows NT and Japanese Windows 3.1, So an application with
lfCharSet set to a value other than SHIFTJIS_CHARSET might be able to
select Japanese fonts under Japanese Windows NT and Japanese Windows
version 3.1 using CreateFontIndirect(), but not under Japanese Windows 95.

ShiftJIS is a double-byte character set (DBCS) unique to the Japanese
version of Windows NT, Windows 95, and Windows version 3.1. It requires
a specialized font, keyboard input, and DBCS string-handling support.

Additional reference words: 4.00 kbprb
KBCategory: kbgraphic kbprb
KBSubcategory: GdiFnt WIntlDev

PRB: Unicode ChooseColor() Help Button May Crash Common Dialog
PSS ID Number: Q102026
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1, 3.5, and 3.51
--

SYMPTOMS
========

A Unicode compiled program, or a program that explicitly calls the
ChooseColorW() function, may suffer an access violation in the common
dialog boxes if the Help button in the ChooseColor() dialog box is chosen.

CAUSE
=====

This problem may not be 100-percent reproducible. Because of the way that
the program loader loads code into memory, a certain address referenced by
the common dialog box Help button logic may or may not be valid depending
on what other applications have been run, what application is calling
ChooseColorW(), and the order in which these programs are run.

WORKAROUND
==========

The following are suggested workarounds:

 - Try running an ANSI-compiled application that uses the common
 dialog boxes, and open one of the common dialog boxes before you run
 the application having this problem.

 - A workaround for new applications developers is to call
 ChooseColorW() with a hook function (see the Windows Software
 Development Kit documentation for more information on common dialog
 box hook functions), handle the Help button logic, and return TRUE
 from the hook function to bypass the standard common dialog box
 push-button code.

Additional reference words: 3.10 3.50
KBCategory: kbprg kbprb
KBSubCategory: UsrCmnDlg

PRB: UnrealizeObject() Causes Unexpected Palette Behavior
PSS ID Number: Q86800

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

In an application for the Microsoft Windows graphical environment,
when a logical palette (HPALETTE) is used with a device-dependent
bitmap (DDB) and the application realizes the palette, the DDB is
painted in incorrect colors.

CAUSE
=====

The UnrealizeObject function was previously called to unrealize the
palette.

RESOLUTION
==========

Modify the code to remove the call to UnrealizeObject()/

MORE INFORMATION
================

Because the colors of a DDB are stored using indices into the system
palette rather than explicit RGB colors, proper DDB rendering depends
on the colors of the system palette being set properly. An application
sets up the system palette to display a DDB by realizing a logical
palette. The realization process changes the colors in the system
palette and creates a mapping between entries in the logical palette
and entries in the system palette.

When an application first renders a logical palette with RealizePalette(),
Windows sets an internal flag to indicate that the palette has been
realized and stores the current mapping from logical palette entries to
physical palette entries. When an application realizes the palette again
(for example, after another application modifies the palette), Windows
restores the effected entries of the system palette to the state they had
when the logical palette was realized for the first time.

This mechanism allows a bitmap first realized with a specific palette
to display correctly when the same palette is realized subsequently.

If the application calls UnrealizePalette() on a logical palette,
Windows discards the stored state information for the palette. If the
application realizes the palette subsequently, its colors may map into
new locations in the system palette. Because the bitmap contains
indices into the old system palette, it may display incorrectly.

To address this situation, do not call UnrealizeObject() on a palette if
the application has a DDB that depends on that palette.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbgraphic kbprb
KBSubcategory: GdiPal

PRB: Using Animation Resources with the Animation Control
PSS ID Number: Q149688
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0
 - Microsoft Win32s version 1.3
--

SYMPTOMS
========

When sending the ACM_OPEN message to an animation control, you have the
option of using an ANI file or an ANI resource. When you specify a
resource, you cannot specify which module to load that resource from.

CAUSE
=====

When loading an animation resource, the control uses the hInstance that it
was created with (the hInstance passed to CreateWindow, DialogBox, or
CreateDialog).

RESOLUTION
==========

Use an animation file or store the animation resource in the same module
from which the animation control was created. One other alternative, which
is probably not a good idea, is to retrieve the resource by using
FindResource, LoadResource, and LockResource, and then save that to a
temporary animation file. The drawback to this method is that you need to
make sure that the temporary file is deleted.

STATUS
======

This behavior is by design.

Additional reference words: 1.30 4.00
KBCategory: kbprg kbui kbprb
KBSubcategory: UsrCtl w32s

PRB: VerLanguageNameA() Not Exported in Win32s
PSS ID Number: Q147876
--
The information in this article applies to:

 - Microsoft Win32s version 1.3c
--

SYMPTOMS
========

If you call VerLanguageName() from a 32-bit application running under
Win32s, you will get an Undefined link error on VerLanguageNameA in
Version.dll.

CAUSE
=====

In Win32s, Version.dll does not export this function. In Windows NT and
Windows 95, VerLanguageNameA is exported in both Version.dll and
Kernel32.dll. In Windows NT, Version.dll forwards the export of
VerLanguageName() to the export in Kernel32.dll. In Windows 95, Version.dll
separately calls the function in Kernel32.dll.

RESOLUTION
==========

Under Win32s, you can still use the VerLanguageName() function from your
application because the function exists in Kernel32.dll. You will need to
specify Kernel32.lib before Version.lib on your link line. Then your
application will use the function from Kernel32.dll.

STATUS
======

This behavior is by design.

Additional reference words: 1.30c win32s gdi
KBCategory: kbprg kbprb
KBSubcategory: w32s kbgdi

PRB: Vertical Scroll Bars Missing from Windows Help
PSS ID Number: Q77841
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
--

SYMPTOMS
========

The vertical scroll bars do not appear in Windows Help when the
window is sized smaller than the amount of text being displayed.

CAUSE
=====

The displayed topic is formatted as a nonscrolling region.

RESOLUTION
==========

Select the topic in the RTF editor and turn off the "Keep Paragraph
with Next" formatting. This format is used by the Help Compiler to
delimit the nonscrolling regions.

MORE INFORMATION
================

To remedy the situation in Microsoft Word for Windows, perform the
following three steps:

1. Highlight the entire topic.

2. From the Format menu, choose Paragraph.

3. In the Format Paragraph dialog box, cancel the "With Next" check box.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool kbprg kbprb
KBSubcategory: TlsHlp

PRB: Video for Windows Skips AVI Frames
PSS ID Number: Q122775

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0

SYMPTOMS
========

When Video For Windows is playing an AVI file, the processing power of the
computer system and the data rate of the AVI stream determine whether
frames will be skipped during playback. If the data rate exceeds the
ability of Video For Windows to render all the AVI frames in time, Video
For Windows will first try to catch up by decompressing delta frames but
not drawing them. If Video For Windows still can't catch up, it will
eventually skip all the way to the next key frame before it renders a new
frame.

STATUS
======

This behavior of Video for Windows is by design and cannot be controlled by
the application being affected.

Additional reference words: 3.10 3.50 4.00 95 VfW AVI
KBCategory: kbmm kbprb
KBSubcategory: MMVideo

PRB: Video Window Moves During Playback
PSS ID Number: Q139977

The information in this article applies to:

 - Microsoft Video for Windows Development Kit version 1.1
 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 Software Development Kit (SDK) versions 3.5, 4.0

SYMPTOMS
========

The video playback window shifts position at the start of playback.

CAUSE
=====

Microsoft Windows versions 3.1 and 3.11 along with Windows 95 automatically
position the top-left corner (origin) of the video image (client area) at
specific screen coordinates for playback performance reasons. Therefore,
playback in a non-aligned client area can be slowed by up to 50%.

RESOLUTION
==========

To avoid the window repositioning, an application must set the top-left
coordinates of the window's client area in a correctly-aligned screen
location prior to playback. Select the nearest x and y screen coordinates
for the client area that are evenly divisible by 4. For example, use
(12,12) instead of (13,13), and use (20,16) for (19,16) or (20,17).

There are no flags that disable the automatic alignment.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

To provide optimal playback across the broad spectrum of video boards and
displays supported by Windows, the origin of the video image is aligned
along a 32-bit boundary. Client areas not aligned along 32-bit boundaries
will cause the playback windows to be repositioned towards the upper-left
corner of the screen. Aligning the video image on a four-pixel boundary
helps achieve the highest frames per second.

Stretching playback may also slow performance down by 50%. In most cases,
you should play the movie in its standard format unless stretching is
required. For example, play a 320x240 movie at 320x240.

Additional reference words: 3.10 4.00 3.50 alignment avi move vfw pixel

pixels
KBCategory: kbmm kbprg kbprb
KBSubcategory: MMVideo

PRB: Why Thunking to 16-bit MAPI Will Fail Under Win32s
PSS ID Number: Q149710
--
The information in this article applies to:

 - Microsoft Win32s version 1.30, 1.30c
--

SUMMARY
=======

This article discusses the details on why a Win32s client (a 32-bit thunk
DLL) cannot thunk to the 16-bit MAPI DLL. It also suggests several
workarounds for this situation.

SYMPTOMS
========

The MAPI interface is not supported under any version of Win32s. In
addition, a Win32s client (a 32-bit application or a DLL) cannot directly
thunk down to 16-bit MAPI APIs in Windows 3.x. There are several
resolutions for this scenario.

CAUSE
=====

When the 16-bit MAPI DLL allocates a buffer on behalf of a call from the 32-
bit thunk DLL, your 16-bit code will have to call
UTSelectorOffsetToLinear() on the returned 16:16 address. The result is a
flat 32-bit address that can then be passed back to the 32-bit DLL. But
when the 32-bit code is ready to call the 16-bit MAPIFreeBuffer() function
by way of the thunk, the flat 32-bit address needs to be converted back to
the original 16:16 address that the 16-bit code can use. The normal
solution is that the 16-bit code would call UTLinearToSelectorOffset() on
the 32-bit address passed from the 32-bit client before making a call to
MAPIFreeBuffer().

But the problem is that in the following nested function call where x is a
segmented (16:16) address, Win32s does not guarantee to return the original
value of x (16:16 address) back. Hence, when MAPIFreeBuffer is called with
this bogus 16:16 address, it fails.

 UTLinearToSelectorOffset(UTSelectorOffsetToLinear(x))

Note that this address translation problem described here is not specific
to the MAPI allocation and de-allocation routines. It applies to all 16-bit
MAPI functions that use 16:16 segmented addresses.

RESOLUTION
==========

Here are three approaches you can use to resolve this situation:

 - Correct the address translation problem that is inherent to Win32s. For

 each 16-bit MAPI function that would use or return a 16:16 segmented
 address and that needs to be converted to a 32-bit address to be passed
 on to the 32-bit side, you need to maintain a global lookup table or
 array on the 16-bit side that associates the new 32-bit address with the
 corresponding 16:16 address. When the 32-bit code calls into 16-bit code
 passing a valid 32-bit address, instead of calling
 UTLinearToSelectorOffset() on this 32-bit address, you will have to
 fetch the corresponding 16:16 address from the lookup table. This 16:16
 address can be used with all the MAPI functions on the 16-bit side.

 - Write a separate 16-bit client (a 16-bit DLL) that would implement the
 MAPI functionality by linking to the 16-bit MAPI DLL. The Win32s client
 (a 32-bit DLL) would then thunk to the 16-bit client DLL that makes the
 MAPI calls. The address translation problem does not exist in this
 scenario because all MAPI functionality is implemented and executed on
 the 16-bit side by the 16-bit client DLL linking to the 16-bit MAPI DLL.

 - Write a separate 16-bit client (a 16-bit application) that implements
 the MAPI functionality by linking to the 16-bit MAPI DLL. Then the
 Win32s client (either a 32-bit application or DLL) can communicate with
 this 16-bit client by way of the documented IPC (interprocess
 communication) methods that are available to Win32s. For more
 information on IPC mechanisms under Win32s, please see the following
 article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q95900
 TITLE : Interprocess Communication on Windows NT,
 Windows 95, & Win32s

Note that Visual Foxpro version 3.0b includes a DLL called Foxmapi.fll that
implements the second workaround, allowing 32-bit Visual Foxpro
applications to communicate with 16-bit MAPI functions under Win32s.

These three approaches are only suggestions; Microsoft cannot provide
support if you decide to implement them in your Win32s-based application.

STATUS
======

This behavior is by design.

Additional reference words: 1.30 1.30c kbinf ipc mapi thunk win16 win32
KBCategory: kbprg kbprb
KBSubcategory: w32s

PRB: Win32-Based Screen Saver Shows File Name in Control Panel
PSS ID Number: Q126239

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SYMPTOMS
========

After writing a Win32-based screen saver, if the IDS_DESCRIPTION string is
missing from the string table, the file name of the screen saver module is
displayed in the desktop control panel applet. This happens even if the
DESCRIPTION entry is specified in the .DEF file of the module.

CAUSE
=====

Each Windows screen saver has a name, which is a string packed into the
screen saver module by the linker. This name is displayed in the screen
saver name drop down list box under the desktop applet in the control
panel. The user can select different screen savers for the desktop through
this list box.

Under 16-bit Windows, the name of a screen saver is specified by the
DESCRIPTION entry in the .DEF file. Under Windows NT, this is no longer
true. Instead, a special entry in the string table is used to specify the
name of a screen saver. This string must have IDS_DESCRIPTION as its
string ID. IDS_DESCRIPTION is defined in SCRNSAVE.H.

If the DESCRIPTION entry is missing from the .DEF file for a 16-bit screen
saver, or the IDS_DESCRIPTION is missing from the string table for a 32-bit
screen saver, Windows NT displays the file name of the screen saver module
in the drop down list box in the Desktop control panel applet.

RESOLUTION
==========

Place the DESCRIPTION entry in .DEF file for a 16-bit screen saver, or
place the IDS_DESCRIPTION in the string table for a 32-bit screen saver.

STATUS
======

This behavior is by design.

REFERENCES
==========

Chapter 14, "Screen Saver Library," Microsoft Windows Software Development
Kit, version 3.1, Programmer's Reference, Volume 1: Overview.

Chapter 79, "Screen Saver Library," Microsoft Win32 Programmer's Reference,
Volume 2: System Services, Multimedia, Extensions, and Application Notes.

Additional reference words: 3.10 3.50
KBCategory: kbgraphic kbprb
KBSubcategory: GdiScrsav

PRB: Win32s GetVolumeInformation() Returns 0x12345678 or 0
PSS ID Number: Q93639
--
The information in this article applies to:

 - Microsoft Win32s version 1.0, 1.1, 1.15, and 1.2
--

SYMPTOMS
========

In Win32s version 1.0 and 1.1, GetVolumeInformation() always returns a
volume ID of 0x12345678. In Win32s version 1.15 and later, the return is 0.

STATUS
======

This is a known limitation of Win32s and is by design.

Additional reference words: 1.00 1.10 1.20
KBCategory: kbprg kbprb
KBSubcategory: W32s

PRB: Win32s Limits DDE Atom Strings
PSS ID Number: Q147847
--
The information in this article applies to:

 - Microsoft Win32s version 1.3
--

SYMPTOMS
========

Win32s limits the length of DDE atom strings to 80 characters. If a string
of more than 80 characters is specified, the string will be truncated and
you won't be able match your atoms to those supplied with DDE messages.

CAUSE
=====

By design, this is a Win32s limit. No change to Win32s on this matter is
likely.

RESOLUTION
==========

The only way to avoid this behavior is to keep your DDE names strings to
less than 80 characters.

STATUS
======

This behavior is by design.

Additional reference words: 1.30
KBCategory: kbprg kbui
KBSubcategory: UsrDde W32s

PRB: Windows 95 SCSI Miniport Drivers May Generate Bad CDBs
PSS ID Number: Q141205

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows 95

SYMPTOMS
========

Windows 95 SCSI Miniport drivers may generate ATAPI 12-byte CDBs that
contain trailing random characters.

CAUSE
=====

Windows 95 SCSI Miniport drivers that handle ATAPI commands often need to
convert the SCSI-2 6-byte or 10-byte CDBs sent by Windows 95 into 12-byte
CDBs for their ATAPI hardware. The Input Output Supervisor (IOS) under
Windows 95 does not zero out the CDB array in the SCSI Request Block (SRB)
before writing data to it. If a driver handling ATAPI commands does not
zero out the last unused bytes in the 12-byte CDB before sending the CDB to
the controller, unpredictable results may occur.

RESOLUTION
==========

Zero out the unused bytes of the 12-byte CDB before passing it to the
controller.

Additional reference words: 4.00 garbage
KBCategory: kbprg kbprb
KBSubcategory:

PRB: Windows NT 3.50 Fonts Look Different from v.3.51 Fonts
PSS ID Number: Q137328
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.51 and 4.0
 - Microsoft Windows NT version 3.51
--

SYMPTOMS
========

An application can instruct Windows that a fixed (non-proportional) system
font should be used for a dialog box by specifying "Fixedsys" in the dialog
template in the applications resource file (.RC file). For example:

IDD_ABOUTBOX DIALOG DISCARDABLE 22, 17, 167, 64
STYLE DS_MODALFRAME | WS_CAPTION | WS_SYSMENU
CAPTION "About Generic"
FONT 9, "Fixedsys"
BEGIN
...

The fixed system font used in a dialog box in Windows NT version 3.50
differs from that used in version 3.51. A 32-bit Windows-based application
run under Windows NT version 3.50 displays a bolder looking dialog box
font. In addition, the font editor in Microsoft Visual C++ displays the
system fixed font as it would look under Windows NT version 3.50, so the
font is incorrectly displayed for a Windows NT version 3.51 application.

RESOLUTION
==========

To instruct Windows to use the bolder font in Windows NT version 3.51 as it
does in version 3.50, you need to mark the application as a version 3.10
application. This will also ensure that the application's dialog box font
looks the same under the Visual C++ dialog editor as it does when run under
Windows NT 3.51. To mark your application as version 3.10, click Settings
on the Project menu in Visual C++, click the Link tab in the Project
Options dialog box, and add this:

 /SUBSYSTEM:windows,3.10

You can also add this manually to the "linker" options in your makefile.

Additional reference words: 4.00
KBCategory: kbgraphic kbprb
KBSubcategory: GdiFnt

PRB: Windows Properties Warning Using GWL_USERDATA in Win32s
PSS ID Number: Q147433
--
The information in this article applies to:

 - Microsoft Win32s version 1.3
--

SYMPTOMS
========

If an application uses SetWindowLong() with GWL_USERDATA in Win32s, then
the debug version of Windows will issue warning messages saying that some
window properties were not removed when the window is destroyed.

CAUSE
=====

GWL_USERDATA is supported under Win32s, even though this feature is not
available under Windows 3.x.

In Win32s, GWL_USERDATA is implemented by adding two window properties to
the window, one per 16-bit property. These window properties are not
removed by Win32s when the window is destroyed.

RESOLUTION
==========

Even though Win32s does not remove the window properties, they are actually
deleted by Windows upon application termination. No memory leak will occur
from this problem, so it is safe to ignore the warning in most cases.

In the case where your application uses the GWL_USERDATA with a large
number of windows, these window properties are not freed until the
application terminates. A workaround or suggestion for such a situation
would be to use WNDCLASS.cbWndExtra instead of GWL_USERDATA.

STATUS
======

This behavior is by design.

Additional reference words: 1.30 win32s gwl_userdata
KBCategory: kbprg kbprb
KBSubcategory: w32s

PRB: Windows REQUEST Function Not Working With Excel
PSS ID Number: Q26234

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

The REQUEST function does not work correctly with Excel. The
request message is received, however, Excel does not process the
WM_DDE_DATA message that is sent back.

RESOLUTION
==========

The fResponse bit must also be set in the WM_DDE_DATA message (bit
12). This bit tells Excel that the data message is in reply to a
REQUEST function and not an ADVISE function. If
"lpddeup->fResponse=1" is added, the REQUEST function should work
correctly.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui kbprb
KBSubcategory: UsrDde

PRB: WinExec() Fails Due to Memory Not Deallocated
PSS ID Number: Q126710

The information in this article applies to:

 - Microsoft Win32s, versions 1.15, 1.2, and 1.25

SYMPTOMS
========

Under Win32s version 1.15, when a Win32-based application spawns a 16-bit
application several times using WinExec(), after a few successful spawns,
WinExec() fails.

Each time WinExec() is called to start a 16-bit application, Win32s
allocates a fixed and pagelocked block. The owner of this block is the
Win32-based application. The memory is not deallocated when the 16-bit
application is terminated, only when the 32-bit application is
terminated.

CAUSE
=====

This is actually a bug in Windows version 3.1. The 32-bit WinExec() calls
the 16-bit LoadModule(). Win32s passes the environment of the calling
process to LoadModule(). Then the Windows 3.1 LoadModule() allocates a
buffer for the environment, copies this environment to the buffer, and
passes this buffer to the child process. The problem is that the owner of
the new allocated buffer is the parent, so the memory is freed when the
parent exits. There is no code for otherwise freeing the memory. This bug
also affects 16-bit Windows-based applications if LoadModule() is called
with an environment selector that is not NULL.

In a related problem, when the parent terminates, the child's environment
becomes invalid. This may cause a general protection (GP) fault.

RESOLUTION
==========

To work around the problem, you can call the Windows version 3.1 WinExec()
through the Universal Thunk. However, the parent will not be able to modify
the child's environment.

In Win32s version 1.2x, this problem exists only if you start 16-bit
application using CreateProcess() or LoadModule() and pass it explicit
environment strings. In this case, you will encounter the Windows version
3.1 bug. If you do not pass an explicit environment, the environment passed
to the 16-bit application is NULL. This resolves the problems mentioned in
the Symtpoms and Cause sections of this article.

MORE INFORMATION
================

With the changes in Win32s version 1.2x, if the calling application
modifies the environment, the child process will not get the modified
environment of the parent. It will get the global MS-DOS environment. This
is also true for WinExec().

If you need to pass a modified environment, call LoadModule() or
CreateProcess() with the environment set to what GetEnvironmentStrings()
returns. Be aware that this will cause a memory leak. In addition, if the
parent terminates before the child, the child's environment will become
invalid.

Additional reference words: 1.20 GPF
KBCategory: kbprg kbprb
KBSubcategory: W32s

PRB: WINS.MIB & DHCP.MIB Files Missing from Win32 SDK 3.5
PSS ID Number: Q121625

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.5

SYMPTOMS
========

Two Simple Network Management Protocol (SNMP) files (WINS.MIB and DHCP.MIB)
are missing from the currently released version of the Win32 SDK for
Windows NT version 3.5.

The files are two Management Information Base (MIB) files for WINS and DHCP
SNMP usage. The two files (WINS.MIB and DHCP.MIB) are used in the
generation of a MIB.BIN file for use with the NT SNMP Extendible Agent
Management API.

RESOLUTION
==========

Only developers working on SNMP programming using the SNMP Extendible Agent
Management API will need these two .MIB files. To get the two .MIB files:

Download NEWMIB.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download NEWMIB.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the SOFTLIB\MSLFILES directory
 Get NEWMIB.EXE

The two missing .MIB files will be included with the next release of the
Win32 SDK for Windows NT version 3.5.

All licensing and redistribution agreements from the Win32 SDK for Windows
NT version 3.5 also apply to these .MIB files. Please consider the two .MIB
files part of the Win32 SDK. Please see your licensing agreement for the
Win32 SDK for more details.

Additional reference words: 3.50 softlib
KBCategory: kbnetwork kbfile kbprb
KBSubcategory: NtwkSnmp

PRB: WNetEnumResource Returns Different Info on Win95 and NT
PSS ID Number: Q152823

The information in this article applies to:

- Microsoft Win32 Software Development KIT (SDK) for Windows NT,
 version 3.5
- Microsoft Win32 Software Development KIT (SDK) for Windows 95,
 version 3.5

SYMPTOMS
========

When the WINNET example from the January 96 MSDN is built on Windows 95,
and the sample is executed at the MS-DOS prompt from within Windows 95, the
following error is displayed:

 This program has performed an illegal operation and will be shutdown.
 If the problem persists, contact the program vendor.

If the WINNET example is executed within the Visual C++ 4.0 debug
environment, the following error is received:

 Unhandled exception in winnet.exe: 0xC0000005 : Access Violation.

CAUSE
=====

The WNetEnumResouce API returns different values on Win95 than on
Windows NT.

The problem occurs when an enumeration starts at the root of the network.
The first buffer of NETRESOURCE structures returned from WNetEnumResource
is different. On Windows 95, the lpProvider field is set to the Network
Provider name and the lpRemoteName is set to NULL. On NT, the lpProvider
and lpRemoteName fields point to different strings containing the same
values.

In the WINNET sample, when the EnumResource function tries to execute its
example filter, the _strnicmp C Run-Time function causes an ACCESS
VIOLATION because the lpRemoteName is NULL.

RESOLUTION
==========

Checking the value of the lpRemoteName field and ensuring it is pointing to
a valid address before allowing the filter to execute prevents the ACCESS
VIOLATION error.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

The difference between the way the WNetEnumResource API works on NT and
Windows 95 has only been observed when starting an enumeration at the root
of the network. On Windows 95 platforms, it becomes necessary to check the
value returned in the lpRemoteName for the first set of structures returned
from WNetEnumResource.

Sample Code

 /* Compile options needed:
 Be sure to include the mpr.lib library when linking.
 */
 #include <windows.h>
 #include <winnetwk.h>
 #include <stdio.h>

 void main (void)
 {
 NETRESOURCE resourcebuffer[5000];
 HANDLE hEnum;
 DWORD netRet, dwEntriesToGet=0XFFFFFFFF;
 DWORD dwSizeResourcebuffer = sizeof(resourcebuffer);

 //
 // Enumerate starting at the root of the network
 //
 netRet = WNetOpenEnum(RESOURCE_GLOBALNET,
 RESOURCETYPE_DISK,
 (RESOURCEUSAGE_CONNECTABLE |
 RESOUCEUSAGE_CONTAINER),
 (LPNETRESOURCE)NULL,
 &hEnum);
 if(netRet == NO_ERROR)
 {
 //
 // The WNetOpenEnum was successful. Now get all the network
 providers
 for
 // the network.
 //
 netRet = WNetEnumResource(hEnum,
 (LPDWORD)&dwEntriesToGet,
 (LPVOID)resourcebuffer,
 (LPDWORD)&dwSizeResourcebuffer);
 if(netRet == NO_ERROR)
 {
 //
 // The resourcebuffer contains the network providers. Take a
 look at
 // the lpRemoteName field. ON win 95, this field will be NULL,
 on NT

 // the field will match the lpProvider field
 //
 DWORD i;
 for(i = 0; i < dwEntriesToGet; i++)
 {
 if(resourcebuffer[i].lpRemoteName) printf("Remote Name:
 %s\n",
 resourcebuffer[i].lpRemoteName);
 else printf("Remote Name: IS NULL\n");
 printf("Network Provider: %s\n\n",
 resourcebuffer[i].lpProvider);
 }
 }
 else printf("ERROR: WNetEnumResource API failed : %ld\n", netRet);
 }
 else printf("ERROR: WNetOpenEnum API Failed: %ld\n", netRet);

 }

Additional reference words: 3.50
KBCategory: kbprg kbnetwork kbprb
KBSubcategory: kbnocat
.END
<><><><><><tegory:
KBSubcategory:
.END

Max Vaughn
SAE, Microsoft Premier Developer Support

PRB: Writing to Resources May Change Last Error
PSS ID Number: Q137289

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

When writing to an application's resources, the value returned by
GetLastError may change. This behavior occurs only in Windows 95, not
Windows NT.

CAUSE
=====

When an application writes to its own resources, a page fault occurs, which
is handled internally by the kernel. The handling of this page fault may
change the value returned by GetLastError.

RESOLUTION
==========

To avoid this problem:

1. Don't write to your own resources. The pointer returned by LockResource
 should be treated as read-only. This was always the intention, however,
 writing to your own resources happens to work on Windows NT.

2. If you really need to write to your own resource, do not rely on the
 last error being preserved. If the value returned by GetLastError is
 important to you, call GetLastError before writing to your own resource.
 Then call SetLastError to restore the value after you are finished.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

It is legitimate for an API to change the last error even when it is
successful.

Additional reference words: 4.00
KBCategory: kbui kbprb
KBSubcategory: UsrRes

PRB: WSAAsyncSelect() Notifications Stop Coming
PSS ID Number: Q94088
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0
--

SYMPTOMS
========

I have set a WSAAsyncSelect() call to notify me of read (FD_READ) and
disconnection (FD_CLOSE). When a read call is posted on my message
queue, I continually read from the socket until there are no more
characters waiting. After each read, I use a select() call to determine
if more data needs to be read. However, after a while, the notifications
stop coming. Why is this?

CAUSE
=====

The message queue must be cleared of extraneous notification messages
for each read notification message.

RESOLUTION
==========

Call WSAAsyncSelect(sockt, hWnd, 0, 0) to clear the message queue for
each read notification.

MORE INFORMATION
================

Sample Code

WSA_READCLOSE:
 if (WSAGETSELECTEVENT(lParam) == FD_READ) {

 FD_ZERO(&readfds);
 FD_SET(sockt, &readfds);

 timeout.tv_sec = 0;
 timeout.tv_usec = 0;

 /* Clear the queue of any extraneous notification messages. */

 WSAAsyncSelect(sockt, hWnd, 0, 0);

 while (select(0, &readfds, NULL, NULL, &timeout) != 0) {
 recv(sockt, &ch, 1, 0);
 }

 /* Reset the message notification. */

 WSAAsyncSelect(sockt, hWnd, WSA_READCLOSE, FD_READ | FD_CLOSE);
 }

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbnetwork kbprb
KBSubcategory: NtwkWinsock

PRB: WSACancelAsyncRequest Causes a Memory Access Violation
PSS ID Number: Q140166

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.51, 4.0

SYMPTOMS
========

An application that uses the WinSock 1.1 call WSACancelAsyncRequest
occasionally throws memory exceptions or causes erratic behavior.

CAUSE
=====

WSACancelAsyncRequest has unavoidable timing conflicts that make canceling
calls in progress impossible. WSACancelAsyncRequest is only successful at
stopping calls queued for processing that have not yet started.

RESOLUTION
==========

Don't use WSACancelAsyncRequest to cancel calls that may be in progress.
Specifically, don't try to cancel asynchronous selects. Allow them to
complete, and ignore the results if necessary.

STATUS
======

This behavior is by design.

MORE INFORMATION
================

When an asynchronous WinSock call is in progress, it is hard to stop. For
example, an outstanding WSAAsyncSelect call may be in the process of
writing to a buffer your application supplied. The sockets DLL has no way
of terminating a memory copy because of the timing windows generated by
multiple threads. One thread may be in the middle of copying while another
does the cancel.

The best way to cancel asynchronous events is to allow them to complete,
but ignore the results. For WSAAsyncSelect, you might set a status flag,
and when the select message is processed by your window procedure, you can
check the status flag, ignoring the message if the flag is set.

Additional reference words: 4.00
KBCategory: kbnetwork kbtshoot kbprb
KBSubcategory: kbntwkmisc

PRB: WSAStartup() May Return WSAVERNOTSUPPORTED on Second Call
PSS ID Number: Q130942

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 Software Development Kit (SDK) versions 3.1,
 3.5, 3.51, and 4.0

SYMPTOMS
========

If two sections of code within the same process call WSAStartup(), the
second call to WSAStartup() fails and returns error WSAVERNOTSUPPORTED
unless the second call specifies the version negotiated in the first call.

This happens even if the requested version would normally be accepted.
Often the extra calls to WSAStartup() come from one or more DLLs loaded by
the process.

RESOLUTION
==========

If multiple calls are made to WSAStartup(), the second call must request
the same version negotiated in the first call.

MORE INFORMATION
================

Some specific examples may help. Currently, if the version of Winsock
requested is 1.1 or greater, the negotiated version will be 1.1. If a
version less than 1.1 is requested, the call fails and returns the
WSAVERNOTSUPPORTED error.

Example One

First call : 1.1 requested
Second call: 1.1 requested
Result : Success

Example Two

First call : 2.0 requested
Second call: 1.1 requested
Result : Success

Example Three

First call : 2.0 requested

Second call: 2.0 requested
Result : WSAVERNOTSUPPORTED

Example Four

First call : 1.1 requested
Second call: 2.0 requested
Result : WSAVERNOTSUPPORTED

Additional reference words: 3.50 4.00 95 3.10
KBCategory: kbnetwork kbprb
KBSubcategory: NtwkWinsock

PRB:LVM_HITTEST & ListView State Images Don't Work as Expected
PSS ID Number: Q135786

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s version 1.3

SYMPTOMS
========

The flags member of the LV_HITTESTINFO structure indicates LVHT_NOWHERE,
instead of LVHT_ONITEMSTATEICON when you send the LVM_HITTEST message
(ListView_HitTest macro) to a ListView control with coordinates that
correspond to the state image of an item, and the control is in large or
small icon view.

STATUS
======

This behavior is by design. The ListView state images are not fully
implemented in large and small icon view. Future support of state images in
large and small icon view has not been decided.

Additional reference words: 4.00 1.30
KBCategory: kbui kbprb
KBSubcategory: UsrCtl

PRB:ReadConsoleInput() & PeekConsoleInput() Don't Receive DBCS
PSS ID Number: Q146448
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows 95
--

SYMPTOMS
========

The Windows 95 console APIs ReadConsoleInput() and PeekConsoleInput() which
are used to read data from a console input buffer do not receive DBCS key
codes when the IME is activated.

This behavior is different from Windows NT console support in which the
ReadConsoleInput() and PeekConsoleInput() APIs are enabled to receive key
event records for converted the DBCS data from the keyboard buffer similar
to an IME-enabled Windows-based application. In a Windows NT console
application, once the DBCS character is determined, Windows NT posts the
converted character bytes to the console buffer.

CAUSE
=====

The Window 95 console architecture is based upon the Windows 3.1 MS-DOS BOX
rather than console support in DBCS versions of Windows NT. In Windows 95,
the console is working on top of the MS-DOS BOX. This design is opposite to
DBCS versions of Windows NT where all console character i/o is directed to
the Win32 subsystem.

Specifically, the Windows 95 implementation of ReadConsoleInput() and
PeekConsoleInput() hook interrupt 0x09 and return keyboard events back
to the application. Because existing MS-DOS IMEs and the VIME VxD hook
interrupt 0x16 rather than interrupt 0x09, ReadConsoleInput() and
PeekConsoleInput() are unable to receive DBCS characters composed by IMEs.

STATUS
======

This behavior is by design. This architectural difference between DBCS
versions of Microsoft Windows 95 and Windows NT is confirmed. The Windows
95 console-IME functionality may change in future versions to become more
compatible with Windows NT. We will post new information here in the
Microsoft Knowledge Base as it becomes available.

Additional reference words: FESDK Far East
KBCategory: kbprg kbprb
KBSubcategory:

PRB:Real-Mode Drivers Don't Support GetFileInformationByHandle
PSS ID Number: Q137234

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SYMPTOMS
========

GetFileInformationByHandle returns ERROR_NOT_SUPPORTED when called for a
file on a volume supported by a real-mode driver.

CAUSE
=====

GetFileInformationByHandle relies on a new service which is not supported
by real-mode drivers. The real-mode, handle-based services do not fill in
more than a couple of the fields in the output structure.

GetFileInformationByHandle is useful for files that reside on volumes that
are supported by protected mode drivers.

RESOLUTION
==========

If you get back ERROR_NOT_SUPPORTED from a GetFileInformationByHandle call,
you need to make a name-based call to get the equivalent information.

MS-DOS-based and 16-bit Windows-based applications can call Int 21h
function 440Dh, sub function 6Fh (GetDriveMapInfo) to determine if a
volume is supported by a protected mode driver.

STATUS
======

This behavior is by design.

Additional reference words: 4.00 Windows 95
KBCategory: kbprg kbprb
KBSubcategory: BseFileio

PRB:Scroll Bar Continues Scrolling After Mouse Button Released
PSS ID Number: Q102552

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

The scroll bar continuously scrolls even after the left mouse button
is released. The type of scroll bar is irrelevant to this problem,
that is, the same problem occurs regardless of whether the scroll bar
is part of the window or is a scroll bar control.

CAUSE
=====

This problem occurs usually when a message retrieval loop is executed
as the result of actions taken for scrolling upon receiving one of the
scroll bar notification messages.

When scrolling, an internal message retrieval loop is started in
Windows. The task of this message loop is to keep track of scrolling
and to send the appropriate scroll bar notification messages,
WM_HSCROLL and WM_VSCROLL. Scrolling is terminated once WM_LBUTTONUP
is received. If another message loop is started during scrolling, the
WM_LBUTTONUP is retrieved by that message loop, and because an
application does not have access to the scroll bar's internal message
retrieval loop, WM_LBUTTONUP cannot be dispatched correctly.
Therefore, the WM_LBUTTONUP is never received by the internal message
retriever, and scrolling is never ended.

The application that is scrolling does not have to retrieve messages
explicitly to cause this problem. Calling any of the following
functions or processing any message that has a message retrieval loop,
while scrolling, can cause the WM_LBUTTONUP to be lost. The functions
listed below fall into this category:

 DialogBox()
 DialogBoxIndirect()
 DialogBoxIndirectParam()
 DialogBoxParam()
 GetMessage()
 MessageBox()
 PeekMessage()

RESOLUTION

==========

While Scrolling, the WM_LBUTTONUP message should not be retrieved from
the queue by any message retrieval loop other than the scroll bar's
internal one.

An application may come across this problem as follows:

 - An application implements a message retrieval loop to implement
 background processing, for example, background processing while
 performing a time consuming paint.

 - An application implements a message retrieval loop to implement
 communication with another application or DLL. For example, in
 order to scroll, the application needs to receive data from
 elsewhere.

Possible Workarounds

Two possible workarounds are listed below. The first workaround is
used by many exiting applications and by Windows; however, under rare
circumstances the first workaround may not be a feasible one. In this
case, the second workaround may be used. However, if possible, please
try to avoid implementing message retrieval completely while
scrolling.

 - Use timer-message-based processing. Break down the complicated
 processing into smaller tasks and keep track of where each task
 starts and ends, then perform each task based on a timer message.
 When all components of the processing are complete, kill the timer.
 See below for an example of this workaround.

 - Implement a message retrieval loop, but make sure WM_LBUTTONUP is
 not retrieved by it. This can be accomplished by using filters. See
 below for some examples of this workaround.

Example Demonstrating Workaround 1

An application has a complex paint procedure. Calling ScrollWindow(), to
scroll, generates paint messages. Background processing takes place
while painting.

1. When receiving the WM_PAINT message do the following:

 a. Call BeginPaint().

 b. Copy the invalidated rect to a global rect variable (for
 example, grcPaint) to be used in step 2. The global rect
 grcPaint would be a union of the previously obtained rect
 (grcPaint) and the new invalidated rect (ps.rcPaint). The code
 for this will resemble the following:

 RECT grcPaint; // Should be initialized before getting the

 // first paint message.
 :
 :
 UnionRect(&grcPaint, &ps.rcPaint,&grcPaint);

 c. Call ValidateRect() with ps.rcPaint.

 d. Call EndPaint().

 e. Set a Timer.

 This way, no more WM_PAINT messages are generated, because there
 are no invalid regions, and a timer is set up, which will generate
 WM_TIMER messages.

2. Upon receiving a WM_TIMER message, check the global rect variable;
 if it is not empty, take a section and paint it. Then adjust the
 global rect variable so it no longer includes the painted region.

3. Once the global rect variable is empty then kill the timer.

Example Demonstrating Workaround 2

An application needs to obtain some data through DDE or some other
mechanism from another application, which is then displayed in the
window. In order to scroll, the application needs to request and then
obtain the data from a server application.

There are three different filters that can be used to set up a
PeekMessage() and get the information. The filters can be set up by
using the uFilterFirst and uFilterLast parameters of PeekMessage().
uFilterFirst specifies the fist message in the range to be checked and
uFilterLast specifies the last message in the range to be checked. For
more information on PeekMessage() and its parameters, see the Windows
SDK "Programmer's Reference, Volume 2: Functions" for version 3.1 and
"Reference, Volume 1" for version 3.0.

1. Check and retrieve only the related message(s) for obtaining the
 needed data.

2. Check for WM_LBUTTONUP without removing it form the queue; if it is
 in the queue, break. Otherwise, retrieve and dispatch all messages.

3. Retrieve all messages less than WM_LBUTTONUP and greater than
 WM_LBUTTONUP, but do not retrieve WM_LBUTTONUP.

MORE INFORMATION
================

Steps to Reproduce Behavior

The following is the sequence of events leading to the loss of
the WM_LBUTTONUP message:

1. Click the scroll bar using the mouse.

2. Step 1 generates a WM_NCLBUTTONDOWN message.

3. Step 2 causes a Windows internal message loop to be started. This
 message loop looks for scroll-bar-related messages. The purpose of
 this message loop is to generate appropriate WM_HSCROLL or
 WM_VSCROLL messages. The message loop and scrolling terminates once
 WM_LBUTTONUP is received.

4. When receiving the WM_HSCROLL or WM_VSCROLL message, the application
 either gets into a message retrieval loop directly or calls functions
 which result in retrieval of messages.

5. WM_LBUTTONUP is removed from the queue by the message loop
 mentioned in step 4. WM_LBUTTONUP is then dispatched.

6. As result of step 5 WM_LBUTTONUP message is dispatched elsewhere
 and the internal message retrieval loop, mentioned in step 3 never
 receives it. The message loop in step 3 is looking for the
 WM_LBUTTONUP to stop scrolling. Because it is not received, the
 scroll bar continues scrolling.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95 scrollbar stuck
KBCategory: kbui kbprb
KBSubcategory: UsrCtl

PRB:Unselecting Edit Control Text at Dialog Box Initialization
PSS ID Number: Q96674

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

To remove the highlight (selection) from an edit control text, an EM_SETSEL
message must be sent to the control. However, while processing the
WM_INITDIALOG message of a dialog box, sending an EM_SETSEL fails to remove
the highlight from (unselect) the edit control text.

CAUSE
=====

While processing the WM_INITDIALOG message, sending the EM_SETSEL message
fails to remove the highlight from the edit control. This happens because
the edit control has not yet been drawn. Because it's not drawn and there
is no selection information available to the edit control's procedure, the
EM_SETSEL message is ignored. In other words, the SendMessage() function
passes the EM_SETSEL message too early to the edit control for it to become
effective.

RESOLUTION
==========

There are two solutions to the above problem.

Solution 1

Use SetFocus() to set the input focus on the edit control. Use
PostMessage() to post the EM_SETSEL message to the edit control rather than
using SendMessage() and return FALSE from the WM_INITDIALOG handler.

Solution 2

When a newly created dialog box is displayed with focus on an edit control,
the default text of the edit control is shown highlighted. In some cases,
the text highlighting is undesirable because accidentally pressing a
character key removes the original text from the edit control. Therefore,
the workaround is to unselect the text by sending an EM_SETSEL message to
the edit control at the dialog box initialization.

Delay the EM_SETSEL message until the focus is set to the edit control.
That is, while processing the first EN_SETFOCUS notification message, an
EM_SETSEL message must be sent to the edit control to remove the highlight
from its text. For example:

 static BOOL bFirstTime; // We want to unselect only once.

 switch (message)
 {
 case WM_INITDIALOG:
 bFirstTime = TRUE;
 return TRUE;

 case WM_COMMAND:
 switch (wParam)
 {
 case IDC_EDIT:
 // If this is the first time, then unselect.
 if (HIWORD(lParam) == EN_SETFOCUS &&
 bFirstTime)
 {
 SendMessage(GetDlgItem(hwndDialog, IDC_EDIT),
 EM_SETSEL, 0,
 MAKELPARAM(-1, -1));
 bFirstTime = FALSE;
 }
 break;
 .
 .
 .
 } // switch (wParam)
 .
 .
 .
 } // switch (message)

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui kbprb
KBSubcategory: UsrCtl

Precautions When Passing Security Attributes
PSS ID Number: Q94839

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

All Win32 APIs that allow security to be specified take a parameter of type
LPSECURITY_ATTRIBUTES as the means to attach the security descriptor.
However, it is a common error to pass a PSECURITY_DESCRIPTOR type to such
functions instead. Because PSECURITY_DESCRIPTOR is of type LPVOID (for
opaque data-type reasons), by C Language definition, it is implicitly
converted to the correct type. Therefore, the compiler does not generate
any warnings; however, unexpected run-time errors will result.

MORE INFORMATION
================

Below is a correct example of creating a named pipe with a security
descriptor attached.

Sample Code

 saSecurityAttributes.nLength = sizeof(SECURITY_ATTRIBUTES);
 saSecurityAttributes.lpSecurityDescriptor = psdAbsoluteSD;
 saSecurityAttributes.bInheritHandle = FALSE;

 hPipe = CreateNamedPipe(TEST_PIPE_NAME,
 PIPE_ACCESS_DUPLEX,

 (PIPE_TYPE_BYTE|PIPE_READMODE_BYTE|PIPE_WAIT),
 100, // maximum instances
 0, // output buffer, sized as needed
 0, // input buffer, sized as needed
 100, // timeout in milliseconds

 (LPSECURITY_ATTRIBUTES)&saSecurityAttributes);
 if(INVALID_HANDLE_VALUE == hPipe)
 { // handle error
 }

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

Preventing Screen Flash During List Box Multiple Update
PSS ID Number: Q66479

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The WM_SETREDRAW message can be used to set and clear the redraw flag for a
window. Before an application adds many items to a list box, this message
can be used to turn the redraw flag off, which prevents the list box from
being painted after each addition. Properly using the WM_SETREDRAW message
keeps the list box from flashing after each addition.

MORE INFORMATION
================

The following four steps outline ways to use the WM_SETREDRAW message to
facilitate making a number of changes to the contents of a list box in a
visually pleasing manner:

1. Clear the redraw flag by sending the list box a WM_SETREDRAW
 message with wParam set to FALSE. This prevents the list box from
 being painted after each change.

2. Send appropriate messages to make any desired changes to the
 contents of the list box.

3. Set the redraw flag by sending the list box a WM_SETREDRAW message
 with wParam set to TRUE. The list box does not update its display
 in response to this message.

4. Call InvalidateRect(), which instructs the list box to update its
 display. Set the third parameter to TRUE to erase the background in
 the list box. If this is not done, if a short list box item is
 drawn over a long item, part of the long item will remain visible.

The following code fragment illustrates the process described above:

 /* Step 1: Clear the redraw flag. */
 SendMessage(hWndList, WM_SETREDRAW, FALSE, 0L);

 /* Step 2: Add the strings. */
 for (i = 0; i < n; i++)
 SendMessage(hWndList, LB_ADDSTRING, ...);

 /* Step 3: Set the redraw flag. */
 SendMessage(hWndList, WM_SETREDRAW, TRUE, 0L);

 /* Step 4: Invalidate the list box window to force repaint. */
 InvalidateRect(hWndList, NULL, TRUE);

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95 flash flicker
KBCategory: kbui
KBSubcategory: UsrCtl

Preventing the Console from Disappearing
PSS ID Number: Q99115

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

When a console application is started from the File Manager, from the
Program Manager, or by typing "start <progname>" from the command prompt,
it executes in its own console. This console disappears as soon as the
application terminates, and therefore the user can't read anything written
to the screen between the last pause and program exit. To resolve this
problem, the programmer should pause the application before termination to
allow the user to read all of the information on the screen.

It is not likely that the programmer will want to introduce this pause if
the application is started directly from the command prompt, because in
this situation it won't make much sense to the user. However, there is no
API (application programming interface) that directly determines whether or
not the application shares a console with CMD.EXE. There is a method that
can be used to determine this information in most cases. When the
application first starts up, call GetConsoleScreenBufferInfo(). If the
cursor position is (0, 0), then the application has its own console, which
will disappear when the application terminates. Otherwise, the application
is operating within a console belonging to another program, typically
CMD.EXE.

NOTE: This method will not work if the user combines a clear screen (CLS)
and execution of the application into one step ([C:\] CLS & <progname>),
because the cursor position will be (0, 0), but the application is using
the console, which belongs to CMD.EXE.

MORE INFORMATION
================

To start a console application with its own console that will not disappear
when the application is terminated, use CMD /K. For example, use

 start CMD /K <progname>

Note that it is possible to programmatically force an application to always
have its own console by immediately doing a FreeConsole() and an
AllocConsole(). The disadvantage is that the C run-time handles are no
longer valid. Use CreateFile("CONIN$", ...) with lpsa->bInherit=TRUE, in
combination with _open_osfhandle() and dup2() to close the current handles
(stdin, stdout, stderr) and associate handles that will be inherited.

Additional reference words: 3.10 3.50

KBCategory: kbprg
KBSubcategory: BseCon

Preventing Word Wrap in Microsoft Windows Help Files
PSS ID Number: Q88142
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
--

SUMMARY
=======

By default, the Microsoft Windows Help application wraps lines of text
to reflect the size of its window. However, there are situations (such
as a table of information) in which wrapping text is undesirable. The
information below presents two methods of preventing a section of text
from changing when the Help application window changes sizes. These
techniques apply to version 2.0 of the Microsoft Word for Windows-based
application.

MORE INFORMATION
================

Method 1

This method, which is compatible with versions 3.0 and 3.1 of the
Microsoft Windows Help Compiler, involves two steps:

1. Place either a hard or a soft carriage return at the end of each
 line.

2. Format the section with the "keep lines together" paragraph
 attribute. From the Format menu, choose Paragraph, and select the
 Keep Lines Together check box in the Paragraph dialog box.

Method 2

This method, which is compatible only with version 3.1 of the Help
Compiler, is to create a one row, one column table in Word for
Windows. Set the width of the table as desired and allow the text to
wrap within the table normally. Windows Help will duplicate the word
breaks in the table provided that the font used to author the table is
selected by the Help engine when displaying the table. If Help uses a
different font, the text may wrap differently, even though the table
keeps the specified width.

Note

When you use either of these methods, if the Windows Help window is
not large enough to display the entire width of a topic, Help displays

a horizontal scroll bar rather than wrapping the text to make it
visible.

Additional reference words: 3.00 3.10 3.50 4.00 95 HLP word wrap wordwrap
engine HC31 HC31.EXE HCP HCP.EXE
KBCategory: kbtool
KBSubcategory: TlsHlp

Primitives Supported by Paths Under Windows 95
PSS ID Number: Q125697

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

Windows 95 supports the full set of Win32 path APIs. However, only a
limited set of primitives can be used to build a path. Windows 95 supports
the following primitives to build paths:

ExtTextOut
LineTo
MoveToEx
PolyBezier
PolyBezierTo
Polygon
Polyline
PolylineTo
PolyPolygon
PolyPolyline
TextOut

All other Win32 primitives will be ignored if used in a path. As with other
Win32 primitives in Windows 95, paths are not mapped pixel-by-pixel to
Windows NT; they support only 16-bit coordinates.

Additional reference words: 4.00 GDI
KBCategory: kbgraphic
KBSubcategory: GdiMisc

Printer Escapes Under Windows 95
PSS ID Number: Q125692

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Printer escapes are used to access special printer device features and have
been used widely in Windows version 3.x. With Windows 95, Microsoft is
encouraging application developers to move away from these escapes by
providing GDI functionality to replace them.

For example, a Win32-based application should not call the NEXTBAND and
BANDINFO escapes. Banding is no longer needed in Windows 95. Most of these
escapes, however, are still provided for 16-bit-based applications for
backwards compatibility. The only recommended escapes for 32-bit,
Windows 95-based applications are the QUERYESCSUPPORT and PASSTHROUGH
escapes.

MORE INFORMATION
================

Applications written for Windows version 3.x can use the QUERYESCSUPPORT
and the PASSTHROUGH escapes, as well as the following 10 escapes. It is
important to note that these escapes are only supported for backwards
compatibility. All new Windows 95-based applications should use Win32 API
that replaces these escapes:

 ABORTDOC
 ENDDOC
 GETPHYSPAGESIZE
 GETPRINTINGOFFSET
 GETSCALINGFACTOR
 NEWFRAME
 NEXTBAND
 SETABORTPROC
 SETCOPYCOUNT
 STARTDOC

The following functions should always be used in place of a printer escape:

 Function Printer Escape Replaced
 --
 AbortDoc ABORTDOC
 EndDoc ENDDOC
 EndPage NEWFRAME
 SetAbortProc SETABORTPROC
 StartDoc STARTDOC

Windows 95 provides six new indexes for the GetDeviceCaps function that
replace some additional printer escapes:

 Index for GetDeviceCaps Printer Escape Replaced
 --
 PHYSICALWIDTH GETPHYSPAGESIZE
 PHYSICALHEIGHT GETPHYSPAGESIZE
 PHYSICALOFFSETX GETPRINTINGOFFSET
 PHYSICALOFFSETY GETPRINTINGOFFSET
 SCALINGFACTORX GETSCALINGFACTOR
 SCALINGFACTORY GETSCALINGFACTOR

Although a lot of the escapes have been replaced with Win32 GDI equivalent
APIs, not all device-dependent escapes have been replaced. It is up to
the printer driver manufacturer to decide whether or not its Windows
95-based driver will contain device-specific escapes that were present in
its Windows version 3.x driver. An example of a device-specific escape
would be the Windows version 3.x PostScript driver's POSTSCRIPT_IGNORE
escape. Before calling any of these escapes, an application must first call
the QUERESCSUPPORT escape to find out if the escape is supported or not.

Additional reference words: 4.00
KBCategory: kbprint
KBSubcategory: GdiPrn

Printing in Windows Without Form Feeds
PSS ID Number: Q11915

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

A Windows-based application cannot print directly to a printer without
issuing a form feed. In 16-bit Windows, the NEWFRAME escape is required to
start the print spooler. This escape, in turn, sends a form feed to the
printer. Without the NEWFRAME escape, the spooler never runs, and nothing
is output to the printer. Win32-based applications should use EndPage(),
which replaces the NEWFRAME escape.

MORE INFORMATION
================

It is possible to drive the spooler directly by using the spooler
functions documented in the Windows Device Development Kit (DDK). This
allows the printer driver to be bypassed. However, by doing this, the
ability to use GDI output functions and Windows's device-independent
capabilities will be lost.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprint
KBSubcategory: GdiPrn

Printing Monochrome and Color Bitmaps from Windows
PSS ID Number: Q64520

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The format of a display bitmap determines the procedure that an
application uses to print it. The two display bitmap formats available
under Windows are device-dependent bitmaps (DDBs) and device-
independent bitmaps (DIBs). DIBs and DIB functions should be used for
printing color bitmaps.

MORE INFORMATION
================

An application can use the BitBlt() or StretchBlt() function to print
or display a monochrome bitmap. Both printer drivers and display
drivers can process monochrome DDBs. However, an application must
account for the difference in resolution between a typical display and
a typical laser printer. The StretchBlt() function enables an
application to appropriately change the size of a monochrome bitmap.

When the display bitmap is a color DDB, printing is more difficult
because the display DDB format may not match the printer DDB format.
Because Windows supports a wide variety of devices, this situation is
quite common. When the formats DDB differ, the application must
convert the display DDB into a print DDB or a DIB.

DIBs are designed to ease the process of transferring images between
devices. When an application uses a DIB, the GDI or the output driver
performs any conversions required for the device. The ShowDIB sample
application, provided in the Windows SDK and the Win32 SDK, demonstrates
converting a DDB to a DIB and other common manipulations. The file DIB.C is
of particular interest. It contains the functions that perform the
manipulations. This code can be incorporated into other applications.

For more information, please see the Windows SDK 3.1 DIBView sample or the
Win32 SDK WinCap32 sample.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbprint
KBSubcategory: GdiPrn

Printing Offset, Page Size, and Scaling with Win32
PSS ID Number: Q115762

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

The Win32 documentation for the Escape() function says that the
GETPHYSPAGESIZE, GETPRINTINGOFFSET, and GETSCALINGFACTOR escapes are
obsolete, but it fails to mention the recommended way to get this
information.

The information retrieved by all three escapes can now be retrieved by
calling GetDeviceCaps() with the appropriate index:

 - For the GETPHYSPAGESIZE escape, the indexes to be used with
 GetDeviceCaps() are PHYSICALWIDTH and PHYSICALHEIGHT.

 - For GETPRINTINGOFFSET, the indexes are PHYSICALOFFSETX and
 PHYSICALOFFSETY.

 - For GETSCALINGFACTOR, the indexes are SCALINGFACTORX and SCALINGFACTORY.

All six new indexes are defined in the file WINGDI.H, though they are
missing from the GetDeviceCaps() documentation.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprint
KBSubcategory: GdiPrn

Priority Inversion and Windows NT Scheduler
PSS ID Number: Q96418

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

The kernel schedules a thread with the real-time process priority class
ahead of every thread with another priority class (nearly all user-mode
threads). Windows NT does not alter the priority of real-time threads. The
system trusts that the programmer will avoid priority inversion. The
remainder of this article talks about the scheduling of threads that are
not real-time priority class and how the system solves the problem of
priority inversion.

Threads are scheduled according to their priority. When the kernel is
choosing which thread will execute on a processor, the highest dynamic
(variable) priority thread is picked. Priority inversion occurs when two
(or more) threads with different priorities are in contention to be
scheduled. Consider a simple case with three threads: Thread 1 is high
priority and becomes ready to be scheduled, while thread 2, a low-priority
thread, is executing in a critical section. Thread 1, the high-priority
thread, begins waiting for a shared resource from thread 2. A third thread
has medium priority. The third thread receives all the processor time,
because the high-priority thread (thread 1) is busy waiting for shared
resources from the low-priority thread (thread 2). Thread 2 won't leave the
critical section, because it isn't the highest priority thread and won't be
scheduled.

The Windows NT scheduler solves this problem by randomly boosting the
priority of threads that are ready to run (in this case the low priority
lock-holders). The low priority threads run long enough to let go of their
lock (exit the critical section), and the high- priority thread gets the
lock back. If the low-priority thread doesn't get enough CPU time to free
its lock the first time, it will get another chance on the next scheduling
round.

Priority inversion is handled differently in Windows 95. If a high priority
thread is dependent on a low priority thread which will not be allowed to
run because a medium priority thread is getting all of the CPU time, the
system recognizes that the high priority thread is dependent on the low
priority thread and will boost the low priority thread's priority up to the
priority of the high priority thread. This will allow the formerly low
priority thread to run and unblock the high priority thread that was
waiting on it.

MORE INFORMATION
================

Each Process has a base priority. Each thread has a base priority that is a
function of its process base priority. A thread's base priority is settable
to:

 - 1 or 2 points above the process base
 - equal to the process base
 - 1 or 2 points below the process base

Priority setting is exposed through the Win32 API. In addition to a base
priority, all threads have a dynamic priority. The dynamic priority is
never less than the base priority. The system raises and lowers the dynamic
priority of a thread as needed.

All scheduling is done strictly by priority. The scheduler chooses the
highest priority thread which is ready to run. On a multi-processor (MP)
system, the highest N runnable threads run (where N is the number of
processors). The thread priority used to make these decisions is the
dynamic priority of the thread.

When a thread is scheduled, it is given a quantum of time in which to run.
The quantum is in units of clock ticks. The system currently uses 2 units
of quantum (10ms on r4000 and 15ms on x86).

When a thread is caught running during the clock interrupt, its quantum is
decremented by one. If the quantum goes to zero and the thread's dynamic
priority is not at the base priority, the thread's dynamic priority is
decremented by one and the thread's quantum is replenished. If a priority
change occurs, then the scheduler locates the highest priority thread which
is ready to run. Otherwise, the thread is placed at the end of the run
queue for it's priority allowing threads of equal priority to be "round
robin" scheduled. The above is a description of what is usually called
priority decay, or quantum and priority decay.

When a thread voluntarily waits (an an event, for I/O, etc), the system
will usually raise the thread's dynamic priority when it resumes.
Internally, each wait type has an associated priority boost. For example, a
wait associated with disk I/O has a one point dynamic boost. A wait
associated with a keyboard I/O has a 5 point dynamic boost. In most cases,
this boost will raise the priority of the thread such that it can be
scheduled very soon afterwards, if not immediately.

There are other circumstances under which priority will be raised. For
example, whenever a window receives input (timer messages, mouse move
messages, etc), an appropriate boost is given to all threads within the
process that owns the window. This is the boost that allows a thread to
reshape the mouse pointer when the mouse moves over a window.

By default, the foreground application has a base process priority that is
one point higher than the background application. This allows the
foreground process to be even more responsive. This can be changed by
bringing up the System applet, selecting the Tasking button, and choosing a
different option.

Additional reference words: 3.10 3.50

KBCategory: kbprg
KBSubcategory: BseProcThrd

Process Will Not Terminate Unless System Is In User-mode
PSS ID Number: Q92761

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

Under Windows NT, a process will not be terminated unless the system is
in user-mode. Suppose that TerminateProcess() is called while a device
driver or filesystem code is being executed. The system will wait until
the threads are running user code before marking the process for
termination. On system exit, processes that were the target of a
TerminateProcess() will be killed.

This may affect drivers. If a driver is waiting for an object or
multiple objects in WaitMode or UserMode, its wait may complete
unsuccessfully due to a termination request. Any code that does a
UserMode wait or an Alertable wait must check the return status of the
wait call. If the wait fails with STATUS_USER_APC or STATUS_ALERTED,
this is not an error. The driver should cleanup and return to user-mode.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseProcThrd

Process WM_GETMINMAXINFO to Constrain Window Size
PSS ID Number: Q67166

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Microsoft Windows sends a WM_GETMINMAXINFO message to a window to
determine the maximized size or position for the window, and the
maximum or minimum tracking size for the window. An application can
change these parameters by processing the WM_GETMINMAXINFO message.

Each window type has an absolute minimum size. If an application
changes any of the values associated with WM_GETMINMAXINFO to a value
smaller than the minimum, Windows will override the values specified
by the application and use the minimum size. This minimum window size
restriction has been removed from Windows version 3.1.

Note that Windows can send a WM_GETMINMAXINFO message to a window
prior to sending a WM_CREATE message. Therefore, any processing for
the WM_GETMINMAXINFO message must be independent of processing done
for the WM_CREATE message.

MORE INFORMATION
================

An application can use the WM_GETMINMAXINFO message to constrain the
size of a window. For example, the application can prevent the user
from changing a window's width while allowing the user to affect its
height, or vice versa. The following code demonstrates fixing the
width:

 int width;
 LPPOINT lppt;
 RECT rect;

 case WM_GETMINMAXINFO:
 lppt = (LPPOINT)lParam; // lParam points to array of POINTs

 GetWindowRect(hWnd, &rect); // Get current window size
 width = rect.right - rect.left + 1;

 lppt[3].x = width // Set minimum width to current width
 lppt[4].x = width // Set maximum width to current width

 return DefWindowProc(hWnd, message, wParam, lParam);

The modifications required to fix the height are quite
straightforward.

For more information on the array of POINT structures that accompanies
the WM_GETMINMAXINFO message, please refer to the "Microsoft Windows
Software Development Kit Reference."

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrWndw

Processes Maintain Only One Current Directory
PSS ID Number: Q84244

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

Processes under Windows NT maintain only one current directory. Under
MS-DOS or OS/2, a process will maintain a current directory for each drive.

MORE INFORMATION
================

For example, if you do the following

1. Set the current drive to be drive C and set the current directory
 to be \MAINC\MAINSUBC.

2. Change the current drive to be drive D and set the current
 directory to be \MAIND\MAINSUBD.

when you reset the current drive to drive C, the current directory will be
the original directory: \MAINC\MAINSUBC.

MS-DOS and OS/2 use a current directory structure (CDS) to maintain this
information. The memory for this structure is allocated at boot time, and
is set by the LASTDRIVE= line in the CONFIG.SYS file. For example, if you
set LASTDRIVE=Z, you will have 26 entries in the CDS and will be able to
track 26 current directories.

Windows NT by default allows a process to track only one current directory-
-the one for the current drive--because the underlying operating system
does not use drive letters; it always uses fully-qualified names such as:

 \Device\HardDisk0\Partition1\autoexec.bat

The Win32 subsystem maintains drive letters by setting up symbolic links
such as:

 \DosDevices\C: == \Device\HardDisk0\Paritition1
 \DosDevices\D: == \Device\HardDisk0\Paritition2
 \DosDevices\E: == \Device\HardDisk1\Paritition1

(Partitions are 1-based while hard disks are 0-based because Partition0
refers to the entire physical device, which is the "file" that FDISK opens
to do its work.) Therefore, when you do SetCurrentDirectory("c:\tmp\sub"),
the Win32 subsystem translates that to "\DosDevices\c:\tmp\sub", "...".

As far as Windows NT is concerned, there are no "drives," there is one
object namespace.

CMD.EXE maintains a private current directory for each drive it has touched
and uses environment variables to associate a current directory with each
drive. These environment variables have the form "=<drive>:".

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseFileio

Processing CBN_SELCHANGE Notification Message
PSS ID Number: Q66365

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

When a combo box receives a CBN_SELCHANGE notification message,
GetDlgItemText() will give the text of the previous selection and not
the text of the new selection.

To get the text of the new selection, send the CB_GETCURSEL message to
retrieve the index of the new selection and then send a CB_GETLBTEXT
message to obtain the text of that item.

MORE INFORMATION
================

When an application receives the CBN_SELCHANGE notification message,
the edit/static portion of the combo box has not been updated. To
obtain the new selection, send a CB_GETLBTEXT message to the combo box
control. This message places the text of the new selection in a
specified buffer. The following is a brief code fragment:

 ... /* other code */

 case CBN_SELCHANGE:
 hCombo = LOWORD(lParam); /* Get combo box window handle */

 /* Get index of current selection and then the text of that selection
*/

 index = SendMessage(hCombo, CB_GETCURSEL, (WORD)0, 0L);
 SendMessage(hCombo, CB_GETLBTEXT, (WORD)index, (LONG)buffer);
 break;

 ... /* other code */

NOTE: For Win32 applications, change the WORD and LONG casts to WPARAM and
LPARAM, respectively.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95 combobox
KBCategory: kbui
KBSubcategory: UsrCtl

Processing WM_PALETTECHANGED and WM_QUERYNEWPALETTE
PSS ID Number: Q77702

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

An application that manipulates the system palette should process the
WM_PALETTECHANGED and WM_QUERYNEWPALETTE messages to maintain its
appearance during system palette and input focus changes.

MORE INFORMATION
================

The WM_PALETTECHANGED message informs all windows that the window with
input focus has realized its logical palette, thereby changing the
system palette. This message allows a window without input focus that
uses a color palette to realize its logical palettes and update its
client area.

This message is sent to all windows, including the one that changed
the system palette and caused this message to be sent. The wParam of
this message contains the handle of the window that caused the system
palette to change. To avoid an infinite loop, care must be taken to
check that the wParam of this message does not match the window's
handle. The following sample code demonstrates how to process
WM_PALETTECHANGED:

 case WM_PALETTECHANGED:
 {
 HDC hDC; // Handle to device context
 HPALETTE hOldPal; // Handle to previous logical palette

 // If this application did not change the palette, select
 // and realize this application's palette
 if (wParam != hWnd)
 {
 // Need the window's DC for SelectPalette/RealizePalette
 hDC = GetDC(hWnd);

 // Select and realize hPalette
 hOldPal = SelectPalette(hDC, hPalette, FALSE);
 RealizePalette(hDC);

 // When updating the colors for an inactive window,
 // UpdateColors can be called because it is faster than
 // redrawing the client area (even though the results are
 // not as good)
 UpdateColors(hDC);

 // Clean up
 if (hOldPal)
 SelectPalette(hDC, hOldPal, FALSE);
 ReleaseDC(hWnd, hDC);
 }
 }
 break;

NOTE: The WM_PALETTECHANGED message is sent to all top-level and
overlapped windows; therefore, if any child window uses a color
palette, this message must be passed on to it.

The WM_QUERYNEWPALETTE message informs a window that it is about to
receive input focus. In response, the window receiving focus should
realize its palette as a foreground palette and update its client
area. If the window realizes its palette, it should return TRUE;
otherwise, it should return FALSE. The following sample code
demonstrates processing WM_QUERYNEWPALETTE:

 case WM_QUERYNEWPALETTE:
 {
 HDC hDC; // Handle to device context
 HPALETTE hOldPal; // Handle to previous logical palette

 // Need the window's DC for SelectPalette/RealizePalette
 hDC = GetDC(hWnd);

 // Select and realize hPalette
 hOldPal = SelectPalette(hDC, hPalette, FALSE);
 RealizePalette(hDC);

 // Redraw the entire client area
 InvalidateRect(hWnd, NULL, TRUE);
 UpdateWindow(hWnd);

 // Clean up
 if (hOldPal)
 SelectPalette(hDC, hOldPal, FALSE);
 ReleaseDC(hWnd, hDC);

 // Message processed, return TRUE
 return TRUE;
 }

NOTE: The WM_QUERYNEWPALETTE message is sent to all top-level and
overlapped windows; therefore, if any child window uses a color
palette, this message must be passed on to it.

Additional reference words: 3.00 3.10 3.50 4.00 95

KBCategory: kbgraphic
KBSubcategory: GdiPal

Programatically Appending Text to an Edit Control
PSS ID Number: Q109550

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Windows-based applications often use edit controls to display text. These
applications sometimes need to append text to the end of an edit control
instead of replacing the existing text. There are several ways to do this
in Windows:

 - Use the EM_SETEL and EM_REPLACESEL messages.

 -or-

 - Use the EM_SETSEL message with the clipboard functions to append text to
 the edit control's buffer.

MORE INFORMATION
================

The EM_SETSEL message can be used to place a selected range of text in a
Windows edit control. If the starting and ending positions of the range are
set to the same position, no selection is made and a caret can be placed at
that position. To place a caret at the end of the text in a Windows edit
control and set the focus to the edit control, do the following:

 HWND hEdit = GetDlgItem (hDlg, ID_EDIT);
 int ndx = GetWindowTextLength (hEdit);
 SetFocus (hEdit);
 SendMessage (hEdit, EM_SETSEL, 0, MAKELONG (ndx, ndx));

Once the caret is placed at end in the edit control, the EM_REPLACESEL
message can be use to append text to the edit control. An application sends
an EM_REPLACESEL message to replace the current selection in an edit
control with the text specified by the lpszReplace (lParam) parameter.
Because there is no current selection, the replacement text is inserted at
the current cursor location. This example sets the selection to the end of
the edit control and inserts the text in the buffer:

 SendMessage (hEdit, EM_SETSEL, 0, MAKELONG (ndx, ndx));
 SendMessage (hEdit, EM_REPLACESEL, 0, (LPARAM) ((LPSTR) szBuffer));

One other way of inserting text into an edit control is to use the Windows

clipboard. If the application has the clipboard open or finds it convenient
to open the clipboard, and copies the text into the clipboard, then it can
send the WM_PASTE message to the edit control to append text.

Before sending the WM_PASTE message, the caret must be placed at the end of
the edit control text using the EM_SETSEL message. Below is pseudo code
that shows how to implement this method:

 OpenClipBoard () ;
 EmptyClipBoard() ;
 SetClipBoardData() ;

 SendMessage (hEdit, EM_SETSEL, 0, MAKELONG (ndx, ndx));
 SendMessage (hEdit, WM_PASTE, 0, 0L);

This pseudo code appends text to the end of the edit control. Note that the
data in the clipboard must be in CF_TEXT format.

NOTE: For Win16 programs, the EM_SETSEL message specifies that the LPARAM
LOWORD/HIWORD control the start/end. For Win32 programs, the EM_SETSEL
message specifies that the WPARAM/LPARAM control the selection start/end.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrCtl

Programatically Using ICMP Echo Request and Reply (Ping)
PSS ID Number: Q139459
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.5,
 3.51, and 4.0
--

It is possible to write applications that programatically use the Internet
Control Message Protocol (ICMP) echo request and reply (popularly known as
"ping"). For more details, please look in the ICMP directory of the Win32
SDK compact disc.

Please note that this mechanism is temporary, so there is no section in the
Win32 Help file that addresses it. This will be replaced in the future by
more powerful mechanisms supported by Winsock 2.0.

REFERENCES
==========

Win32 Compact Disc \Mstools\Icmp.

Additional reference words: 3.50 3.51 4.00 Windows 95
KBCategory: kbnetwork
KBSubcategory:

Propagating Environment Variables to the System
PSS ID Number: Q104011

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

User environment variables can be modified using the System control panel
application or by editing the following Registry key:

 HKEY_CURRENT_USER \
 Environment

System environment variables can be modified using the System control panel
application (in Windows NT 3.5 and later) or by editing the following
Registry key:

 HKEY_LOCAL_MACHINE \
 SYSTEM \
 CurrentControlSet \
 Control \
 Session Manager \
 Environment

Note, however, that modifications to the environment variables do not
result in immediate change. For example, if you start another Command
Prompt after making the changes, the environment variables will reflect the
previous (not the current) values. The changes do not take effect until you
log off and then log back on.

To effect these changes without having to log off, broadcast a
WM_WININICHANGE message to all windows in the system, so that any
interested applications (such as Program Manager, Task Manager, Control
Panel, and so forth) can perform an update.

MORE INFORMATION
================

For example, on Windows NT, the following code fragment should propagate
the changes to the environment variables used in the Command Prompt:

 SendMessage(FindWindow("Progman", NULL), WM_WININICHANGE,
 0L, (LPARAM) "Environment");

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbui
KBSubcategory: UsrMisc

Prototypes for SetSystemCursor() & LoadCursorFromFile()
PSS ID Number: Q122564

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.5

SUMMARY
=======

The function prototypes for SetSystemCursor() and LoadCursorFromFile()
were inadvertently omitted from the Win32 SDK header files. These APIs
are resolved by linking for USER32.LIB.

Additionally, the use of the OCR_* constants as described in the online
help for LoadCursorFromFile() is not currently implemented. However,
this functionality is available through LoadCursor().

MORE INFORMATION
================

The correct function prototypes are given below. NOTE: These prototypes
were included correctly in the Win32 SDK 3.51/4.0 documentation.

To use these functions, add the prototypes to a file in your project after
including WINDOWS.H.

#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */

/* SetSystemCursor prototype */
WINUSERAPI BOOL WINAPI SetSystemCursor (HCURSOR hcur, DWORD id);

/* LoadCursorFromFile prototypes - UNICODE aware */
WINUSERAPI HCURSOR WINAPI LoadCursorFromFileA (LPCSTR lpFileName);
WINUSERAPI HCURSOR WINAPI LoadCursorFromFileW (LPCWSTR lpFileName);

#ifdef UNICODE
#define LoadCursorFromFile LoadCursorFromFileW
#else
#define LoadCursorFromFile LoadCursorFromFileA
#endif // !UNICODE

#ifdef __cplusplus
}
#endif /* __cplusplus */

Additional reference words: 3.50
KBCategory: kbgraphic kbdocerr
KBSubcategory: GdiCurico

Providing a Custom Wordbreak Function in Edit Controls
PSS ID Number: Q109551

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

An application sends the EM_SETWORDBREAKPROC message to an edit control to
replace the default wordwrap function with an application-defined wordwrap
function. The default wordwrap function breaks a line in a multiline edit
control (MLE) at a space character. If an application needs to change this
functionality (that is, to break at some character other than a space),
then the application must provide its own wordwrap (wordbreak) function.

MORE INFORMATION
================

A wordwrap function scans a text buffer (which contains text to be sent to
the display), looking for the first word that does not fit on the current
display line. The wordwrap function places this word at the beginning of
the next line on the display.

A wordwrap function defines the point at which Windows should break a line
of text for multiline edit controls, usually at a space character that
separates two words. This can be changed so that the line in an MLE can be
broken at any character. For more information on the EM_SETWORDBREAKPROC
message, please refer to the Windows 3.1 SDK "Programmer's Reference,
Volume 3: Messages, Structures, and Macros" manual.

Below is sample code that demonstrates how to break a line in a multiline
edit control at the "~" (tilde) character (for example) instead of the
regular space (" ") character.

The sample code assumes that the edit control is a multiline edit control
and that it is a child control in a dialog box.

Sample Code

//Prototype the application-defined wordbreakproc.
int CALLBACK WordBreakProc(LPSTR, int, int, int) ;

//Install wordbreakproc in the WM_INITDIALOG case.
 case WM_INITDIALOG:

 lpWrdBrkProc = MakeProcInstance(WordBreakProc, hInst);

 //Send the EM_SETWORDBREAKPROC message to the edit control
 //to install the new wordbreak procedure.
 SendDlgItemMessage(hDlg, ID_EDIT, EM_SETWORDBREAKPROC, 0,
 (LPARAM)(EDITWORDBREAKPROC)lpWrdBrkProc) ;
 return (TRUE);

int FAR PASCAL WordBreakProc(LPSTR lpszEditText, int ichCurrent,
 int cchEditText, int wActionCode)
{

 char FAR *lpCurrentChar;
 int nIndex;
 int nLastAction;

 switch (wActionCode) {

 case WB_ISDELIMITER:

 // Windows sends this code so that the wordbreak function can
 // check to see if the current character is the delimiter.
 // If so, return TRUE. This will cause a line break at the ~
 // character.

 if (lpszEditText[ichCurrent] == '~')
 return TRUE;
 else
 return FALSE;

 break;

 // Because we have replaced the default wordbreak procedure, our
 // wordbreak procedure must provide the other standard features in
 // edit controls.

 case WB_LEFT:

 // Windows sends this code when the user enters CTRL+LEFT ARROW.
 // The wordbreak function should scan the text buffer for the
 // beginning of the word from the current position and move the
 // caret to the beginning of the word.

 {
 BOOL bCharFound = FALSE;

 lpCurrentChar = lpszEditText + ichCurrent;
 nIndex = ichCurrent;

 while (nIndex > 0 &&
 (*(lpCurrentChar-1) != '~' &&
 *(lpCurrentChar-1) != 0x0A) ||
 !bCharFound)
 {

 lpCurrentChar = AnsiPrev(lpszEditText ,lpCurrentChar);
 nIndex--;

 if (*(lpCurrentChar) != '~' && *(lpCurrentChar) != 0x0A)

 // We have found the last char in the word. Continue
 // looking backwards till we find the first char of
 // the word.
 {
 bCharFound = TRUE;

 // We will consider a CR the start of a word.
 if (*(lpCurrentChar) == 0x0D)
 break;
 }

 }
 return nIndex;

 }
 break;

 case WB_RIGHT:

 //Windows sends this code when the user enters CTRL+RIGHT ARROW.
 //The wordbreak function should scan the text buffer for the
 //beginning of the word from the current position and move the
 //caret to the end of the word.

 for (lpCurrentChar = lpszEditText+ichCurrent, nIndex = ichCurrent;
 nIndex < cchEditText;
 nIndex++, lpCurrentChar=AnsiNext(lpCurrentChar))

 if (*lpCurrentChar == '~') {
 lpCurrentChar=AnsiNext(lpCurrentChar);
 nIndex++;

 while (*lpCurrentChar == '~') {
 lpCurrentChar=AnsiNext(lpCurrentChar);
 nIndex++;
 }

 return nIndex;
 }

 return cchEditText;
 break;

 }
}

The wordwrap (wordbreak) function above needs to be exported in the .DEF
file of the application. The function can be modified and customized
according to the application's needs.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95 multi-line
KBCategory: kbui
KBSubcategory: UsrCtl

PSTR's in OUTLINETEXTMETRIC Structure
PSS ID Number: Q90085

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

The OUTLINETEXTMETRIC structure ends with four fields of type PSTR. The
four fields in question are not actually absolute pointers. They are
offsets from the beginning of the OUTLINETEXTMETRIC structure to the
strings in question, as the documentation indicates:

 otmpFamilyName
 Specifies the offset from the beginning of the structure to a
 string specifying the family name for the font.

 otmpFaceName
 Specifies the offset from the beginning of the structure to a
 string specifying the face name for the font. (This face name
 corresponds to the name specified in the LOGFONT structure.)

 otmpStyleName
 Specifies the offset from the beginning of the structure to a
 string specifying the style name for the font.

 otmpFullName
 Specifies the offset from the beginning of the structure to a
 string specifying the full name for the font. This name is
 unique for the font and often contains a version number or
 other identifying information.

The only difference between this structure in Windows 3.1 and Windows NT is
that the strings may be stored in either Unicode or ASCII under Windows NT.

Additional reference words: 3.10 3.50 4.00
KBCategory: kbgraphic
KBSubcategory: GdiMisc

Querying and Modifying the States of System Menu Items
PSS ID Number: Q83453

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

An application should query or set states of the Restore, Move, Size,
Minimize, and Maximize items on the system menu during the processing
of a WM_INITMENU or a WM_INITMENUPOPUP message.

MORE INFORMATION
================

Windows changes the state of the Restore, Move, Size, Minimize, and
Maximize items on the system menu just before it draws the menu on the
screen and sends the WM_INITMENU and WM_INITMENUPOPUP messages.

Windows sets the states of these menu items according to the state of
the window just before the menu is displayed. For example, if the
window is minimized when its system menu is pulled down, the Minimize
menu item is unavailable (grayed). If an overlapped window is
maximized when its system menu is pulled down, the Move, Size, and
Maximize items are unavailable.

If an application queries or sets the state of any of these system
menu items, the query or change should occur during the processing of
the WM_INITMENU or WM_INITMENUPOPUP message. If any menu item state is
queried before one of these messages is processed, it could reflect a
previous state of the window. If any state is set before one of these
messages is processed, Windows will reset the menu items to correspond
to the state of the window just prior to sending these messages.

Windows does not change the state of the Close menu item. Its state
can be changed or queried at any time.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrMen

Querying Device Support for MaskBlt
PSS ID Number: Q108929

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51

The Win32 documentation for MaskBlt() states:

 Not all devices support the MaskBlt function. An application should call
 the GetDeviceCaps function to determine whether a device supports this
 function.

To query support for MaskBlt(), an application should query the device for
BitBlt support by passing RC_BITBLT constant to GetDeviceCaps().

MaskBlt() implements transparent blts in Windows NT. For more information,
please see the following article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q89375
 TITLE : Transparent Blts in Windows NT

GDI implements this application programming interface (API) by calling
BitBlt(). Because BitBlt() is implemented at the driver level, applications
that calls MaskBlt() should check for BitBlt() support on the device.

Additional reference words: 3.10 3.50
KBCategory: kbgraphic
KBSubcategory: GdiBmp

RAS Server Does Not Support the Full NetBIOS 3.0 Specification
PSS ID Number: Q149685

The information in this article applies to:

 - Microsoft Windows NT Advanced Server versions 3.5, 3.51, 4.0
 - Microsoft Windows NT Workstation versions 3.5, 3.51, 4.0
 - Microsoft Win32 Software Development Kit versions 3.5, 3.51, 4.0

SUMMARY
=======

Windows NT Remote Access Server (RAS) supports most NetBIOS 3.0 commands
with a few exceptions. Three features are not supported:

 - Sessions can only be established with a unique name, not a group name.

 - The NCBFINDNAME command is unsupported.

 - The first byte of a NetBIOS name must be a non-zero value.

MORE INFORMATION
================

The NetBIOS support in RAS was designed to support Windows NT redirector
over NetBIOS, not to be fully compliant with the NetBIOS specification. A
secondary goal was to support the majority of existing NetBIOS applications
(like Lotus Notes).

All widely used NetBIOS commands are supported, and the few that are not
supported are both uncommon and complex to implement in a RAS context.

REFERENCES
==========

IBM NetBIOS 3.0 Specification

Additional reference words: 3.50 3.51 4.00 netbios group unique findname
ras rasapi win32
KBCategory: kbprg kbtshoot
KBSubcategory:

Raster and Stroke Fonts; GDI and Device Fonts
PSS ID Number: Q77126

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

NOTE: The information contained in this article does not address TrueType
fonts. For information on TrueType fonts, please see chapter 18 of "Guide
to Programming" for the Windows SDK version 3.1.

In Windows version 3.0, there are two different ways that the graphical
device interface (GDI) can generate characters for a font. For a raster
font, GDI displays the font by copying bitmaps to the output device. For a
stroke font, GDI displays the font by drawing lines between a series of
points that describe each character. Each font is owned by either GDI or by
a specific device. Type and ownership information can be determined by
enumerating the fonts. This article discusses the two font types and two
font ownership types.

MORE INFORMATION
================

A raster font stores its characters as a series of bitmaps; a stroke font
stores its characters as a set of vector operations that describe the
characters. When a character from a raster font is drawn, the bitmap is
copied onto the device. When a character from a stroke font is displayed,
the lines are drawn connecting the points that describe the character.
Examples of raster fonts provided with Windows are Courier and Helv;
examples of stroke fonts are Script and Roman.

Raster fonts are only available in specific sizes. Some devices can scale
installed raster fonts to integer multiples of their size. Use the
GetDeviceCaps() function to determine whether the device has this
capability. The Windows GDI will scale its raster fonts as required
regardless of the device capability. Stroke fonts can be scaled to any size
and can also be rotated.

GDI fonts are owned by the GDI; they are available to all devices. Device
fonts are fonts that are owned by a particular device; they are available
only on that device.

By enumerating the fonts, an application can determine which ones are
raster or stroke fonts, and which are GDI or device fonts. The callback

function used with EnumFonts() has the parameter nFontType. As stated on
page 4-118 of the "Microsoft Windows Software Development Kit Reference
Volume 1," the bitwise AND (&) operator can be used with the constants
RASTER_FONTTYPE and DEVICE_FONTTYPE to determine the font type. If the
RASTER_FONTTYPE bit is set, the font is a raster font; otherwise, it is a
stroke font. If the DEVICE_FONTTYPE bit is set, the font is owned by the
device that corresponds to the display context handle (HDC) used in the
EnumFont() call; otherwise it is a GDI font.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbgraphic
KBSubcategory: GdiFnt

RCDATA Begins on 32-Bit Boundary in Win32
PSS ID Number: Q84081
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0
--

RCDATA is guaranteed to begin on a DWORD boundary. However, the strings and
the integers specified in the statement are not aligned by the Resource
Compiler (RC)

 RCDATA statement:

 resname RCDATA
 BEGIN

 0,0,

 END

The definition of RCDATA is not changed. The strings and integers
specified in the statement, 0 in this case, are not aligned on the
DWORD boundary. However, the beginning of the data is DWORD-aligned.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsRc

Reasons for Failure of Clipboard Functions
PSS ID Number: Q92530

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The following clipboard functions:

 OpenClipboard()
 CloseClipboard()
 EmptyClipboard()
 GetClipboardData()
 SetClipboardData()
 EnumClipboardFormats()
 SetClipboardViewer()
 ChangeClipboardChain()
 GetOpenClipboardWindow()
 GetClipboardOwner()

can fail for several reasons. Different functions return different
values to indicate failure. Read the documentation for information
about each function. This article combines the causes of failure for
all functions and provides a resolution or explanation. In the More
Information section, a list of affected functions follows each cause.
The causes are:

1. The clipboard is not opened by any application.

2. The current application does not have the clipboard open.

3. The current application does not own the clipboard.

4. User's data segment is full.

5. Insufficient global memory.

6. The specified clipboard format is not supported.

7. The application that set the clipboard data placed a corrupt or invalid
 metafile in the clipboard.

8. An application is attempting to open an already open clipboard. The
 debug mode of Windows 3.1 will send the "Clipboard already open"
 message.

9. The application that opened the clipboard used NULL as the window
 handle.

MORE INFORMATION
================

Cause 1: The clipboard is not opened by any application.

Resolution 1: Open the clipboard using OpenClipboard(). If a DLL needs
to open the clipboard, it may pass hwnd = NULL to OpenClipboard().

Explanation 1: An application cannot copy data (using
SetClipboardData()) when no application has the clipboard currently
open.

Affected Functions: SetClipboardData().

Cause 2: The current application does not have the clipboard open.

Resolution 2: Open the clipboard using OpenClipboard(). If a DLL needs
to open the clipboard, it may pass hwnd = NULL to OpenClipboard().

Explanation 2: An application cannot empty or close the clipboard without
first opening it.

Affected Functions: EmptyClipboard(), CloseClipboard().

Cause 3: The current application does not own the clipboard.

Resolution 3: Open the clipboard and get ownership by emptying it.

Explanation 3: An application cannot enumerate the clipboard formats
without owning it.

Affected Functions: EnumClipboardFormats().

Cause 4: User's data segment is full.

Explanation 4: There should be space available in User's data segment to
store internal data structures when SetClipboardData() is called.

Affected Function: SetClipboardData().

Cause 5: Insufficient global memory.

Explanation 5: If the clipboard has data in either the CF_TEXT or
CF_OEMTEXT format and if GetClipboardData() requests text in the
unavailable format, then Windows will perform the conversion. The
converted text must be stored in global memory.

Affected Function: GetClipboardData().

Cause 6: The specified clipboard format is not supported.

Resolution 6: Use IsClipboardFormatAvailable() to check whether the
specified format is available on the clipboard.

Affected Function: GetClipboardData().

Cause 7: The application that set the clipboard data placed a corrupt or
invalid metafile in the clipboard.

Resolution 7: There are no functions to tell whether a given metafile is
corrupt or invalid. Try playing the metafile and see if the metafile plays
as expected.

Affected Function: SetClipboardData().

Cause 8: Application is attempting to open an already open clipboard. The
debug mode of Windows 3.1 will send the "Clipboard already open" message.

Explanation 8: The clipboard must be closed by the application that opened
it, before other applications can open it.

Affected Functions: OpenClipboard().

Cause 9: The application that opened the clipboard used NULL as the window
handle.

Explanation 9: An application can call OpenClipboard(NULL) to
successfully open a clipboard. The side effects are that subsequent
calls to GetClipboardOwner() and GetOpenClipboardWindow() return NULL.
An application can also call SetClipboardViewer(NULL) successfully.
However, there is no reason why this should be allowed, and it is
currently reported as a bug. The side effects are that subsequent
calls to GetClipboardViewer() and ChangeClipboardChain() return NULL.
NULL from these functions does not necessarily imply that they failed.

Affected Functions: GetClipboardOwner(), GetOpenClipboardWindow(),
GetClipboardViewer(), ChangeClipboardChain().

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
GetClipboardFormatName
RegisterClipboardFormat
KBCategory: kbui
KBSubcategory: UsrClp

Reasons for Failure of Menu Functions
PSS ID Number: Q89739

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The Menu functions (AppendMenu(), CheckMenuItem(), CreateMenu(),
CreatePopupMenu(), DeleteMenu(), DestroyMenu(), GetMenu(),
GetMenuItemID(), GetMenuString(), GetSubMenu(), GetSystemMenu(),
HiliteMenuItem(), InsertMenu(), LoadMenuIndirect(), ModifyMenu(),
RemoveMenu(), SetMenu(), SetMenuItemBitmaps(), and TrackPopupMenu())
can fail for several reasons. Different functions return different
values to indicate failure. Read the documentation for information
about each function. This article combines the causes of failure for
all functions and provides a resolution or explanation. A list of
affected functions follows each cause. The causes are:

1. Invalid hWnd parameter.

2. Invalid hMenu parameter.

3. The menu item is not found.

4. No space left in User's heap to hold a string or to hold an
internal data structure for owner draw menu items or to create a menu
or to create a window for TrackPopupMenu().

5. There are no items in the menu.

6. The menu resource could not be found (FindResource()) or loaded
(LoadResource()) or locked (LockResource()) in memory.

7. TrackPopupMenu() is called while another popup menu is being tracked
in the system.

8. The hMenu that has been passed to TrackPopupMenu() has been deleted.

9. MENUITEMTEMPLATEHEADER's versionNumber field is non-zero.

MORE INFORMATION
================

Cause 1: Invalid hWnd parameter.

Resolution 1: Validate the hWnd parameter using IsWindow(). Make sure
that hWnd is not a child window.

NOTE: Resolution 1 does not apply to TrackPoupuMenu().

Explanation 1: In Windows, menus are always associated with a window.
Child windows cannot have menu bars.

Affected Functions: All functions that take hWnd as a parameter except for
TrackPoupuMenu().

Cause 2: Invalid hMenu parameter.

Resolution 2: Validate hMenu with IsMenu().

Affected Functions: All functions that take hMenu as a parameter.

Cause 3: The menu item is not found.

Resolution 3: If the menu item is referred to BY_POSITION, make sure
that the index is lesser than the number of items. If the menu item is
referred to BY_COMMAND, an application has to devise its own method of
validating it.

Explanation 3: Menu items are numbered consecutively starting from 0.
Remember that separator items are also counted.

Affected Functions: All functions that refer to a menu item.

Cause 4: No space left in User's heap to hold a string or to hold an
internal data structure for owner draw menu items or to create a menu.

Resolution 4: Remember to delete all menus and other objects that have
been created by the application when they are not needed any more.
If you suspect that objects left undeleted by other applications are
wasting valuable system resources, restart Windows.

Explanation 4: In Windows 3.0, menus and menu items were allocated
space from User's heap. In Windows 3.1, they are allocated space from
a separate heap. This heap is for the exclusive use of menus and menu
items.

Affected Functions: AppendMenu(), Insertmenu(), ModifyMenu(),
CreateMenu(), CreatePopupMenu(), LoadMenu(), LoadMenuIndirect(),
TrackPopupMenu(), GetSystemMenu() (when fRevert = FALSE).

Cause 5: There are no items in the menu.

Resolution 5: Use GetMenuItemCount() to make sure the menu is not empty.

Explanation 5: Nothing to be deleted or removed.

Affected Functions : RemoveMenu(), DeleteMenu().

Cause 6: The menu resource could not be found (FindResource()) or loaded

(LoadResource()) or locked (LockResource()) in memory.

Resolution 6: Ensure that the menu resource exists and that the hInst
parameter refers to the correct hInstance. Try increasing the number
of file handles using SetHandleCount() and increasing available global
memory by closing some applications. For more information about the
causes of failure of resource functions, query this Knowledge Base on
the following keywords:

 failure and LoadResource and FindResource and LockResource.

Explanation 6: Finding, loading, and locking a resource involves use
of file handles, global memory, and the hInstance that has the menu
resource.

Affected Functions: LoadMenu(), LoadMenuIndirect()

Cause 7. TrackPopupMenu() is called while another popup menu is being
tracked in the system.

Explanation 7: Only one popup menu can be tracked in the system at
any given time.

Affected Function: TrackPopupMenu()

Cause 8. The hMenu that has been passed to TrackPopupMenu() has been
deleted. The debug mode of Windows 3.1 sends the following message :

"Menu destroyed unexpectedly by WM_INITMENUPOPUP"

Explanation 8: Windows sends a WM_INITMENUPOPUP to the application
and expects the menu to not be destroyed.

Affected Function: TrackPopupMenu()

Cause 9. MENUITEMTEMPLATEHEADER 's versionNumber field is non-zero.

Explanation 9: In Windows 3.0 and 3.1, this field should always be 0.

Affected Function: LoadMenuIndirect()

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrMen

Reasons Why RegisterClass() and CreateWindow() Fail
PSS ID Number: Q65257

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The RegisterClass() and CreateWindow() functions fail when the system
resources are used up. The percentage of free system resources
reflects the amount of available space in the USER and GDI heaps
within Windows. The smaller amount of free space is reported in the
Program Manager's About box because if either heap fills up, functions
fail.

Under Windows NT, the USER and GDI heap resources are practically
unlimited. Under Windows 95, the USER and GDI heap resources are greater
than Windows 3.1, but not as great as under Windows NT.

MORE INFORMATION
================

If the amount of free system resources remains low after the
application is exited, it is more likely that the GDI heap is filling.
The main reason for the GDI heap filling is that GDI objects that are
created by the application are not deleted or destroyed when they are
no longer needed, or when the program terminates. Windows does not
delete GDI objects (pens, brushes, fonts, regions, and bitmaps) when
the program exits. Objects must be properly deleted or destroyed.

NOTE: Win32-based applications cannot cause the USER or GDI heaps to
overflow when they terminate, because the system will release the resources
to maximize available resources.

The following are two situations that can cause the USER heap to get
full:

1. Memory is allocated for "extra bytes" associated with window
 classes and windows themselves. Make sure that the cbClsExtra and
 cbWndExtra fields in the WNDCLASS structure are set to 0 (zero),
 unless they really are being used.

2. Menus are stored in the USER heap. If menus are added but are not
 destroyed when they are no longer needed, or when the application
 terminates, system resources will go down.

CreateWindow() will also fail under the following conditions:

1. Windows cannot find the window procedure listed in the
 CreateWindow() call. Avoid this by ensuring that each window
 procedure is listed in the EXPORTS section of the program's DEF
 file.

2. CreateWindow() cannot find the specified window class.

3. The hwndparent is incorrect (make sure to use debug Windows to see
 the RIPs).

4. CreateWindow() cannot allocate memory for internal structures in
 USER heap.

5. The application returns 0 (zero) to the WM_NCCREATE message.

6. The application returns -1 to the WM_CREATE message.

Additional reference words: 3.00 3.10 3.50 4.00
KBCategory: kbui
KBSubcategory: UsrWndw

Receive/Send Multicasts in Windows NT & Win95 Using WinSock
PSS ID Number: Q131978
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.5, and 3.51
 - Microsoft Windows version 4.0
--

SUMMARY
=======

This article describes how a host can become a member of a multicast group
and receive and send multicast packets with Windows NT using the Windows
Sockets (WinSock) interface.

This functionality is also available with Windows 95.

MORE INFORMATION
================

Sending IP Multicast Datagrams

IP multicasting is currently supported only on AF_INET sockets of type
SOCK_DGRAM.

To send a multicast datagram, specify an IP multicast address with a range
of 224.0.0.0 to 239.255.255.255 as the destination address in a sendto()
call.

By default, IP multicast datagrams are sent with a time-to-live (TTL) of 1,
which prevents them from being forwarded beyond a single subnetwork. The
following code demonstrates how to change this functionality:

 int ttl = 7 ; // Arbitrary TTL value.
 setsockopt(sock, IPPROTO_IP, IP_MULTICAST_TTL, (char *)&ttl, sizeof(ttl))

Multicast datagrams with a TTL of 0 are not transmitted on any subnetwork.
Multicast datagrams with a TTL of greater than one may be delivered to more
than one subnetwork if there are one or more multicast routers attached to
the first-hop subnetwork.

A multicast router does not forward multicast datagrams with destination
addresses between 224.0.0.0 and 224.0.0.255, inclusive, regardless of their
TTLs. This particular range of addresses is reserved for the use of routing
protocols and other low-level topology discovery or maintenance protocols,
such as gateway discovery and group membership reporting.

Each multicast transmission is sent from a single network interface, even
if the host has more than one multicast-capable interface. A socket option
is available to override the default for subsequent transmissions from a
given socket. For example

 unsigned long addr = inet_addr("157.57.8.1");
 setsockopt(sock, IPPROTO_IP, IP_MULTICAST_IF,
 (char *)&addr, sizeof(addr))

where "addr" is the local IP address of the desired outgoing interface.
An address of INADDR_ANY may be used to revert to the default interface.
Note that this address might be different from the one the socket is bound
to.

If a multicast datagram is sent to a group to which the sending host itself
belongs (on the outgoing interface), by default, a copy of the datagram is
looped back by the IP layer for local delivery. Under some versions of
UNIX, there is an option available to disable this behavior
(IP_MULTICAST_LOOP). This option is not supported in Windows NT. If you try
to disable this behavior, the call fails with the error WSAENOPROTOOPT (Bad
protocol option).

A multicast datagram sent with an initial TTL greater than 1 may be
delivered to the sending host on a different interface from that on which
it was sent, if the host belongs to the destination group on that other
interface. The loopback control option has no effect on such delivery.

Receiving IP Multicast Datagrams

Before a host can receive IP multicast datagrams, it must become a member
of one or more IP multicast groups. A process can ask the host to join
a multicast group by using the following socket option

 struct ip_mreq mreq;

where "mreq" is the following structure:

 struct ip_mreq {
 struct in_addr imr_multiaddr; /* multicast group to join */
 struct in_addr imr_interface; /* interface to join on */
 }

For example:

 #define RECV_IP_ADDR "225.6.7.8" // arbitrary multicast address

 mreq.imr_multiaddr.s_addr = inet_addr(RECV_IP_ADDR);
 mreq.imr_interface.s_addr = INADDR_ANY;
 err = setsockopt(sock, IPPROTO_IP, IP_ADD_MEMBERSHIP,
 (char*)&mreq, sizeof(mreq))

Note that it is necessary to bind to an address before calling the
setsockopt() function.

Every membership is associated with a single interface, and it is possible
to join the same group on more than one interface. The address of
"imr_interface" should be INADDR_ANY to choose the default multicast
interface, or one of the host's local addresses to choose a particular
(multicast-capable) interface.

The maximum number of memberships is limited only by memory and what the
network card supports.

The following code sample can be used to drop a membership

 struct ip_mreq mreq;
 setsockopt(sock, IPPROTO_IP, IP_DROP_MEMBERSHIP,
 (char*)&mreq,sizeof(mreq))

where "mreq" contains the same values as used to add the membership. The
memberships associated with a socket are also dropped when the socket is
closed or the process holding the socket is killed. However, more than
one socket may claim a membership in a particular group, and the host
remains a member of that group until the last claim is dropped.

The memberships associated with a socket do not necessarily determine which
datagrams are received by that socket. Incoming multicast packets are
accepted by the kernel IP layer if any socket has claimed a membership in
the destination group of the datagram; however, delivery of a multicast
datagram to a particular socket is based on the destination port (or
protocol type, for raw sockets), just as with unicast datagrams. To receive
multicast datagrams sent to a particular port, it is necessary to bind to
that local port, leaving the local address unspecified (that is,
INADDR_ANY).

More than one process may bind to the same SOCK_DGRAM UDP port if the
bind() call is preceded by the following code:

 int one = 1;
 setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, (char *)&one, sizeof(one))

In this case, every incoming multicast or broadcast UDP datagram destined
for the shared port is delivered to all sockets bound to the port.

The definitions required for the new, multicast-related socket options are
located in the WINSOCK.H file. All IP addresses are passed in network
byte-order.

REFERENCES
==========

The file DOC\MISC\MULTICAST.TXT is included with the Win32 SDK.

Additional reference words: 3.50 4.00
KBCategory: kbnetwork kbcode
KBSubcategory: NtwkWinsock

Redirection Issues on Windows 95 MS-DOS Apps and Batch Files
PSS ID Number: Q150956
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.5
--

SUMMARY
=======

Due to implementation differences on the Microsoft Windows 95 and Microsoft
Windows NT platforms, special steps need to be taken to allow the same code
to redirect the output of MS-DOS applications and batch (.BAT) files on
both platforms.

MORE INFORMATION
================

When you redirect the output of an MS-DOS application or a batch file to a
Win32 GUI or Console application, the intuitive method is to launch the
MS-DOS process as a DETACHED_PROCESS with a redirected standard output
handle to an anonymous pipe. The parent then uses the read end of the pipe
to read the redirected output of the MS-DOS process.

This design works as expected on Windows NT. On Windows 95, however, this
design causes the parent process to hang because the redirection pipe does
not close when a redirected MS-DOS application or batch file exits.

A simple solution is to launch a hidden Win32 console application as an
interface between the parent Win32 app and the MS-DOS child. The Win32
application spawns a "hidden" console application that inherits standard
handles that have been redirected to an anonymous pipe. The hidden console
application then spawns the MS-DOS application causing the MS-DOS
application to inherit the hidden console. This behavior results in the
MS-DOS application indirectly inheriting the redirected standard handles
of the Win32 application.

SAMPLE CODE

The code below outlines a technique that works correctly on both Windows NT
and Windows 95:

/*-----------------------Win32 application code----------------------------

This code redirects standard handles of the Win32 application and then
spawns a console application (CONSPAWN.EXE.) with a hidden window. CONSPAWN
inherits the redirected standard handles and spawns the application passed
to it on its Command line (DOSAPP.EXE.) When DOSAPP.EXE writes to its
STDOUT or STDERR handles, the output is redirected to the pipe created in
this Win32 application.
---*/

 SECURITY_ATTRIBUTES sa = {0};
 STARTUPINFO si = {0};
 PROCESS_INFORMATION pi = {0};
 HANDLE hPipeWrite = NULL;
 HANDLE hPipeRead = NULL;
 CHAR Buffer[256];

 sa.nLength = sizeof(sa);
 sa.bInheritHandle = TRUE;
 sa.lpSecurityDescriptor = NULL;

 // Create pipe for output redirection.
 CreatePipe(&hPipeRead, // read handle
 &hPipeWrite, // write handle
 &sa, // security attributes
 0 // number of bytes reserved for pipe - 0 default
);

 // Create pipe for input redirection. In this code, you do not
 // redirect the output of the child process, but you need a handle
 // to set the hStdInput field in the STARTUP_INFO struct. For safety,
 // you should not set the handles to an invalid handle.

 CreatePipe(&Read2, // read handle
 &hWrite2, // write handle
 &sa, // security attributes
 0 // number of bytes reserved for pipe - 0 default
);

 // Make child process use hPipeWrite as standard out, and make
 // sure it does not show on screen.
 si.cb = sizeof(si);
 si.dwFlags = STARTF_USESHOWWINDOW | STARTF_USESTDHANDLES;
 si.wShowWindow = SW_HIDE;
 si.hStdInput = hWrite2;
 si.hStdOutput = hPipeWrite;
 si.hStdError = hPipeWrite;

 CreateProcess (
NULL,
 "CONSPAWN.EXE DOSAPP.EXE",
 NULL, NULL,
 TRUE, 0,
 NULL, NULL,
 &si, &pi);

 /* now that this has been inherited, close it to be safe.
 You don't want to write to it accidentally*/
 CloseHandle(hPipeWrite);

 while(TRUE)
 {
 bTest=ReadFile(
hRead, // handle of the read end of our pipe

 &Buffer, // address of buffer that receives data
 255, // number of bytes to read
 &NumberOfBytesRead,// address of number of bytes read
 NULL // non-overlapped.
);

 if (!bTest){
 printf("Error #%d reading pipe.",GetLastError());
 return 0;
 }

 if (NumberOfBytesRead == 0){
 // pipe done - normal exit path.
 break;
 }
 // do something with data.
 }

 // Wait for CONSPAWN to finish.
 WaitForSingleObject (pi.hProcess, INFINITE);

 // Close all remaining handles
 CloseHandle (pi.hProcess);
 CloseHandle (hPipeRead);
 }

/*----------Console application (CONSPAWN.EXE) code-----------------------

This program (CONSPAWN) is launched with a hidden console that inherits the
redirected standard handles of the Win32 application. The application that
CONSPAWN launches in the same hidden console inherits the same redirected
standard handles. This behavior redirects the standard handles of the
MS-DOS application to be launched to the pipe created in the parent Win32
application.
---*/

 #include <windows.h>
 #include <stdio.h>

 void main (int argc, char *argv[])
 {
 BOOL bRet = FALSE;
 STARTUPINFO si = {0};
 PROCESS_INFORMATION pi = {0};

 // Make child process use this app's standard files.
 si.cb = sizeof(si);
 si.dwFlags = STARTF_USESTDHANDLES;
 si.hStdInput = GetStdHandle (STD_INPUT_HANDLE);
 si.hStdOutput = GetStdHandle (STD_OUTPUT_HANDLE);
 si.hStdError = GetStdHandle (STD_ERROR_HANDLE);

 bRet = CreateProcess (NULL, argv[1],
 NULL, NULL,
 FALSE, 0,

 NULL, NULL,
 &si, &pi
);

 if (bRet)
 {
 WaitForSingleObject (pi.hProcess, INFINITE);
 CloseHandle (pi.hProcess);
 CloseHandle (pi.hThread);
 }
 }

Additional reference words: 4.00
KBCategory: kbprg kbhowto
KBSubcategory: BseCon

Reducing the Count on a Semaphore Object
PSS ID Number: Q94997

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

ReleaseSemaphore(), which increments the count of a given semaphore object
by a specified amount, will not take a negative value.

If, for some reason, you want to reduce the number of available semaphore
"slots" to temporarily restrict or reduce access, you may loop calling
WaitForSingleObject() with a zero timeout, counting the number of times it
succeeds. When you no longer need to hold the semaphore slots, call
ReleaseSemaphore() with the number of slots counted.

Note that this method does not prevent other threads from taking a
semaphore slot when your thread is looping.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseMisc

Registering Multiple RPC Server Interfaces
PSS ID Number: Q129975
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.5
--

When registering multiple server interfaces from multiple threads or from
a single thread under the same process, the RpcServerListen() function
should be called only once.

An application process may register two completely separate Remote
Procedure Call (RPC) server interfaces from two separate threads or from a
single thread. However, when doing so, the RpcServerListen() function
should be called only once from any thread.

RPC APIs are called on a per process basis. From the perspective of RPC run
times, a process can register multiple interfaces using one or more
protocol sequences, but must call the RpcServerListen() function only once
from any one thread. Calling the RpcServerListen() function more than once
results in the run time generating an exception called
RPC_S_ALREADY_LISTENING.

Additional reference words: 3.50
KBCategory: kbnetwork kbnetwork
KBSubcategory: NtwkRpc

RegSaveKey() Requires SeBackupPrivilege
PSS ID Number: Q106383

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

The description for RegSaveKey() states the following:

 The caller of this function must possess the SeBackupPrivilege
 security privilege.

This means that the application must explicitly open a security token and
enable the SeBackupPrivilege. By granting a particular user the right to
back up files, you give that user the right only to gain access to the
security token (that is, the token is not automatically created for the
user but the right to create such a token is given). You must add
additional code to open the token and enable the privilege.

MORE INFORMATION
================

The following code demonstrates how to enable SeBackupPrivilege:

 static HANDLE hToken;
 static TOKEN_PRIVILEGES tp;
 static LUID luid;

 // Enable backup privilege.

 OpenProcessToken(GetCurrentProcess(),
 TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &hToken) ;
 LookupPrivilegeValue(NULL, "SeBackupPrivilege", &luid);
 tp.PrivilegeCount = 1;
 tp.Privileges[0].Luid = luid;
 tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
 AdjustTokenPrivileges(hToken, FALSE, &tp,
 sizeof(TOKEN_PRIVILEGES), NULL, NULL);

 // Insert your code here to save the registry keys/subkeys.

 // Disable backup privilege.

 AdjustTokenPrivileges(hToken, TRUE, &tp, sizeof(TOKEN_PRIVILEGES),
 NULL, NULL);

Note that you cannot create a process token; you must open the existing
process token and adjust its privileges.

The DDEML Clock sample has similar code sample at the end of the CLOCK.C
file where it obtains the SeSystemTimePrivilege so that it can set the
system time.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseMisc

Removing Focus from a Control When Mouse Released Outside
PSS ID Number: Q66947

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Under normal circumstances, when you move the mouse cursor into the client
area of a child-window control, click it, and then release the mouse
button, the child window sends a WM_COMMAND message to its parent and
retains the focus.

If you move the mouse into the client area of the child-window control,
press the mouse button, move the mouse cursor out of the client area of the
control, and then release the mouse button, the control does not send a
WM_COMMAND message. However, the control retains the focus.

If you do not want the control to retain the focus, you can remove it by
performing the following steps:

1. Define a static Boolean flag in the parent window function.

2. When a WM_PARENTNOTIFY message is received, set the flag to TRUE.
 This indicates that the mouse button has been pressed while the
 mouse cursor is in the client area of the control.

3. If a WM_COMMAND message is received, reset the flag to FALSE and
 perform normal processing.

4. Otherwise, if a WM_MOUSEMOVE message is received, the mouse button
 was released after the mouse cursor was moved outside the control.
 Reset the flag to FALSE, and use SetFocus() to move the focus to
 the desired window.

MORE INFORMATION
================

When the mouse cursor is in the client area of a control and you press the
mouse button, the parent window will receive a WM_PARENTNOTIFY message and
a WM_MOUSEACTIVATE message. A Boolean (BOOL) flag should be set when the
message is processed to indicate that this occurred.

The parent window will receive other messages, including a number of
WM_CTLCOLOR messages, when the mouse is moved around with the mouse button
down. When the mouse button is released, the parent window receives only

one of two messages:

1. WM_COMMAND: The mouse button was released over the control.

2. WM_MOUSEMOVE: The mouse button was released outside the control.

Note that these are not the only messages received when the button is
released, but these two are mutually exclusive.

In response to either message, the following steps must take place:

1. Reset the flag indicating a mouse press.

2. Call SetFocus() or send a WM_KILLFOCUS to the control in question
 to move the focus as desired.

If WM_KILLFOCUS is used, the ID of the control or its handle must be known.
SetFocus(NULL) or SetFocus(hWndParent) removes the focus from the control
but does not set the focus to any other control in the window.

In a dialog box, SetFocus(NULL) MUST be used. SetFocus(hDlg) does not
remove the focus from the button.

The following code sample is taken from the dialog box procedure of a
dialog that has a single OK button. If the mouse button is pressed while
the mouse cursor is over the button, the mouse is moved outside the button,
and then the mouse button is released, the focus is removed from the OK
button.

BOOL FAR PASCAL AboutProc(HWND hDlg, unsigned iMessage,
 WORD wParam, LONG lParam)
 {
 static BOOL fMousePress;

 switch (iMessage)
 {
 case WM_INITDIALOG:
 fMousePress = FALSE;
 return TRUE;

 case WM_PARENTNOTIFY: // or WM_MOUSEACTIVATE
 fMousePress = TRUE;
 break;

 case WM_MOUSEMOVE:
 if (fMousePress)
 SetFocus(NULL);
 fMousePress = FALSE;
 break;

 // Only command is the OK button.
 case WM_COMMAND:
 if (wParam == IDOK)
 EndDialog(hDlg, TRUE);
 break;

 }
 return FALSE;
 }

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui kbcode
KBSubcategory: UsrCtl

Replace IsTask() with GetExitCodeProcess()
PSS ID Number: Q108228

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

In Windows 3.1, the application programming interface (API) IsTask() can be
used to determine whether a process is still running or whether it has
terminated. As the help file indicates, this function is obsolete in the
Win32 API.

To get this functionality through the Win32 API, use the API
GetExitCodeProcess(). This function takes the handle as the first parameter
and returns the exit code or STILL_ACTIVE in the second parameter:

 BOOL GetExitCodeProcess(hProcess, lpdwExitCode)

 HANDLE hProcess;
 LPDWORD lpdwExitCode;

As an alternative, you can also use WaitForSingleObject(). Pass the process
handle as the first parameter and a timeout value for the second parameter:

 DWORD WaitForSingleObject(hObject, dwTimeout)

 HANDLE hObject;
 DWORD dwTimeout;

The process handle is signaled when the process terminates. Pass in 0
(zero) for the timeout if you would like to poll or start another thread to
wait with an INFINITE timeout value.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseProcThrd

Replacing the Shell (Program Manager)
PSS ID Number: Q100328

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51

SUMMARY
=======

To replace the current shell, change the following registry key:

 HKEY_LOCAL_MACHINE\
 SOFTWARE\
 Microsoft\
 Windows NT\
 CurrentVersion\
 Winlogon\
 Shell

Note that Program Manager combines the functionality of Program Manager and
Task Manager (the Task Manager installed is not actually run). Therefore,
you must take this into account. In Windows NT 3.1, if the new shell does
not replace the Task Manager functionality, the replacement string should
contain both the new shell name and TASKMAN.EXE, separated by commas. In
Windows NT 3.5, the new shell should either spawn TASKMAN.EXE or your own
task manager, specified in

 HKEY_LOCAL_MACHINE\
 SOFTWARE\
 Microsoft\
 Windows NT\
 CurrentVersion\
 Winlogon\
 Taskman

The value does not exist by default, it must be added. The value type is
REG_SZ.

To update the string that is retrieved when you call
GetPrivateProfileString(), change the string in the following registry key:

 HKEY_LOCAL_MACHINE\
 SOFTWARE\
 MICROSOFT\
 Windows NT\
 Current Version\
 WOW\
 Boot\
 Shell

The duplicate entry is for compatibility with Windows 3.1.

MORE INFORMATION
================

WritePrivateProfileString() changes the following registry key:

 HKEY_LOCAL_MACHINE\
 SOFTWARE\
 Microsoft\
 Windows NT\
 CurrentVersion\
 WOW\
 Boot\
 Shell

It does not have the desired effect of actually changing the Shell.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseMisc

Replacing the Windows NT Task Manager
PSS ID Number: Q89373

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

Under Windows 3.1, the Task Manager is an easily replaceable program.
However, under the Win32 subsystem of Windows NT, it is very difficult to
replace the Task Manager, due to special programming considerations. In
general, it is not recommended that users attempt this.

MORE INFORMATION
================

Special requirements for the Task Manager make it very different from the
Windows 3.1 Task Manager. The EndTask button handling is done through
internal application programming interface (API) functions. These API
functions are not documented. The situation is the same for handling
foreground management, hung applications, and priority issues (to make sure
that the Task Manager will come up as fast as possible). In addition, the
Windows NT Task Manager uses shortcut ("hot") keys.

In Windows NT 3.1, the Task List has been incorporated into the Program
Manager. To remove the Task List, you must also remove the Program Manager.
The full functionality of the Task List (as found in TASKMAN.EXE) is now
folded into the Program Manager (PROGMAN.EXE). If you completely delete the
TASKMAN.EXE file from your system and from the registry location

 HKEY_LOCAL_MACHINE\
 SOFTWARE\
 Microsoft\
 Windows NT\
 CurrentVersion\
 WinLogon\
 Shell

you will still be able to invoke the Task List because it is built into the
Program Manager.

In Windows NT 3.5, Program Manager checks the registry for a Taskman entry.
If the Taskman entry is found, Program Manager will launch the application,
instead of using its built-in Taskman. The registry entry is:

 HKEY_LOCAL_MACHINE\
 SOFTWARE\
 Microsoft\
 Windows NT\

 CurrentVersion\
 Winlogon\
 Taskman

This entry does not not exist by default. You will have to create this
value, with type REG_SZ.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseMisc

Replacing Windows NT Control Panel's Mouse Applet
PSS ID Number: Q110704

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

The Control Panel includes a Mouse applet as a standard applet that is
shipped with the system. In Windows 3.1, this applet can be overridden by
an ISV/OEM's mouse driver or module. Windows 3.1 accomplished this by the
Control Panel doing a GetModuleHandle() call on "Mouse". If MOUSE.DLL or
MOUSE.EXE was already loaded in the system, Control Panel would look for
the entry point "CPlApplet". If found, Control Panel would send the
following messages:

 CPL_NEWINQUIRE

 -or-

 CPL_INQUIRE (the former is preferred)

This would return the icon and strings to replace the mouse icon already in
Control Panel.

In Windows NT, because of the separation of Kernel drivers from
applications by the client-server interface, the GetModuleHandle() call
does not work. Consequently, the same functionality must be achieved in a
slightly different way. The Control Panel calls LoadLibrary("Mouse") to
look for a MOUSE.DLL or a MOUSE.EXE. If this call fails, no other checks
are made.

If LoadLibrary() succeeds, the Control Panel looks for the "CPlApplet"
entry point, sends a CPL_INIT message, and then sends a CPL_NEWINQUIRE. If
CPL_NEWINQUIRE fails, a CPL_INQUIRE is sent; however, it is preferable to
have the applet implement the newer CPL_NEWINQUIRE message. The string
information returned by the CPL_NEWINQUIRE message can be in either UNICODE
or ANSI (UNICODE is preferred) as long as the dwSize field is set
correctly. See the CPL.H public header file for these messages and
structures (for example CPLINFOW or CPLINFOA, where CPLINFOW is the
default).

When the User double-clicks the Mouse applet icon, the MOUSE.DLL or
MOUSE.EXE will receive a CPL_DBLCLK message from the CPlApplet interface.
This routine must return TRUE to the Control Panel if the routine runs its
own dialog. If FALSE is returned, the internal Mouse Dialog box will be
presented to the User.

The Control Panel will send the CPL_EXIT message to the Mouse applet when
it wants to unload the module or terminate. The applet must use this
message to perform tasks such as calling UnRegisterWindowClass(), freeing
memory, and unloading DLLs.

NOTE: It is not possible to replace any of the other standard Windows NT
3.1 Control Panel applets. As of Windows NT 3.5, it is also possible to
replace the Keyboard applet in the same manner.

Additional reference words: 3.10 3.50
KBCategory: kbui
KBSubcategory: UsrMisc

Resource Sections are Read-only
PSS ID Number: Q126630

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s version 1.2

SUMMARY
=======

Resource sections are read-only by default under Windows NT and Win32s.
However, under Windows NT, the resource section may appear to be
read/write. If an application tries to write to the resource section, an
exception occurs. Windows NT handles the exception by duplicating the page
and making it read/write. Therefore, under Windows NT it is possible to
write to the resource section, even though its section attribute is
read-only.

In Win32s version 1.2, the resource section is read-only and you cannot
write to it. To work around this, link with /SECTION:.rsrc,rw to make the
resource section read/write. Or copy the resource to your own buffer and
work with it from there. You cannot modify the protection of the resource
section because the memory is owned by the system.

In Win32s version 1.25a and later, the resource section is read/write,
regardless of what is specified in the section attributes.

Windows 95 has a handler similar to the one used in Windows NT.

MORE INFORMATION
================

Under Windows NT, the default top level handler detects writes to
resources and will make the resource writable. If you are running outside
of a debugger and you have no exception handler, your resource writes will
silently work. If you are running under the debugger, your resource write
will look like an access violation:

 First-Chance Exception in msin32.exe: 0xC0000005: Access Violation

This allows you to "fix" your resource writes. If you have the debugger
pass on the exception to your application and you have no handler, the
default handler will make your resource writable.

The disadvantage of setting the attribute of the resource section to
read/write is that Windows NT and Windows 95 will use a separate copy of
the resource section for each process that uses this section, instead of
one copy for all processes.

Additional reference words: 1.20 3.50 4.00 LoadResource LockResource
KBCategory: kbui
KBSubcategory: UsrRes W32s

Restriction on Named-Pipe Names
PSS ID Number: Q100291

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51

Named pipes are implemented in Windows NT using the same approach used for
file systems. Within Windows NT, named pipes are represented as file
objects.

During the design phase, one idea for the implementation was to allow
sub directories of named pipes. For example, a developer could create a
named pipe sub directory called \MYPIPES. It would then be possible to
create and use pipes called \MYPIPES\PIPE1 and \MYPIPES\PIPE2, but it would
not be possible to use \MYPIPES as a pipe.

In the end, this idea was not implemented, so sub directories are not
supported. This does have some effect on the named-pipe names that are
allowed. If a pipe named \MYPIPES is created, it is not possible to
subsequently create a pipe named \MYPIPES\PIPE1, because \MYPIPES is
already a pipe name and cannot be used as a sub directory. It is possible
to
create a pipe named \MYPIPES\PIPE1, but only if there is no pipe named
\MYPIPES. The error received is ERROR_INVALID_NAME (123).

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseIpc

Results of GetFileInformationByHandle() Under Win32s
PSS ID Number: Q123813

The information in this article applies to:

 - Microsoft Win32s versions 1.2 and 1.25a

The GetFileInformationByHandle() function returns information about the
given file in a structure of type BY_HANDLE_FILE_INFORMATION.

The following are the BY_HANDLE_FILE_INFORMATION structure fields and
the values they contain under Win32s:

 dwFileAttributes - Always 0 in version 1.2 (A bug that has been fixed.)
 ftCreationTime - Always 0. (An MS-DOS file system limitation.)
 ftLastAccessTime - Always 0. (An MS-DOS file system limitation.)
 ftLastWriteTime - Correct value.
 dwVolumeSerialNumber - Always 0. (A Win32s limitation.)
 nFileSizeHigh - Correct value.
 nFileSizeLow - Correct value.
 nNumberOfLinks - Always 1.
 nFileIndexHigh - Always 0. (A Win32s limitation.)
 nFileIndexLow - Always 0. (A Win32s limitation.)

Additional reference words: 1.20
KBCategory: kbprg
KBSubcategory: W32s

Retrieving Counter Data from the Registry
PSS ID Number: Q107728

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51

SUMMARY
=======

The performance data begins with a structure of type PERF_DATA_BLOCK and is
followed by PERF_DATA_BLOCK.NumObjectTypes data blocks. Each data block
begins with a structure of type PERF_OBJECT_TYPE, followed by
PERF_OBJECT_TYPE.NumCounters structures of type PERF_COUNTER_DEFINITION.
Next, there are PERF_OBJECT_TYPE.NumInstances structures of type
PERF_INSTANCE DEFINITION, each directly followed by an instance name, a
structure of type PERF_COUNTER_BLOCK and PERF_OBJECT_TYPE.NumCounters
counters. All of these data types are described in WINPERF.H.

MORE INFORMATION
================

The following steps are used to retrieve all of the counter information
from the registry:

1. Allocate a buffer to obtain the performance data. For single objects,
 you may need at little as 1.5K. For global objects, you may need as
 much as 50K. Call RegQueryValueEx() to obtain the data. If the call
 returns ERROR_MORE_DATA, then the buffer size was not big enough.
 Increase the size of the buffer and try again. Repeat until the call
 is successful.

2. Get the first object type in PerfObj.

3. Get the first instance.

4. Get the first counter and its data. At this point, if the object has no
 instances, the next thing will be a pointer to a single
 PERF_COUNTER_BLOCK; otherwise, the next thing will be a pointer to the
 first PERF_INSTANCE_DEFINITION. Check PerfObj->NumInstances to find out
 how many instances there are.

5. Get the next counter and its data. Repeat for all PerfObj->NumCounters
 counters.

6. After all counters are retrieved for the instance, get the next
 instance and all its counters. Repeat for all PerfObj->NumInstances
 instances.

7. After all instances of the object type are retrieved, move to the next
 object type and repeat steps 3 - 7.

Sample Code

#include <windows.h>
#include <stdio.h>
#include <malloc.h>

#define TOTALBYTES 8192
#define BYTEINCREMENT 1024

void main()
{
 PPERF_DATA_BLOCK PerfData = NULL;
 PPERF_OBJECT_TYPE PerfObj;
 PPERF_INSTANCE_DEFINITION PerfInst;
 PPERF_COUNTER_DEFINITION PerfCntr, CurCntr;
 PPERF_COUNTER_BLOCK PtrToCntr;
 DWORD BufferSize = TOTALBYTES;
 DWORD i, j, k;

// Allocate the buffer.
 PerfData = (PPERF_DATA_BLOCK) malloc(BufferSize);

 while(RegQueryValueEx(HKEY_PERFORMANCE_DATA,
 "Global",
 NULL,
 NULL,
 (LPBYTE) PerfData,
 &BufferSize) == ERROR_MORE_DATA)
 {
 // Get a buffer that is big enough.
 BufferSize += BYTEINCREMENT;
 PerfData = (PPERF_DATA_BLOCK) realloc(PerfData, BufferSize);
 }

// Get the first object type.
 PerfObj = (PPERF_OBJECT_TYPE)((PBYTE)PerfData +
 PerfData->HeaderLength);

// Process all objects.
 for(i=0; i < PerfData->NumObjectTypes; i++)
 {
 printf("\nObject: %ld\n", PerfObj->ObjectNameTitleIndex);

 // Get the counter block.
 PerfCntr = (PPERF_COUNTER_DEFINITION) ((PBYTE)PerfObj +
 PerfObj->HeaderLength);

 if(PerfObj->NumInstances > 0)
 {
 // Get the first instance.
 PerfInst = (PPERF_INSTANCE_DEFINITION)((PBYTE)PerfObj +
 PerfObj->DefinitionLength);

 // Retrieve all instances.
 for(k=0; k < PerfObj->NumInstances; k++)
 {
 printf("\n\tInstance: %S\n", (char *)((PBYTE)PerfInst +
 PerfInst->NameOffset));
 CurCntr = PerfCntr;

 // Get the first counter.
 PtrToCntr = (PPERF_COUNTER_BLOCK)((PBYTE)PerfInst +
 PerfInst->ByteLength);

 // Retrieve all counters.
 for(j=0; j < PerfObj->NumCounters; j++)
 {
 printf("\t\tCounter: %ld\n",CurCntr->CounterNameTitleIndex);
 // Data is (LPVOID)((PBYTE)PtrToCntr + CurCntr->CounterOffset);

 // Get next counter.
 CurCntr = (PPERF_COUNTER_DEFINITION)((PBYTE)CurCntr +
 CurCntr->ByteLength);

 }

 // Get the next instance.
 PerfInst = (PPERF_INSTANCE_DEFINITION)((PBYTE)PtrToCntr +
 PtrToCntr->ByteLength);
 }
 }
 else
 {
 // Get the first counter.
 PtrToCntr = (PPERF_COUNTER_BLOCK) ((PBYTE)PerfObj +
 PerfObj->DefinitionLength);

 // Retrieve all counters.
 for(j=0; j < PerfObj->NumCounters; j++)
 {
 printf("\tCounter: %ld\n", PerfCntr->CounterNameTitleIndex);

 // Data is (LPVOID)((PBYTE)PtrToCntr + PerfCntr->CounterOffset);

 PerfCntr = (PPERF_COUNTER_DEFINITION)((PBYTE)PerfCntr +
 PerfCntr->ByteLength);
 }
 }

 // Get the next object type.
 PerfObj = (PPERF_OBJECT_TYPE)((PBYTE)PerfObj +
 PerfObj->TotalByteLength);
 }
}

 +
 PerfObj->TotalByteLength);
 }
}

Note that the instance names are retrieved in a fashion that is similar to
retrieving the data.

The steps above showed how to obtain all of the counters. You can retrieve
only the counters that pertain to a particular object by using the titles
database. The information is stored in the registry in the format index,
name, index, name, and so forth.

To retrieve the titles database and store it in TitlesDatabase:

1. Open the key:

 RegOpenKeyEx(HKEY_LOCAL_MACHINE,
 "Software\\Microsoft\\Windows NT\\CurrentVersion\\Perflib\\009",
 0,
 KEY_READ,
 &Hkey);

 Note that 009 is a language ID, so this value will be different on a
 non-English version of the operating system.

2. Query the information from the key:

 RegQueryInfoKey(
 Hkey,
 (LPTSTR) Class,
 &ClassSize,
 NULL,
 &Subkey,
 MaxSubKey,
 &MaxClass,
 &Values,
 &MaxName,
 &MaxData,
 &SecDesc,
 &LastWriteTime);

3. Allocate a buffer to store the information:

 TitlesDataBase = (PSTR) malloc((MaxData+1) * sizeof(TCHAR))

4. Retrieve the data:

 RegQueryValueEx(Hkey,
 (LPTSTR) "Counters",
 NULL,
 NULL,
 (LPBYTE) TitlesDataBase,
 &MaxData);

Once you have the database, it is possible to write code that will go
through all objects, searching by index (field ObjectNameTitleIndex) or by
type (field ObjectNameTitle - which is initially NULL).

Or, you could obtain only the performance data for specified objects by
changing the call to ReqQueryValueEx() in step 1 of the SUMMARY section
above to:

 RegQueryValueEx(HKEY_PERFORMANCE_DATA,
 Indices,
 NULL,
 NULL,
 PerfData,
 &BufferSize);

Note that the only difference here is that instead of specifying "Global"
as the second parameter, you specify a string that represents the decimal
value(s) for the object(s) of interest that are obtained from the titles
database.

REFERENCES
==========

The PVIEWER and PERFMON samples in the MSTOOLS\SAMPLES\SDKTOOLS directory
contain complete sample code that deals with performance data.

For more information, please see the "Performance Overview" in the Win32
SDK documentation and the volume titled "Optimizing Windows NT" in the
Windows NT Resource Kit.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseMisc

Retrieving DIBs from the Clipboard
PSS ID Number: Q106386

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Retrieving a DIB (device-independent bitmap) from the clipboard can take
significantly more time than retrieving a bitmap from the clipboard. The
difference stems from the fact that a bitmap is a GDI object and a DIB is a
global memory object.

MORE INFORMATION
================

When SetClipBoardData() is passed a global memory handle, as it is when it
is passed a handle to a DIB, all the data gets copied into the Win32 server
and put into a sharable section of memory. When the DIB is retrieved with
GetClipBoardData(), the shared memory is mapped into the application's
virtual address space and the memory handle is cached. Any subsequent calls
to GetClipBoardData() return quickly, because the memory does not have to
be remapped.

In contrast, when retrieving a bitmap with GetClipBoardData(), only a
handle is created, because a bitmap is a GDI object.

When CloseClipboard() is called, all of the cached handles to shared memory
and GDI objects are deleted.

Rather than reopening the clipboard, it is a good idea to keep a local copy
of anything retrieved from the clipboard if the item will be used again
after the clipboard has been closed. In general, data should be retrieved
from the clipboard only when the application is doing a paste or if the
application is a clipboard viewer processing a WM_DRAWCLIPBOARD message.

The data for a GDI object exists on the server side. In other words,
bitmaps and DDBs (device-dependent bitmaps) exist in the Win32 subsystem
address space. Only the handles of GDI objects are private to an
application. Therefore, to make a bitmap or a DDB accessible to another
application, only a call to DuplicateHandle() is needed.

Note that even though it is faster to retrieve a DDB from the clipboard, it
is still recommended to put a DIB on the clipboard rather than a DDB.

Additional reference words: 3.10 3.50 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrClp

Retrieving Font Styles Using EnumFontFamilies()
PSS ID Number: Q84131

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Windows version 3.1 introduces the concept of a font style. In
previous versions of Windows, a font could have the bold, italic,
underline, and strikeout properties, which were supported by
respective members in the LOGFONT and TEXTMETRIC structures. Windows
3.1 also supports these properties, as well as a style name for
TrueType fonts. The article describes how to obtain the font style
name during font enumeration, using the EnumFontFamilies function. For
more information about obtaining style information without enumerating
the fonts, query on the following words in the Microsoft Knowledge
Base:

 prod(winsdk) and getoutlinetextmetrics

MORE INFORMATION
================

In Windows 3.1, "style" refers to the weight and slant of a font.
Windows supports a wide range of weights in the lfWeight member of the
LOGFONT structure. (Two examples of weights are FW_BOLD, which is
defined as 700, and FW_THIN, which is defined as 100). Very few
applications, however, use any weights other than FW_BOLD and
FW_DONTCARE (defined as 0).

Windows 3.1 builds on the support presently in Windows for these
variations in weight and slant. Style names are NOT used in the
LOGFONT structure except when the fonts are enumerated with
EnumFontFamilies.

The ChooseFont dialog box in the common dialog boxes dynamic-link
library (COMMDLG.DLL) demonstrates how style names are used. The
ChooseFont dialog box has two list boxes: Font and Font Style. The
Font list box lists the face names for all fonts installed and the
Font Style list box lists the font styles for the currently selected
face. For example, if any non-TrueType font (such as MS Sans Serif) is
selected, the following styles appear in the Font Style list box:

 Regular

 Bold
 Italic
 Bold Italic

TrueType fonts may have these or more elaborate styles. For example,
the "Lucida Sans" face includes the following style names:

 Regular
 Italic
 Demibold Roman
 Demibold Italic

In the case of Lucida Sans with the style of Demibold Roman or
Demibold Italic, the lfWeight value is 600 (FW_DEMIBOLD).

In Windows 3.1, the EnumFontFamilies function can be used to obtain
the style name of a font during font enumeration. The EnumFontFamilies
function works in a manner very similar to the Windows 3.0 EnumFonts
function.

EnumFontFamilies is prototyped as:

 int EnumFontFamilies(HDC hdc, LPCSTR lpszFamily,
 FONTENUMPROC lpfnEnumProc, LPARAM lpData)

The lpszFamily parameter points to a null-terminated string that
specifies the family name (or typeface name) of the desired fonts. If
this parameter is NULL, EnumFontFamilies selects and enumerates one
font of each available font family. For example, to enumerate all
fonts in the "Arial" family, lpszFamily points to a string buffer
containing "Arial."

The following table illustrates the meanings of the terms, "typeface
name," "font name," and "font style:"

 Typeface Name Font Name Font Style
 ------------- --------- ----------

 Arial Arial Regular
 Arial Bold Bold
 Arial Italic Italic
 Arial Bold Italic Bold Italic

 Courier New Courier New Regular
 Courier New Bold Bold
 Courier New Italic Italic
 Courier New Bold Italic Bold Italic

 Lucida Sans Lucida Sans Regular
 Lucida Sans Italic Italic
 Lucida Sans Demibold Roman Demibold Roman
 Lucida Sans Demibold Italic Demibold Italic

 MS Sans Serif MS Sans Serif Regular
 MS Sans Serif Bold

 MS Sans Serif Italic
 MS Sans Serif Bold Italic

The first three typefaces in the above table are TrueType faces, the
remaining typeface is MS Sans Serif. The typeface name is also
sometimes referred to as the family name.

When dealing with non-TrueType fonts, typeface name and font name are
the same. However, it is important to recognize the distinction when
dealing with a TrueType font.

For example, CreateFont takes a pointer to a string containing the
typeface name of the font to create. It is not valid to use Arial Bold
as this string because Arial is a TrueType font and Arial Bold is a
font name, not a typeface name.

If EnumFontFamilies is called with the lpszFamily parameter pointing
to a valid TrueType typeface name, the callback function, which is
specified in fntenmprc, will be called once for each font name for
that typeface name. For example, if EnumFontFamilies is called with
lpszFamily pointing to Lucida Sans, the callback function will be
called four times; once for each font name.

If the lpszFamily parameter points to the typeface name of a non-
TrueType font, such as MS Sans Serif, the callback will be called once
for each face size supported by the font. The number of face sizes
supported by the font can vary from font to font and from device to
device. Note that the callback is called for different sizes, not for
different styles. This behavior is identical to that found using the
EnumFonts function.

Remember that, because TrueType fonts are continuously scalable, there
is no reason for the callback function to be called for each size. If
the callback function was called for each size that a TrueType font
supported, the callback function would be called an infinite number of
times!

The EnumFontFamilies callback function is prototyped as follows:

int CALLBACK EnumFontFamProc(LPNEWLOGFONT lpnlf,
 LPNEWTEXTMETRIC lpntm,
 int FontType, LPARAM lpData)

The lpnlf parameter points to a LOGFONT structure that contains
information about the logical attributes of the font. If the typeface
being enumerated is a TrueType font [(nFontType | TRUETYPE_FONTTYPE)
is TRUE], this LOGFONT structure will have two additional members
appended to the end of the structure, as follows:

 char lfFullName[LF_FACESIZE*2];
 char lfStyleName[LF_FACESIZE];

It is important to remember that these two additional fields are used
only during enumeration with EnumFontFamilies and nowhere else in
Windows. The documentation for the EnumFontFamilies function on pages

266-268 of the "Microsoft Windows Software Development Kit:
Programmer's Reference, Volume 2: Functions" manual refers to the
NEWLOGFONT structure which contains the additional members listed
above. However, the NEWLOGFONT structure is not defined in the
WINDOWS.H header file. To address this situation, use the ENUMLOGFONT
structure which is defined in the WINDOWS.H file but is not listed in
the Windows SDK documentation.

To retrieve the style name and full name of a font without using
enumeration, use the GetOutlineTextMetrics function.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbgraphic
KBSubcategory: GdiTt

Retrieving Handles to Menus and Submenus
PSS ID Number: Q67688

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

To change the contents of a menu, you must have its handle. The handle
of the menu associated with a given window is available through the
GetMenu() function.

To obtain a reference to a particular text item in the menu, use the
GetMenuString() function. The definition for this function is

 GetMenuString(hMenu, wIDItem, lpString, nMaxCount, wFlag)

where

 hMenu = The menu handle
 wIDItem = The ID of the item or the zero-based offset of the
 item within the menu
 lpString = The buffer that is to receive the text
 nMaxCount = The length of the buffer
 wFlag = MF_BYCOMMAND or MF_BYPOSITION

If a menu item has a mnemonic, the text will contain an ampersand (&)
character preceding the mnemonic character.

To obtain the handle to a submenu of the menu bar, use the
GetSubMenu() function. The second parameter, nPos, is the zero-based
offset from the beginning of the menu.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrMen

Retrieving Palette Information from a Bitmap Resource
PSS ID Number: Q124947

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s versions 1.2, 1.25a, and 1.3

SUMMARY
=======

You may sometime need to create a logical palette from a bitmap resource in
order to display the bitmap with the maximum number of available colors.
For example, on an 8 bit-per-pixel display, a logical palette is necessary
to draw a 256-color bitmap on a device context for that display. The
LoadBitmap function does not return or take a palette as one of its
parameters; thus, for example, there is no way to incorporate a palette
with a 256-color bitmap loaded with LoadBitmap. Therefore, an application
must load the resource as a device-independent bitmap (DIB), rather than a
device-dependent bitmap (DDB), in order to retrieve the bitmap's color
information. An application can use the FindResource, LoadResource, and
LockResource functions to do this.

The solution differs slightly for Win32s.

MORE INFORMATION
================

Windows and Windows NT

A bitmap (.BMP file) is stored in an application's resources as a (DIB),
along with a color table if one exists. When a DIB is loaded from an
application's resources with the LoadBitmap function, a DDB is returned.
This DDB is a bitmap compatible with the screen. Routines such as
CreateDIBitmap and SetDIBits that convert DIBs to DDBs take a handle to a
device context as their first parameter. This tells the routine what kind
of DDB to create. If this device context currently has a palette selected
into it, then CreateDIBitmap or SetDIBits can use this palette to create
the DDB. Without a palette, the routines are restricted to system colors
when matching the DIB's colors to the DDB's colors. For example, on an 8
bit-per-pixel display, the resulting DDB can have only up to 20 different
colors. With a logical palette, the resulting bitmap could have had up to
256 different colors.

If the bitmap is loaded as a DIB from the resource, then an application can

query the DIB's color table and create a logical palette for the DIB. Then,
it can call either CreateDIBitmap or SetDIBits, along with a device context
with that palette selected, to obtain a DDB compatible with that palette.
To load a bitmap from a resource as a DIB, you can use the FindResource
function with the RT_BITMAP flag set and then use the LoadResource function
to load it. You can lock the resource with the LockResource function.

The following code demonstrates how to use the above technique to load a
DIB from an application's resources, create a palette for it, and then
create a DDB out of it. The LoadResourceBitmap function below can be used
in place of the LoadBitmap function. The only additional parameter needed
is the address of a logical palette handle. The palette handle referenced
will contain a handle to a logical palette after the function is called.

HBITMAP LoadResourceBitmap(HINSTANCE hInstance, LPSTR lpString,
 HPALETTE FAR* lphPalette)
{
 HRSRC hRsrc;
 HGLOBAL hGlobal;
 HBITMAP hBitmapFinal = NULL;
 LPBITMAPINFOHEADER lpbi;
 HDC hdc;
 int iNumColors;

 if (hRsrc = FindResource(hInstance, lpString, RT_BITMAP))
 {
 hGlobal = LoadResource(hInstance, hRsrc);
 lpbi = (LPBITMAPINFOHEADER)LockResource(hGlobal);

 hdc = GetDC(NULL);
 *lphPalette = CreateDIBPalette ((LPBITMAPINFO)lpbi, &iNumColors);
 if (*lphPalette)
 {
 SelectPalette(hdc,*lphPalette,FALSE);
 RealizePalette(hdc);
 }

 hBitmapFinal = CreateDIBitmap(hdc,
 (LPBITMAPINFOHEADER)lpbi,
 (LONG)CBM_INIT,
 (LPSTR)lpbi + lpbi->biSize + iNumColors *
sizeof(RGBQUAD),

 (LPBITMAPINFO)lpbi,
 DIB_RGB_COLORS);

 ReleaseDC(NULL,hdc);
 UnlockResource(hGlobal);
 FreeResource(hGlobal);
 }
 return (hBitmapFinal);
}

HPALETTE CreateDIBPalette (LPBITMAPINFO lpbmi, LPINT lpiNumColors)
{

 LPBITMAPINFOHEADER lpbi;
 LPLOGPALETTE lpPal;
 HANDLE hLogPal;
 HPALETTE hPal = NULL;
 int i;

 lpbi = (LPBITMAPINFOHEADER)lpbmi;
 if (lpbi->biBitCount <= 8)
 *lpiNumColors = (1 << lpbi->biBitCount);
 else
 *lpiNumColors = 0; // No palette needed for 24 BPP DIB

 if (*lpiNumColors)
 {
 hLogPal = GlobalAlloc (GHND, sizeof (LOGPALETTE) +
 sizeof (PALETTEENTRY) * (*lpiNumColors));
 lpPal = (LPLOGPALETTE) GlobalLock (hLogPal);
 lpPal->palVersion = 0x300;
 lpPal->palNumEntries = *lpiNumColors;

 for (i = 0; i < *lpiNumColors; i++)
 {
 lpPal->palPalEntry[i].peRed = lpbmi->bmiColors[i].rgbRed;
 lpPal->palPalEntry[i].peGreen = lpbmi->bmiColors[i].rgbGreen;
 lpPal->palPalEntry[i].peBlue = lpbmi->bmiColors[i].rgbBlue;
 lpPal->palPalEntry[i].peFlags = 0;
 }
 hPal = CreatePalette (lpPal);
 GlobalUnlock (hLogPal);
 GlobalFree (hLogPal);
 }
 return hPal;
}

Here is an example of how you might use the above function to load a bitmap
from a resource and display it using a logical palette:

 {
 HBITMAP hBitmap,hOldBitmap;
 HPALETTE hPalette;
 HDC hMemDC, hdc;
 BITMAP bm;

 hBitmap = LoadResourceBitmap(hInst,"test", &hPalette);
 GetObject(hBitmap, sizeof(BITMAP), (LPSTR)&bm);
 hdc = GetDC(hWnd);
 hMemDC = CreateCompatibleDC(hdc);
 SelectPalette(hdc,hPalette,FALSE);
 RealizePalette(hdc);
 SelectPalette(hMemDC,hPalette,FALSE);
 RealizePalette(hMemDC);
 hOldBitmap = SelectObject(hMemDC,hBitmap);
 BitBlt(hdc,0,0,bm.bmWidth,bm.bmHeight,hMemDC,0,0,SRCCOPY);
 DeleteObject(SelectObject(hMemDC,hOldBitmap));
 DeleteDC(hMemDC);

 ReleaseDC(hWnd,hdc);
 DeleteObject(hPalette);
 }

Win32s

On Win32s, LoadResource does not return a true global memory handle. This
causes CreateDIBitmap to fail. To work around this problem, use GlobalAlloc
to create a global memory handle.

Here is what LoadResourceBitmap should be on Win32s:

HBITMAP LoadResourceBitmap(HINSTANCE hInstance, LPSTR lpString,
 HPALETTE FAR* lphPalette)
{
 HRSRC hRsrc;
 HGLOBAL hGlobal, hTemp;
 DWORD dwSize;
 HBITMAP hBitmapFinal = NULL;
 LPBITMAPINFOHEADER lpbi;
 LPSTR lpRes, lpNew;
 HDC hdc;
 int iNumColors;

 if (hRsrc = FindResource(hInstance, lpString, RT_BITMAP))
 {
 hTemp = LoadResource(hInstance, hRsrc);
 dwSize = SizeofResource(hInstance, hRsrc);
 lpRes = LockResource(hTemp);

 hGlobal = GlobalAlloc(GHND, dwSize);
 lpNew = GlobalLock(hGlobal);
 memcpy(lpNew, lpRes, dwSize);
 UnlockResource(hTemp);
 FreeResource(hTemp);

 lpbi = (LPBITMAPINFOHEADER)lpNew;

 hdc = GetDC(NULL);
 *lphPalette = CreateDIBPalette ((LPBITMAPINFO)lpbi, &iNumColors);
 if (*lphPalette)
 {
 SelectPalette(hdc,*lphPalette,FALSE);
 RealizePalette(hdc);
 }

 hBitmapFinal = CreateDIBitmap(hdc,
 (LPBITMAPINFOHEADER)lpbi,
 (LONG)CBM_INIT,
 (LPSTR)lpbi + lpbi->biSize + iNumColors * sizeof(RGBQUAD),
 (LPBITMAPINFO)lpbi,
 DIB_RGB_COLORS);

 ReleaseDC(NULL,hdc);

 GlobalUnlock(hGlobal);
 GlobalFree(hGlobal);
 }
 return (hBitmapFinal);
}

REFERENCES
==========

For more information on DIB-related functions, please review the Microsoft
Windows SDK sample DIBVIEW.

Additional reference words: 1.20 1.25a 1.30 3.10 3.50 4.00 95
KBCategory: kbgraphic
KBSubcategory: GdiBmp

Retrieving the Style String for a TrueType Font
PSS ID Number: Q84132

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Windows version 3.1 introduces the concept of a font style. In
previous versions of Windows, a font could have bold, italic,
underline, and strikeout properties, which were supported by
corresponding members of the LOGFONT and TEXTMETRIC structures.
Windows 3.1 continues to support these properties, however, it also
supports the concept of a style name for TrueType fonts.

Windows use of style names can be demonstrated by the ChooseFont
dialog box in the common dialog boxes dynamic-link library
(COMMDLG.DLL). The ChooseFont dialog box contains two list boxes named
Font and Font Style. The Font list box contains a list of all face
names and the Font Style list box contains a list of font styles for
the currently selected face. For example, if any non-TrueType font
(such as MS Sans Serif) is selected, the following styles will appear
in the style list box:

 Regular
 Bold
 Italic
 Bold Italic

TrueType fonts may have these or more elaborate styles. For example,
the "Lucida Sans" face includes the following style names:

 Regular
 Italic
 Demibold Roman
 Demibold Italic

MORE INFORMATION
================

As part of the TrueType support, the GetOutlineTextMetrics function can be
used to retrieve metric information for TrueType fonts, including the style
name.

GetOutlineTextMetrics is prototyped as follows:

 DWORD GetOutlineTextMetrics(HDC hdc, UINT cbData,
 LPOUTLINETEXTMETRIC lpotm);

The hdc parameter identifies the device context. GetOutlineTextMetrics
retrieves the metric information for the font currently selected into
the specified device context. For GetOutlineTextMetrics to succeed,
the font must be a TrueType font. The sample code given below shows
how to synthesize the style name for a non-TrueType font.

The cbData parameter specifies the size, in bytes, of the buffer in
which information is returned.

The lpotm parameter points to an OUTLINETEXTMETRIC structure. If this
parameter is NULL, the function returns the size of the buffer
required for the retrieved metric information.

The OUTLINETEXTMETRIC structure contains most of the font metric
information provided with the TrueType format. The relative parts of
the structure are listed below:

 typedef struct tagOUTLINETEXTMETRIC {
 .
 .
 .
 PSTR otmpFamilyName;
 PSTR otmpFaceName;
 PSTR otmpStyleName;
 PSTR otmpFullName;
 } OUTLINETEXTMETRIC;

While these four members of the OUTLINETEXTMETRIC structure are
defined as near pointers to strings (PSTR), they are actually offsets
into the structure from the beginning of the structure. Because the
length of these strings is not defined, an application must allocate
space for them above and beyond the space allocated for the
OUTLINETEXTMETRIC structure itself. The sample code below demonstrates
this. It also demonstrates using GetOutlineTextMetrics in an
application that will also work with Windows 3.0.

 #include <windows.h>
 #include <windowsx.h>
 .
 .
 .
 HFONT hFont;
 LPOUTLINETEXTMETRIC potm;
 TEXTMETRIC tm;
 int cbBuffer;

 hFont = CreateFont(.....);

 hFont = SelectObject(hDC, hFont);

 /*

 * Call the GetTextMetrics function to determine whether or not the
 * font is a TrueType font.
 */
 GetTextMetrics(hDC, &tm);

 /*
 * GetOutlineTextMetrics is a function implemented in Windows 3.1
 * and later. Assume fWin30 was determined by calling GetVersion.
 */
 if (!fWin30 && tm.tmPitchAndFamily & TMPF_TRUETYPE)
 {
 WORD (WINAPI *lpfnGOTM)(HDC, UINT, LPOUTLINETEXTMETRIC);

 /*
 * GetOutlineTextMetrics is exported from
 * GDI.EXE at ordinal #308
 */
 lpfnGOTM = GetProcAddress(GetModuleHandle("GDI"),
 MAKEINTRESOURCE(308));

 /*
 * Call GOTM with NULL to retrieve the size of the buffer.
 */
 cbBuffer = (*lpfnGOTM)(hDC, NULL, NULL);

 if (cbBuffer == 0)
 {
 /* GetOutlineTextMetrics failed! */
 hFont = SelectObject(hDC, hFont);
 DeleteObject(hFont);
 return FALSE;
 }

 /*
 * Allocate the memory for the OUTLINETEXTMETRIC structure plus
 * the strings.
 */
 potm = (LPOUTLINETEXTMETRIC)GlobalAllocPtr(GHND, cbBuffer);

 if (potm)
 {
 potm->otmSize = cbBuffer;

 /*
 * Call GOTM with the pointer to the buffer. It will
 * fill in the buffer.
 */
 if (!(*lpfnGOTM)(hDC, cbBuffer, potm))
 {
 /* GetOutlineTextMetrics failed! */
 hFont = SelectObject(hDC, hFont);
 DeleteObject(hFont);
 return FALSE;
 }

 /*
 * Do something useful with the string buffers. NOTE: To access
 * the string buffers, the otmp???Name members are used as
 * OFFSETS into the buffer. They *ARE NOT* pointers themselves.
 */
 OutputDebugString((LPSTR)potm + (UINT)potm->otmpFamilyName);
 OutputDebugString((LPSTR)potm + (UINT)potm->otmpFaceName);
 OutputDebugString((LPSTR)potm + (UINT)potm->otmpStyleName);
 OutputDebugString((LPSTR)potm + (UINT)potm->otmpFullName);

 /* Don't forget to free the memory! */
 GlobalFreePtr(potm);
 }
 else
 {
 /* GlobalAllocPtr failed */
 hFont = SelectObject(hDC, hFont);
 DeleteObject(hFont);
 return FALSE;
 }
 }
 else
 {
 /*
 * It was not a TrueType font, or Windows 3.0 is running.
 */
 LOGFONT lf;
 char szStyle[LF_FACESIZE];
 LPSTR p;

 GetObject(hFont, sizeof(LOGFONT), &lf);

 /*
 * Fabricate a style string. Important note! The strings
 * "Italic", "Bold", and "Regular" are only valid in English. On
 * versions of Windows localized for other countries, these
 * strings will differ.
 */
 szStyle[0] = '\0';

 if (lf.lfWeight >= FW_BOLD)
 lstrcpy(szStyle, "Bold ");

 /*
 * If it's "Bold Italic," concatenate.
 */
 p = szStyle + lstrlen(szStyle);

 if (lf.lfItalic)
 lstrcpy(p, "Italic");

 if (!lstrlen(szStyle))
 lstrcpy(szStyle, "Regular");

 /*

 * szStyle now holds what is equivalent to the otmpStyleName
 * member.
 */
 OutputDebugString(szStyle);
 }

 hFont = SelectObject(hDC, hFont);
 DeleteObject(hFont);

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbgraphic
KBSubcategory: GdiTt

Retrieving the Text Color from the Font Common Dialog Box
PSS ID Number: Q86331

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The common dialog box library (COMMDLG.DLL) provides the ChooseFont()
routine that provides a common interface (Font dialog box) to specify the
attributes for a font in an application. When the user chooses the Apply
button in the Font dialog box, the application can format selected text
using the specified font. This button is also useful in an application that
allows the user to select more than one font simultaneously.

The Font dialog box provides a common method to specify a number of font
attributes, including color. An application can send the CB_GETITEMDATA
message to the Color combo box to retrieve the currently selected color.

This article discusses the procedure required to obtain all the information
about the currently specified font.

MORE INFORMATION
================

The Font dialog box includes an Apply button if the application includes
the CF_APPLY value in the specification for the Flags member of the
CHOOSEFONT data structure. The dialog box includes the Color combo box if
the CF_EFFECTS value is also specified. The remainder of this article
assumes that the application has specified both of these values.

To properly process input from the Apply button, an application must
install a hook function. For more information on installing a hook
function from an application, query on the following words in the
Microsoft Knowledge Base:

 steps adding hook function

The following code illustrates one method to process input from the Apply
button:

 case WM_COMMAND:
 switch (wParam)
 {
 case psh3: // The Apply button

 // Retrieve the font information...
 SendMessage(hDlg, WM_CHOOSEFONT_GETLOGFONT, 0,
 (LONG)(LPLOGFONT)&lfLogFont);

 // Perform any required processing
 // (create the specified font, for example)

 // Retrieve color information...
 iIndex = (int)SendDlgItemMessage(hDlg, cmb4,
 CB_GETCURSEL, 0, 0L);
 if (iIndex != CB_ERR)
 {
 dwRGB = SendDlgItemMessage(hDlg, cmb4, CB_GETITEMDATA,
 (WORD)iIndex, 0L);
 wRed = GetRValue(dwRGB);
 wGreen = GetGValue(dwRGB);
 wBlue = GetBValue(dwRGB);

 wsprintf(szBuffer, "RGB Value is %u %u %u\r\n", wRed,
 wGreen, wBlue);

 OutputDebugString(szBuffer);
 }
 break;

 default:
 break;
 }
 break;

The color information is not required to create the font; however, this
information is required to accurately display the font according to the
user's specification.

In an application that does not use the Apply button, the rgbColors member
of the CHOOSEFONT data structure contains the selected color. In this case,
no special processing to retrieve the color is required.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrCmnDlg

Retrieving Time-Zone Information
PSS ID Number: Q115231

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

In Windows NT, version 3.1, the time-zone strings are compiled into a
resource that is linked into the CONTROL.EXE file. For Windows NT, version
3.5 and later and Windows 95, the time-zone strings have been moved into
the registry.

In Windows NT, the time-zone strings are located in the key:

 HKEY_LOCAL_MACHINE\SOFTWARE\
 Microsoft\
 Windows NT\
 CurrentVersion\
 Time Zones.

In Windows 95, the time-zone strings are located in the key:

 HKEY_LOCAL_MACHINE\SOFTWARE\
 Microsoft\
 Windows\
 CurrentVersion\
 Time Zones.

For each time zone, the registry key TZI is formatted as follows:

 LONG Bias;
 LONG StandardBias;
 LONG DaylightBias;
 SYSTEMTIME StandardDate;
 SYSTEMTIME DaylightDate;

You can use this information to fill out a TIME_ZONE_INFORMATION structure,
which is used when calling SetTimeZoneInformation().

Additional reference words: 3.50 4.00
KBCategory: kbprg
KBSubcategory: BseMisc

Returning CBR_BLOCK from DDEML Transactions
PSS ID Number: Q102584

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

DDEML servers are applications that provide data to client
applications. For some servers, this data gathering may be a lengthy
process, as when gathering data from sources such as serial ports or a
network. DDEML allows a server application to process data
asynchronously in these situations by returning CBR_BLOCK from the DDE
callback function.

MORE INFORMATION
================

In DDEML-based applications, while transactions can be either
synchronous or asynchronous, only DDEML client applications may choose
to establish either type of transaction when requesting data from a
server application. DDEML server applications do not distinguish
between synchronous and asynchronous transactions.

Asynchronous transactions can be very useful when client applications
know that the partner server application will take some time to gather
data. This type of transaction frees up the client to do other things
while waiting for a notification from the server of data availability.

Server applications have no way of determining whether the client
application has requested data synchronously or asynchronously.
Request transactions on the server's side are always synchronous. When
a client requests data, the server's callback receives an XTYP_REQUEST
transaction, where the expected return value is a data handle. If the
server application has to wait for data from a serial port, for
example, access to the CPU by other applications will be delayed,
thereby freezing the system until data arrives.

There are a couple of ways one can enable the server to gather data in
an asynchronous manner, thereby allowing it to yield to other
applications on the system while it gathers data. One method is to
use CBR_BLOCK; another is to change the request transaction to a
one-time ADVISE loop.

Method 1

Given that DDEML callbacks are not re-entrant, and that DDEML expects
a data handle as a return value from the XTYP_REQUEST transaction (and
transactions of XCLASS_DATA class), the server application can block
the callback momentarily. It can do this by returning a CBR_BLOCK
value after posting itself a user-defined message.

This way, the server application can gather data in the background
while DDEML queues up any further transactions. The server can start
gathering data when its window procedure gets the user defined message
that was posted by its DDE callback function.

When a server application returns CBR_BLOCK for a request transaction,
DDEML disables the server's callback function. It also queues
transactions that are sent by DDEML after its callback has been
disabled. This feature gives the server an opportunity to gather data
while allowing other applications to run in the system.

As soon as data becomes available, then the server application can
call DdeEnableCallBack() to re-enable the server callback function.
Once the callback is re-enabled, DDEML will resend the same request
transaction to the server's callback and this time, because data is
ready, the server application can return the appropriate data handle
to the client.

Transactions that were queued up because of an earlier block are sent
to the server's callback function in the order they were received by
DDEML.

The pseudo code to implement method 1 might resemble the following:

BOOL gbGatheringData = TRUE; // Defined GLOBAlly.
HDDEDATA ghData = NULL;

HDDEDATA CALLBACK DdeServerCallBack(...)
 {
 switch(txnType)
 {
 case XTYP_REQUEST:

 // If the server takes a long time to gather data...
 // for this topic/item pair, then
 // post a user-defined message to the server app's wndproc
 // and return CBR_BLOCK... DDEML will block the callback
 // and queue transactions.

 if(bGatheringData) {
 PostMessage(hSrvWnd, WM_GATHERDATA,) ;
 return CBR_BLOCK;
 }
 else // Data is ready, send back handle.
 return ghData;

 default:
 return DDE_FNOTPROCESSED;

 }
 }

LRESULT CALLBACK SrvWndProc(...)
 {
 switch (wMessage)
 {
 case WM_GATHERDATA:

 while (bGatheringData)
 {
 // Gather data here while yielding to others
 // at the same time!
 if(!PeekMessage(..))
 bGatheringData = GoGetDataFromSource (&ghData);
 else {
 TranslateMessage() ;
 DispatchMessage ();
 }
 }
 DdeEnableCallback (idInst, ghConv, EC_ENABLEALL);
 break ;

 default:
 return DefWndProc();
 }
 }

Method 2

Advise transactions in DDEML (or DDE) are just a continuous request
link. Changing the transaction from a REQUEST to a "one time only"
ADVISE loop on the client side allows the server to gather data
asynchronously.

The client application can start an ADVISE transaction from its side
and when the server receives a XTYP_ADVSTART transaction, return TRUE
so that an ADVISE link is established. Once the link is established,
the server can start gathering data, and as soon as it becomes
available, notify the client of its availability.

This can be done by calling DdePostAdvise(). The server can use
PeekMessage() to gather data if the data gathering process is a
lengthy one, so that other applications on the system will get a
chance to run. Once the client receives the data from the server in
its callback (in its XTYP_ADVDATA transaction), it can disconnect the
the ADVISE link from the server by specifying an XTYP_ADVSTOP
transaction.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrDde

Rich Edit Control Does Not Support Unicode
PSS ID Number: Q128558

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

The Rich Edit control included with Windows 95 and Windows NT version 3.51
does not support Unicode.

For a Unicode application to use the Rich Edit control, it must convert any
strings passed to the control to ASCII text. This includes strings used in
the FINDTEXT structure and the TEXTRANGE structure.

Additional reference words: 3.50 4.00
KBCategory: kbui
KBSubcategory: UsrCtl

Right-justified Windows and Menus in Hebrew Win95
PSS ID Number: Q152137
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit for
 - Microsoft Windows 95, version 4.0
 - Microsoft Windows NT, version 3.51
--

SUMMARY
=======

The written languages and cultures of the Middle East have a general right-
to-left orientation while Latin-based written languages and cultures have a
left-to-right orientation. This means that in a Hebrew application, lists,
menus, sets of buttons, or anything else that can have an alignment should
be designed with a right-to-left orientation.

MORE INFORMATION
================

Under Hebrew Windows 95, you can create overlapped windows, edit controls,
list boxes, and so on, that have a right-to-left orientation by calling
CreateWindowEx(WS_EX_RIGHT...). When the resulting window is opened in
Hebrew Windows 95, if a caption bar exists for that window, it is right-
aligned. If the resulting window is a control, the control would also have
a right-aligned property. For example, edit controls would have cursors
that start from the right end of the client area.

To right-align the menu takes a bit more work. The MENUEX resource and the
MFT_RIGHTJUSTIFY flag will need to be used.

The syntax for MENUEX is:

 menuID MENUEX
 BEGIN
 [{[MENUITEM itemText [, [id] [, [type] [, state]]]] |
 [POPUP itemText [, [id] [, [type] [, [state] [, helpID]]]]
 BEGIN
 popupBody
 END]} ...]
 END

 The following is an example of a right justified menu:
 ...
 #include "winuser.h"
 ...

 GENERIC MENUEX DISCARDABLE
 BEGIN
 POPUP "&File", , MFT_RIGHTJUSTIFY
 BEGIN
 MENUITEM "&New", IDM_NEW, MFS_GRAYED

 MENUITEM "&Open...", IDM_OPEN, MFS_GRAYED
 MENUITEM "&Save", IDM_SAVE, MFS_GRAYED
 MENUITEM "E&xit", IDM_EXIT
 END
 POPUP "&Edit", , MFT_RIGHTJUSTIFY
 BEGIN
 MENUITEM "Cu&t\tCtrl+X", IDM_CUT, MFS_GRAYED
 MENUITEM "&Copy\tCtrl+C", IDM_COPY,MFS_GRAYED
 MENUITEM "&Paste\tCtrl+V", IDM_PASTE, MFS_GRAYED
 MENUITEM "Paste &Link", IDM_LINK, MFS_GRAYED
 END

 END

SetMenuItemInfo can also be used to set the MFT_RIGHTJUSTIFY flag for
individual menu items.

Additional reference words: 3.51 4.00 ME Arabic
KBCategory: kbprg
KBSubcategory: wintldev
95 available. Arabic Windows 95 is still in beta.

Rotating a Bitmap by 90 Degrees
PSS ID Number: Q77127

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

There are no Windows functions that directly rotate bitmaps. All techniques
for rotating bitmaps in Windows involve copying the rows from a source
bitmap into the columns of a destination bitmap. The following contains
code for rotating a bitmap using GetPixel() and SetPixel(), and contains an
outline of code for rotating device independent bitmaps (DIB).

MORE INFORMATION
================

A device dependent bitmap (DDB) can be rotated using the GetPixel() and
SetPixel() functions. To rotate the bitmap, use the following code:

HBITMAP Rotate90(HDC hDC, HBITMAP hSourceBitmap)
{
 HBITMAP hOldSourceBitmap, hOldDestBitmap, hDestBitmap;
 HDC hMemSrc, hMemDest;
 int height, width;
 int i, j;
 BITMAP iSrcBitmap;

 // Step 1: Create a memory DC for the source and destination bitmaps
 // compatible with the device used.

 hMemSrc = CreateCompatibleDC(hDC);
 hMemDest= CreateCompatibleDC(hDC);

 // Step 2: Get the height and width of the source bitmap.

 GetObject(hSourceBitmap, sizeof(BITMAP), (LPSTR)&SrcBitmap);
 width = SrcBitmap.bmWidth;
 height = SrcBitmap.bmHeight;

 // Step 3: Select the source bitmap into the source DC. Create a
 // destination bitmap, and select it into the destination DC.

 hOldSourceBitmap = SelectObject(hMemSrc, hSourceBitmap);

 hDestBitmap = CreateBitmap(height, width, SrcBitmap.bmPlanes,
 SrcBitmap.bmBitsPixel, NULL);

 if (!hDestBitmap)
 return(hDestBitmap);

 hOldDestBitmap = SelectObject(hMemDest, hDestBitmap);

 // Step 4: Copy the pixels from the source to the destination.

 for (i = 0; i < width; ++i)
 for (j = 0; j < height; ++j)
 SetPixel(hMemDest, j, width - 1 - i,
 GetPixel(hMemSrc, i, j));

 // Step 5: Destroy the DCs.

 SelectObject(hMemSrc, hOldSourceBitmap);
 SelectObject(hMemDest, hOldDestBitmap);
 DeleteDC(hMemDest);
 DeleteDC(hMemSrc);

 // Step 6: Return the rotated bitmap.

 return(hDestBitmap);
}

If the bitmap is larger, using GetPixel() and SetPixel() may be too slow.
If this is the case, there are two options:

1. If the contents of the bitmap do not change, create two versions of
 the bitmap, the normal version and one that is rotated by 90
 degrees. Load the appropriate bitmap as required.

-or-

2. Find some way to manipulate the bits of the bitmap that is faster
 than using SetPixel() and GetPixel(). The best way to do this is to
 convert the bitmap to a device independent bitmap. The following
 four steps detail how to create the DIB and to perform the
 rotation:

 a. Use GetDIBits() to convert the bitmap to a device independent
 format. It is necessary to create a BITMAPINFO structure
 appropriate for the bitmap. This will write the bitmap as a
 series of scanlines. Each scanline is padded so that it is DWORD
 aligned.

 b. Allocate memory for the destination bitmap. This bitmap requires
 as many scanlines as the width of the source bitmap. Each
 scanline is as many pixels wide as the height of the source
 bitmap. Also, the scanlines must be DWORD aligned.

 c. For each scanline in the source bitmap, copy the pixels to the
 appropriate column in the destination bitmap. NOTE: The format
 for each scanline depends upon the number of bits per pixel. See
 the BITMAPINFO documentation for a description of the possible
 formats.

 d. Use SetDIBits() to copy the device independent bits into a
 device dependent bitmap. Another BITMAPINFO structure,
 appropriate for the destination device is required for this
 step.

The four steps of this method require much more work than is required
if GetPixel() and SetPixel() are used; however, this method may be
faster because it directly manipulates the bits in the bitmap.

Additional reference words: 3.00 3.10 4.00 95
KBCategory: kbgraphic
KBSubcategory: GdiBmp

RPC CALLBACK Attribute and Unsupported Protocol Sequences
PSS ID Number: Q131495

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.5

SUMMARY
=======

The CALLBACK attribute of RPC does not support connection-less protocol
sequences.

MORE INFORMATION
================

If an RPC interface has a procedure with the CALLBACK attribute, it can
only make use of connection-oriented protocol sequences. The following
protocol sequences are not supported:

 - ncadg_ip_udp
 - ncadg_ipx

If an RPC client tries to call a remote procedure that in turn calls a
procedure back on client, the client will be able make the initial call,
but when the server tries to call the procedure on client, the RPC run time
generates exception 1726: The remote procedure call failed.

Additional reference words: 3.50
KBCategory: kbnetwork kbnetwork
KBSubcategory: NtwkRpc

RPC Can Use Multiple Protocols
PSS ID Number: Q100009
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5,
 and 4.0
--

Microsoft Remote Procedure Call (RPC) does not rely on a single protocol.
An RPC server can be written to use all available protocols on the server,
and a client can be written in the same manner. Thus, the server or client
does not have to know which protocols it supports explicitly.

RPC protocols supported by Windows 3.1 and 3.5 are:

 ncacn_ip_tcp (TCP/IP)
 ncacn_nb_nb (NetBIOS over NetBEUI)
 ncacn_nb_tcp (NetBIOS over TCP)
 ncacn_np (Named Pipes)
 ncalrpc (LPC)

RPC protocols supported by Windows 3.5 only are:

 ncadg_ipx (Datagram - IPX)
 ncacn_spx (SPX)
 ncadg_ip_udp (Datagram - UDP)
 ncacn_nb_ipx (Netbios over IPX)

RPC protocols supports by Windows 95 are:

 ncacan_ip_tcp
 ncacn_nb_nb
 ncacn_np
 ncacn_spx
 ncalrpc

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbnetwork
KBSubcategory: NtwkRpc

RpcNsxxx() APIs Not Supported by Windows NT Locator
PSS ID Number: Q104318
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5
--

The RpsNSxxx group and profile name service application programming
interfaces (APIs), such as RpcNsProfileEltAdd(), are supported by our RPC
run time; however, they are not supported by the Windows NT Locator, which
is the default RPC name service provider. If you attempt to make a call to
one of these APIs, an error 1764, "request not supported," will be
returned. Because the RpcNSxxx APIs are supported in the run time, name
service providers other than the Locator, such as the DCE CDS, can be
accessed.

Additional reference words: 3.10 3.50
KBCategory: kbnetwork
KBSubcategory: NtwkRpc

Running a Windows-Based Application in its Own VDM
PSS ID Number: Q115235
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 version 3.5
--

SUMMARY
=======

The Windows NT, version 3.1, Windows on Win32 (WOW) supports running all
16-bit Windows-based applications in one virtual machine (VM). These
applications share an address space, just as they do on Windows. The
Windows NT, version 3.5, WOW supports running a Windows-based application
in its own VM, which gives the application its own address space.

In order to programmatically start a Windows-based application in its own
VM, start the application with CreateProcess() and then specify the flag
CREATE_SEPARATE_WOW_VDM.

To specify a Win16 application started from the command prompt to run in
its own address space, use the following syntax:

 start /SEPARATE <filename>

To specify a Windows-based application started from the Program Manager to
run in its own address space, check the following item in the Program Item
Properties for the application or in the Run dialog box, which can be
selected from the Program Manager's File menu:

 Run in Separate Memory Space

NOTE: This option is not the default, nor is there any way to make it
the default.

MORE INFORMATION
================

Allowing a Windows-based application to run in a separate address space
provides for more robust operation, because the application is isolated
from other Windows-based applications. However, the downside is twofold:

 - WOW VMs require approximately 2500K of private memory on x86 machines.

 - There is no shared memory between WOW VMs. Therefore, Windows-based
 applications that rely on shared memory cannot be run in separate
 VMs. As an alternative, use DDE or OLE, because they can be used by
 an application in one VM to communicate with an application in
 another VM.

Additional reference words: 3.50
KBCategory: kbprg

KBSubcategory: Subsys

Running Bound Applications Under Windows NT
PSS ID Number: Q90913
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5
--

SUMMARY
=======

Bound applications are designed and built so they can be run under either
OS/2 or MS-DOS. The OS/2 subsystem is not available on MIPS; therefore,
bound applications will not run as OS/2 applications on MIPS.

When a bound application is run under Windows NT on an 80x86 system, the
application will automatically run under the OS/2 subsystem if it is
available.

MORE INFORMATION
================

The OS/2 subsystem is available by default on an 80x86 system. To
force bound applications to run as an MS-DOS-based application, you can
disable the OS/2 subsystem, but this is not recommended. Instead use
the FORCEDOS facility. Type "FORCEDOS /?" at the command line to get
help on FORCEDOS. It is not advised that you disable the OS/2
subsystem unless there is a very specific need that FORCEDOS does not
address.

To disable the OS/2 subsystem using RegEdit:

 Go to HKEY_LOCAL_MACHINE
 Go to SYSTEM
 Go to Current Control Set
 Go to Control
 Go to Session Manager
 Go to SubSystems

 Modify 'Optional: REG_MULTI_SZ OS/2 Posix'. Specifically, remove OS/2
 and reboot.

Once this is done, bound applications will run as MS-DOS-based
applications. Running an OS/2 application results in the following message:

 Cannot connect to OS/2 subsystem

WARNING: REGEDT32 is a very powerful utility that facilitates directly
changing the Registry database. Using REGEDT32 incorrectly can cause
serious problems, including hard disk corruption. It may be necessary to
reinstall the software to correct some problems. Microsoft does not support
changes made with REGEDT32. Use this tool AT YOUR OWN RISK.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: SubSys

RW2002 Error "Cannot Reuse String Constants" in RC.EXE
PSS ID Number: Q21569
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0
--

SUMMARY
=======

The error "Cannot Reuse String Constants" will be returned by the Resource
Compiler if you have used the same ID value to define two different string
constants.

For example, the following error is returned when compiling the resource
file:

 Cannot Reuse String Constants

The file MY.RC may contain the following lines:

MORE INFORMATION
================

The following sample code can be used to demonstrate the problem.

Sample Code

 StringTable
 begin
 1, "one"
 2, "two"
 3, "three"
 1, "four"
 end

Note that "one" and "four" have the same value. This error may be less
noticeable if you are using both decimal and hexadecimal notation in
your RC file. In the following example, 0x010 and 16 have the same
value and generate the error:

 0x010, "hex 10"
 10, "ten"
 11, "eleven"
 15, "fifteen"
 16, "sixteen"

Additional reference words: 3.00 3.10 3.50 4.00 95 RW2002 RC2151
KBCategory: kbtool
KBSubcategory: TlsRc

SAMPLE: 16 and 32 Bits-Per-Pel Bitmap Formats
PSS ID Number: Q94326

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Windows NT supports the same bitmap formats as Microsoft Windows version
3.1, but includes two new formats: 16 and 32 bits-per-pel.

SEEDIB.EXE is a file in the Microsoft Software Library that contains the
source code to an application that demonstrates how to load, display, and
save 1, 4, 8, 16, 24, and 32-bits-per-pixel DIB formats. In addition, it
demonstrates a simple method of creating an optimized palette for
displaying DIBSs with more than 8-bits-per-pixel on 8-bits-per-pixel
devices.

NOTE: In order to minimize color loss, SeeDIB uses CreateDIBSection() to
do conversions between uncompressed DIBs which have more than 8-bits-per-
pixel. This function is not available on Windows NT 3.1.

You can download SEEDIB.EXE from the Microsoft Software Library (MSL) on
the following services:

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download SEEDIB.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get SEEDIB.EXE

MORE INFORMATION
================

For DIBs (device independent bitmaps), the 16 and 32-bit formats contain
three DWORD masks in the bmiColors member of the BITMAPINFO structure.
These masks specify which bits in the pel correspond to which color.

The three masks must have contiguous bits, and their order is assumed to be
R, G, B (high bits to low bits). The order of the three masks in the color
table must also be first red, then green, then blue (RGB). In this manner,
the programmer can specify a mask indicating how many shades of each RGB
color will be available for bitmaps created with CreateDIBitmap(). For
16-bits-per-pixel DIBs, CreateDIBitmap() defaults to the RGB555 format. For
32-bits-per-pixel DIBs, CreateDIBitmap() defaults to an RGB888 format.

NOTE: The DIB engine in Windows 95 supports only RGB555 and RGB565 for
16-bit DIBs and only RGB888 for 32-bit DIBs.

Example

The RGB555 format masks would look like:

 0x00007C00 red (0000 0000 0000 0000 0111 1100 0000 0000)
 0x000003E0 green (0000 0000 0000 0000 0000 0011 1110 0000)
 0x0000001F blue (0000 0000 0000 0000 0000 0000 0001 1111)

NOTE: For 16 bits-per-pel, the upper half of the DWORDs are always zeroed.

The RGB888 format masks would look like:

 0x00FF0000 red (0000 0000 1111 1111 0000 0000 0000 0000)
 0x0000FF00 green (0000 0000 0000 0000 1111 1111 0000 0000)
 0x000000FF blue (0000 0000 0000 0000 0000 0000 1111 1111)

Usage

When using 16 and 32-bit formats, there are also certain fields of the
BITMAPINFOHEADER structure that must be set to the correct values:

1. The biCompression member must be set to either BI_RGB or BI_BITFIELDS.
 Using BI-RGB indicates that no bit masks are included in the color table
 and that the default (RGB555 for 16bpp and RGB888 for 32bpp) format is
 implied. Using BI_BITFIELDS indicates that there are masks (bit fields)
 specified in the color table.

2. As with 24-bits-per-pixel formats, the biClrUsed member specifies the
 size of the color table used to optimize performance of Windows color
 palettes. If the biCompression is set to BI_BITFIELDS, then the optimal
 color palette starts immediately following the three DWORD masks. Note
 that an optimal color palette is optional and many applications will
 ignore it.

A technical note (VFW.ZIP) related to this subject from the Microsoft
Multimedia group is also available.

The technical note is part of the Video for Windows technical notes and
describes how to create a display driver that supports these new DIB
formats, which are used by Video for Windows. The technical note also
includes definitions of installable image Codecs.

Windows 95

In Windows 95, if the BI_BITFIELDS flag is set, then a color mask must be
specified and it must be one of the following:

Resolution Bits per color Color Mask

16bpp 5,5,5 0x00007c00 0x000003e0 0x0000001f
16bpp 5,6,5 0x0000f800 0x000007e0 0x0000001f
32bpp 8,8,8 0x00ff0000 0x0000ff00 0x000000ff

User-defined color masks are not available in Windows 95.

Additional reference words: 3.10 3.50 4.00 bpp bmp
KBCategory: kbgraphic kbfile
KBSubcategory: GdiBmp

SAMPLE: Adding TrueType, Raster, or Vector Fonts to System
PSS ID Number: Q130459

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

FONTINST is a sample application in the Microsoft Software Library that
demonstrates how to programmatically add a TrueType, raster, or vector font
to the system.

When working with a TrueType font file (.TTF file), FONTINST creates a .FOT
file and moves the specified .TTF file to the Windows system directory. For
a raster or vector font file (.FON file), FONTINST moves the .FON file to
the Windows system directory. After the font file has been moved to the
system directory, FONTINST adds the font to the system by using the
AddFontResource() API. Then it adds font information to the [fonts]
section of the WIN.INI file so that the font is automatically loaded every
time Windows starts. For example, the following line is added to the
WIN.INI file when FONTINST adds the ARIAL.TTF file to the system:

 Arial (TrueType)=ARIAL.FOT

FONTINST also demonstrates how to retrieve the facename of a font given a
.TTF or .FON file. In the case of a TrueType font, FONTINST opens up the
file and reads the naming table of the .TTF file. FONTINST also shows how
to read the FONTINFO structure (as described on pages 49-50 of the
"Microsoft Windows Software Development Kit: Programmer's Reference, Volume
4: Resources") of a .FON file. The facename of a font in a .FON file can
also be found in this manner.

After a font is installed by FONTINST, information about the font is
displayed in the window. Information such as the TEXTMETRIC structure and
font type, as well as sample font text, is displayed. Information added
to the WIN.INI file is also displayed in this window.

Download FONTINST.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download FONTINST.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get FONTINST.EXE

Additional reference words: 3.10 3.50 4.00 95 softlib
KBCategory: kbgraphic kbfile
KBSubcategory: GdiFnt GdiFntCreate

SAMPLE: AngleArc in Windows 3.1, Win32s, and Windows 95
PSS ID Number: Q125693

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s version 1.3

SUMMARY
=======

In Windows version 3.1, Win32s, and Windows 95, you may find it useful to
get the functionality provided by the Win32 API AngleArc(). AngleArc() is
only supported on Windows NT.

MORE INFORMATION
================

The AngleArc() function draws a line segment and an arc. The line segment
is drawn from the current position to the beginning of the arc. The arc is
drawn along the perimeter of a circle with the given radius and center. The
length of the arc is defined by the given start and sweep angles. The
starting point of the sweep is determined by measuring counterclockwise
from the x-axis of the circle by the number of degrees in the start angle.
The ending point is similarly located by measuring counterclockwise from
the starting point by the number of degrees in the sweep angle.

The code below provides two possible ways of getting functionality similar
to that of the AngleArc() function. While both of these methods will work
on any Windows platform, the second (AngleArc2) will be substantially
faster due to the fact that it uses the Arc() function to draw the sweep
rather than calculating each of the segments on the perimeter of the arc.

NOTE: One limitation of the second method is that if the sweep angle is
greater than 360 degrees, the arc will not be swept multiple times. In most
cases this will not be a problem but in certain cases (constructing paths,
for example) this can be a problem.

SAMPLE CODE #1
==============

BOOL AngleArc1(HDC hdc, int X, int Y, DWORD dwRadius,
 float fStartDegrees, float fSweepDegrees)
{
 float fCurrentAngle; // Current angle in radians
 float fStepAngle = 0.03f; // The sweep increment value in radians
 float fStartRadians; // Start angle in radians
 float fEndRadians; // End angle in radians

 int ix, iy; // Current point on arc
 float fTwoPi = 2.0f * 3.141592f;

 /* Get the starting and ending angle in radians */
 if (fSweepDegrees > 0.0f) {
 fStartRadians = ((fStartDegrees / 360.0f) * fTwoPi);
 fEndRadians = (((fStartDegrees + fSweepDegrees) / 360.0f) *
 fTwoPi);
 } else {
 fStartRadians = (((fStartDegrees + fSweepDegrees) / 360.0f) *
 fTwoPi);
 fEndRadians = ((fStartDegrees / 360.0f) * fTwoPi);
 }

 /* Calculate the starting point for the sweep via */
 /* polar -> cartesian conversion */
 ix = X + (int)((float)dwRadius * (float)cos(fStartRadians));
 iy = Y - (int)((float)dwRadius * (float)sin(fStartRadians));

 /* Draw a line to the starting point */
 LineTo(hdc, ix, iy);

 /* Calculate and draw the sweep */
 for (fCurrentAngle = fStartRadians;
 fCurrentAngle <= fEndRadians;
 fCurrentAngle += fStepAngle) {

 /* Calculate the current point in the sweep via */
 /* polar -> cartesian conversion */
 ix = X + (int)((float)dwRadius * (float)cos(fCurrentAngle));
 iy = Y - (int)((float)dwRadius * (float)sin(fCurrentAngle));

 /* Draw a line segment to current point */
 LineTo(hdc, ix, iy);
 }

 return TRUE;
}

SAMPLE CODE #2
==============

BOOL AngleArc2(HDC hdc, int X, int Y, DWORD dwRadius,
 float fStartDegrees, float fSweepDegrees)
{
 int iXStart, iYStart; // End point of starting radial line
 int iXEnd, iYEnd; // End point of ending radial line
 float fStartRadians; // Start angle in radians
 float fEndRadians; // End angle in radians
 BOOL bResult; // Function result
 float fTwoPi = 2.0f * 3.141592f;

 /* Get the starting and ending angle in radians */
 if (fSweepDegrees > 0.0f) {
 fStartRadians = ((fStartDegrees / 360.0f) * fTwoPi);

 fEndRadians = (((fStartDegrees + fSweepDegrees) / 360.0f) *
 fTwoPi);
 } else {
 fStartRadians = (((fStartDegrees + fSweepDegrees) / 360.0f) *
 fTwoPi);
 fEndRadians = ((fStartDegrees / 360.0f) * fTwoPi);
 }

 /* Calculate a point on the starting radial line via */
 /* polar -> cartesian conversion */
 iXStart = X + (int)((float)dwRadius * (float)cos(fStartRadians));
 iYStart = Y - (int)((float)dwRadius * (float)sin(fStartRadians));

 /* Calculate a point on the ending radial line via */
 /* polar -> cartesian conversion */
 iXEnd = X + (int)((float)dwRadius * (float)cos(fEndRadians));
 iYEnd = Y - (int)((float)dwRadius * (float)sin(fEndRadians));

 /* Draw a line to the starting point */
 LineTo(hdc, iXStart, iYStart);

 /* Draw the arc */
 bResult = Arc(hdc, X - dwRadius, Y - dwRadius,
 X + dwRadius, Y + dwRadius,
 iXStart, iYStart,
 iXEnd, iYEnd);

 /* Move to the ending point - Arc() wont do this and ArcTo() */
 /* wont work on Win32s or Win16 */
 MoveToEx(hdc, iXEnd, iYEnd, NULL);

 return bResult;
}

Additional reference words: 1.30 3.10 4.00
KBCategory: kbgraphic kbcode
KBSubcategory: GdiMisc

SAMPLE: Calling ExtDeviceMode/DeviceCapabilities in Win32s App
PSS ID Number: Q132239

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s version 1.25a

A Win32-based application running under Windows NT or Windows 95 can call
DocumentProperties to change printer settings and DeviceCapabilities to
query printer driver capabilities. But if the Win32-based appliction is
running under Win32s, it has to load and call printer drivers directly by
using calls such as LoadLibrary, GetProcAddress, ExtDeviceMode, and
DeviceCapabilities.

Win32s handles these two printer driver functions specifically by creating
a mapping thunk dynamically. The address returned to the Win32-based
application by GetProcAddress is actually the address to the thunk that
makes the 32-bit to 16-bit transition and calls the printer driver.

The DEVCAP sample shows:

 - How to use DeviceCapabilities to query printer driver capabilities.

 - How to use DocumentProperties under Windows NT or Windows 95 to change
 printing orientation.

 - How to use ExtDeviceMode under Win32s to change printing orientation.

 - How to work around two DeviceCapabilities bugs in the current version of
 Win32s (1.25.142) where DC_BINS and DC_PAPERS retrieve a list of DWORD
 items instead of a list of WORD items.

NOTE: Prior to version 1.25.142, Win32s contained a bug that didn't allow
ExtDeviceMode to change printing orientation.

Download DEVCAP.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download DEVCAP.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the SOFTLIB\MSLFILES directory
 Get DEVCAP.EXE

Additional reference word: 3.50 4.00 95 softlib
KBCategory: kbprint kbfile

KBSubcategory: GdiPrn

SAMPLE: Changing Text Alignment in an Edit Control Dynamiclly
PSS ID Number: Q66942

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

A Microsoft Windows edit control aligns its contents to the left or right
margins, or centers its contents, depending on the window style of the
control. The control styles ES_LEFT, ES_CENTER, and ES_RIGHT specify left-,
center-, and right-alignment, respectively.

Only multiline edit controls can be right-aligned or centered. Single-line
edit controls are always left-aligned, regardless of the control style
given.

Windows does not support altering the alignment style of a multiline edit
control after it has been created. However, there are two methods that you
can use to cause a multiline edit control in a dialog box to appear to
change alignment. Note that in each of these methods, the dialog box that
contains the control must be created with the DS_LOCALEDIT style.

MORE INFORMATION
================

The first method applies to all platforms. The second method does not apply
to Windows 95. Under Windows 95, EM_SETHANDlE and EM_GETHANDLE are not
supported. For more information, please see the following articles in the
Microsoft Knowledge Base:

 ARTICLE-ID: Q130759
 TITLE : EM_SETHANDLE and EM_GETHANDLE Messages Not Supported

Method 1

Create three controls: one left-aligned, one centered, and one right-
aligned. Each has the same dimensions and position in the dialog box, but
only one is initially made visible.

When the alignment is to change, call ShowWindow() to hide the visible
control and to make one of the other controls visible.

To keep the text identical in all three controls, use the EM_GETHANDLE and
EM_SETHANDLE messages to share the same memory among all three controls.

Method 2

Initially create a single control. When the text alignment is to change,
retrieve location, size, and style bits for the existing edit control.
Create a new control with the same size and in the same location, but
change the style bits to reflect the new alignment.

Send the EM_GETHANDLE to each control to retrieve a handle to the memory
that stores the contents. Send an EM_SETHANDLE to each control to exchange
the memory used by each. Finally, destroy the original control.

There is a sample application named EDALIGN in the Microsoft Software
Library that demonstrates each of these methods. Note, however, that this
sample is a Windows 3.1 sample only.

Download EDALIGN.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download EDALIGN.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get EDALIGN.EXE

Additional reference words: 3.00 3.10 3.50 4.00 95 EDALIGN.EXE
KBCategory: kbui kbfile
KBSubcategory: UsrCtl

SAMPLE: CHECKLCL Finds Corresponding Local Path for UNC Name
PSS ID Number: Q148391
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0
 - Microsoft Windows NT Workstation versions 3.50 and 3.51
 - Microsoft Windows NT Server version 3.5 and 3.51
 - Microsoft Windows 95
--

SUMMARY
=======

UNC names specify network-wide distinct locations which are useful to
provide configuration information for applications. However, when the UNC
name refers to the local computer, it introduces some overhead as the
requests are passed down the Redirector, looped back by the transport, and
sent to the server service instead of going directly to the local disk.

The function provided in the library file in the CHECKLCL sample checks the
name passed it against the local computer name and replaces the
\\<computer>\<share> part with the local path to the share.

You can find CHECKLCL.EXE, a self-extracting file, on these services:

 - Microsoft's World Wide Web site on the Internet
 On the www.microsoft.com home page, click the Support icon
 Click Knowledge Base, and select the product
 Enter kbfile CHECKLCL.EXE, and click GO!
 Open the article, and click the button to download the file

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the Softlib/Mslfiles folder
 Get CHECKLCL.EXE

 - The Microsoft Network
 On the Edit menu, click Go To, and then click Other Location
 Type "mssupport" (without the quotation marks)
 Double-click the MS Software Library icon
 Find the appropriate product area
 Locate and Download CHECKLCL.EXE

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download CHECKLCL.EXE

For additional information about downloading, please see the following
article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q119591
 TITLE : How to Obtain Microsoft Support Files from Online Services

MORE INFORMATION
================

Limitations or Caveats

- The function only resolves names in the Microsoft Windows Network. It
 doesn't work with FPNW.

- Because the changed names do not hit server service anymore, share
 security does not apply. But this is alright because the function, which
 is called to resolve the name, can only be called by Admin type accounts
 on Windows NT. On Windows 95, there is no local security anyway.

The CHECKLCL library has three callable functions: GlpGetLocalPathName,
GlpFreeBuffer, and GlpGetBuffer.

The GlpGetLocalPathName Function

GlpGetLocalPathName(IN LPCTSTR pszInputName,
 IN OUT LPTSTR *ppszOutputName,
 IN OUT LPDWORD pdwOutputNameLength,
 OPTIONAL OUT LPDWORD pdwLanManError,
 OPTIONAL IN NETSHAREGETINFO_FPTR __stdcall
 GlpNetShareGetInfoPtr
);

To successfully execute the GlpGetLocalPathName function, you need to have
administrative or server operator privileges on Windows NT. Also, the
network should be running. The GlpGetLocalPathName function supports file,
pipe, and mailslot share names. It also supports the use of path names
longer than 260 characters (syntax \\?\ in CreateFile). For more
information, please see the header file.

pszInputName
 The GlpGetLocalPathName function scans the name passed in pszInputName
 and tries to convert it to a local file path, if it's a UNC name
 referencing the local computer name.

ppszOutputName
 ppszOutputName contains the local path name if the return code is
 ERROR_GLP_SUCCESS. In any other case, the contents should be ignored.
 The GlpGetLocalPathName function will allocate memory if you pass a
 pointer to NULL. You should free the pointer using GlpFreeBuffer.

pdwOutputNameLength
 When you pass a pointer to memory in ppszOutputName, this parameter
 specifies the number of characters that can be stored there including
 the terminating NULL character.

 When the GlpGetLocalPathName function returns ERROR_GLP_SUCCESS, this
 pdwOutputNameLength variable contains the number of characters copied
 into the buffer.

 If the function returns ERROR_GLP_INSUFFICIENT_BUFFER or
 ERROR_GLP_INSUFFICIENT_MEMORY, the pdwOutputNameLength variable
 contains the number of characters needed to store the converted name.

pdwLanManError
 This optional parameter points to a DWORD that receives the error code
 returned by NetShareEnum if the return code is ERROR_GLP_LANMAN_ERROR.
 The value is not changed when NetShareEnum returns successfully. If
 you're not interested in this value, pass NULL to the function.

GlpNetShareGetInfoPtr
 If not NULL, this function pointer will be called instead of
 NetShareEnum. This gives the caller the possibility to provide the
 local name or to call some other API. The parameters passed are for a
 call to NetShareEnum with information level 2. Remember that this
 function is UNICODE only.

The GlpFreeBuffer Function

GlpFreeBuffer (PVOID *ppszBuffer);

This function frees a pointer returned from GlpGetLocalPathName in the
parameter ppszOutputName. The function sets the pointer to NULL after the
memory is freed.

The GlpGetBuffer Function

GlpGetBuffer (PVOID *ppszBuffer, DWORD dwSizeNeeded);

Use this function if you pass a pointer to your custom NetShareGetInfo
function to GlpGetLocalPathNameW to allocate memory for the bufptr output
parameter of NetShareGetInfo. GlpGetLocalPathNameW will use its
GlpFreeBuffer function to free the memory.

This function returns ERROR_GLP_SUCCESS on success and
ERROR_GLP_INSUFFICIENT_MEMORY if there is not enough memory.

Additional reference words: 4.00 3.50
KBCategory: kbprg kbfile
KBSubcategory:

SAMPLE: Customizing the TOOLBAR Control
PSS ID Number: Q125683

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The sample BARSDI demonstrates how to provide Customization features for
the Toolbar Common Control. The Toolbar Common Control under Windows 95
provides Customization features that are useful when the user needs to
change the toolbar control's buttons dynamically (add, delete, interchange,
etc. buttons).

Download BARSDI.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download BARSDI.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the SOFTLIB\MSLFILES directory
 Get BARSDI.EXE

MORE INFORMATION
================

There are two ways the user can customize the toolbar:

First, the user can use the Drag Drop Customization process to delete or
change the position of buttons on the toolbar. This method does not allow
the user to add buttons to the toolbar dynamically.

The second method involves displaying the Customize dialog box through
which the user can add, remove, interchange buttons on the toolbar.

To provide Customization, the toolbar control has to be created with the
CCS_ADJUSTABLE style, and the parent of the toolbar control has to process
a series of TBN_XXXX notifications. The BARSDI sample implements both
methods of Customization.

Method 1: Drag Drop Customization

This method of toolbar customization allows the user to reposition
or delete buttons on the toolbar. The user initiates this operation
by holding down the SHIFT key and begins dragging a button. The toolbar

control handles all of the drag operations automatically, including
the cursor changes.

To delete a button, the user has to release the drag operation outside
the Toolbar control. The Toolbar control sends the TBN_QUERYDELETE
message to its parent window. The parent window can return TRUE to
allow the button to be deleted and FALSE to prevent the button from
being deleted.

If the application wants to do custom dragging, it has to process
the TBN_BEGINDRAG and TBN_ENDDRAG notifications itself and perform
the drag/drop process, which involves more coding.

Method 2: Customization Dialog Box

This method of customization allows users to add buttons to the toolbar
dynmacally in addition to deleting and rearranging buttons on the toolbar.
For example, if the toolbar has N total buttons, and displays only 10 of
those buttons initially, the bitmap that was used to create the toolbar,
should contian all N buttons (where N > 10).

There are two ways in which the Toolbar control dislpays the customize
dialog box. The user can bring up the Customization dialog box by
double-clicking the left mouse button on the toolbar control or the
application can send the TB_CUSTOMIZE message to the toolbar control.

The Customize dialog box displayed by the Toolbar control has two list
boxes. One, on the left contains the list of N-10 Buttons that were not
displayed on the initial toolbar, and the one on the right will have the
currently displayed buttons on the toolbar. The toolbar control provides
the add, remove and other features in the Customize dialog box.

Here is a code sample that shows how the Customization feature is
implemented:

SAMPLE CODE
===========

// The initial set of toolbar buttons.

TBBUTTON tbButton[] =
{
 {0, IDM_FILENEW, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},
 {1, IDM_FILEOPEN, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},
 {2, IDM_FILESAVE, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},
 {3, IDM_EDITCUT, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},
 {0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0, 0},
 {4, IDM_EDITCOPY, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},
 {5, IDM_EDITPASTE, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},
 {6, IDM_FILEPRINT, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},
 {0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0, 0},
 {7, IDM_ABOUT, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},
};

// Buttons that can be added at a later stage.

TBBUTTON tbButtonNew[] =
{
 { 8, IDM_ERASE, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},
 { 9, IDM_PEN, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},
 {10, IDM_SELECT, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},
 {11, IDM_BRUSH, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},
 {12, IDM_AIRBRUSH, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},
 {13, IDM_FILL, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},
 {14, IDM_LINE, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},
 {15, IDM_EYEDROP, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},
 {16, IDM_ZOOM, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},
 {17, IDM_RECT, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},
 {18, IDM_FRAME, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},
 {19, IDM_OVAL, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0},
};

// The bitmap that is used to create the toolbar should have all
// tbButtonNew + tbButton buttons = 20 in this case.

// Use tbButtons array to create the initial toolbar control.

// Once the user starts to customize the toolbar, process the WM_NOTIFY
// message and the following notifications.
// The toolbar control sends a WM_NOTIFY message to the parent window
// during each process of the customization.

LRESULT OnMsgNotify(HWND hwnd, UINT uMessage, WPARAM wparam, LPARAM lparam)
{
 LPNMHDR lpnmhdr;
 lpnmhdr = (LPNMHDR)lparam;

// process the QUERYINSERT And QUERYDELETE notifications
// to allow the drag/drop operation to succeeed.
 if (lpnmhdr->code == TBN_QUERYINSERT)
 return TRUE;
 else if (lpnmhdr->code == TBN_QUERYDELETE)
 return TRUE;
 else if (lpnmhdr->code == TBN_GETBUTTONINFO)
// The user has brought up the customization dialog box,
// so provide the the control will button information to
// fill the listbox on the left side.
 {
 LPTBNOTIFY lpTbNotify = (LPTBNOTIFY)lparam;
 char szBuffer [20];
 if (lpTbNotify->iItem < 12) // 20 == the total number of buttons
 { // tbButton and tbButtonNew
 // Since initially we displayed
 // 8 buttons
 // send back information about the rest of
 // 12 buttons that can be added the toolbar.

 lpTbNotify->tbButton = tbButtonNew[lpTbNotify->iItem];

 LoadString(hInst,
 NEWBUTTONIDS + lpTbNotify->iItem, // string
 //ID == command ID
 szBuffer,
 sizeof(szBuffer));

 lstrcpy (lpTbNotify->pszText, szBuffer);
 lpTbNotify->cchText = sizeof (szBuffer);
 return TRUE;
 }
 else
 return 0;
 }
}

Additional reference words: 4.00 BARSDI
KBCategory: kbui kbcode kbfile
KBSubcategory: UsrCtl

SAMPLE: DDRM.EXE: Mixing 2D DirectDraw Objects With Direct3D
PSS ID Number: Q152646
--
The information in this article applies to:

 - Microsoft DirectX 2 Software Development Kit (SDK), for Windows 95
--

SUMMARY
=======

The DDRM sample demonstrates one method of combining 2D objects on a
DirectDraw surface, such as a background, with Direct3D Retained Mode. It
also demonstrates how to lock the primary surface's palette down and how to
force Retained Mode to utilize what is in the palette and leave the entries
in it unchanged. Since the palette will not change, the pixels of the 2D
objects you create will not have to change. This sample renders to a full
screen, 8 bit-per-pixel DirectDraw surface using double buffering.

You can find DDRM.EXE, a self-extracting file, on these services:

 - Microsoft's World Wide Web site on the Internet
 On the www.microsoft.com home page, click the Support icon
 Click Knowledge Base, and select the product
 Enter kbfile DDRM.EXE, and click GO!
 Open the article, and click the button to download the file

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the Softlib/Mslfiles folder
 Get DDRM.EXE

 - The Microsoft Network
 On the Edit menu, click Go To, and then click Other Location
 Type "mssupport" (without the quotation marks)
 Double-click the MS Software Library icon
 Find the appropriate product area
 Locate and download DDRM.EXE

 - Microsoft Partner Network (MSPN)
 On MSPN Desktop, double-click the Software Library icon
 Search for DDRM.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download DDRM.EXE

For additional information about downloading, please see the following
article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q119591
 TITLE : How to Obtain Microsoft Support Files from Online Services

MORE INFORMATION
================

The DDRM sample creates a 640x480 primary surface with one back buffer. It
also creates a 640x480 offscreen surface, on which it stores a 2D bitmap
image. A palette is created for the 2D image and the palette is associated
with both the back buffer and the front buffer. It is necessary to
associate the palette with the back buffer because the back buffer will be
rendered to by Retained Mode. To lock down the palette, you must set the
peFlags member of the PALETTEENTRY structure for all palette entries to
D3DPAL_READONLY. This will let Retained Mode know that it can use but not
change the entries in the palette.

After obtaining a handle to the back buffer, a 16BPP z-buffer is created
and attached to it. SetPalette() is called to attach the palette to the
back buffer, and a destination color key for blit operations is created for
the back buffer. The color key is palette index 255 (white), so when you
blit to the back buffer, all pixels that are 255 (white) on the surface
will be overwritten by the pixels on the surface you are blitting from. All
other pixels will be preserved. Following is manner in which the
destination color key is created:

 DDCOLORKEY ddck;
 ddck.dwColorSpaceLowValue = 255;
 ddck.dwColorSpaceHighValue = 255;
 lpDDSBack->SetColorKey(DDCKEY_DESTBLT, &ddck);

After this is done, CreateDeviceFromSurface() is called to create a
Retained Mode device for the back buffer.

When setting up the scene for the Retained Mode device, you must set the
background color to 255 (white). When doing this, anything you blit to the
back buffer will overwrite the background of the Retained Mode scene.
Calling SetSceneBackground(D3DRGB(1,1,1)) will set up the background
properly if white is the destination color key. It is important that only
the background in the 3D scene contain white pixels. You should choose a
background color (destination color key) you know will never be used on
your 3D objects.

Following is the sequence of steps to take to update and render the
display:

 {
 HRESULT ddrval;
 RECT rcRect;
 DDBLTFX ddBltFx;

 rcRect.left = 0;
 rcRect.top = 0;
 rcRect.right = 640;
 rcRect.bottom = 480;

 // Clear the back buffer
 ZeroMemory(&ddBltFx,sizeof(DDBLTFX));
 ddBltFx.dwSize = sizeof(DDBLTFX);

 ddBltFx.dwFillColor = 255;
 lpDDSBack->Blt(NULL,NULL,NULL,DDBLT_COLORFILL | DDBLT_WAIT;
 ,&ddBltFx);

 // Update the 3D Retained Mode scene
 scene->Move(D3DVALUE(1.0));
 view->Clear();
 view->Render(scene);
 rmdev->Update();

 // Use DDBLTFAST_DESTCOLORKEY to blit the 2D bitmap image onto the
 // scene, only updating the white pixels
 while((ddrval = lpDDSBack->BltFast(0, 0, lpDDSOne, &rcRect,
 DDBLTFAST_DESTCOLORKEY)) == DDERR_WASSTILLDRAWING);
 // Update the primary surface
 while(lpDDSPrimary->Flip(NULL,0) == DDERR_WASSTILLDRAWING);
 }

NOTE: In this version of Direct3D, you should not change the palette on
your primary surface or your back buffer. Retained Mode will not account
for the palette entry changes. Microsoft is aware of this problem. The DDRM
sample demonstrates this problem by allowing you to change the palette
while it is executing.

REFERENCES
==========

DirectDraw code from portions of the DDEX3 sample was used in parts of
this sample.

Additional reference words: 4.00
KBCategory: kbprg kbgraphic kbfile
KBSubcategory: Direct3D

SAMPLE: Demonstration of OpenGL Material Property and Printing
PSS ID Number: Q136266

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The GLBMP sample illustrates how to define the material properties of the
objects in the scene: the ambient, diffuse, and specular colors; the
shininess; and the color of any emitted lights. This sample also
demonstrates how to print an OpenGL image by writing the OpenGL image into
a DIB section and printing the DIB section. The current version of
Microsoft's implementation of OpenGL in Windows NT does not provide support
for printing. To work around this current limitation, draw the OpenGL image
into a memory bitmap, and then print the bitmap.

Download GLBMP.EXE a self-extracting file, from the Microsoft
Software Library (MSL) on the following services:

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download GLBMP.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the SOFTLIB\MSLFILES directory
 Get GLBMP.EXE

MORE INFORMATION
================

The GLBMP sample uses some of the new Windows 95 controls. So it won't run
in Windows NT version 3.5 but will run in Windows NT version 3.51 and
Windows 95 when OpenGL for Windows 95 is available.

Additional reference words: 4.00 glbmp.exe opengl
KBCategory: kbgraphic kbprint kbfile
KBSubcategory: GdiOpenGL GdiPrn

SAMPLE: Demonstration of the DrawEdge() Function
PSS ID Number: Q138320

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.5,
 3.51, 4.0

The DrawEdge() function is useful for drawing user interface elements
like the edges of buttons, sunken or raised areas, and other 3D border
styles.

Drawedge is a sample application available for download that demonstrates
how to use the DrawEdge() API function. The user can configure the various
border and edge styles, and the application will display the results on the
screen.

Download Drawedge.exe, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - The Microsoft Network
 On the Edit menu, click Go To, and then click Other Location
 Type mssupport
 Double-click the MS Software Library icon
 Find the appropriate product area
 Download Drawedge.exe

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download Drawedge.exe

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the Softlib\Mslfiles directory
 Get Drawedge.exe

Additional reference words: 4.00 3.50 UI GDI
KBCategory: kbui kbprg kbcode kbfile
KBSubcategory: GdiMisc

SAMPLE: Drawing Three-Dimensional Text in OpenGL Applications
PSS ID Number: Q131024

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51

SUMMARY
=======

GDI operations, such as TextOut, can be performed on an OpenGL window only
if the window is single-buffered. The Windows NT implementation of OpenGL
does not support GDI graphics in a double-buffered window. Therefore, you
cannot use GDI functions to draw text in a double-buffered window, for
example. To draw text in a double-buffered window, an application can use
the wglUseFontBitmaps and wglUseFontOutlines functions to create display
lists for characters in a font, and then draw the characters in the font
with the glCallLists function.

The wglUseFontOutlines function is new to Windows NT 3.51 and can be used
to draw 3-D characters of TrueType fonts. These characters can be rotated,
scaled, transformed, and viewed like any other OpenGL 3-D image. This
function is designed to work with TrueType fonts.

The GLFONT sample shows how to use the wglUseFontOutlines function to
create display lists for characters in a TrueType font and how to draw,
scale, and rotate the glyphs in the font by using glCallLists to draw
the characters and other OpenGL functions to rotate and scale them. You
need the Win32 SDK for Windows NT 3.51 to compile this sample, and you need
to incorporate wglUseFontOutlines in your own application. You alos need
Windows NT 3.51 to execute the application.

Download GLFONT.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download GLFONT.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the SOFTLIB\MSLFILES directory

 Get GLFONT.EXE

MORE INFORMATION
================

To specify the TrueType font for which you want wglUseFontOutlines to
create display lists, you must first create the desired logical font by
using CreateFont or CreateFontIndirect. Then, you must select the HFONT

created into a screen device context (HDC) with SelectObject, and send the
HDC to the wglUseFontOutlines function. Each character is mapped in the x
and y directions in the display lists. You need to specify the depth in the
negative z direction in the extrusion parameter of wglUseFontOutlines.

You can also specify whether you want the 3-D glyphs to be created with
line segments or polygons. To instruct wglUseFontOutlines to create the
3-D glyphs with lines segments, specify WGL_FONT_LINES in the format
parameter. To create them with polygons, specify WGL_FONT_POLYGONS.

Here is an example showing how to create a set of display lists to draw
the characters of the Arial TrueType font as a set of polygons:

 LOGFONT lf;
 HFONT hFont, hOldFont;
 GLYPHMETRICSFLOAT agmf[256];

 // An hDC and an hRC have already been created.
 wglMakeCurrent(hDC, hRC);

 // Let's create a TrueType font to display.
 memset(&lf,0,sizeof(LOGFONT));
 lf.lfHeight = -20 ;
 lf.lfWeight = FW_NORMAL ;
 lf.lfCharSet = ANSI_CHARSET ;
 lf.lfOutPrecision = OUT_DEFAULT_PRECIS ;
 lf.lfClipPrecision = CLIP_DEFAULT_PRECIS ;
 lf.lfQuality = DEFAULT_QUALITY ;
 lf.lfPitchAndFamily = FF_DONTCARE|DEFAULT_PITCH;
 lstrcpy (lf.lfFaceName, "Arial") ;

 hFont = CreateFontIndirect(&lf);
 hOldFont = SelectObject(hDC,hFont);

 // Create a set of display lists based on the TT font we selected
 if (!(wglUseFontOutlines(hDC, 0, 255, GLF_START_LIST, 0.0f, 0.15f,
 WGL_FONT_POLYGONS, agmf)))
 MessageBox(hWnd,"wglUseFontOutlines failed!","GLFont",MB_OK);

 DeleteObject(SelectObject(hDC,hOldFont));

To display these 3-D characters in a string, use the following code:

 // Display string with display lists created by wglUseFontOutlines()
 glListBase(GLF_START_LIST); // indicate start of display lists

 // Draw the characters
 glCallLists(6, GL_UNSIGNED_BYTE, "OpenGL");

Additional reference words: graphics
KBCategory: kbgraphic kbcode kbfile

KBSubcategory: GdiOpenGL

SAMPLE: Drawing to a Memory Bitmap for Faster Performance
PSS ID Number: Q130805

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.5
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s version 1.2

An application whose client area is a complex image can realize a
performance benefit from drawing to a memory bitmap. The complex, time
consuming drawing code need only be performed once - to initialize the
offscreen bitmap. During the handling of the WM_PAINT message, the only
work that needs to be done is a simple BitBlt from the memory bitmap to the
screen.

Sample code demonstrating this technique is available in the Microsoft
Software Library. The MemDC sample code draws a complex pattern on its
client area. A menu option toggle allows the user to see the speed
difference between using and not using the offscreen bitmap.

Download MEMDC.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download MEMDC.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get MEMDC.EXE

Additional reference words: 1.20 3.10 3.50 4.00 95 device context memory DC
speed fast buffer
KBCategory: kbgraphic kbfile
KBSubcategory: GdiDc

SAMPLE: Fade a Bitmap Using Palette Animation
PSS ID Number: Q130804

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

PALFADE is a sample application available in the Microsoft Software
Library. It demonstrates:

 - How to use the AnimatePalette function to fade a bitmap to black.

 - How to use the DIBAPI32.DLL library that can be built by the WINCAP32
 sample that ships with the Microsoft Win32 SDK.

To perform palette animation, the sample creates a logical palette for a
device-independent bitmap (DIB) with the PC_RESERVED flag set for each
palette entry. PALFADE loads, displays, and animates both Windows-style and
OS/2-style DIB files.

Download PALFADE.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download PALFADE.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the SOFTLIB\MSLFILES directory
 Get PALFADE.EXE

MORE INFORMATION
================

Before performing palette animation on a logical palette entry, ensure that
the palette entry has the PC_RESERVED flag set. To fade a bitmap drawn on a
device context with a PC_RESERVED palette selected, you can lower the RGB
values for each color in the palette in a loop until all colors are black.

The default system palette contains 20 static colors. These static colors
take up the first ten and last ten colors of the system palette; these
palette entries are not available for animation. If you try to fade a
bitmap that has 256 unique colors by creating a 256-color palette with each
palette entry set to PC_RESERVED, you are not guaranteed that every logical
palette entry will map to an entry in the system palette that is available
for palette animation.

One solution to this is to create a logical palette that contains only 236
colors. The PALFADE sample demonstrates one way to create an optimal
palette of 236 colors given a device-independent bitmap with 256 colors in
its color table.

Given a 256-color DIB, PALFADE traverses through every bit in the bitmap to
find the least-used 20 colors in the color table. Then it creates a logical
palette out of the 236 most-used colors. This ensures that all entries in
the logical palette will animate.

This sample uses many of the DIB support functions included with the
DIBAPI32.DLL library. It does not use the LoadDIB() function, because it
was not written to handle OS/2-style DIB files. Instead, PALFADE implements
the DIB-loading routines found in the Win32 SDK SHOWDIB sample.

NOTE: DIBAPI32.DLL is included with this sample.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbgraphic kbfile kbgraphic
KBSubcategory: GdiPal

SAMPLE: FASTBLT Implements Smooth Movement of a Bitmap
PSS ID Number: Q40959

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

There is a sample application called FASTBLT in the Microsoft Software
Library that demonstrates how to implement the smooth movement of a bitmap
around the screen. Basically, it sets up a pair of BitBlt() calls: one that
erases the image and another that redisplays the image. The necessary ROP
codes for BitBlt() that should be used are SRCCOPY and SRCINVERT.

Download FASTBLT.EXE, a self-extracting file, from the
Microsoft Software Library (MSL) on the following services:

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download FASTBLT.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get FASTBLT.EXE

Additional reference words: 3.00 3.10 3.50 4.00 95 softlib FASTBLT.EXE
KBCategory: kbgraphic kbfile
KBSubcategory: GdiBmp

SAMPLE: FILEDRAG: How to Support File Drag Server Capabilities
PSS ID Number: Q139067

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SUMMARY
=======

Sample code is available that shows how an application can provide the File
Drag drop server capabilities. It shows how to set up the data structures
for CF_HDROP and ShellIDList formats. In this sample, the user can enable
support for any combination of CF_HDROP and ShellIDList format and see the
drag drop result. To obtain this sample:

Download FILEDRAG.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - The Microsoft Network
 On the Edit menu, click Go To, and then click Other Location
 Type mssupport
 Double-click the MS Software Library icon
 Find the appropriate product area
 Download FILEDRAG.EXE

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download FILEDRAG.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the Softlib\Mslfiles directory
 Get FILEDRAG.EXE

MORE INFORMATION
================

In Windows 3.x, the only application that could act as a File Drag-Drop
server was File Manager. Now the file drag-drop server capability is
extended to all applications via OLE Drag Drop.

An OLE drag-drop server application that supports the CF_HDROP format can
support file drag drop as does File Manager. The Windows system generates
the appropriate WM_DROPFILES message for client applications that support
File Drop, or the Windows system passes the IDataObject if the client
application supports OLE Drop target for CF_HDROP format.

One of the new features of the shell is when you drop files on an icon on
the desktop. The Shell opens the particular application with the drop file
in it provided the application supports command line arguments where file
can be passed as in this example:

 notepad.exe myfile.txt

This feature could also be provided by a file drag drop server that
supports the ShellIDList format, in addition to the CF_HDROP format.

Additional reference words: 4.00
KBCategory: kbole kbfile kbhowto
KBSubcategory:

SAMPLE: GLEXT: Demo of GL_WIN_swap_hint & GL_EXT_vertex_array
PSS ID Number: Q139967
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit for:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0
--

SUMMARY
=======

The GLEXT sample illustrates how to use the GL_WIN_swap_hint extension to
speed up animation by reducing the amount of repainting between frames and
how to use GL_EXT_vertex_array extension to provide fast rendering of
multiple geometric primitives with one glDrawArraysEXT call. It also shows
how to use glPixelZoom and glDrawPixels to display an OpenGL bitmap.

Download GLEXT.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - The Microsoft Network
 On the Edit menu, click Go To, and then click Other Location
 Type mssupport
 Double-click the MS Software Library icon
 Find the appropriate product area
 Download GLEXT.EXE

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download GLEXT.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the Softlib\Mslfiles directory
 Get GLEXT.EXE

MORE INFORMATION
================

Windows NT 3.51 and Windows 95 OpenGL supports OpenGL GL_WIN_swap_hint and
GL_EXT_vertex_array extensions. To use GL_WIN_swap_hint extension, you need
to use these functions:

 glAddSwapHintRectWIN
 SwapBuffers
 glGetString
 wglGetProcAddress

The glAddSwapHintRectWIN function lets you specify a set of rectangular
areas that you want to copy when you call SwapBuffers function. When no
rectangles are specified with glAddSwapHintRectWIN before calling

SwapBuffers, the entire frame buffer is swapped. If you only want to
animate part of your scene, using glAddSwapHintRectWIN function will
significantly speed up your animation. To check whether your implementation
of OpenGL supports glAddSwapHintRectWIN, call glGetString(GL_EXTENSIONS).
If it returns GL_WIN_swap_hint, glAddWsapHintRectWIN is supported. To
obtain the address of the glAddSwapHintRectWIN function, call
wglGetProcAddress.

To use GL_EXT_vertex_array extension, you need to use these functions:

 glDrawArraysEXT
 glGetString
 wglGetProcAddress

The glDrawArraysEXT function enables you to specify multiple geometric
primitives to render. Instead of calling separate OpenGL functions to pass
each individual vertex, normal, or color, you can specify separate arrays
of vertexes, normals, and colors to define a sequence of primitives of the
same kind, and just use one glDrawArraysEXT call to render them. To check
whether your implementation of OpenGL supports glDrawArraysEXT, call
glGetString(GL_EXTENSIONS). If it returns GL_EXT_vertex_array,
glDrawArraysEXT is supported. To obtain the address of the glDrawArraysEXT
function, call wglGetProcAddress.

You can use the following functions to define the data array for your
primitives:

 glVertexPointerEXT
 glNormalPointerEXT
 glColorPointerEXT
 glTexCoordPointerEXT
 glEdgeFlagPointerEXT
 glArrayElementEXT
 glGetPointervEXT
 glIndexPointerEXT

See the SDK references for information on these functions.

Additional reference words: 3.51 4.00 glext.exe opengl extension
KBCategory: kbgraphic kbfile
KBSubcategory: GdiOpenGL

SAMPLE: GLTex Demos How to Use DIBs for Texture Mapping
PSS ID Number: Q148301
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit for:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95
--

SUMMARY
=======

The GLTex sample (GLTEXTUR.EXE) provides a demonstration of how to use a
DIB (device-independent bitmap) as a texture-map for OpenGL by pasting a
DIB (chosen by the user) onto all sides of a three-dimensional cube.

GLTex also allows you to modify various texture settings so that you can
quickly and easily see the visual effect created.

You can find GLTEXTUR.EXE, a self-extracting file, on these services:

 - Microsoft's World Wide Web site on the Internet
 On the www.microsoft.com home page, click the Support icon
 Click Knowledge Base, and select the product
 Enter kbfile GLTEXTUR.EXE, and click GO!
 Open the article, and click the button to download the file

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the Softlib/Mslfiles folder
 Get GLTEXTUR.EXE

 - The Microsoft Network
 On the Edit menu, click Go To, and then click Other Location
 Type "mssupport" (without the quotation marks)
 Double-click the MS Software Library icon
 Find the appropriate product area
 Locate and Download GLTEXTUR.EXE

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download GLTEXTUR.EXE

For additional information about downloading, please see the following
article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q119591
 TITLE : How to Obtain Microsoft Support Files from Online Services

MORE INFORMATION
================

OpenGL for Windows NT and Windows 95 support powerful texture-mapping
capabilities. GLTex lets you easily experiment with many (but not all) of
these capabilities by using a series of conversions to generate the texture
map. It allows the user to modify various OpenGL settings.

To use a DIB as a texture in OpenGL, you must first convert the DIB into a
format that is compatible with OpenGL. Because a 32-bpp DIB is the most
closely related to an OpenGL formatted image, you can take the DIB that the
user provides and regardless of its format copy it by using StretchDIBits
onto a 32-bpp DIB Section. Therefore, from this point on, GLTex can assume
that it is working with a 32-bpp DIB Section.

Note that because a 32-bpp DIB is used, you don't have to worry about the
DWORD-alignment of DIBs. 32-bit DIBs are already DWORD-aligned. After
ensuring that you have a 32-bpp DIB Section, you must convert that DIB
Section into an OpenGL image. This involves converting the BGR format of
the DIB into the RGBA format that OpenGL uses. This translation from an
"any format DIB" into an OpenGL image is handled by GLTex's DIBtoGLImage
function.

Now that you have an OpenGL image, you must scale it to a format that is
2^n x 2^n. This is required for OpenGL textures. (There is one exception to
this rule involving texture borders, but GLTex does not use borders.) You
might want to chose to always scale the image to be square because you're
mapping onto cube faces. Then GLTex scales the image sides to the closest
2^n by using the utility function gluScaleImage. Finally, this scaled image
is set as the texture-image by calling glTexImage2D. This scaling and
setting of the texture is handled by GLTex's GLImagetoTexture function.

When the OpenGL scene is rendered, a simple three-dimensional cube is drawn
with the converted and scaled texture mapped onto it. This mapping is taken
care of by the glTexCoord function, which is called as the cube vertices
are specified. This is handled by GLTex's BuildCube function.

Settings

Once you have loaded a DIB and see how it maps to the cube's sides, GLTex
allows you to change several settings in order to see how these changes
would effect the image. The following list gives modifications that GLTex
allows you to make, a brief description of their effect, and which
functions are used to change them:

 - "Scene Distance from Viewer" allows you to push the scene farther away
 or bring it closer in. This is achieved with glTranslate.

 - "Cube Rotation" allows you to modify the angle of rotation around the x,
 y, and z axes. This is achieved with glRotate for each axis.

 - "Light Position" allows you to move the single light source used. Note
 that by changing the w coordinate, you can modify whether you are using
 a directional (w = 0.0) or positional (w = 1.0) light source. This is
 achieved with glLight(...GL_POSITION...).

 - "Texture Mode" allows you to use two of the three texture modes

 available with OpenGL. Decal mode essentially means that the texture is
 applied directly to the object without any calculation of material
 properties or lighting. Modulate mode blends the underlying object
 (which is effected by material properties and lighting) with the
 texture. This gives the effect of a lighted texture. The third
 possibility, Blending, doesn't make sense for a three-component (RGB)
 image. This is achieved with glTexEnv.

 - "Perspective Hint" should be changed to Nicest if the texture appears to
 be projected incorrectly. You should try it anyway because it will allow
 you to see the difference. This is achieved with glHint.

 - "Minification Filter" controls how a screen pixel should be mapped to a
 collection of texels (texture elements). This is achieved with
 glTexParameter(...GL_TEXTURE_MIN_FILTER...).

 - "Magnification Filter" controls how a screen pixel should be mapped to a
 portion of a texel (texture element). This is achieved with
 glTexParameter(...GL_TEXTURE_MIN_FILTER...).

 - "Texture Wrap S" and "Texture Wrap T" allow you to specify whether the
 image should repeat in the S and T directions (these can be thought of
 as the X and Y directions in the texture's world). This is achieved with
 glTexParameter(...GL_TEXTURE_<S or T>_WRAP...).

 - "Texture Coordinates" specifies how the texture is mapped to the object.
 Because 0.0 is the default for the first parameter, one side of the
 texture is always mapped to the edge of the cube's face. This should be
 used in conjunction with Texture Wrap S and T for repeating the texture
 across the cube's faces. This is achieved with glTexCoord.

See the effects of these settings by experimenting with them in GLTex. When
loading large DIBs with high-resolution, be patient, there is a lot of
translation going on as described above, so depending on your system, this
may take some time.

REFERENCES
==========

NOTE: Most of the following references can be found on the Microsoft
Developer Network (MSDN) Developer Library CD-ROM. Some of these references
are published by publishers independent of Microsoft; we make no warranty,
implied or otherwise, regarding the reliability of these resources.

Code for this GLTex sample was borrowed from the ShowDIB sample for DIB-
handling (Dib.c) and from Dale Rogerson's articles/samples for OpenGL
palette creation (Glpalette.c).

For more information on the settings and OpenGL in general, please see the
following resource:

 - Neider, Jackie, Tom Davis, and Mason Woo. OpenGL Programming Guide: The
 Official Guide to Learning OpenGL, Release 1. Reading, MA: Addison-
 Wesley, 1993. ISBN 0-201-63274-8. (This book is also known as the "Red
 Book.")

For more information on DIBs and Texture Mapping in OpenGL, please see the
following resources:

 - Rogerson, Dale. "OpenGL V: Translating Windows DIBs." January 1995.
 (Development Library, Technical Articles)

 - Rogerson, Dale. "OpenGL VII: Scratching the Surface of Texture Mapping."
 April 1995. (Development Library, Technical Articles)

For more information on DIBs in general, please see the following
resources:

 - Gery, Ron. "DIBs and Their Use.". March 1992. (Development Library,
 Technical Articles)

 - Gery, Ron. "Using DIBs with Palettes." March 1992. (Development Library,
 Technical Articles)

Additional reference words: 3.51 4.00 image texture mapping
KBCategory: kbgraphic kbfile
KBSubcategory: GdiOpenGL

SAMPLE: Highlighting an Entire Row in a ListView Control
PSS ID Number: Q131788

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s version 1.3

SUMMARY
=======

One of the limitations of the ListView common control is that when the
control is in report view, the control only highlights the first column
when a row is selected. To work around this limitation, you can create the
ListView as an owner draw control (using the LVS_OWNERDRAWFIXED style) and
perform all the painting yourself.

The ODLISTVW sample demonstrates how to create an owner draw ListView
control that highlights an entire row.

Download ODLISTVW.EXE, a self-extracting file, from the Microsoft
Software Library (MSL) on the following services:

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download ODLISTVW.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the SOFTLIB\MSLFILES directory
 Get ODLISTVW.EXE

MORE INFORMATION
================

One of the supported styles for the ListView control is LVS_OWNERDRAWFIXED,
which allows the program to perform all the drawing of items in the
ListView control. Whenever the ListView control needs to have a portion of
the control repainted, it calculates which items are in that area and sends
a WM_DRAWITEM message to its parent for each item. If any part of an item
needs to be redrawn, the ListView sends the WM_DRAWITEM with the update
rectangle set to the entire item.

The ListView control handles owner drawn items differently from other owner
drawn controls. Previous owner drawn controls use the DRAWITEMSTRUCT's
itemAction field to let the parent know if it needs to draw the item,
change the selected state, or change the focus state. The ListView control
always sends the WM_DRAWITEM message with the itemAction set to
ODA_DRAWENTIRE. The parent needs to check the itemState to see if the focus
or selection needs to be updated.

Additional reference words: 1.30 4.00 95 3.51 CListCtrl CListView list
control
KBCategory: kbui kbfile kbwebcontent
KBSubcategory: UsrCtl

SAMPLE: How to Add to & Delete from the Windows 95 Start Menu
PSS ID Number: Q134333

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SUMMARY
=======

The STRTMENU sample demonstrates how to add and delete program groups
and items to and from the Windows 95 Start Menu without using DDE. This is
accomplished by using combinations of shell functions and OLE.

MORE INFORMATION
================

Download STRTMENU.EXE, a self-extracting file, from the Microsoft
Software Library (MSL) on the following services:

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download STRTMENU.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the SOFTLIB\MSLFILES directory
 Get STRTMENU.EXE

Additional reference words: 4.00 Windows 95
KBCategory: kbprg kbcode kbfile
KBSubcategory:

SAMPLE: How to Create & Play Enhanced Metafiles in Win32
PSS ID Number: Q145999
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 3.5
--

SUMMARY
=======

The Win32 SDK introduces a new type of metafile known as an enhanced
metafile. These new metafiles address developer's need for device
independence without requiring a separate code path, which was a
requirement of the older style metafiles.

This article and the accompanying sample (ENMETA.EXE) show you how to
properly create and play enhanced metafiles scaled or to original size. The
sample also supports the clipboard and reads and writes Aldus placeable
metafiles as well as regular 16-bit Windows metafiles.

MORE INFORMATION
================

You can find ENMETA.EXE, a self-extracting file, on these services:

 - Microsoft's World Wide Web site on the Internet
 On the www.microsoft.com home page, click the Support icon
 Click Knowledge Base, and select the product
 Enter kbfile ENMETA.EXE, and click GO!
 Open the article, and click the button to download the file

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the Softlib/Mslfiles folder
 Get ENMETA.EXE

 - The Microsoft Network
 On the Edit menu, click Go To, and then click Other Location
 Type "mssupport" (without the quotation marks)
 Double-click the MS Software Library icon
 Find the appropriate product area
 Locate and Download ENMETA.EXE

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download ENMETA.EXE

For additional information about downloading, please see the following
article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q119591
 TITLE : How to Obtain Microsoft Support Files from Online Services

Creating the Enhanced Metafile

An enhanced metafile is created with a call to CreateEnhMetaFile().
CreateEnhMetaFile() is declared as follows:

HDC CreateEnhMetaFile(HDC hdcRef, LPCTSTR lpFilename,
 CONST RECT *lpRect, LPCTSTR lpDescription);

Following are the parameters to this call:

hdcRef is a reference DC and provides some crucial reference information
for the construction of the metafile. The resolutions in both pixels and
millimeters are taken from this device, and all font metrics are based on
this DC. For the best possible reproduction on all output devices, it is a
good idea to choose a high resolution device for the reference device.
Otherwise, some grainyness may appear if the output device is of
considerably higher resolution than the reference device.

lpFileName is the name of the file that will contain the metafile. If this
parameter is NULL, the metafile is a memory metafile and is not stored on
disk.

lpRect is a rectangle that specifies the dimensions in 0.01 mm units of the
virtual metafile device. This rectangle is stored in the metafile and can
be retrieved at play time to determine the desired real size of the output.
Although no clipping is performed for this rectangle, some metafile players
may presume that the image in the metafile fits in the rectangle.

lpDescription simply provides a way to store the name of the application
that created the metafile as well as a description of the contents in the
form of two NULL-terminated strings, terminated with an additional NULL as
in this example:

 App\0Description\0\0

App is the name of the application that created the metafile and
Description is a description of the image.

The Metafile Device

The metafile device has a real size defined by the lpRect parameter in 0.01
mm units. The number of device units on the metafile can be determined by
using the pixel/mm ratio of the reference DC and the metafile device size
given in the lpRect parameter. For example:

MetaPixelsX = MetaWidthMM * MetaPixels / (MetaMM * 100);

where MetaPixelsX = number of pixels on the X axis
 MetaWidthMM = metafile width in 0.01mm units
 MetaPixels = width in pixels of the reference device
 MetaMM = width in millimeters of the reference device

A similar calculation can be used to determine the number of pixels in the

Y direction of the metafile device.

Note that although the metafile device has a real size, it does not clip
output to that region. It is entirely possible to record drawing commands
that have output outside of the metafile device surface.

Playing the Enhanced Metafile

The metafile device provides only half of the mapping from metafile space
to target device space. The other half is provided by the RECT passed to
the PlayEnhMetaFile() call. It specifies a play rectangle in which to play
the metafile and is specified in logical coordinates on the target device
context. The metafile device rectangle is mapped to this play rectangle.
This provides the scalability of enhanced metafiles; adjusting the play
rectangle adjusts the size of the output. No clipping is performed on the
play rectangle.

So, neither the metafile device nor the play rectangle perform clipping.
This means that if any drawing commands were recorded to occur outside the
metafile device, they will be shown outside the play rectangle when the
metafile is played. This mapping is illustrated in the Sample1.emf sample
enhanced metafile.

If the goal is to play the metafile at its true size, the size of the
original metafile device can be determined by a call to
GetEnhMetaFileHeader(). This call fills in an ENHMETAHEADER structure, of
which the rclFrame member specifies the metafile device rectangle in 0.01
mm units. That rectangle can be translated into logical units for the
target DC and used as the lpRect parameter for PlayEnhMetaFile(). The
PlayEnhMetaFileAtOriginalSize() function in the sample demonstrates this.

Mapping Modes

During the recording of the metafile, the mapping mode, window extents and
origin, and viewport extents and origin combine to map logical units to
device units on the metafile device. As with a normal DC, the window
extents and origin define the logical space, while the viewport extents and
origin are relative to the metafile device units described above.

For example: The following code creates an enhanced metafile that is
dwInchesX wide by dwInchesY tall with dwDPI logical dots per inch (DPI):

HDC MyCreateEnhMetaFile(LPTSTR szFileName, // Metafile filename
 DWORD dwInchesX, // Width in inches
 DWORD dwInchesY, // Height in inches
 DWORD dwDPI) // DPI (logical units)
{
 RECT Rect = { 0, 0, 0, 0 };
 TCHAR szDesc[] = "AppName\0Image Description\0\0";
 HDC hMetaDC, hScreenDC;
 float PixelsX, PixelsY, MMX, MMY;

 // dwInchesX x dwInchesY in .01mm units

 SetRect(&Rect, 0, 0, dwInchesX*2540, dwInchesY*2540);

 // Get a Reference DC
 hScreenDC = GetDC(NULL);

 // Get the physical characteristics of the reference DC
 PixelsX = (float)GetDeviceCaps(hScreenDC, HORZRES);
 PixelsY = (float)GetDeviceCaps(hScreenDC, VERTRES);
 MMX = (float)GetDeviceCaps(hScreenDC, HORZSIZE);
 MMY = (float)GetDeviceCaps(hScreenDC, VERTSIZE);

 // Create the Metafile
 hMetaDC = CreateEnhMetaFile(hScreenDC, szFileName, &Rect, szDesc);
 // Release the reference DC
 ReleaseDC(NULL, hScreenDC);
 // Did you get a good metafile?
 if(hMetaDC == NULL)
 return NULL;

 // Anisotropic mapping mode
 SetMapMode(hMetaDC, MM_ANISOTROPIC);
 // Set the Windows extent
 SetWindowExtEx(hMetaDC, dwInchesX*dwDPI, dwInchesY*dwDPI, NULL);

 // Set the viewport extent to reflect
 // dwInchesX" x dwInchesY" in device units
 SetViewportExtEx(hMetaDC,
 (int)((float)dwInchesX*25.4f*PixelsX/MMX),
 (int)((float)dwInchesY*25.4f*PixelsY/MMY),
 NULL);
 return hMetaDC;
}

Note that clipping is not performed by the window extents, viewport
extents, or the metafile device. It is possible to draw beyond the window
extents, which will map beyond the viewport extents. Those numbers provide
only a ratio of logical units to metafile device units. Further, it is
possible to have viewport extents that extend beyond the metafile surface.
The drawing is not clipped to the metafile surface. This mapping is
illustrated in the Sample2.emf sample enhanced metafile.

Palettes in Enhanced Metafiles

The SelectPalette() API can be used to record a palette into an enhanced
metafile. That palette can then be retrieved at play-time via the
GetEnhMetaFilePaletteEntries() API. This allows the player to faithfully
reproduce palletized images and properly respond to palette messages. The
GetEnhancedMetafilePalette() function in the sample demonstrates extracting
a palette from an enhanced metafile.

Note that if multiple palettes were used in recording the metafile, the
palette entries retrieved by GetEnhMetaFilePaletteEntries() will include
all the entries from all the palettes. If this includes more entries than

the current display can reproduce, it is the player's responsibility to
choose a subset of those colors from which to create the actual palette to
be used during playback.

Additional reference words: 3.50
KBCategory: kbgraphic kbhowto kbcode kbfile
KBSubcategory: GdiMeta

SAMPLE: How to Create an Application Desktop Toolbar
PSS ID Number: Q134206

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The Windows 95 shell allows an application to register an application
desktop toolbar that behaves with the same look and feel as the Windows 95
taskbar. The application desktop toolbar is always attached to one of the
outside edges of the screen and can cause the size of the desktop to be
reduced so that other applications do not overlap the application desktop
toolbar.

The APPBAR sample code demonstrates how to implement an application desktop
toolbar that is resizable, can attach to any side of the screen, and allows
itself to be hidden in the same way the Windows 95 taskbar automatically
hides.

Download APPBAR.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download APPBAR.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the SOFTLIB\MSLFILES directory
 Get APPBAR.EXE

MORE INFORMATION
================

The application desktop toolbar interface for Windows 95 provides an easy
way for an application to attach windows to the edge of the screen so that
they don't overlap the Windows 95 desktop or other applications. Being able
to do this is especially useful in an application-launching program such as
the Microsoft Office Manager (MOM) utility or in an application that needs
to provide status information to the user as it runs in the background.

The application creates its window normally and then registers itself with
the system as an application desktop toolbar (appbar). Once registered as
an appbar, any time the window moves it must negotiate with the system for
screen space by sending the requested rectangle to the system as part of an
ABM_QUERYSETPOS message. The system then checks to see if any other appbars
are using that space and adjusts the rectangle requested so as not to
overlap. When the appbar is moved, the system resizes the desktop and moves

any currently running applications so they do not overlap the appbar.

REFERENCES
==========

For more information on the application desktop toolbar interface, please
see the Chapter "Extending the Windows 95 Shell : Application Desktop
Toolbars" in the "Programmer's Guide to Windows 95." The guide is
available in the Win32 SDK Help file under "Guides."

Additional reference words: 4.00 Windows 95
KBCategory: kbui kbcode kbfile
KBSubcategory: UsrShell

SAMPLE: How to Draw Cubic Bezier Curves in Windows and Win32s
PSS ID Number: Q135058

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s version 1.3

SUMMARY
=======

You can get the functionality provided by the Win32 PolyBezier() function
on the Windows 3.1 and Win32s platforms. The Bezier sample code shows by
example how to draw cubic Bezier curves as well as curves with other
degrees on both Windows version 3.1 and Win32s.

Download BEZIER.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download BEZIER.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the SOFTLIB\MSLFILES directory
 Get BEZIER.EXE

MORE INFORMATION
================

The PolyBezier() function draws cubic Bezier curves by using the endpoints
and control points specified by the lppt parameter. The first curve is
drawn from the first point to the fourth point by using the second and
third points as control points. Each subsequent curve in the sequence needs
exactly three more points: the ending point of the previous curve is used
as the starting point, the next two points in the sequence are control
points, and the third is the ending point.

Steps to Using the Sample Code

1. Compile the sample code using the .mak file that corresponds to the
 platform you are running (Bezier.mak for Win32s and Bezier16.mak for
 Win16).

2. Run the compiled program.

3. Use the left mouse button to position the endpoints and the control
 points in the client area. As soon as you've positioned enough points to
 draw a curve with the current degree (the default is cubic so you'll
 need four points), the curve will be drawn. Keep in mind that if you set
 the degree to a higher value, you'll have to position degree+1 points
 before the curve can be calculated and displayed.

Additional reference words: 1.30 3.10 4.00 Windows 95 Stones GDI
KBCategory: kbgraphic kbcode kbfile
KBSubcategory: GdiMisc

SAMPLE: How to Simulate Multiple-Selection TreeView Control
PSS ID Number: Q125587

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The TVWSTATE sample demonstrates how to simulate a multiple-selection
TreeView control. The Windows 95 TreeView control does not support multiple
selection. If you want a multiple-selection TreeView, you can use state
images to simulate it in your application.

The TVWSTATE sample accomplishes this by using a checkbox type of state
image to indicate that the item is selected or cleared (de-selected). These
checkboxes will retain their state even if the TreeView loses focus.

Download TVWSTATE.EXE, a self-extracting file, from the Microsoft
Software Library (MSL) on the following services:

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download TVWSTATE.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the SOFTLIB\MSLFILES directory
 Get TVWSTATE.EXE

MORE INFORMATION
================

The multiple-selection TreeView control simulation is implemented by
setting the state image list of the TreeView control to an image list that
contains the checked and unchecked checkbox bitmaps. This image list is set
by using the TVM_SETIMAGELIST message with lParam == TVSIL_STATE (see
InitImageList in TVWSTATE.C). A TreeView control can have two image lists,
a normal image list and a state image list. In the TreeView, the display
order from left to right is: the expansion button, the state image (if
present), the normal image (if present), and then the item text.

When processing the WM_NOTIFY message where (LPNMHDR)lParam->code ==
NM_CLICK (see MsgNotifyTreeView in TVWSTATE.C), the code checks to see if
the user clicked the left mouse button in the checkbox. If this is the
case, the state image index of the item is retrieved, the index is toggled
between the checked and unchecked image list items, and then the new index
is saved.

The state image index identifies which member of the state image list
should be displayed. The state image index is stored in bits 12-16 of the
item state value. Either TVIS_STATEIMAGEMASK or TVIS_USERMASK can be used
to mask off the lower bits. To access just the state image index, use a
statement similar to this:

 StateIndex = tvi.state & TVIS_STATEIMAGEMASK;

The INDEXTOSTATEIMAGEMASK macro offsets a value to the correct bits for the
state image index. This is accomplished by shifting the given value left 12
places. If the desired state image index is 1, the state can be set using a
statement similar to this:

 tvi.state = INDEXTOSTATEIMAGEMASK(1);

This sample can also be modified to implement selection methods similar to
those of an extended-selection listbox where the user uses the SHIFT key to
select a range of items and/or the CTRL key to select or clear individual
items.

Additional reference words: 3.51 4.00
KBCategory: kbui kbcode kbfile
KBSubcategory: UsrCtl

SAMPLE: How to Use File Associations
PSS ID Number: Q122787

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

Windows provides file associations so that an application can register the
type of documents it supports. The benefit of doing this is that it allows
the user to double-click or select a document in File Manager to edit or
print it. File association is also supported by the ShellExecute() API.
File associations also allow the user to open multiple documents with a
single instance of the application via the File Manager.

ShellExecute() has even more benefit in Windows 95.

The sample FILEASSO.EXE demonstrates how to use file associations. Download
FILEASSO.EXE, a self-extracting file, from the Microsoft Software Library
(MSL) on the following services:

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download FILEASSO.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the SOFTLIB\MSLFILES directory
 Get FILEASSO.EXE

MORE INFORMATION
================

The following information applies to both File Open and File Print. For
ease of reading, this article will discuss File Open to explain how File
Associations work.

When the user double-clicks a document, the File Manager calls
ShellExecute() with filename. ShellExecute() checks the Registration
Database for an entry that associates that file extension with a particular
application. If an entry exists and does not specify DDE commands, then
ShellExecute() launches the application as specified in the registry. If
the registry specifies to use DDE commands, ShellExecute() attempts to
establish a DDE conversation with that application using the application
topic. If an application responds to the DDE connections, ShellExecute()
sends a DDE Execute command, as specified in the registry. It is up to the
application to define the specifics on this conversation, particularly the

service and topic name to connect to, and also the correct DDE execute
command syntax to use. However, if attempts to establish the conversation
fail, ShellExecute() launches the application specified in the regiistry
and tries to establish the DDE connection again.

There is one more option available when the application is not running,
which seems to be appropriate for File Print. In this option,
ShellExecute() sends a different Execute statement, the application needs
to Open and Print the document. When the Printing is done, it exits.

There are two steps for an application to open multiple documents through
single application instance via File association. As an example, assume
MyApp is the application and AssocSupport is the topic. Most applications
use MyApp as their application name and System as the topic.

1. When the application starts, register a DDE Server with the
 application name and topic (for example MyApp, and AssocSupport).
 The application also has to support DDE Execute Statements. The
 execute statement could be any format; at minimum, it should be:

 <Action> <fileName> <options>

 Here <Action> is anything specifying unique identification of the
 action, such as Open or Print. The <fileName> is the file that should be
 operated on. Finally, <options> can be any options that need to be
 passed on.

 A typical Execute Statement follows this format:

 [<Action>(<FileName>)]

 For example, Microsoft Word uses:

 [Open("%1")]

 The Application has to support the required functionality for executed
 statements.

2. File association can be done in Windows NT via File Manager or regedit.

Using the File Manager to Set File Associations

When associating a file type using the File Manager, choose Associate from
the File menu. The Associate dialog presents the list of existing file
associations. This dialog allows you to add a new file type (or file
association), modify an existing file type, or delete an existing file
type. The New File Type button allows the user to add an association for a
new file extension. Here are the steps:

1. Add a File type name. For example, name it "Microsoft Word 6.0
 Document."

2. Choose an action (Open or Print). For example, select the Uses DDE
 check box.

3. Add the directory path and application name. For example, enter
 WINWORD as the application.

4. Select the option Uses DDE.

5. Set the Application as the DDE Server Name.

6. Set the Topic as the DDE Server. For example enter System as the
 Topic.

7. Set the DDE Message <Action> <fileName> <options> to be the same as
 your application's Execute Statement. However the <fileName> and
 <options> should be replaced by whatever the command line arguments
 are. For example use:

 DDE Message : [FileOpen("%1")]

Using Regedit in Windows NT to Set File Associations
--

NOTE: Regedit is available only in Windows NT, not in Windows version 3.1.

The user can also associate files with an application by using regedit.
From the Edit menu, choose Add File Type or Modify File Type (to modify an
existing file type). A dialog similar to File Manager Associate dialog
appears. Follow the same steps as described for File Manager. In Windows
version 3.1, once you have defined a File Type via this method, go to the
File Manager associate dialog and attach the file type to the extension.

Using a Program to Set File Assoications
--

You can also set the associations programmatically. This is useful when
setting up your application on other machines. You would provide this
functionality through your installation program. The first way to do this
(the simplier method) is to use regedit to merge the changes from a file.
The syntax for this is:

 regedit <filename>.reg

An example of a <filename>.reg is:

 REGEDIT
 HKEY_CLASSES_ROOT\.riy = FMA000_File_assoc
 HKEY_CLASSES_ROOT\FMA000_File_assoc = File_assoc
 HKEY_CLASSES_ROOT\FMA000_File_assoc\shell\open\command = fileasso.EXE
 HKEY_CLASSES_ROOT\FMA000_File_assoc\shell\open\ddeexec = [Open(%1)]
 HKEY_CLASSES_ROOT\FMA000_File_assoc\shell\open\ddeexec\application
= Myserver
 HKEY_CLASSES_ROOT\FMA000_File_assoc\shell\open\ddeexec\topic = system
 HKEY_CLASSES_ROOT\FMA000_File_assoc\shell\print\command = fileasso.EXE
 HKEY_CLASSES_ROOT\FMA000_File_assoc\shell\print\ddeexec = [Open(%1)]

HKEY_CLASSES_ROOT\FMA000_File_assoc\shell\print\ddeexec\application =

MYServer
 HKEY_CLASSES_ROOT\FMA000_File_assoc\shell\print\ddeexec\topic = System
 HKEY_CLASSES_ROOT\FMA000_File_assoc\shell\print\ddeexec\ifexec =
[Test(%1)
]

In the program, you can also add keys to the registry by using the registry
APIs. The developer needs to add the following keys to the registration
database:

 // Your extensions.
 HKEY_CLASSES_ROOT\.riy = FMA000_File_assoc

 //File type name.
 HKEY_CLASSES_ROOT\FMA000_File_assoc = File_assoc

 // Command to execute when application is not running or dde is not
 // present and Open command is issued.
 HKEY_CLASSES_ROOT\FMA000_File_assoc\shell\open\command = fileasso.EXE

 // DDE execute statement for Open.
 HKEY_CLASSES_ROOT\FMA000_File_assoc\shell\open\ddeexec = [Open(%1)]

 // The server name your application responds to.
 HKEY_CLASSES_ROOT\FMA000_File_assoc\shell\open\ddeexec\application =
 Myserver

 // Topic name your application responds to.
 HKEY_CLASSES_ROOT\FMA000_File_assoc\shell\open\ddeexec\topic = system

 // Command to execute when application is not running or dde is not
 // present and print command is issued.
 HKEY_CLASSES_ROOT\FMA000_File_assoc\shell\print\command = fileasso.EXE

 // DDE execute statement for Print.
 HKEY_CLASSES_ROOT\FMA000_File_assoc\shell\print\ddeexec = [Open(%1)]

 // The server name your application responds to.
 HKEY_CLASSES_ROOT\FMA000_File_assoc\shell\print\ddeexec\application =
 MYServer

 // Topic name your application responds to.
 HKEY_CLASSES_ROOT\FMA000_File assoc\shell\print\ddeexec\topic = System

 // DDE execute statement for print if the application is not already
 // running. This gives the options for a an application to Run, Print
 // and Exit.
 HKEY_CLASSES_ROOT\FMA000_File assoc\shell\print\ddeexec\ifexec =
 [Test(%1)]

REFERENCES
==========

Windows SDK Programmers Reference, Volume 1, chapter 7, Shell Library or
Books Online.

Window 3.1 SDK Help file, Registration Database, Shell Library Functions.

Win32 Programmers Reference, Volume 2, chapter 52, Registry and
Initialization Files or Books Online.

Win32 SDK Help file Registry and Initialization

File Manager Help File.

REGEDIT.HLP

REGEDT32.HLP

Additional reference words: 3.10 3.50
KBCategory: kbui kbfile
KBSubcategory: UsrMisc

SAMPLE: How to Use mciSendString() to Change an .AVI Palette
PSS ID Number: Q139746
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 Software Development Kit (SDK) version 3.5
 - Microsoft Video for Windows Development Kit (VfWDK) version 1.1
--

SUMMARY
=======

The SETPAL sample demonstrates how to use the "setvideo palette handle to"
Media Control Interface (MCI) string to change the palette that will be
used when an Audio-Video Interleaved (.avi) file is played.

Download SETPAL.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - The Microsoft Network
 On the Edit menu, click Go To, and then click Other Location
 Type mssupport
 Double-click the MS Software Library icon
 Find the appropriate product area
 Download SETPAL.EXE

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download SETPAL.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the Softlib\Mslfiles directory
 Get SETPAL.EXE

The current video mode of the display must be a palettized video mode such
as 256 colors for the technique to succeed because the "setvideo palette
handle to" string is ignored in non-palettized video modes. Also, it is up
to the video compressor/decompressor (codec) that decompresses the .avi
file to handle the palette. Therefore, the exact behavior may depend on the
codec in use. For example, the MS Video 1 codec is an 8-bit (256 color)
palettized codec while the Indeo and Cinepak Codecs are 24-bit non-
palettized Codecs, so their palette behavior may differ.

MORE INFORMATION
================

The basic steps to supply your own palette are as follows:

1. Fill in a LOGPALETTE structure containing the color information for
 your palette.

2. Create a logical palette using the CreatePalette() function.

3. Call mciSendString() (or mciSendCommand()) to supply that palette to
 the AVI file using a string such as:

 "setvideo <alias> palette handle to <palette handle>"

The remainder of this article supplies more information and code excerpts
from the SETPAL sample that perform these steps.

The SETPAL sample can be compiled as a 32-bit sample, called SETPAL32, or
as a 16-bit sample, called SETPAL16. As a result, it is compatible with
Windows 95, Windows NT, and Windows 3.1. Setpal32.mak and Setpal16.mak make
files are provided. SETPAL16 requires the Video for Windows 1.1 Development
Kit to build successfully.

SETPAL is a sample application that allows opening an .avi file via the
open common dialog box. Menu choices allow the .avi file to be opened,
played, stopped, or closed. MCI strings perform the underlying work. The
following MCI string is used to supply a palette for the .avi file:

 "setvideo <alias> palette handle to <palette handle>"

Excerpts from Setpal.c

// include files
#include <windows.h> // required for all Windows applications
#include "windowsx.h" // for GlobalAllocPtr/GlobalFreePtr in
 // CreateSamplePalette
#include "mmsystem.h" // for the MCI calls

// global variables
static HPALETTE g_hPal = NULL; // palette handle
.
.
.

// CreateSamplePalette() demonstrates how to fill in a LOGPALETTE
// structure and create a logical palette
VOID CreateSamplePalette(void)

{
 LPLOGPALETTE lpLogPal;
 int i;
 int nPalEntries = 236; // number of entries in our palette
 // 256 are possible, but the system
 // reserves 20 of them

 lpLogPal = (LPLOGPALETTE) GlobalAllocPtr (GHND,
 sizeof (LOGPALETTE) + nPalEntries * sizeof (PALETTEENTRY));

 lpLogPal->palVersion = 0x300;
 lpLogPal->palNumEntries = nPalEntries;

 for (i = nPalEntries; i > 0; i--)

 {
 // Fill in the red, green, and blue values for our palette.
 // This particular palette is a wash from green to black.
 lpLogPal->palPalEntry[i].peRed = 0;
 lpLogPal->palPalEntry[i].peGreen = i;
 lpLogPal->palPalEntry[i].peBlue = 0;

 // Create unique palette entries. This flag may change depending on
 // your purposes. See the Windows API documentation
 // concerning the PALETTEENTRY structure for more information.
 lpLogPal->palPalEntry[i].peFlags = PC_NOCOLLAPSE;
 }

 // create the logical palette
 g_hPal = CreatePalette (lpLogPal);

 // clean up
 GlobalFreePtr (lpLogPal);
}

// The ProcessAVICommands() function in SETPAL.C handles the open, set
// palette, play, and close for the AVI file. Once the AVI file has been
// opened, issue an mciSendString() such as the following to set the
// palette:

static char szAlias[10] = "paltest"; // the movie alias to use in
mciSendString
char szBuffer[128]; // buffer to hold the MCI
string we built
.
.
.
 wsprintf(szBuffer, "setvideo %s palette handle to %d", (LPSTR)szAlias,
 g_hPal);
 mciSendString(szBuffer, NULL, 0, NULL);

Additional reference words: mciSendCommand MCI_SETVIDEO
MCI_DGV_SETVIDEO_ITEM MCI_DGV_SETVIDEO_PALHANDLE
KBCategory: kbmm kbprg kbfile kbhowto kbcode
KBSubcategory: MMVideo

SAMPLE: How to Use Paths to Create Text Effects
PSS ID Number: Q128091

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

This article defines the term "path" for the purposes of this article, and
it explains how you can get sample code (provided in TEXTFX.EXE, a self-
extracting file) that shows by example how to use paths to draw text at
varying angles, orientations, and sizes. In addition, the sample code gives
useful routines for displaying path data.

Download TEXTFX.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download TEXTFX.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get TEXTFX.EXE

MORE INFORMATION
================

A path is one or more figures (or shapes) that are filled, outlined, or
both filled and outlined. Computer-aided design (CAD) applications use
paths to create unique clipping regions, to draw outlines of irregular
shapes, and to fill the interiors of irregular shapes.

A path is associated with a Device Context (DC) but unlike other objects
associated with a DC, such as pens and brushes, a path has no default
object.

To create a path, you first call BeginPath(). Then use the drawing
functions in the table below to add to the path. Any drawing done using
these functions is recorded as part of the path. When you finish building
the path, call EndPath(). The new path can then be converted to a region by
using PathToRegion(), selected as a clipping region for a device context by
using SelectClipPath(), and rendered by using StrokePath() or FillPath().
In addition, as this sample illustrates, the path can be retrieved by using
GetPath() and manipulated programmatically.

Functions supported in paths:

 AngleArc LineTo Polyline
 Arc MoveToEx PolylineTo
 ArcTo Pie PolyPolygon
 Chord PolyBezier PolyPolyline
 CloseFigure PolyBezierTo Rectangle
 Ellipse PolyDraw RoundRect
 ExtTextOut Polygon TextOut

Functions not supported under Windows 95:

AngleArc
ArcTo
PolyDraw

Functions not supported in a path under Windows 95:

Arc
Chord
Ellipse
Pie
Rectangle
RoundRect

MORE INFORMATION
==================

The following path functions are used in the TextFX sample:

 BeginPath
 EndPath
 GetPath
 FillPath
 StrokePath

To use TextFX, run it, and then draw two lines into the client area (they
don't have to be straight). The first line appears as blue and the second
appears as red. These lines serve as guides for how the text will be
rendered. After completing the second line, the text "This is a test" will
be drawn so that it appears between the two guide lines.

To remap the text so that it appears between the two lines, TextFX first
breaks down the guide lines (which are composed of line segments) into
distinct adjacent points. The result is that the x,y position of each point
in the lines is adjacent to its neighboring points x,y position.

Next, the text "This is a test" is drawn into a device context as a path.
The points that make up the lines and curves in this path are then
retrieved from the device context by using the GetPath() function.

To reposition the points in the path data, the code must establish a
relationship between the relative position of the points in the original
text and the position defined by the guide lines. To establish this
relationship, the code calculates the x and y positions of each point in
the path data relative to the overall extent of the text string. The

relative x position is used to calculate a corresponding point on each of
the two the guide lines, while the relative y value is used as a weight to
determine how far along on a line between the two guide line points the
remapped position should be.

For example, if the point in the upper left corner of the "T" in the string
"This is a test" is 2% of the total x extent of the string and 10% of the
total y extent, then TextFX would find the point in each guide line that
corresponds to 2% of the total number of points in that guide line. Then
TextFX would reposition the point in the path data representing the upper
left corner of the "T" so that it would be 10% of the way along an
imaginary line extending from the point on the top guide line to the point
on the bottom guide line.

Two different methods can be selected for drawing the remapped data, one
draws just the outline of the characters, while the other fills in the
characters.

To draw the outline of the characters, TextFX converts the remapped data
back into a path and uses StrokePath() to display the outlines. To do the
conversion, TextFX begins a new path, and then loops through the remapped
data and uses the vertex types returned from GetPath() to determine how to
draw the points. After drawing all the data, TextFX ends the path and calls
StrokePath().

To draw the solid characters, instead of using StrokePath(), TextFX uses
FillPath(). However, in order to get the interior areas of characters like
"O", "A", "D", and so on, TextFX sets the ROP2 code to R2_MERGEPENNOT
before calling FillPath(). This is done so that characters like "O" that
consist of two separate polygons (one representing the outer perimeter and
one representing the inner perimeter) will not be drawn as a solid blob. By
drawing the polygons with the R2_MERGEPENNOT code, the code ensures that
the second polygon will cancel the effects of the first in the area of the
inner polygon.

REFERENCES
==========

For additional information on paths, please see the PATHS sample included
with the Win32 SDK.

Additional reference words: 3.10 3.50 4.00 stones effects effect font fx
KBCategory: kbgraphic kbfile kbcode
KBSubcategory: GdiDrw

SAMPLE: How to Use the ToolTip Common Control
PSS ID Number: Q134209

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.51, 4.0
 - Microsoft Win32s version 1.30

SUMMARY
=======

The TOOLTIPS sample code demonstrates how to use the ToolTip common control
including how to use ToolTips in controls, rectangles (areas), and dialog
boxes.

MORE INFORMATION
================

Download TOOLTIPS.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download TOOLTIPS.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the SOFTLIB\MSLFILES directory
 Get TOOLTIPS.EXE

Additional reference words: 4.00 Windows 95
KBCategory: kbprg kbfile
KBSubcategory:

SAMPLE: How to Use Three Different Styles of Property Sheets
PSS ID Number: Q132919

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.51, 4.0
 - Microsoft Win32s version 1.30

SUMMARY
=======

The PROPERTY sample code demonstrates how to use three different styles of
property sheets: modal, modeless, and wizard.

Download PROPERTY.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download PROPERTY.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the SOFTLIB\MSLFILES directory
 Get PROPERTY.EXE

MORE INFORMATION
================

The main problem in dealing with a modeless property sheet is knowing when
to destroy the property sheet. This is handled in the application's main
message loop using the PSM_GETCURRENTPAGEHWND message
(PropSheet_GetCurrentPageHwnd macro). PSM_GETCURRENTPAGEHWND returns NULL
after the OK or Cancel buttons have been clicked (or the dialog box has
been closed) and all of the pages have been notified. The application can
then call DestroyWindow on the window handle that was returned from the
PropertySheet call.

The sample also demonstrates how to use the PropSheetCallback function
to modify the property sheet dialog box before or after it is created. The
Wizard property sheet is modified to contain a system menu.

Additional reference words: 4.00 1.30 Windows 95
KBCategory: kbprg kbcode kbfile
KBSubcategory:

SAMPLE: Implementing Multiple Threads in an OpenGL Application
PSS ID Number: Q128122

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

It is possible to create multiple threads in an OpenGL application and have
each thread call OpenGL functions to draw an image. You might want to do
this when multiple objects need to be drawn at the same time or when you
want to have certain threads perform the rendering of specific types of
objects.

This article explains how to obtain GLTHREAD, a sample that demonstrates
how to implement multiple threads in an OpenGL application. The main
process default thread creates two threads that each draw a
three-dimensional wave on the main window. The first thread draws a wave on
the left side of the screen. The second thread draws a wave on the right
side of the screen. Both objects are drawn simultaneously, demonstrating
OpenGL's ability to handle multiple threads.

How to Get the GLTHREAD Sample

Download GLTHREAD.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download GLTHREAD.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get GLTHREAD.EXE

MORE INFORMATION
==================

When implementing multiple threads in any type of application, it is
important to have adequate communication between threads. In OpenGL, it is
important for two threads to know what the other thread is doing. For
example, it is common practice to clear the display window before drawing
an OpenGL scene. If both threads are called to draw portions of a scene and
they both try to call glClear before drawing, one thread's object may get
erased by another thread's call to glClear.

The GLTHREAD sample assigns the glClear function to a single thread, and
ensures that the other thread does not perform any drawing until glClear
has been called. When a menu command message is sent to the main window,
the application calls CreateThread twice to create two threads. Each thread
calls GetDC(hwndMain) to obtain its own device context to the main window.

Then, each thread calls GLTHREAD's bSetupPixelFormat function to set up the
pixel format and calls wglCreateContext to create a new OpenGL Rendering
Context. Now, each thread has its own Rendering Context and both can call
wglMakeCurrent to make its new OpenGL rendering context its (the calling
thread's) current rendering context.

All subsequent OpenGL calls made by the thread are drawn on the device
identified by the HDC returned from each thread's call to GetDC(). Now,
because only one thread should call glClear, GLTHREAD has thread number one
call it. The second thread is created "suspended" so it does nothing until
a call to ResumeThread is made. After thread one has called glClear, it
enables thread two to resume by calling ResumeThread with a handle to the
second thread.

The procedure in the main thread that created the two other threads waits
until both threads are finished before returning from the processing of the
menu command message that is sent when the user selects the "Draw Waves"
menu selection from the "Test Threads" menu. It will use the
WaitForMultipleObjects function to do this.

Additional reference words: 3.10 3.50 4.00 95 GDI GRAPHICS THREADS
KBCategory: kbgraphic kbgraphic kbfile kbcode
KBSubcategory: codesam GdiDrwOpenGL

SAMPLE: Insert OLE Object Capabilities to the RichEdit Control
PSS ID Number: Q141549

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s version 1.3

SUMMARY
=======

RichEdit control supports embedding and inplace-activating OLE Objects. To
add these capabilities to a RichEdit control in your application, an
independent service vendor (ISV) must implement certain OLE interfaces. The
RichEdit sample shows how these interfaces are implemented and other
implementation details that are required in conjunction with the OLE
interfaces to embed and inplace-activate OLE objects.

MORE INFORMATION
================

An ISV must implement the following OLE interfaces to add the embedding and
inplace-activating capabilities to the RichEdit control in their
application:

 - IRichEditOleCallback, which is used by a RichEdit control to retrieve
 OLE-related information from its client. This interface is passed by the
 client application to the RichEdit control via EM_SETOLEINTERFACE
 message. This is a RichEdit control's custom interface.

 - IOleInPlaceFrame, which is used to control the container's top-level
 frame window. In addition, implementing this interface involves
 implementing IOleWindow and IOleInPlaceUIWindow interfaces also, because
 IOleInPlaceFrame is inherited from IOleInPlaceUIWindow, which in turn
 inherits IOleWindow.

There are a few caveats that are important to enable this feature work to
properly:

 - The Frame window, which will be the parent of the tool bar and status
 bar, needs to be created with the WS_CLIPCHILDREN style. If this style
 is not present, your applications will exhibit some painting problems
 when an object is inplace-active in your RichEdit control.

 - The RichEdit control itself should be created with WS_CLIPSIBLING style.
 Here too, if the style is not present, RichEdit control will exhibit
 painting problems when the Object creates child windows during inplace-
 active.

 - When destroying the RichEdit control, your application should deactivate

 any inplace-active Object and call IOleObject->Close() on all the
 embedded objects in the RichEdit control. If this is not done, some
 object applications may not close down, thus causing them to stay in
 memory, even after the RichEdit control is destroyed. Here is a code
 snippet that demonstrates how to handle closing of OLE Objects:

 if (m_pRichEditOle)
 {
 HRESULT hr = 0;

 //
 // Start by getting the total number of objects in the control.
 //
 int objectCount = m_pRichEditOle->GetObjectCount();

 //
 // Loop through each object in the control and if active
 // deactivate, and if open, close.
 //
 for (int i = 0; i < objectCount; i++)
 {
 REOBJECT reObj;
 ZeroMemory(&reObj, sizeof(REOBJECT));
 reObj.cbStruct = sizeof(REOBJECT);

 //
 // Get the Nth object
 //
 hr = m_pRichEditOle->GetObject(i,&reObj,REO_GETOBJ_POLEOBJ);
 if(SUCCEEDED(hr))
 {
 //
 // If active, deactivate.
 //
 if (reObj.dwFlags && REO_INPLACEACTIVE)
 m_pRichEditOle->InPlaceDeactivate();

 //
 // If the object is open, close it.
 //
 if(reObj.dwFlags&&REO_OPEN)
 hr = reObj.poleobj->Close(OLECLOSE_NOSAVE);

 reObj.poleobj->Release();
 }
 }
 m_pRichEditOle->Release();
 }

Download Richedit.exe, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - The Microsoft Network
 On the Edit menu, click Go To, and then click Other Location
 Type mssupport

 Double-click the MS Software Library icon
 Find the appropriate product area
 Download Richedit.exe

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download Richedit.exe

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the Softlib\Mslfiles directory
 Get Richedit.exe

Additional reference words: 4.00 1.30 softlib
KBCategory: kbui kbole kbhowto kbfile
KBSubcategory:

SAMPLE: KEYBFONT.EXE: Input Language and Font Matching
PSS ID Number: Q152753
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.5, 3.51, 4.0
--

SUMMARY
=======

In Windows 95 and Windows NT 4.0 non-Unicode applications, when the input
language changes and, as a result, the default character set supported by
this language also changes, the script of the current font should also be
changed, such as changing the input language from English to Russian. By
the same token, when the character set (script) of the font changes, the
input language should be changed to match the new script, such as changing
from Times New Roman Western script to Times New Roman Cyrillic script.
Note that in Windows NT 4.0 Unicode applications, changing the font is not
necessary because of support for multicharset fonts. For these
applications, the methods described here can be used to detect if a given
language is supported by a given font.

The KEYBFONT sample demonstrates the use of WM_INPUTLANGCHANGEREQUEST and
WM_INPUTLANGCHANGE messages to match the current font to the input
language. If the current font is changed, the list of loaded keyboard
drivers is scanned for a match and, if one is found, the font is allowed to
change. Otherwise, an error message is displayed and the font does not
change. If the input language changes, the scripts of the current font are
scanned for a match and, if none is found, an error message is displayed
and the input language does not change.

Download KEYBFONT.EXE, a self-extracting file, from the following services:

 - Microsoft's World Wide Web site on the Internet
 On the www.microsoft.com home page, click the Support icon
 Click Knowledge Base, and select the product
 Enter kbfile KEYBFONT.EXE, and click GO!
 Open the article, and click the button to download the file

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the Softlib/Mslfiles folder
 Get KEYBFONT.EXE

 - The Microsoft Network
 On the Edit menu, click Go To, and then click Other Location
 Type "mssupport" (without the quotation marks)
 Double-click the MS Software Library icon
 Find the appropriate product area
 Locate and download KEYBFONT.EXE

 - Microsoft Partner Network (MSPN)
 On MSPN Desktop, double-click the Software Library icon

 Search for KEYBFONT.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download KEYBFONT.EXE

For additional information about downloading, please see the following
article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q119591
 TITLE : How to Obtain Microsoft Support Files from Online Services

NOTE: Use the -d option when running KEYBFONT.EXE to decompress the file
and recreate the proper directory structure.

MORE INFORMATION
================

The WM_INPUTLANGCHANGEREQUEST message is sent when the user chooses an
input language, either with an input language change hotkey (see Control
Panel.Keyboard.Language.Switch Languages) or from the language indicator on
the system taskbar. This indicator will only be present if more than one
keyboard layout has been installed and the indicator is enabled. An
application can accept the change by passing the message to the
DefWindowProc function, or reject the change, preventing it from taking
place, by returning immediately.

In this sample, during WM_INPUTLANGCHANGEREQUEST, the character set of the
requested language is compared to the default character set of each
font script in the current font family via EnumFontFamilies(). If the font
is not supported, the function returns immediately, disallowing any
language change request.

The WM_INPUTLANGCHANGE message is sent to the top-most affected window
after a task's locale has been changed. It should be used to make any
application-specific settings, such as changing the current font script,
and passed on to the DefWindowProc function to be passed on to any
children.

In this sample, during WM_INPUTLANGCHANGE, the script of the current font
is changed to match the character set of the language the user has switched
to.

REFERENCES
==========

For more information on font scripts and multilanguage keyboard support,
please see the Chapter "Accommodating Multilingual I/O on Microsoft
Windows" in "Developing International Software", by Nadine Kano (MS Press
ISBN: 1-55615-840-8).

Additional reference words: 4.00 softlib internationalization
KBCategory: kbprg kbprint kbui kbfile
KBSubcategory: WIntlDev

SAMPLE: MFCOGL a Generic MFC OpenGL Code Sample
PSS ID Number: Q127071

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

 - The Microsoft Foundation Classes (MFC) included with:

 - Microsoft Visual C++ 32-bit Edition, versions 2.0 and 2.1

SUMMARY
=======

Microsoft Windows NT's OpenGL can be used with the Microsoft Foundation
Class (MFC) library. This article gives you the steps to follow to enable
MFC applications to use OpenGL.

The companion sample (MFCOGL) is a generic sample that demonstrates using
OpenGL with MFC. Download MFCOGL.EXE, a self-extracting file, from the
Microsoft Software Library (MSL) on the following services:

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download MFCOGL.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the SOFTLIB\MSLFILES directory
 Get MFCOGL.EXE

MORE INFORMATION
================

Step-by-Step Example to Use OpenGL in MFC Application

1. Include the necessary header files to use OpenGL including:

 - "gl\gl.h" for all core OpenGL library fuctions. These functions
 have the "gl" prefix such as glBegin().

 - "gl\glu.h" for all OpenGL utility library functions. These
 functions have the "glu" prefix such as gluLookAt().

 - "gl\glaux.h" for all Windows NT OpenGL auxilary library functions.
 These functions have the "aux" prefix such as auxSphere().

 You don't need to add a header file for functions with the "wgl" prefix.

2. Add necessary library modules to the link project settings. These
 library modules include OPENGL32.LIB, GLU32.LIB, and GLAUX.LIB.

3. Add implementations for OnPaletteChanged() and OnQueryNewPalette() in
 CMainFrame class for palette-aware applications.

 void CMainFrame::OnPaletteChanged(CWnd* pFocusWnd)
 {
 CFrameWnd::OnPaletteChanged(pFocusWnd);

 if (pFocusWnd != this)
 OnQueryNewPalette();

 }

 BOOL CMainFrame::OnQueryNewPalette()
 {
 WORD i;
 CPalette *pOldPal;
 CMfcOglView *pView = (CMfcOglView *)GetActiveView();
 CClientDC dc(pView);

 pOldPal = dc.SelectPalette(&pView->m_cPalette, FALSE);
 i = dc.RealizePalette();
 dc.SelectPalette(pOldPal, FALSE);

 if (i > 0)
 InvalidateRect(NULL);

 return CFrameWnd::OnQueryNewPalette();
 }

4. Use the one or more of the following classes derived from CWnd,
 including view classes, that will use OpenGL for rendering onto:

 - Implement PreCreateWindow() and add WS_CLIPSIBLINGS and
 WS_CLIPCHILDREN to the windows styles:

 BOOL CMfcOglView::PreCreateWindow(CREATESTRUCT& cs)
 {
 cs.style |= WS_CLIPSIBLINGS | WS_CLIPCHILDREN;

 return CView::PreCreateWindow(cs);
 }

 - Implement OnCreate() to initialize a rendering context and make
 it current. Also, initialize any OpenGL states here:

 int CMfcOglView::OnCreate(LPCREATESTRUCT lpCreateStruct)
 {
 if (CView::OnCreate(lpCreateStruct) == -1)
 return -1;

 Init(); // initialize OpenGL

 return 0;
 }

 - Implement OnSize() if the window is sizeable:

 void CMfcOglView::OnSize(UINT nType, int cx, int cy)
 {
 CView::OnSize(nType, cx, cy);

 if (cy > 0)
 {
 glViewport(0, 0, cx, cy);

 if ((m_oldRect.right > cx) || (m_oldRect.bottom > cy))
 RedrawWindow();

 m_oldRect.right = cx;
 m_oldRect.bottom = cy;

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(45.0f, (GLdouble)cx / cy, 3.0f, 7.0f);
 glMatrixMode(GL_MODELVIEW);
 }
 }

 - Implement OpenGL rendering code. This can be done in OnDraw() or
 other application-specific places such as OnTimer().

 - Implement clean-up code, which is typically done in OnDestroy():

 void CMfcOglView::OnDestroy()
 {
 HGLRC hrc;

 if (m_nTimerID)
 KillTimer(m_nTimerID);

 hrc = ::wglGetCurrentContext();

 ::wglMakeCurrent(NULL, NULL);

 if (hrc)
 ::wglDeleteContext(hrc);

 CPalette palDefault;

 // Select our palette out of the dc
 palDefault.CreateStockObject(DEFAULT_PALETTE);
 m_pDC->SelectPalette(&palDefault, FALSE);

 if (m_pDC)
 delete m_pDC;

 CView::OnDestroy();
 }

Additional reference words: 3.50 3.51 2.00 2.10 3.00 3.10 4.00 95 graphics
KBCategory: kbgraphic kbcode kbfile
KBSubcategory: GdiOpenGL

SAMPLE: RASberry - an RAS API Demonstration
PSS ID Number: Q118983
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows,
 version 3.1
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0
--

SUMMARY
=======

RASberry is a sample application that demonstrates the Remote Access
Service (RAS) API. RASberry allows the user to enumerate current RAS
connections, display the status of a selected connection, dial entries from
the default phone book, and hang up an active connection. The sample may be
built for both Windows version 3.1 and Win32 environments.

RASBRY.EXE can be downloaded as a self-extracting file from the Microsoft
Software Library (MSL) on the following services:

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download RASBRY.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get RASBRY.EXE

MORE INFORMATION
================

The RAS APIs used in this sample are:

 - RasDial
 - RasEnumConnections
 - RasEnumEntries
 - RasGetConnectStatus
 - RasGetErrorString
 - RasHangUp

The RAS SDK for Win32 is included as part of the Win32 SDK.

The RAS SDK for Windows version 3.1 (which contains additional files that
can be used with the Windows version 3.1 SDK for RAS development) is
available on the Microsoft Developer's Network Level 2 CD set, beginning
with the April 1994 edition.

Additional reference words: 3.10 3.50 4.00 95 softlib
KBCategory: kbnetwork kbnetwork kbfile
KBSubcategory: NtwkRAS

SAMPLE: RESIZE App Shows How to Resize a Window in Jumps
PSS ID Number: Q123605

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Sometimes it's useful to have a window that can only be certain sizes. For
example, Microsoft Word and Microsoft Visual C++ have toolbars that are
resizable only to particular sizes that best fit the controls in the
toolbar. When you do this, it's a good idea to give the user visual cues
about the available window sizes. The RESIZE sample code shows by example
how to modify the way Windows resizes a window so that when a user uses the
mouse to resize the window the border jumps automatically to the next
available size.

To obtain the RESIZE sample code, download RESIZE.EXE, a self-extracting
file, from the Microsoft Software Library (MSL) on the following services:

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download RESIZE.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the SOFTLIB\MSLFILES directory
 Get RESIZE.EXE

MORE INFORMATION
================

When a user clicks the resizing border of a window, Windows enters a
PeekMessage loop to capture all the mouse messages that occur until the
left mouse button is released. While inside this loop, every time the mouse
moves it moves the rectangle that shows the new window size to provide a
visual cue to the user as to what the new window size will be.

The RESIZE sample code modifies the resizing operation by entering it's own
message loop to capture the mouse messages until the left button is
released. Instead of updating the rectangle every time a mouse move is
received, the RESIZE code checks to see if the current mouse position would
make the window size one of the possible window width and height sizes as
defined by the application. By doing this, the RESIZE application provides
more accurate visual cues about what the resizing operation will do.

The resizing operation is triggered by the WM_NCLBUTTONDOWN message both
for Windows and the RESIZE application. When this message is received, a

message loop is entered to filter out all the mouse messages except for
two, WM_MOUSEMOVE and WM_LBUTTONUP. When the WM_MOUSEMOVE message is
received, the RESIZE application checks to see if the current mouse
position would make the window larger or smaller. If the window would be
smaller, the resizing rectangle is moved to the next smaller dimension
defined by the application. If the window would be larger, the program
checks to see if the new size would be large enough for the next possible
dimension and updates the rectangle accordingly. When the WM_LBUTTONUP
message is received, the resizing operation is completed by updating the
window size to the current position defined by the mouse and the rectangle
is removed.

The RESIZE application also takes advantage of some of the flexibility
provided by processing the WM_NCHITTEST message. Windows sends this message
to an application with a mouse position and expects the application to
describe which part of the window that mouse position covers. Frequently,
applications pass this message on to DefWindowProc() and let the default
calculations take care of telling the system what the mouse is on top of.
The RESIZE application allows DefWindowProc() to process the message, but
then checks to see if the mouse is over one of the resizing corners or in
the client area. To simplify the resizing operation, RESIZE doesn't let the
user resize from a window corner, so the application overrides the
HTBOTTOMLEFT, HTBOTTOMRIGHT, HTTOPLEFT, and HTTOPRIGHT hit test codes and
returns HTBOTTOM or HTTOP. By doing this, the mouse cursor accurately
reflects the direction of the resize. When the HTCLIENT hit test code is
returned, RESIZE changes this to HTCAPTION to allow the window to be moved
even though it doesn't have a title bar.

Although this technique will work in Windows 95, it is not necessary.
Windows 95 provides a new message WM_SIZING that will enable the program to
do exactly the same thing without processing the WM_NCxxx messages or
entering a PeekMessage() loop.

Additional reference words: 3.10 3.50 4.00
KBCategory: kbui kbcode kbfile
KBSubcategory: UsrWndw

SAMPLE: SCLBLDLG - Demonstrates Scaleable Controls in Dialog
PSS ID Number: Q112639

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In certain circumstances it is desirable to dynamically scale the controls
in a dialog box to the size of the dialog box window. SCLBLDLG.EXE is a
file in the Microsoft Software Library that contains sample code
implementing scaleable controls in a dialog box.

SCLBLDLG can be downloaded as a self-extracting file from the Microsoft
Software Library (MSL) on the following services:

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download SCLBLDLG.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get SCLBLDLG.EXE

MORE INFORMATION
================

To accomplish scaleable controls in a dialog box, the following messages
are processed:

 WM_INITDIALOG - To store original dimensions of the dialog box and all
 its controls, together with the font the dialog box uses. The original
 dimensions are stored using SetProp() in this sample. The font handle is
 stored in a static variable to be used with in WM_SIZE.

 WM_SIZE - To calculate the scaling factor, and then scale up or down the
 font and all the controls in the dialog box.

 WM_GETMINMAXINFO - To set the minimum size of the dialog box so the
 controls are not truncated.

 WM_COMMAND - To clean up when closing the dialog box. RemoveProp() is
 called to remove the stored dimensions from the property list of the
 dialog box window and all its child control windows.

NOTE: Special processing is required for calculating the dimensions of
CBS_DROPDOWN and CBS_DROPDOWNLIST style combo boxes. GetWindowRect()
returns the dimensions of the edit portion of the combo box, excluding the
drop-down list. To get the correct height for such combo boxes, the value
returned by CB_GETDROPPEDCONTROLRECT is used instead of GetWindowRect().

Additional reference words: 3.10 3.50 3.51 4.00 95 proportional sizing
softlib
KBCategory: kbui kbfile
KBSubcategory: UsrDlgs

SAMPLE: Setting Tab Stops in a Windows List Box
PSS ID Number: Q66652

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Tab stops can be used in a list box to align columns of information. This
article describes how to set tab stops in a list box and provides a code
example that demonstrates the process.

MORE INFORMATION
================

To set tab stops in a list box, perform the following three steps:

1. Specify the LBS_USETABSTOPS style when creating the list box.

2. Assign the desired tab stops to an integer array.

 a. The tab stop values must be in increasing order -- back tab
 stops are not allowed. The tabs work the same as typewriter
 tabs: once a tab stop is overrun, a tab character will move
 the cursor to the next tab stop. If the tab stop list is
 overrun (that is, the current position is greater than the last
 tab stop value), the default tab of eight characters is used.

 b. The tab stops should be specified in dialog units. On the
 average, each character is about four horizontal dialog units in
 width.

 c. It is possible to hide columns of text from the user by
 specifying tab stops beyond the right side of the list box. This
 can be a useful way to hide information used for the
 application's internal processing.

3. Send an LB_SETTABSTOPS message to the list box to set the tab
 stops. For example, in Windows 3.1:

 SendMessage(GetDlgItem(hDlg, IDD_LISTBOX),
 LB_SETTABSTOPS,
 TOTAL_TABS,
 (LONG)(LPSTR)TabStopList);

 a. If wParam is set to 0 (zero) and lParam to NULL, the tab stops are

 set to two dialog units by default.

 b. SendMessage() will return TRUE if all of the tab stops are set
 successfully; otherwise, SendMessage() returns FALSE.

Example

Below is an example of the process. Tab stops are set at character
positions 16, 32, 58, and 84.

 int TabStopList[TOTAL_TABS]; /* Array to store tabs */

 TabStopList[0] = 16 * 4; /* 16 spaces */
 TabStopList[1] = 32 * 4; /* 32 spaces */
 TabStopList[2] = 58 * 4; /* 58 spaces */
 TabStopList[3] = 84 * 4; /* 84 spaces */

 SendMessage(GetDlgItem(hDlg, IDD_LISTBOX),
 LB_SETTABSTOPS,
 TOTAL_TABS,
 (LONG)(LPSTR)TabStopList);

NOTE: For Win32, use LPARAM instead of LONG.

If the desired unit of measure is character position, then specifying
tab positions in dialog units is recommended. Dialog units are
independent of the current font; they are loosely based on the average
width of the system font. Each character takes approximately four
dialog units.

NOTE: Under Windows 95, dialog base units for dialogs based on non-system
fonts are calculated in a different way than under Windows 3.1. For more
information, please see the following article in the Microsoft Knowledge
Base:

 ARTICLE-ID: Q125681
 TITLE : How to Calculate Dialog Base Units with Non-system-based
 Font

For more control over the exact placement of a tab stop, the desired
position should be converted to a pixel offset and this offset should
be converted into dialog units. The following formula will take a
pixel position and convert it into the first tab stop position before
(or at) the desired pixel position:

 TabStopList[n] = 4 * DesiredPixelPosition /
 LOWORD(GetDialogBaseUnits());

There is a sample application named TABSTOPS in the Microsoft Software
Library that demonstrates how tab stops are set and used in a list
box.

Download TABSTOPS.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download TABSTOPS.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get TABSTOPS.EXE

Additional reference words: 3.00 3.10 3.50 4.00 softlib
KBCategory: kbui kbfile
KBSubcategory: UsrCtl

SAMPLE: Simulating Palette Animation on Non-Palette Displays
PSS ID Number: Q130476

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.5

SUMMARY
=======

LAVALAMP is a sample application in the Microsoft Software Library that
demonstrates how to simulate the effects of the AnimatePalette() function
on devices that may not support palettes. This program also demonstrates
how to create and manipulate dibsections. The following dibsection
functions are used in LAVALAMP:

 CreateDIBSection()
 GetDIBColorTable()
 SetDIBColorTable()

Download LAVALAMP.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download LAVALAMP.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get LAVALAMP.EXE

MORE INFORMATION
================

When running in display modes that are not palette-based, many of the
effects that can be performed easily with palette animation need to be
reprogrammed. A simple method of simulating palette animation can be
achieved by "animating" a device-independent bitmap's (DIBs) color table
and redisplaying the DIB with the new colors. To demonstrate this
technique, LAVALAMP creates an 8-bits-per-pixel (bpp) dibsection. Then it
shifts each of the RGBQUAD data structures in the color table by one
position to the left, and recycles the first entry in the color table to
the last position. After each modification to the color
table, the DIB is redisplayed.

Because the entire DIB must be redisplayed after each modification to the
color table, this technique is not recommended for large bitmaps.

Additional reference words: 3.50 technote BMP softlib
KBCategory: kbgraphic kbfile

KBSubcategory: GdiBmp GdiPal

SAMPLE: The Palette Manager: How and Why It Does What It Does
PSS ID Number: Q137372

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1, 3.11
 - Microsoft Win32 SDK versions 3.5, 3.51, 4.0

You can now download a document that gives a full introduction to the
Microsoft Windows Palette Manager along with two samples that accompany it.
Beyond simply describing how to use the palette interface, this document
explains its specific internal workings and gives reasons for its chosen
implementation. Due to the complexity of the Palette Manager, this document
introduces some topics and then goes into them in greater detail. It is
best to read it from start to finish before using it as a reference.

After downloading the file, use -d when running it so that the samples are
placed their own directories. In other words, place Palman.exe in an empty
directory and run it using this command:

 Palman.exe -d

Download Palman.exe, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download Palman.exe

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get Palman.exe

Additional reference words: 3.50 4.00
KBCategory: kbref kbgraphic kbfile
KBSubcategory: W32

SAMPLE: Using Blinking Text in an Application
PSS ID Number: Q11787

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

It is possible to create blinking text in a Windows-based application.
Because there are no character attributes similar to the normal MS-DOS text
environment, the application must repeatedly paint the screen to implement
the flash. This article, and an accompanying file in the Microsoft Software
Library, demonstrate how this is done.

MORE INFORMATION
================

A timer is used to determine the rate at which the text flashes. Timer
messages are processed by inverting the appropriate area in the window
using the DSTINVERT action of the PatBlt function. The second time that the
PatBlt function is called, the text returns to its original state.
Alternatively, the PATINVERT action of the PatBlt function may be used. To
use this method, an appropriate brush must be selected into the display
context as the current pattern. This method requires more work, however, it
is more flexible.

The rate at which the text blinks can be set to match the cursor blink time
set in the Control Panel. To do this, the following code should be run when
the application starts and in response to WM_WININICHANGE messages:

 nRate = GetProfileInt(
 (LPSTR)"windows", /* heading in [] */
 (LPSTR)"CursorBlinkRate", /* string to match */
 550); /* default value */

Be sure to delete the timer when the application terminates.

There is a sample program in the Microsoft Software Library named BLINK
that uses this technique to demonstrate blinking text.

Download BLINK.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL

 Download BLINK.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get BLINK.EXE

Additional reference words: 3.00 3.10 3.50 4.00 95 softlib BLINK.EXE
KBCategory: kbui kbfile
KBSubcategory: UsrPnt

SAMPLE: Win16 App (WOW & Win32s) Calling Win32 DLL Code
PSS ID Number: Q114341
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.5
--

SUMMARY
=======

The INTEROP sample demonstrates two general methods for calling routines in
a Win32 DLL from a Windows-based application: thunks and SendMessage().
There are two different thunking methods, one for each platform: Generic
Thunks on Windows NT and Universal Thunks on Win32s. The message used is
WM_COPYDATA, a new message introduced by Windows NT and Win32s. All three
methods provide a way to call functions and pass data across the 16-32
boundary, translating any pointers in the process. The advantages of
WM_COPYDATA over thunks are that it is fast the exact same code runs on
either platform (the thunk used will depend on the platform). The
disadvantage of WM_COPYDATA is that a method must be devised to get a
function return value (other than true or false) back to the calling
application.

NOTE: Universal Thunks were designed to work with a Win32-based application
calling a 16-bit DLL. The method described here has limitations. Because
the application is 16-bit, no 32-bit context is created, so certain calls
will not work from the Win32 DLL.

The sample consists of the following source files:

 APP16.C - Win16 Application
 DLL16.C - 16-bit side of Universal Thunk/Generic Thunk
 STUB32.C - 32-bit stub that loads the 32-bit DLLs on Win32s
 UTDLL32.C - 32-bit side of the Universal Thunk
 DISP32.C - Dispatch calls sent through WM_COPYDATA
 DLL32.C - Win32 DLL

This sample is included with the Microsoft Win32 SDK. It is located in
SCT\SAMPLES\INTEROP. NOTE: There is also an RPC sample named INTEROP, but
it is in a different directory.

MORE INFORMATION
================

Generic Thunk

Under Windows NT, it is possible to call routines in a Win32 DLL from a
Windows-based application using an interface called Generic Thunks. The SDK
file DOC\SDK\MISC\GENTHUNK.TXT describes the interface.

Here is a picture of the way the pieces fit together in INTEROP:

 dll32

 | Win32 |
 32-bit | DLL |

 /|\
 ------------------|-------
 |
 --------- ------------
 | Win 3.1 |<->| 16-bit DLL |
 16-bit | app. | | (GT) |
 --------- ------------
 app16 dll16

DLL16 is loaded when APP16 is loaded. If it detects that WOW is present,
then it loads DLL32.

WOW presents a few new 16-bit application programming interfaces (APIs)
that allow you to load the Win32 DLL, get the address of the DLL routine,
call the routine (passing it up to thirty-two 32-bit arguments), convert
16:16 (WOW) addresses to 0:32 addresses (useful if you need to build up a
32-bit structure that contains pointers and pass a pointer to it), and free
the Win32 DLL. These functions are:

 DWORD FAR PASCAL LoadLibraryEx32W(LPCSTR, DWORD, DWORD);
 DWORD FAR PASCAL GetProcAddress32W(DWORD, LPCSTR);
 DWORD FAR PASCAL CallProc32W(DWORD, ..., LPVOID, DWORD, DWORD);
 DWORD FAR PASCAL GetVDMPointer32W(LPVOID, UINT);
 BOOL FAR PASCAL FreeLibrary32W(DWORD);

When linking the Win16 application, you need to put the following
statements in the .DEF file, indicating that the functions will be imported
from the WOW kernel:

 IMPORTS
 kernel.LoadLibraryEx32W
 kernel.FreeLibrary32W
 kernel.GetProcAddress32W
 kernel.GetVDMPointer32W
 kernel.CallProc32W

Note that although these functions are called in 16-bit code, they need to
be provided with 32-bit handles, and they return 32-bit handles.

In addition, be sure that your Win32 DLL entry points are declared with the
_stdcall convention; otherwise, you will get an access violation.

Universal Thunk

Under Win32s, it is possible to call routines in a Win32 DLL from a Win16
application using an interface called Universal Thunks. The interface is
described in the Win32s Programmer's Reference. The sample UTSAMPLE, shows

the opposite (and more typical) case, a Win32 application calling 16-bit
routines.

Here is a picture of the way the pieces fit together in INTEROP:

 stub utdll32 dll32
 ----------- ----------- ---------
 | Win32 |-->| Win32 DLL |<->| Win32 |
 32-bit | EXE | | (UT) | | DLL |
 ----------- ----------- ---------
 /|\ /|\
 ------------------|--------|-------------------------
 | \|/
 --------- ------------
 | Win 3.1 |<->| 16-bit DLL |
 16-bit | app. | | (UT) |
 --------- ------------
 app16 dll16

The load order is as follows: The Windows 3.1 application loads the 16-bit
DLL. The 16-bit DLL checks to see whether the 32-bit side has been
initialized. If it has not been initialized, then the DLL spawns the 32-bit
.EXE (stub), which then loads the 32-bit DLL that sets up the Universal
Thunks with the 16-bit DLL. Once all of the components are loaded and
initialized, when the Windows 3.x application calls an entry point in the
16-bit DLL, the 16-bit DLL uses the 32-bit Universal Thunk callback to pass
the data over to the 32-bit side. Once the call has been received on the 32-
bit side, the proper Win32 DLL entry point can be called.

WM_COPYDATA

The wParam and lParam for this message are as follows:

 wParam = (WPARAM) (HWND) hwndFrom; /* handle of sending window */
 lParam = (LPARAM) (PCOPYDATASTRUCT) pcds;

Where hwndFrom is the handle of the sending window and COPYDATASTRUCT is
defined as follows:

 typedef struct tagCOPYDATASTRUCT {
 DWORD dwData;
 DWORD cbData;
 PVOID lpData;
 } COPYDATASTRUCT;

The INTEROP sample uses dwData as a function code, indicating which Win32
DLL entry point should be calling and lpData to contain a pointer to the
data structure to be passed to the function.

Here is a picture of the way the pieces fit together in INTEROP:

 disp dll32
 ----------- ---------
 | Win32 |-->| Win32 |

 32-bit | EXE | | DLL |
 ----------- ---------
 /|\
 ------------------|----------------------------------
 |
 --------- ------------
 | Win 3.1 |<->| 16-bit DLL |
 16-bit | app. | | (THUNK) |
 --------- ------------
 app16 dll16

DLL16 is loaded when APP16 is loaded. DISP is spawned to handle WM_COPYDATA
messages, regardless of platform. DISP dispatches the calls to DLL32,
marshalling the arguments.

Additional reference words: 3.50
KBCategory: kbref
KBSubcategory: SubSys

Secure Erasure Under Windows NT
PSS ID Number: Q94239

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51

SUMMARY
=======

File systems under Windows NT currently have virtual secure erasure (when a
file is deleted, the data is no longer accessible through the operating
system). Although the bits could still be on disk, Windows NT will not
allow access to them.

MORE INFORMATION
================

The NTFS file system does this by keeping a high-water mark, for each file,
of bytes written to the file. Everything below the line is real data,
anything above the line is (on disk) random garbage that used to be free
space, but any attempt to read past this high-water mark returns all zeros.

Other reusable objects are also protected. For example, all the memory
pages in a process's address space are zeroed when they are touched (unlike
the file system, a process may directly access its pages, and thus the
pages must be actually zeroed rather than virtually zeroed).

Note that file system security assumes physical security; in other words,
if a person has physical access to a machine and can boot an alternative
operating system and/or add custom device drivers and programs, he/she can
always get direct access to the bits on disk.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

Security and Screen Savers
PSS ID Number: Q96780

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51

SUMMARY
=======

Screen savers are user-mode applications that execute in a different
desktop (see the note at the end of the article). Therefore, a screen saver
cannot enumerate windows of user-mode applications. This design prevents
unauthorized users from viewing the contents of applications displayed on
the screen. For secure screen savers (those that ask for a password), this
adds a further layer of protection.

Screen savers also execute in the security context of the logged-on user. A
screen saver may call ExitWindowsEx(), to log off from or shut down the
system, or any other application programming interface (API) that the
logged-on user has permission to perform.

MORE INFORMATION
================

A sample screen saver SCRNSAVE is distributed on the Win32 SDK CD.

NOTE: A desktop is a virtual screen. Windows NT 3.5 and earlier have three
desktops--the main desktop, the WinLogon desktop, and a desktop for screen
savers. Windows NT 3.51 and later support and document creating multiple
desktops.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

Security Attributes on Objects
PSS ID Number: Q102798

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51

SUMMARY
=======

Early betas of Windows NT did not require security attributes on objects
such as pipes. For example, it was valid at that time to enter NULL for the
last parameter of the Win32-based application programming interface (API)
CreateNamedPipe(). This is no longer the case.

MORE INFORMATION
================

Windows NT 3.1 and later require security attributes. Please note that
setting the security attributes parameter to NULL does not indicate
that you want a NULL security descriptor (SD), rather it indicates that you
want to inherit the security descriptor of the current access token. For
example, this means that any client wanting to connect to your pipe server
must have the same security attributes as the user that started the server.
If the user who started the server was the administrator of the machine,
then any client who wants to connect must also be an administrator for that
machine.

Below is an code sample that demonstrates creating a named pipe with a NULL
security descriptor.

 HANDLE hPipe; // Pipe handle.
 SECURITY_ATTRIBUTES sa; // Security attributes.
 PSECURITY_DESCRIPTOR pSD; // Pointer to SD.

 // Allocate memory for the security descriptor.

 pSD = (PSECURITY_DESCRIPTOR) LocalAlloc(LPTR,
 SECURITY_DESCRIPTOR_MIN_LENGTH);

 // Initialize the new security descriptor.

 InitializeSecurityDescriptor(pSD, SECURITY_DESCRIPTOR_REVISION);

 // Add a NULL descriptor ACL to the security descriptor.

 SetSecurityDescriptorDacl(pSD, TRUE, (PACL) NULL, FALSE);

 sa.nLength = sizeof(sa);
 sa.lpSecurityDescriptor = pSD;
 sa.bInheritHandle = TRUE;

 // Create a local named pipe with a NULL security descriptor.

 hPipe = CreateNamedPipe(
 "\\\\.\\PIPE\\test", // Pipe name = 'test'.
 PIPE_ACCESS_DUPLEX // 2-way pipe.
 | FILE_FLAG_OVERLAPPED, // Use overlapped structure.
 PIPE_WAIT // Wait on messages.
 | PIPE_READMODE_MESSAGE // Specify message mode pipe.
 | PIPE_TYPE_MESSAGE,
 MAX_PIPE_INSTANCES, // Maximum instance limit.
 OUT_BUF_SIZE, // Buffer sizes.
 IN_BUF_SIZE,
 TIME_OUT, // Specify time out.
 &sa); // Security attributes.

It is important to note that by specifying TRUE for the fDaclPresent
parameter and NULL for pAcl parameter of the SetSecurityDescriptorDacl()
API, a NULL access control list (ACL) is being explicitly specified.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

Security Context of Child Processes
PSS ID Number: Q111545

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

When a process is created with the CreateProcess() API, it operates under
the same security context as the parent. The child process inherits the
parent’s security context, which are defined by the parent’s access token.
Even if a thread in the parent process impersonates a client and then
creates a new process, the new process still runs under the parent’s
original security context and not the under the impersonation token.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

Semicolons Cannot Separate Macros in .HPJ File
PSS ID Number: Q83020
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
--

SUMMARY
=======

The author of a Help system can combine individual macro commands into
a macro string, which the Microsoft Help Compiler processes as a unit.
When the macro string is part of an RTF text file, the individual
macros in the string are separated from each other with a semicolon
character (;). The Help system runs the individual macros of a macro
string sequentially.

The author can define a macro string that is run when the user loads a
Help file. This macro string is placed into the [CONFIG] section of
the Help project (.HPJ) file. However, in the .HPJ file, the
individual macros of the string are separated from each other with a
colon character (:) because the semicolon character indicates the
beginning of a comment.

MORE INFORMATION
================

In the following sample [CONFIG] section, a macro adds two buttons to
the Help window's button bar. The first button is labeled "Other",
which when chosen brings up the About Help dialog box. The second
button is labeled "Test". When chosen, it disables the "Other" button
and jumps to the topic represented by "context_string." To create the
"Test" button, two macros are concatenated to form the macro parameter
in the CreateButton call.

[CONFIG]
; This first button is added so that the demonstration macro is
; complete. This macro just creates a button. Choosing the button
; brings up the About Help dialog box.

CreateButton("other_button","&Other","About()")

; This macro also creates a button. Choosing the button disables
; "other_button", created above, and jumps to the topic represented by
; "topic_string."
;
; Note that the two macros in the CreateButton macro are separated by
; a colon, not a semicolon.
;
; NOTE: The following macro should appear on a single line.

CreateButton("test_button","&Test","DisableButton(`Other_Button'):
JumpId(`testhelp.hlp',`context_string')")

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsHlp

SendMessage() in a Multithreaded Environment
PSS ID Number: Q95000

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

When thread X calls SendMessage() to send a message to a window created by
thread Y, it must wait until thread Y calls PeekMessage(), GetMessage(), or
WaitMessage() before the SendMessage() call can continue. This process
prevents synchronization problems.

MORE INFORMATION
================

Because of the multithreaded environment of Windows NT, SendMessage() does
not behave in the same manner as it does under Windows 3.1. Under Windows
3.1, SendMessage() simply calls the window procedure given to it. In
Windows 3.1, if you use the SendMessage() function to send a message to a
window of another task, the system will perform a task switch to the target
window (change to the stack of the target Windows-based application), let
the target window process the message [when it calls GetMessage() or
PeekMessage()], and then switch back to the original message.

Under Windows NT, however, only the thread that created a window may
process the window's messages. Therefore, if thread X sends a message [via
SendMessage()] to a window that was created by thread Y, thread X must wait
for thread Y to be in a receiving state, and handle the message for it.

Thread Y is only in a receiving state when it calls PeekMessage(),
GetMessage(), or WaitMessage(), because synchronization problems may occur
if a thread is interrupted while processing other messages. While in a
receiving state, thread Y may process messages sent to its windows via
SendMessage() (in this case, by thread X).

Note that PeekMessage() and GetMessage() look in thread Y's message queue
for messages. Because SendMessage() does not post any messages,
PeekMessage() and GetMessage() will not see any indication of the
SendMessage() call. The two functions merely serve as a point in time at
which SendMessage() (thread X) may "interrupt," and have thread Y process
its message next. Then PeekMessage() or GetMessage() continues normal
operation under thread Y.

Because of this behavior, if thread X sends a message to thread Y, and
thread Y is locked in a tight loop, thread X is now locked as well. This
may be prevented by using SendNotifyMessage(), which behaves as
SendMessage() does above, but returns immediately. This may be an advantage

if it is not important that the sent message be completed before thread Y
continues. Note, however, that because SendNotifyMessage() is asynchronous,
thread X should not pass pointers to any of its local variables when making
the call, because they may be gone by the time thread Y attempts to look at
them. This would result in a general protection violation (GP fault) when
thread Y accesses the pointer.

Additional reference words: 3.10 3.50 3.51 4.00 95 GP-fault
KBCategory: kbui
KBSubcategory: UsrMisc

Service Control Manager Records Event ID 7023 In the System Log
PSS ID Number: Q133010

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51

SUMMARY
=======

The Service Control Manager records an event id 7023 into the system log
when a service calls the SetServiceStatus API with the SERVICE_STATUS
structure initialized in the following manner: the dwCurrentState member is
equal to SERVICE_STOPPED and dwWin32ExitCode member is not equal to zero.

MORE INFORMATION
================

In the entry written into the system log, the event id is 7023 and the type
of the event is ERROR. The source of the entry is the Service Control
Manager. The description says, "<name of your service> terminated with the
following error: <description of the error>"

Additional reference words:
KBCategory: kbprg
KBSubcategory: BseService

Services and Redirected Drives
PSS ID Number: Q115848

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

When writing a service, do not use WNetAddConnection() to redirect drives
to remote shares, because the redirector does not allow the logged-on user
to see the server or enumerate the drive. Instead, use universal naming
convention (UNC) names whenever possible to redirect drives to remote
shares.

MORE INFORMATION
================

WNetAddConnection() creates a global symbolic link describing the drive.
Therefore, the user can change to the drive at the command prompt. However,
WNetOpenEnum(), WNetEnumResource, and the "net use" command fail to list
the drive connection that was created by the service. This happens because
the logged-on user does not have an active session to the remote
connection, so the redirector will not let the user see the remote server.

The File Manager calls GetDriveType() on each drive and puts up an icon
for each drive found. The File Manager creates an icon for redirected
drives created from a service because there is a global symbolic link to
that drive. However, the share name is not available. In addition, the
logged-on user cannot use File Manager to disconnect the drive because the
drive was created by the service, not the logged-on user.

If the service process is running in the Local System account, then only
that process or another process running in the Local System account can
call WNetCancelConnection() to disconnect the drive.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseService

SetActiveWindow() and SetForegroundWindow() Clarification
PSS ID Number: Q97925

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

By default, each thread has an independent input state (its own active
window, its own focus window, and so forth). SetActiveWindow() always
logically sets a thread's active window state. To force a window to the
foreground, however, use SetForegroundWindow(). SetForegroundWindow()
activates a window and forces the window into the foreground.
SetActiveWindow() always activates, but it brings the active window into
the foreground only if the thread is the foreground thread.

NOTE: If the target window was not created by the calling thread, the
active window status of the calling thread is set to NULL, and the active
window status of the thread that created the target window is set to the
target window.

Applications can call AttachThreadInput() to allow a set of threads to
share the same input state. By sharing input state, the threads share their
concept of the active window. By doing this, one thread can always activate
another thread's window. This function is also useful for sharing focus
state, mouse capture state, keyboard state, and window Z-order state among
windows created by different threads whose input state is shared.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrWndw

SetBkColor() Does Not Support Dithered Colors
PSS ID Number: Q69885

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The syntax for the SetBkColor function is documented in the Microsoft
Windows Software Development Kit (SDK) as follows:

 DWORD SetBkColor(HDC hDC, COLORREF crColor);

SetBkColor sets the current background color of the specified device
context (DC) to the color that the crColor parameter references, or to
the nearest physical color if the device cannot represent the RGB
color value that the crColor parameter specifies. In other words,
SetBkColor cannot be used to set the background to a dithered color
and defaults to the physical color that is closest to the requested
crColor value.

MORE INFORMATION
================

This behavior can cause unexpected results for an application that
changes the background color of a control to a color that cannot be
represented by a color provided by the display device.

Specifically, when an application specifies a dithered color for the
background of an edit control, and specifies the same color for the
text background, Windows paints the control in two distinct colors.

For example, using the standard VGA display driver, the following
call, in which COLOR_INACTIVEBORDER is a green/gray specified by
RGB(64, 128, 128), sets the background color to gray (RGB(128, 128,
128)) rather than the dithered green/gray that is desired:

 SetBkColor(wParam, GetSysColor(COLOR_INACTIVEBORDER));

To illustrate, if the application uses the function call while
processing the WM_CTLCOLOR message to change the color of an edit
control, the window background is painted green/gray, and the text
background defaults to the nearest physical color, which is gray. This
produces a gray rectangle inside a green/gray rectangle rather than
the desired green/gray for the entire edit control.

This behavior can also occur with other controls such as option
buttons and list boxes. However, an application can avoid this problem
by using the SetBkMode function to set the background mode to
TRANSPARENT. This allows the dithered brush pattern to show through
beneath the text to achieve the desired results. That solution is not
practical with a multiline edit control because if text is inserted,
and the background mode has been set to TRANSPARENT, the text that is
pushed to the right by the inserted text leaves its image behind. The
result is text superimposed on top of other text, which quickly
becomes unreadable.

To partially work around this situation for a multiline edit control,
use the GetNearestColor function to determine the nearest physical
color to the desired color, as in the code fragment below. In this
case, the entire edit control is gray:

 case WM_CREATE:
 {
 HDC hDC;
 hDC = GetDC(hWnd);
 hGrayBrush = CreateSolidBrush(GetNearestColor(hDC,
 RGB(64, 128, 128)));
 ReleaseDC(hWnd, hDC);
 hWndEdit = CreateWindow(... ES_MULTILINE ...);
 }
 break;

 case WM_CTLCOLOR:
 if (HIWORD(lParam) == CTLCOLOR_EDIT)
 {
 // The following call creates the nearest physical
 // color; therefore, it will be the same as the
 // hGrayBrush created above.
 SetBkColor(wParam, RGB(64, 128, 128));
 SetTextColor(wParam, RGB(255, 0, 0)); // red text
 return (DWORD)hGrayBrush;
 }
 else
 return DefWindowProc(hWnd, identifier, wParam, lParam);
 break;

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbgraphic
KBSubcategory: GdiDrw

SetClipboardData() and CF_PRIVATEFIRST
PSS ID Number: Q24252

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
========

The documentation for SetClipboardData() states that CF_PRIVATEFIRST can be
used to put private data formats on the clipboard. It also states that data
of this format is not automatically deleted. However, that is apparently
not true. That is, the data is removed automatically when the clipboard is
emptied (sending a WM_DESTROYCLIPBOARD message) and the new item is set
into the clipboard. The old item is shown; however, the handle now is
invalid because GlobalFree() is called on it.

MORE INFORMATION
================

GlobalFree() was not called on this handle. If you try to use the other
handle to this memory, you will find that the one you initially received
from GlobalAlloc() is still valid. Only the clipboard handle has been
invalidated by the call to EmptyClipboard().

The documentation states that "Data handles associated (with
CF_PRIVATEFIRST) will not be freed automatically." This statement refers to
the memory associated with that data handle. When SetClipboardData() is
called under standard data types, it frees the block of memory identified
by hMem. This is not the case for CF_PRIVATEFIRST. Applications that post
CF_PRIVATEFIRST items on the clipboard are responsible for the memory block
containing those items.

This is not intended to imply that items placed on the clipboard will
remain on the clipboard if they are CF_PRIVATEFIRST. When a call is made to
EmptyClipboard(), all objects will be removed.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrClp

SetErrorMode() Is Inherited
PSS ID Number: Q105304

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

An application can use SetErrorMode() to control whether the operating
system handles serious errors or whether the application itself will handle
the errors.

NOTE: The error mode will be inherited by any child process. However, the
child process may not be prepared to handle the error return codes. As a
result, the application may die during a critical error without the usual
error message popups occurring.

This behavior is by design.

One solution is to call SetErrorMode() before and after the call to
CreateProcess() in order to control the error mode that is passed to the
child. Be aware that this process must be synchronized in a multithreaded
application.

There is another solution available in Windows NT 3.5 and later.
CreateProcess() has a new flag CREATE_DEFAULT_ERROR_MODE that can be used
to control the error mode of the child process.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseExcept

SetParent and Control Notifications
PSS ID Number: Q104069

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

An edit, list box, or combo box control sends notifications to the
original parent window even after SetParent has been used to change
the control's parent. A button control sends notifications to the new
parent after SetParent has been used to change its parent.

Edit, list box, and combo box controls keep a private copy of the
window handle of the parent at the time of creation. This handle is
not changed when SetParent is used to change the control's parent.
Consequently, the notifications (EN_*, LBN_*, and CBN_* notifications)
go to the original parent.

Note that WM_PARENTNOTIFY messages go to the new parent and
GetParent() returns the new parent. If it is required that
notifications go to the new parent window, code must be added to the
old parent's window procedure to pass on the notifications to the new
parent.

For example:

case WM_COMMAND:
 hwndCtl = LOWORD(lParam);

 // If notification is from a control and the control is no longer this
 // window's child, pass it on to the new parent.
 if (hwndCtl && !IsChild(hWnd, hwndCtl))
 SendMessage(GetParent(hwndCtl), WM_COMMAND, wParam, lParam);
 else Do normal processing;

Button controls send notifications to the new parent after SetParent
has been used to change the parent.

Additional reference words: 3.10 3.50 3.51 4.00 95 listbox combobox
KBCategory: kbui
KBSubcategory: UsrCtl

SetTimer() Should Not Be Used in Console Applications
PSS ID Number: Q102482

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

SetTimer() was not designed to be used with a console application because
it requires a message loop to dispatch the timer signal to the timer
procedure. In a console application, this behavior can be easily emulated
with a thread that is set to wait on an event.

MORE INFORMATION
================

In Windows NT 3.1, SetTimer() can work within a console application, but it
requires a thread in a loop calling GetMessage() and DispatchMessage().

For example,

 while (1)
 {
 GetMessage();
 DispatchMessage();
 }

Because this requires a thread looping, there is no real advantage to
adding a timer to a console application over using a thread waiting on an
event.

Another option is to use a multimedia timer, which does not require a
message loop and has a higher resolution. In Windows NT 3.5, the resolution
can be set to 1 msec using timeBeginPeriod(). See the help for
timeSetEvent() and the Multimedia overview. Any application using
Multimedia calls must include MMSYSTEM.H, and must link with WINMM.LIB.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrMisc

Setting Dynamic Breakpoints in WinDbg
PSS ID Number: Q100642
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0
--

SUMMARY
=======

The WinDbg breakpoint command contains a metacircular interpreter; that is,
you can execute commands dynamically once a breakpoint is hit. This allows
you to perform complex operations, including breaking when an automatic
variable has changed, as described below.

The command interpreter of WinDbg allows any valid C expression to serve as
a break condition. For example, to break whenever a static variable has
changed, use the following expression in the Expression field of the
breakpoint dialog box:

 &<variablename>

In addition, the length should be specified as 4 (the size of a DWORD) in
the length field.

This technique does not work for automatic variables because the address of
an automatic variable may change depending on the value that the stack
pointer has upon entering the function that defines the automatic variable.
This is one case where the breakpoint needs to be redefined dynamically.

For this purpose, a breakpoint can be enabled at function start and
disabled at function exit, so that the address of the variable is
recomputed.

MORE INFORMATION
================

Suppose that the name of the function is "subroutine" and the local
variable name is "i". The following steps will be used:

1. Start the program and step into the function that defines the
 automatic variable with the commands:

 g subroutine
 p
 bp500 ={subroutine}&i /r4 /C"?i"

 The breakpoint number is chosen to be large so that the breakpoint
 will be well out of range of other breakpoints. Note that /r4
 indicates a length of 4 because i is an integer. Make this number
 larger for other data types. The command "?i" prints out the value
 of i.

2. Next, disable this first breakpoint with the command

 bd500

 because the address of i may change. The breakpoint will be enabled
 when in the scope of function subroutine.

3. The second breakpoint definition is set at the entry point of the
 function:

 bp .<FirstLine> /C"be 500;g"

 This is where the breakpoint is enabled. Note that <FirstLine> is
 the line number of the first statement in the function subroutine.

4. The last breakpoint is set at the end of the function

 bp .<LastLine> /C"bd 500;g"

 and will disable the breakpoint again. Note that <LastLine> is the
 line number of the last statement in the function subroutine.

 Note that if the function has more than one exit point, multiple
 breakpoints may have to be defined.

Program execution stops when breakpoint #500 is hit (for example, the value
of i changes), but execution will continue after the other two breakpoints
because they contain go ("g") commands.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsWindbg

Setting File Permissions
PSS ID Number: Q98952

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

In Windows NT, local access controls can be set on just NTFS partitions,
not FAT or HPFS partitions or floppies. Read/execute-only permissions
should work properly on a CD-ROM.

The exception is that ACLs (access control lists) can be set on shares,
regardless of the file system, to control access to all the files within
that share. For example, you can give read access to everyone, but give
full access just to members of a certain group or to certain individuals.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

Setting the Console Configuration
PSS ID Number: Q105674

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

To create a command prompt with custom features such as

 Settings
 Fonts
 Screen Size and Position
 Screen Colors

create a new entry in the Program Manager for CMD.EXE (suppose that the
description is CUSTOM), choose these items from the CMD system menu, and
select Save Configuration in each dialog box. The settings are saved in the
registry under

 HKEY_CURRENT_USER\
 Console\
 custom

and are used when starting the CUSTOM command prompt from the Program
Manager or when specifying:

 start "custom"

This behavior is really a convenient side effect of

 start <string>

which sets the title in the window title bar. When you create a new console
window with the START command, the system looks in the registry and tries
to match the title with one of the configurations stored there. If it
cannot find it, it defaults to the values stored in:

 HKEY_CURRENT_USER\
 Console\
 Configuration

This functionality can be duplicated in your own applications using the
registry application programming interface (API).

For more information, please see the "Registry and Initialization Files"
overview and the REGISTRY sample.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseMisc

Setup Toolkit .INF File Format and Disk Labels
PSS ID Number: Q88141
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0
 - Microsoft Win32 SDK, version 3.5
--

In the Microsoft Setup Toolkit for Windows, the Source Media Descriptions
section of the .INF file contains one line for each of the disks you use to
install your application. Each of these lines consists of four quoted
strings, separated by commas. The second quoted string is the disk label,
which you create using the disk-layout utilities. This disk label has
nothing to do with the MS-DOS disk label. The disk label in the .INF file
comes from the Disk Labels command on the Options menu in DSKLAYT.EXE and
is arbitrarily chosen by the developer during the disk-layout process.

The Setup Toolkit only uses this disk label to prompt the user for disks.
The Setup Toolkit uses the tag filename in the Source Media Descriptions
section to determine if the proper disk has been placed in the drive.

Additional reference words: 3.00 3.10 3.50 MSSetup tool kit
KBCategory: kbtool
KBSubcategory: TlsMss

SHARE.EXE Functionality Built into Windows NT
PSS ID Number: Q101191
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5
--

SUMMARY
=======

The functionality of the MS-DOS SHARE.EXE utility is built into the Windows
NT kernel. Any application or application programming interface (API) that
relies on the SHARE.EXE functionality is automatically supported. This
functionality cannot be disabled.

MORE INFORMATION
================

If you run the MS-DOS version of SHARE.EXE, you will receive a message
stating that SHARE is already installed. The Windows NT MS-DOS emulation
hooks Interrupt 2Fh function 10H and always returns a status indicating
that SHARE is installed.

If you run an MS-DOS-based application and it complains that SHARE.EXE is
not installed, the application may be searching the AUTOEXEC.BAT file for a
"share" string rather than using the proper Interrupt 2Fh interface.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: SubSys

Sharing All Data in a DLL
PSS ID Number: Q109619

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Win32 dynamic-link libraries (DLLs) use instance data by default. This
means that each application that uses a DLL gets its own copy of the DLL’s
data. However, it is possible to share the DLL data among all applications
that use the DLL.

If you only need to share some of the DLL data, we recommend creating a
new section and sharing it instead. For additional information, please see
the following article(s) in the Microsoft Knowledge Base:

 ARTICLE-ID: Q89817
 TITLE : How to Specify Shared and Nonshared Data in a DLL

If you want to share *all* of the DLL static data, it is important to
do two things:

 - First, the DLL must use the DLL version of the C Run-time (for example
 CRTDLL.LIB or MSVCRT.LIB). Please see your product documentation for
 more information about using the C Run-time in a DLL.

 NOTE: CRTDLL.LIB is no longer part of the SDK, starting with Windows NT
 3.51. It was last released on the April 1995 MSDN 3.5 SDK. Win32 now
 requires users to specify their own version of C run-time LIBs supplied
 by their own compiler vender.

 - Second, you will need to specify that both .data and .bss are shared.
 Often, this is done in the “SECTIONS” portion of the .DEF file. For
 example:

 SECTIONS
 .bss READ WRITE SHARED
 .data READ WRITE SHARED

 If you are using Visual C++ 32-bit Edition, you have to specify this
 using the -section switch on the linker. For example:

 link -section:.data,rws -section:.bss,rws

Only static data is shared. Memory allocated dynamically with calls to
APIs/functions such as GlobalAlloc() or malloc() are still specific to
the calling process.

The system tries to load the shared memory block at the same address in
each process. However, if the block cannot be loaded into the same memory
address, the system maps the shared section into a different memory
address. The memory is still shared. Note that the pointers inside the
shared section are invalid under this circumstance and cannot be placed in
shared sections.

MORE INFORMATION
================

The C Run-time uses global variables. If the CRT is statically linked to
the DLL, these variables will be shared among all clients of the DLL and
will most likely cause an exception c0000005.

The reason you need to specify both .data and .bss as shared is because
they each hold different types of data. The .data section holds initialized
data and the .bss section holds the uninitialized data.

One reason for sharing all data in a DLL is to have consistent behavior in
the DLL between Win32 (running on Windows NT) and Win32s (running on
Windows 3.1). When running on Win32s, a 32-bit DLL shares its data among
all of the processes that use the DLL.

Note that it is not necessary to share all data to behave identically
between Win32 and Win32s. The DLL can use thread local storage (TLS) on
Win32s to store variables as instance data. For additional information,
please see the following article(s) in the Microsoft Knowledge Base:

 ARTICLE-ID: Q109620
 TITLE : Creating Instance Data in a Win32s DLL

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseDll

Sharing Memory Between 32-Bit and 16-Bit Code on Win32s
PSS ID Number: Q105762
--
The information in this article applies to:

 - Microsoft Win32s versions 1.0, 1.1, and 1.2
--

SUMMARY
=======

This article discusses many of the issues involved in sharing memory across
the process boundary under Win32s.

MORE INFORMATION
================

Memory allocated by a Win32-based application using GlobalAlloc() can be
shared with a 16-bit Windows-based application on Win32s. If the memory is
allocated with GMEM_MOVEABLE, then GlobalAlloc() returns a handle and not a
pointer. The 16-bit Windows-based application can use the low word of this
handle. The high word is all zeros. Make sure to lock the handle using
GlobalLock() in the 16-bit Windows-based application to get a pointer.

NOTE: GlobalAlloc (GMEM_FIXED...) is not the same as
GlobalFix(GlobalAlloc(GMEM_MOVEABLE...)). GMEM_FIXED will allocate locked
pages, which is most often not what you want.

Memory allocated by a 16-bit Windows-based application via GlobalAlloc()
must be fixed via GlobalFix() and translated before it can be passed to a
Win32-based application. Whenever a Windows object is passed to a
Win32-based application by its 32-bit address, the memory must be fixed,
because the address is computed from the selector base only once. If
Windows moves the memory, the linear address used by the Win32-based
application will no longer be valid.

If you are using the Universal Thunk, you can also pass a buffer from a
Win32-based application to a 16-bit dynamic-link library (DLL) in the
UTRegister() call. The address is translated for you. Another alternative
is the translation list passed to the callable stubs. Addresses passed in
the translation list will be translated during the thunking process. For
more information on the Universal Thunk, please see the "Win32 Programmer's
Reference."

NOTE: The ability to share global memory handles under Win32s is a result
of the implementation of Windows 3.1, in which all applications run in the
same address space. This is not true of existing Win32 platforms and will
not be true of future Win32 platforms.

Allocating memory with GlobalAlloc() gets you tiled selectors. However, you
can only tile 255 selectors at a time and there is an overall limit of 8192
selectors in the system. If you allocate memory using new, malloc(),
HeapAlloc(), LocalAlloc() or VirtualAlloc, your allocated memory does not
automatically get you tiled selectors. However, because you don't

automatically get tiled selectors, whenever you pass memory to 16-bit code,
selectors must be synthesized for you. There's currently a limit of 256
selectors that Win32s maintains for select synthesis. Also note that each
block of memory that you pass is limited to 32K in size due to the way that
Win32s tiles selectors.

Additional reference words: 1.00 1.10 1.20
KBCategory: kbprg
KBSubcategory: W32s

Sharing Objects with a Service
PSS ID Number: Q106387

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

To share objects (file mapping, synchronization, and so forth) created
by a service, you must place a null DACL (discretionary access-control
list) in the security descriptor field when the object is created.
This grants everyone access to the object.

MORE INFORMATION
================

This null DACL is not the same as a NULL, which is used to specify the
default security descriptor. For example, the following code can be used to
create a mutex with a null DACL:

 PSECURITY_DESCRIPTOR pSD;
 SECURITY_ATTRIBUTES sa;

 pSD = (PSECURITY_DESCRIPTOR) LocalAlloc(LPTR,
 SECURITY_DESCRIPTOR_MIN_LENGTH);

 if (pSD == NULL)
 {
 Error(...);
 }

 if (!InitializeSecurityDescriptor(pSD, SECURITY_DESCRIPTOR_REVISION))
 {
 Error(...);
 }

 // Add a NULL DACL to the security descriptor..

 if (!SetSecurityDescriptorDacl(pSD, TRUE, (PACL) NULL, FALSE))
 {
 Error(...);
 }

 sa.nLength = sizeof(sa);
 sa.lpSecurityDescriptor = pSD;
 sa.bInheritHandle = TRUE;

 mutex = CreateMutex(&sa, FALSE, "SOMENAME");

If you are creating one of these objects in an application and the object
will be shared with a service, you could also use a null DACL to grant
everyone access. As an alternative, you could add an access-control entry
(ACE) to the DACL that grants access to the user account that the service
is running under. This would restrict access to the object to the service.

For a more detailed example, please see the SERVICES sample.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

Sharing Win32 Services
PSS ID Number: Q91698

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

Win32 services are discussed in the overview for the Service Control
Manager. The documentation says that:

 A Win32 service runs in a Win32 process which it may or may not share
 with other Win32 services.

Whether or not a service has its own process is determined by which of
these service types is specified in the call to CreateService() to add the
service to the Service Control Manager Database.

SERVICE_WIN32_OWN_PROCESS

 This service type indicates that only one service can run in the
 process. This allows an application to spawn multiple copies of a
 service under different names, each of which gets its own process. This
 is the most common type of service.

SERVICE_WIN32_SHARE_PROCESS

 This service type indicates that more than one service can be run in a
 single process. When the second service is started, it is started as a
 thread in the existing process. A new process is not created. An example
 of this is the LAN Manage Workstation and the LAN Manager Server. Note
 that the service must be started in the system account, which is
 .\System. The name must be NULL.

The service type for each service is stored in the registry. The values are
as follows:

 SERVICE_WIN32_OWN_PROCESS 0x10
 SERVICE_WIN32_SHARE_PROCESS 0x20.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseService

Showing the Beginning of an Edit Control after EM_SETSEL
PSS ID Number: Q64758

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In a single-line edit control created with the ES_AUTOHSCROLL style,
when the EM_SETSEL message is used to select the entire contents of
the control, the text in the control is scrolled to the left and the
caret is placed at the end of the text. This occurs when the control
contains more text than can be displayed at one time. The order of the
starting and ending positions specified in the lParam of the EM_SETSEL
message makes no difference.

If your application needs to have the entire contents selected and the
beginning of the string in view, create the edit control using the
ES_MULTILINE style. The order of the starting and ending positions in
the EM_SETSEL message is respected by multiline edit controls.

MORE INFORMATION
================

Consider the following example, which sets and then selects the text
in a single-line edit control created with the ES_AUTOHSCROLL style:

 //hEdit and szText defined elsewhere
 SetWindowText(hEdit, szText);
 SendMessage(hEdit, EM_SETSEL, 0, MAKELONG(0x7FFF, 0));

According to the documentation for the EM_SETSEL message, the
low-order word of lParam specifies the starting position of the
selection and the high-order word specifies the ending position.
However, a single-line edit control ignores this ordering and always
selects the text from the lower position to the higher position.

If the content of the edit control is longer than the control can
display, the text is scrolled to the end of the selection, and the
caret is positioned there. In some situations, it is necessary to show
the beginning of the text after the selection is made with EM_SETSEL.
In Windows 3.00, there is no documented method to accomplish this
positioning using a single-line edit control.

A multiline edit control, sized to display only one line and created
without the ES_AUTOVSCROLL style, will appear to the user as a

single-line control. However, this control will respect the order of
the start and end positions in the EM_SETSEL message.

In the sample code above, a multiline edit control will select the
text from the specified starting position to the specified ending
position, regardless of which position is higher. In this example, the
text is scrolled to the beginning and the caret is placed there. The
beginning of the selected text is visible in the control.

NOTE: A multiline edit control uses up slightly more memory in the
USER heap than a single-line edit control.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrCtl

Simulating CreatePatternBrush() on a High-Res Printer
PSS ID Number: Q74793

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

When a pattern brush is used to fill an area of the page on the printer,
the printer's high resolution will cause a fine pattern to lose definition
and appear as a shade of gray.

Brushes that are created with the CreatePatternBrush() function are 8
pixels by 8 pixels (8 x 8 pixels) in size. On a 300 dots-per-inch (dpi)
laser printer, the pattern will be 0.027 inches wide.

To create a pattern that gives similar effects on the screen as on the
printer, it is necessary to compare the screen resolution to the printer
resolution, and to compensate for the differences.

For example, if the video display is 100 dpi (typical of a VGA), and the
printer is 300 dpi (a typical laser printer), the bit must be three times
larger in each direction. The following compares a screen bitmap and a
printer bitmap:

 10101010 111000111000111000111000
 01010101 111000111000111000111000
 10101010 111000111000111000111000
 01010101 000111000111000111000111
 10101010 000111000111000111000111 and so forth
 01010101 000111000111000111000111
 10101010 111000111000111000111000
 01010101 111000111000111000111000
 111000111000111000111000
 Video 000111000111000111000111
 000111000111000111000111
 000111000111000111000111
 111000111000111000111000
 111000111000111000111000
 111000111000111000111000
 000111000111000111000111
 000111000111000111000111
 000111000111000111000111
 111000111000111000111000
 111000111000111000111000
 111000111000111000111000

 Printer

However, since the pattern brush is always 8 x 8 pixels, a different
approach must be used when printing:

1. Use the StretchBlt() function to create, from the video bitmap, the
 24 x 24 pixel bitmap for the printer.

2. Manually "tile" this bitmap into the region to be painted.

Additional reference words: 3.00 3.10 4.00 95
KBCategory: kbprint
KBSubcategory: GdiPrn

Size Comparison of 32-Bit and 16-Bit x86 Applications
PSS ID Number: Q97765
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0
--

It is expected that a 32-bit version of an x86 application (console or GUI)
will be larger than the 16-bit version. Much of this difference is due to
the flat memory-model addressing of Windows NT. For each instruction, note
that the opcodes have not changed in size, but the addresses have been
widened to 32 bits.

In addition, the EXE format under Windows NT (the PE format) is optimized
for paging; EXEs are demand-loaded and totally mappable. This leads to some
internal fragmentation because protection boundaries must fall on sector
boundaries within the EXE file.

The MIPS (or any RISC) version of a Win32-based application typically will
be larger and require more memory than its x86 counterpart.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsMisc

SizeofResource() Rounds to Alignment Size
PSS ID Number: Q57808

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SizeofResource() returns the resource size rounded up to the alignment
size. Therefore, if you have your own resource types, you cannot use
SizeofResource() to get the actual resource byte count.

It has been suggested that this be changed to reflect the actual
number of bytes in the resource so that applications can use
SizeofResource() to determine the size of each resource. This
suggestion is under review and will be considered for inclusion in a
future release of the Windows Software Development Kit (SDK).

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrRsc

Small Font Substitution Not Done in Windows NT or Windows 95
PSS ID Number: Q139004

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API)
 included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In Windows versions 3.1 and 3.11, the operating system substituted raster
fonts for TrueType fonts when the requested font size fell below
approximately 8 points. Typically, the "Small Fonts" raster font would be
the substituted font. This font was designed to replace TrueType fonts at
very small point sizes because it was more readable and faster to display
than most TrueType fonts were at the same sizes.

MORE INFORMATION
================

Windows 95 and Windows NT no longer do raster font substitution at small
point sizes. This is because TrueType fonts that are requested at very
small point sizes are now reliably realized without using raster font
substitution.

Some 16-bit Windows-based applications depend on the exact extent of
strings output with a given font. These applications may not be aware of
the fact that fonts realized at small point sizes were automatically
substituted with the "Small Fonts" raster font. As a result, these
applications may have trouble displaying their output exactly as intended
when running under Windows 95 or Windows NT.

Additional reference words: 4.00 smallfont outlinethreshold
KBCategory: kbgraphic kbdisplay
KBSubcategory: GdiFnt GdiTt

SNMP Agent Breaks Up Variable Bindings List
PSS ID Number: Q127870
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0
--

When the SNMP agent receives a request for mutiple variables in a single
packet, then for each entry in the variable bindings list, the agent
queries the required sub-agent (in this case the .DLL acting as the agent)
and packs up the results in a response variable bindings list and returns
it in a single packet.

For example, say the varibles requested are:

 ip.ipInReceives (Internet MIB II)
 tcp.tcpMaxConn (Internet MIB II)

 .iso.org.dod.internet.private.enterprises.lanmanager.lanmgr-2.common.
 comVersionMaj (LanManager MIB II)

 icmp.icmpOutErrors (Internet MIB II)

In this case, the agent queries the INETMIB2.DLL file twice, the LMMIB2.DLL
once, and the INETMIB2.DLL once. Then it packs the results in a response
packet and sends it to the requesting manager. There is no "snapshot" of
the MIB.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbnetwork
KBSubcategory: NtwkSnmp

Sockets Applications on Microsoft Windows Platforms
PSS ID Number: Q124876
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 SDK, versions 3.1, 3.5, 3.51, and 4.0
 - Microsoft Win32s version 1.2
--

SUMMARY
=======

This article documents the resources necessary to do Winsock development on
the different Microsoft Windows platforms. The key components necessary for
Winsock programming are:

 - TCP/IP networking support
 - A Windows Sockets include file
 - A Windows Wockets import library
 - The Windows Sockets Architecture specification.

NOTE: Some implementations of Windows Sockets may support additional
protocols, and TCP/IP will not be strictly necessary. See the documentation
from your vendor for more information.

MORE INFORMATION
================

Where you get the necessary components for Winsock programming depends on
what platform you are using.

Microsoft Windows NT Versions 3.1 and 3.5 and Windows 95
--

Header filename: WINSOCK.H
Import library name: WSOCK32.LIB

If you are using Microsoft Windows NT version 3.1 or 3.5, the TCP/IP
protocol is provided as a component of the operating system. Please see
your operating system documentation for more information about installing
TCP/IP support for Microsoft Windows NT.

The Winsock header file, import library, and specification are all supplied
as part of the Win32 SDK. If you do not have the Win32 SDK, it can be
purchased as part of the Microsoft Developer Network Level 2 subscription.

The header file and import library are also supplied with the 32-bit
editions of Visual C++. Visual C++ does not include the Windows Sockets
specification.

Microsoft Windows for Workgroups Version 3.11

Header filename: WINSOCK.H
Import library name: WINSOCK.LIB

Windows for Workgroups does not include support for the TCP/IP protocol.
However, Microsoft does provide a TCP/IP protocol for Windows for
Workgroups free of charge. To learn how to obtain the TCP/IP package for
Windows for Workgroups, please see the following article in the
Microsoft Knowledge Base:

 ARTICLE-ID: Q111682
 TITLE : WFWG 3.11: How to Obtain Microsoft DLC and Microsoft TCP/IP

The Winsock include file, import library, and specification are available
from the Microsoft Software library. Download WSA16.EXE, a self-extracting
file, from the Microsoft Library (MSL) on the following services:

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download WSA16.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the /softlib/mslfiles directory
 get WSA16.EXE

The header file and library for Winsock programming are not included with
Visual C++ for Windows.

Microsoft Windows Versions 3.0, 3.1, and 3.11

Header filename: Probably WINSOCK.H (determined by vendor)
Import library name: Probably WINSOCK.LIB (determined by vendor)

TCP/IP support on these versions of Microsoft Windows will have to come
from the underlying network. Your network vendor can tell you what TCP/IP
support is available.

Depending on your network and the TCP/IP implementation, you may also need
to get the Winsock header and library files from your vendor. However,
while not guaranteed, the files supplied in WSA16.EXE (see above) may work
on your implementation.

Microsoft Win32s Version 1.2

Header filename: WINSOCK.H
Import library name: WSOCK32.LIB

A Winsock application running on Win32s will use the networking support of
the underlying system. See the appropriate section above for information
about TCP/IP support on the host platform.

The header file, import library, and specification will be part of the

Win32 SDK from which the Win32s application was created. See the section on
Windows NT above for more information.

Additional reference words: 3.10 3.50 4.00 1.20 tcpip
KBCategory: kbnetwork kbfile kbnetwork
KBSubcategory: NtwkWinsock W32s

Some Basic Concepts of a Message-Passing Architecture
PSS ID Number: Q74476

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The following is excerpted from an article in the April 1991 issue of
Software Design (Japan).

MORE INFORMATION
================

Asynchronous message-passing means that Windows will send an application
messages to act on and that these messages may come in any order. At
present, all messages are sent to specific windows. Every window has a
function that Windows calls to send that window a message. This function
processes the message and returns to Windows. When the function returns to
Windows, Windows may then send messages to other windows in the same
program, other programs, or to the same window again.

Because most of these messages are generated by user actions (picking an
item in a menu, moving a window, and so forth), the specific messages a
window receives will differ each time the program is run. This is what
makes the messages asynchronous.

This message passing is what makes Windows programming difficult for many
programmers. The programmer is no longer writing a program in which he or
she controls the flow from beginning to end. Rather, a Windows program is
written as a large number of objects, each one designed to handle a
specific message from Windows.

Understanding message passing is critical and because it leads to so much
confusion, the concept will be explained in greater detail in this article.
If message passing is understood, the remainder of Windows can be learned
fairly easily. However, it is very unlikely that a Windows program or other
graphical user interface (GUI) program can be successfully developed
without a thorough understanding of message passing.

In a message-passing system, the focus changes from being proactive (the
programmer controls the program flow) to being reactive (Windows controls
the program flow). [Or as it has been put by some Macintosh programmers,
"Don't call us, we'll call you."] For example, consider the situation where
a user chooses an action from a menu in a program. In a proactive program,
the program reads the keyboard, determines that the key(s) pressed are

meant to run the action, and calls the function that performs that action.
In a reactive system, the program is sent a message indicating that the
user chose that item from a menu. When the program receives the message, it
calls the function that performs the action. When this function is done,
control returns to the system. Although the reactive approach is
substantially different from the proactive approach, it is also simpler.

In Windows, every window (including dialog boxes) has a "response function"
registered to it. When Windows sends a message to a window, it calls the
response function for that window and passes it the message. All messages
from Windows are passed to window response functions; there is no other way
for Windows to send a message to a program. Therefore, all messages are for
a specific window or group of windows.

However, there are four considerations involved with this method:

1. Messages are sent in two distinct ways. The first method consists
 of messages that are posted to a first-in, first-out queue
 (PostMessage). The second method consists of messages that are sent
 (SendMessage). Posted messages, aside from PAINT messages, are
 serialized, meaning that messages cannot be posted anywhere except
 to the end of the queue, and the application is sent messages only
 from the beginning of the queue. Posted PAINT messages are an
 exception. They are added together and sent only when there is
 nothing else in the queue. This is done to reduce the number of
 times a window has to paint itself.

 Messages that are sent are passed to the application immediately,
 and the send function does not return until the message is
 processed. However, when a message is posted, an indeterminate
 number of messages and amount of time will pass before the message
 is actually sent to a window and acted on. Also, when a message is
 sent, an message posted earlier may not yet have been acted on.

2. Sending messages or calling functions (which may, as part of their
 actions, also send messages), can lead to additional messages being
 generated. The most dangerous situation is where the action for a
 message generates the same message again. If, while processing a
 message, an application sends the same message to itself, the
 application will run out of stack space quite quickly. If an
 application POSTS the same message to itself, the application will
 not run out of stack but it will generate an unending stream of
 messages.

3. If, while processing a message, an application calls a function
 that sends a message, the application will process the second
 message in the middle of processing the first message. Therefore,
 each window response function MUST be fully re-entrant. It is even
 possible for a function to be re-entered to process the same
 message as the message currently being processed. For this reason,
 using global or static variables in a response function is very
 dangerous.

 Also, if the application uses properties, scratch files and/or
 other data storage mechanisms, extreme caution is required.

 Consider the situation where one message reads in data from a file,
 then a second message reads in the same data, makes changes to that
 data, and writes it back to the file. If the first message makes
 additional changes to the data and writes its new data back to the
 file, the changes caused by the second message are completely lost.
 With files, each application must implement its own sharing
 mechanism. For properties, allocated memory and other memory
 storage, there is a simple solution: lock the item and use the
 pointer returned. Because only one lock is allowed, this prevents
 contention. Never copy the data into a scratch buffer to copy back
 later.

4. Because messages come in due to user interaction, the application
 cannot be written to assume that when a particular message is
 received that another message has already been processed and
 performed its functions. While, for a given action, a specific
 sequence of messages may occur, in the interest of remaining
 completely compatible with potential changes in future versions of
 Windows, it is recommended that no message ordering dependencies be
 introduced unless absolutely necessary. The best example of this is
 that the first message a window gets when it is being created is
 not WM_CREATE, rather it is WM_GETMINMAXINFO. When one message must
 logically follow a second (such as WM_CREATE always preceding
 WM_DESTROY), then it is fine to depend on the specific ordering of
 those two messages.

The asynchronous, reactive nature of Windows programming can cause
confusion. Because the program has no control over the order that
messages arrive, the response to ANY specific message CANNOT depend on
other messages having been processed or NOT been processed.

To confuse matters even further, an application may be in the middle
of processing one message when it calls a Windows function that sends
the application another message. When processing this second message,
some dependent processing may be only half finished. If an application
will check and only do some processing if another message has not
already performed it, the application must be prepared for the case
where another message has begun the processing, but has not completed
it.

Further, when an application sets up a modal dialog box, the
DialogBox() function will not return until after the dialog box is
dismissed and processing completed. Therefore, after calling the
dialog box function, all combinations of user-generated messages may
be received before the function returns.

NOTE: 16-bit Windows is non-preemptively multitasks its Windows tasks.
Therefore, an application generally does not need to be designed to process
a user-originated message in the middle of processing another message.
However, when an application calls a Windows function, the application may
then get a set of specific messages sent to it by Windows before the called
function returns.

32-bit Windows 95 and Windows NT are preemptive multitasking systems. Each
thread has its own input queue. It is a good idea to create a separate

thread of execution for the user interface so that it is responsive to user
input.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbui
KBSubcategory: UsrMsg

Some CTRL Accelerator Keys Conflict with Edit Controls
PSS ID Number: Q67293

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Some keys produce the same ASCII values as CTRL+key combinations.
These keys conflict with edit controls if one of the CTRL+key
combinations is used as a keyboard accelerator.

The following table lists some of the conflicting keys.

 ASCII Value Key Combination Equivalent Windows Virtual Key
 ----------- --------------- ---------- -------------------
 0x08 CTRL+H BACKSPACE VK_BACK
 0x09 CTRL+I TAB VK_TAB
 0x0D CTRL+M RETURN VK_RETURN

For example, consider the following scenario:

1. CTRL+H has been assigned as an accelerator keystroke to invoke Help

2. An edit control has the focus

3. BACKSPACE is pressed to erase the previous character in the edit
 control

This results in Help being invoked because pressing BACKSPACE is
equivalent to pressing CTRL+H. The edit control does not receive the
BACKSPACE key press that it requires because TranslateAccelerator()
encounters the 0x08 ASCII value and invokes the action assigned to
that accelerator. This limitation is caused by the use of the ASCII
key code for accelerators instead of the system-dependent virtual key
code.

MORE INFORMATION
================

When messages for the edit control are processed in a message loop
that translates accelerators, this translation conflict will occur.
Child windows and modeless dialog boxes are the most common situations
where this happens.

The affected keystrokes are translated during the processing of the
WM_KEYDOWN message for the letter. For example, when the user types
CTRL+H, a WM_KEYDOWN is processed for the CTRL key, then another
WM_KEYDOWN is processed for the letter "H". In response to this
message, TranslateAccelerator() posts a WM_COMMAND message to the
owner of the CTRL+H accelerator. Similarly, when the user presses the
BACKSPACE key, a WM_KEYDOWN is generated with VK_BACK as the key code.
Because the ASCII value of BACKSPACE is the same as that for CTRL+H,
TranslateAccelerator() treats them as the same character. Either
sequence will cause a WM_COMMAND message to be sent to the owner of
the CTRL+H accelerator, which deprives the child window with the input
focus of the BACKSPACE key message.

Because this conflict is inherent to ASCII, the safest way to avoid
the difficulty is to avoid using the conflicting sequences as
accelerators. Any other ways around the problem may be version
dependent rather than a permanent fix.

A second way around the situation is to subclass each edit control
that is affected. In the subclass procedure, watch for the desired key
sequence(s). The following code sample demonstrates this procedure:

/* This code subclasses a child window edit control to allow it to
 * process the RETURN and BACKSPACE keys without interfering with the
 * parent window's reception of WM_COMMAND messages for its CTRL+H
 * and CTRL+M accelerator keys.
 */

/* forward declaration */
long FAR PASCAL NewEditProc(HWND, unsigned, WORD, LONG);

/* required global variables */
FARPROC lpfnOldEditProc;
HWND hWndOwner;

/* edit control creation in MainWndProc */

TEXTMETRIC tm;
HDC hDC;
HWND hWndEdit;
FARPROC lpProcEdit;

...

 case WM_CREATE:

 hDC = GetDC(hWnd);
 GetTextMetrics(hDC, &tm);
 ReleaseDC(hWnd, hDC);

 hWndEdit = CreateWindow("Edit", NULL,
 WS_CHILD | WS_VISIBLE | ES_LEFT | WS_BORDER,
 50, 50, 50 * tm.tmAveCharWidth, 1.5 * tm.tmHeight,
 hWnd, 1, hInst, NULL);

 lpfnOldEditProc = (FARPROC) GetWindowLong (hWndEdit, GWL_WNDPROC);
 lpProcEdit = MakeProcInstance ((FARPROC) NewEditProc, hInst);
 SetWindowLong(hWndEdit, GWL_WNDPROC, (LONG) lpProcEdit);
 break;

...

/* subclass procedure */

long FAR PASCAL NewEditProc(HWND hWndEditCtrl, unsigned iMessage,
 WORD wParam, LONG lParam)
{
 MSG msg;

 switch (iMessage)
 {
 case WM_KEYDOWN:
 switch (wParam)
 {
 case VK_BACK:
 // This assumes that the next message in the queue will be a
 // WM_COMMAND for the window which owns the accelerators. If
 // this edit control were in a modeless dialog box, hWndOwner
 // should be set to NULL. It may also be NULL in this case.
 PeekMessage(&msg, hWndOwner, 0, 0, PM_REMOVE);

 // Since TranslateAccelerator() processed this message as an
 // accelerator, a WM_CHAR message must be supplied manually to
 // the edit control.
 SendMessage(hWndEditCtrl, WM_CHAR, wParam, MAKELONG(1, 14));
 return 0L;

 case VK_RETURN:
 // Same procedures here.
 PeekMessage(&msg, hWndOwner, 0, 0, PM_REMOVE);
 SendMessage(hWndEditCtrl, WM_CHAR, wParam, MAKELONG(1, 28));
 return 0L;
 }
 break;
 }
 return CallWindowProc(lpfnOldEditProc, hWndEditCtrl, iMessage,
 wParam, lParam);
}

NOTE: Be sure to export the subclass function in the DEF file.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui kbcode
KBSubcategory: UsrCtl

Some Subsystems Persevere Through Logons
PSS ID Number: Q94995
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5
--

Subsystems such as the Local Security Authority (LSA), the spooler, the
Win32 server, and the OS/2 subsystem do not terminate when the user logs
off, and then restart at next logon.

Windows on Win32 (WOW) is not a true subsystem; rather, it is a user-mode
program. When you run an MS-DOS program, the console you run it from has a
virtual DOS machine (VDM) attached to it until the console exits (which it
is forced to do at logoff). When you run the first Win16 program, the WOW
VDM is started and continues to run until the user logs off.

Additional reference words: 3.10 and 3.50
KBCategory: kbprg
KBSubcategory: Subsys

Source-level Debugging Under NTSD
PSS ID Number: Q99053
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5
--

The following are the steps used for source-level debugging under NTSD:

1. Compile using -Zi and -Od.

2. Link using debug:full and debugtype:coff.

3. Load the program into the debugger.

4. Use s+ to change to source mode.

 -or-

 Use s& to change to mixed mode.

For a console application, type "g main" to get to the program start. For a
GUI application, type "g WinMain" to get to the program start.

Type "v .<number>" to list source lines starting at <number>. For example,
type the following

 v .20

to see all lines starting at line 20.

Additional reference words: 3.10 3.50
KBCategory: kbtool
KBSubcategory: TlsMisc

Specifying Filenames Under the POSIX Subsystem
PSS ID Number: Q99361
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5
--

When specifying filenames under POSIX, use the format

 //C/subdir/executable.exe

to specify C:\SUBDIR\EXECUTABLE.EXE. If you fail to use this format, you
will receive ENAMETOOLONG as the errno.

NOTE: The filenames are case-sensitive.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: Subsys

Specifying Serial Ports Larger than COM9
PSS ID Number: Q115831

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

CreateFile() can be used to get a handle to a serial port. The "Win32
Programmer's Reference" entry for "CreateFile()" mentions that the share
mode must be 0, the create parameter must be OPEN_EXISTING, and the
template must be NULL.

CreateFile() is successful when you use "COM1" through "COM9" for the name
of the file; however, the message "INVALID_HANDLE_VALUE" is returned if you
use "COM10" or greater.

If the name of the port is \\.\COM10, the correct way to specify the serial
port in a call to CreateFile() is as follows:

 CreateFile(
 "\\\\.\\COM10", // address of name of the communications device
 fdwAccess, // access (read-write) mode
 0, // share mode
 NULL, // address of security descriptor
 OPEN_EXISTING, // how to create
 0, // file attributes
 NULL // handle of file with attributes to copy
);

NOTES: This syntax also works for ports COM1 through COM9. Certain boards
will let you choose the port names yourself. This syntax works for those
names as well.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseCommapi

Specifying Time to Display and Remove a Dialog Box
PSS ID Number: Q74888

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

It is possible to modify the timing of the display of a dialog box.
For example, an application has its copyright message in a dialog box
that does not have any push buttons. This dialog box is designed to be
displayed for five seconds and then to disappear. This article
discusses a method to implement this functionality.

MORE INFORMATION
================

Windows draws the dialog box on the screen during the processing of a
WM_PAINT message. Because all other messages (except for WM_TIMER
messages) are processed before WM_PAINT messages, there may be some
delay before the dialog box is painted. This delay may be avoided by
placing the following code in the processing of the WM_INITDIALOG message:

 ShowWindow(hDlg);
 UpdateWindow(hDlg);

This code causes Windows to send a WM_PAINT message to the dialog box,
bypassing the other messages that may be in the application's queue.

To keep the dialog box on the screen for a particular period of time,
a timer should be created during the processing of the WM_INITDIALOG
message. When the WM_TIMER message is received, call EndDialog() to
close the dialog box.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrDlgs

Specifying Windows "Bounding Box" Coordinates
PSS ID Number: Q27585

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

GDI functions, such as Rectangle, Ellipse, RoundRect, Chord, and Pie, have
parameters that specify the coordinates of a "bounding box" into which the
figure is drawn. Windows draws the figure up to, but not including, the
right and bottom coordinates.

MORE INFORMATION
================

Suppose the following call is made:

 Rectangle(hDC, 1, 1, 5, 3)

Assuming that the device context is using the MM_TEXT mapping mode (in
which case logical units map directly to physical pixels), the
resulting rectangle will be 4 pixels wide and 2 pixels tall. The
following diagram shows which pixels are affected:

 ---0-----1-----2-----3-----4-----5-----6-
 | | | | | | |
 0 | | | | | |
 |-----|-----|-----|-----|-----|-----|----
 | | | | | | |
 1 | X | X | X | X | |
 |-----|-----|-----|-----|-----|-----|----
 | | | | | | |
 2 | X | X | X | X | |
 |-----|-----|-----|-----|-----|-----|----
 | | | | | | |
 3 | | | | | |
 |-----|-----|-----|-----|-----|-----|----
 | | | | | | |
 4 | | | | | |

It may be helpful to think of the display as a grid, with each pixel
contained in a grid cell. The X1, Y1, X2, and Y2 parameters to the

Rectangle function specify an imaginary "bounding box" drawn on the
grid. The rectangle is drawn within the bounding box.

The height, width, and area of the resulting rectangle have the
following useful properties:

 Height = X2 - X1
 Width = Y2 - Y1
 Area = Height * Width

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbgraphic
KBSubcategory: GdiDrw

Starting and Terminating Windows-Based Applications
PSS ID Number: Q105676
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5
--

A 16-bit Windows-based application running under Windows NT version 3.1 is
running as a thread in a single virtual MS-DOS machine (VDM). These threads
are nonpreemptively scheduled. A 16-bit Windows-based application shares an
address space and an input queue with other 16-bit Windows-based
applications. Objects created by a thread (application) are owned by the
thread (application). This environment is called WOW (Windows on Win32).

Windows NT version 3.5 introduces support for multiple WOWs, so each 16-bit
Windows-based application can be run in its own address space. For
additional information, please see the following article in the Microsoft
Knowledge Base:

 ARTICLE-ID: Q115235
 TITLE : Running a Windows-Based Application in its Own VDM

When a 16-bit Windows-based application is started by using
CreateProcess(), the process handle and the thread handle contained in the
PROCESS_INFORMATION structure are pseudo-handles. The only application
programming interfaces (APIs) that can use the process handle are
WaitForSingleObject(), WaitForMultipleObjects(), and WaitForInputIdle().

NOTE: When you call CreateProcess() with CREATE_SEPARATE_WOW_VDM, the
handles returned in the hProcess and hThread fields of the
PROCESS_INFORMATION structure are valid handles. The hProcess handle is the
handle to the new WOW process, but the hThread handle is the handle to the
WOWEXEC thread, and not the thread of the application that you spawned. You
can wait on either of these handles and you will be released when the
Windows-based application terminates, because the separate VDM goes away
when the last application in it terminates. Be aware that if your Windows-
based application spawns another Windows-based application and terminates,
the VDM stays around, because the application is run in the same VDM as the
application that spawned it.

A common question is "How can I terminate a 16-bit process from a 32-bit
process?" However, as implied above, PROCESS_INFORMATION.hProcess cannot be
used in TerminateProcess() and PROCESS_INFORMATION.dwThreadId cannot be
used in PostThreadMessage().

One way to terminate an individual 16-bit Windows-based application is to
enumerate the desktop windows using EnumWindows(), determine which is the
correct window, obtain the thread ID with GetWindowThreadProcessId(), and
post a WM_QUIT message via PostThreadMessage() to terminate the
application.

Another way to terminate an individual 16-bit Windows-based application is

to use the TOOLHELP APIs. Use TaskFirst() and TaskNext() to enumerate the
tasks, determine which is the correct task, and call TerminateApp() to kill
the application. The Windows SDK sample THSAMPLE demonstrates how this can
be done.

Additional reference words: 3.10 3.50 win16
KBCategory: kbprg
KBSubcategory: SubSys

StartPage/EndPage Resets Printer DC Attributes in Windows 95
PSS ID Number: Q125696

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

When you print under Windows version 3.x, the printer device context
attributes, including things like mapping modes, current pen, current
brush, and so on, are reset to their defaults for the device when the end
of a page is reached. The escapes NEWFRAME and NEXTBAND and the API EndPage
all cause the printer device context to be reset.

When you print under Windows NT version 3.x, the printer device context
attributes are not reset during a print job.

When you print under Windows 95, the point at which the printer device
context is reset to the default attributes depends on what version the
executable was marked as. For executables marked as 3.x, the printer
device context will be reset when EndPage is called. For executables
marked as 4.0, the printer device context will be reset when StartPage
is called. This applies to both 16-bit-based and Win32-based executables
running under Windows 95.

A 16-bit-based executable's version can be set by using the Resource
compiler's /xx switch where xx is 30, 31, or 40. A Win32-based executable's
version can be set by using the /SUBSYSTEM:windows,x.x linker switch.

Additional reference words: 4.00
KBCategory: kbprint
KBSubcategory: GdiPrn

Stroke Fonts Marked as OEM Character Set Are ANSI
PSS ID Number: Q72020

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

There are three stroke (or vector) fonts packaged with Windows versions 3.0
and 3.1 and Windows NT: Roman, Script, and Modern. These fonts are marked
as belonging to the OEM character set when, in fact, they belong to the
ANSI character set. NOTE: Windows 95 provides only the Modern vector font.
The Roman and Script fonts are included in the True Type fonts shipped with
the system.

The OEM character set is the character set used by the hardware device on
which Windows is running (for example, the IBM PC). The IBM PC OEM
character set and ANSI character set are listed in "Microsoft Windows
Software Development Kit Reference Volume 2" for the Windows SDK version
3.0 and in "Programmer's Reference, Volume 3: Messages, Structures, and
Macros" for the Windows SDK version 3.1.

The fonts were marked in this manner for two reasons. First, in previous
versions of Windows, the stroke fonts did include non-ANSI characters.
Second, mismarking the character set ensures proper font mapping. The
character-set attribute of a font is assigned a very high penalty weight in
the font mapping scheme. If stroke fonts were not marked as using the OEM
character set, a stroke font might be chosen by the font mapper [during a
SelectObject() call] instead of a raster font when a requested raster font
size is not available. This behavior occurs because most raster fonts
belong to the ANSI character set, character size has much lower penalty
weight than character set, and stroke fonts can be scaled to any desired
size. Some raster fonts can be scaled; however, they can be scaled only to
specific sizes.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbgraphic
KBSubcategory: GdiFnt

Support for Sleep() on Win32s
PSS ID Number: Q100713
--
The information in this article applies to:

 - Microsoft Win32s versions 1.0, 1.1, and 1.2
--

The Win32 application programming interface (API) documentation indicates
that Sleep() is supported on Win32s. It is important to note, however, that
the behavior of Sleep() on Win32s is not the same as it is under Windows
NT.

Under Win32s, Sleep() calls Yield(). The Windows version 3.1 Yield()
function yields only if the message queue is empty; therefore, Sleep()
cannot be relied on to do anything. Use a PeekMessage() loop to do idle
time processing.

Additional reference words: 1.00 1.10 1.20
KBCategory: kbprg
KBSubcategory: W32s

Switching Between Single and Multiple List Boxes
PSS ID Number: Q57959

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

After creating a list box with the CreateWindow() API, changing the
list box from a single selection to a multiple selection can be
accomplished in the following way:

Create two hidden list boxes in the .RC file, and during the
WM_INITDIALOG routine, display one of the boxes. Change between the
two by making one hidden and the other one visible using the
ShowWindow function.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbui
KBSubcategory: UsrCtl

Symbolic Information for System DLLs
PSS ID Number: Q103862

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51

SUMMARY
=======

The debugging information for the system dynamic-link libraries (DLLs)
is contained separately in files with a .DBG extension. The Win32 SDK
setup, SETUPSDK, will install the following .DBG files by default in
<SYSTEMROOT>\SYMBOLS\DLL:

 ADVAPI32.DBG OLECLI32.DBG
 COMDLG32.DBG OLESVR32.DBG
 CRTDLL.DBG RASAPI32.DBG
 DLCAPI.DBG RPCNS4.DBG
 GDI32.DBG RPCRT4.DBG
 INETMIB1.DBG SHELL32.DBG
 KERNEL32.DBG USER32.DBG
 LMMIB2.DBG VDMDBG.DBG
 LZ32.DBG VERSION.DBG
 MGMTAPI.DBG WIN32SPL.DBG
 MPR.DBG WINMM.DBG
 NDDEAPI.DBG WINSTRM.DBG
 NETAPI32.DBG WSOCK32.DBG
 NTDLL.DBG

For Windows NT version 3.5, the additional .DBG files are:

 GLU32.DBG
 MSACM32.DBG
 OLEAUT32.DBG
 OPENGL32.DBG

For Windows NT versions 3.51, the additional .DBG files are:

 COMCTL32.DBG
 DHCPMIB.DBG
 OLE32.DBG
 OLEDLG.DBG
 RICHED32.DBG
 WINSMIB.DBG

Note that these files are not installed by the alternative Win32 SDK
install method, MANUAL.BAT. Therefore, WinDbg will warn that symbol
information cannot be found for each of the system DLLs called by the
debuggee.

These .DBG files can be manually installed by copying them from the
SDK CD. For x86, they are located in \SUPPORT\DEBUG\I386\SYMBOLS\DLL.
For MIPS, they are located in \SUPPORT\DEBUG\MIPS\SYMBOLS\DLL. Note
that there are more than 200 .DBG files in each of these directories.

MORE INFORMATION
================

In Windows NT 3.1, there are also debugging versions of the system DLLs
that can be installed by using SWITCH.BAT, which is located on the CD in
\SUPPORT\DEBUGDLL. Refer to page 11 of the "Getting Started" manual
and the batch file itself for more information.

Additional reference words: 3.10 3.50
KBCategory: kbsetup
KBSubcategory: Setins

System Versus User Locale Identifiers
PSS ID Number: Q100488

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

In Windows NT version 3.1, the following pairs of application programming
interfaces (APIs) have the same functionality:

 GetSystemDefaultLCID() and GetUserDefaultLCID()
 GetSystemDefaultLangID() and GetUserDefaultLangID()

The user LangID and LCID are always set to the system value. In future
versions of Windows NT, it will be possible to set the LangID and the LCID
on a per-user basis.

Note that it is possible to set the LCID on a per-thread basis [that is,
SetThreadLocale()] in Windows NT 3.1.

Additional reference words: 3.10 3.50
KBCategory: kbui
KBSubcategory: UsrLoc WintlDev

SystemParametersInfo() Add-On Gets or Sets System Parameters
PSS ID Number: Q125695

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API)
 included with Microsoft Windows 95

The SystemParametersInfo() API provides functionality to get or set many
Windows System Parameters based on the action flag if Windows extension #1
is installed. Here are some examples:

 - The Full Window Drag system parameter can be retrieved or set by using
 SPI_GETDRAGFULLWINDOWS/SPI_SETDRAGFULLWINDOWS as the action flag in the
 SystemParametersInfo() API. When full drag windows is enabled, users can
 move entire windows instead of just moving the outline. This makes it
 easier to see how a window looks while being resized. This feature is
 not available with Windows, so calling SystemParametersInfo using the
 SPI_GETDRAGFULLWINDOWS or SPI_SETDRAGFULLWINDOWS flag will always fail.
 However, this feature will be available if an add-on product, Windows
 extension #1, is installed.

 - The Font Smoothing setting can be retrieved or set by using
 SPI_GETFONTSMOOTHING or SPI_SETFONTSMOOTHING as the action flag
 in the SystemParametersInfo() API. Enabling this system setting tells
 Windows to draw smooth characters using font anti-aliasing. This feature
 is not available with Windows. Thus the call to SystemParametersInfo
 with the SPI_GETFONTSMOOTHING or SPI_SETFONTSMOOTHING flag will always
 fail. However, this Font Smoothing feature will be available if an
 add-on product, Windows extension #1, is installed.

 - SystemParametersInfo(SPI_GETWINDOWSEXTENSION, 1, 0, 0) returns true if
 Windows extension #1 is installed otherwise false. The Second parameter
 denotes Windows extension #1.

Additional reference words: 4.00 95
KBCategory: kbui
KBSubcategory: UsrWnd

Taking Ownership of Registry Keys
PSS ID Number: Q111546

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

To take ownership of a registry key it is necessary to have a handle to the
key. A handle to the key can be obtained by opening the key with a registry
API (application programming interface) such as RegOpenKeyEx(). If the user
does not have access to the registry key, the open operation will fail and
this will in turn prevent ownership being taken (because a handle to the
key is required to change the key’s security).

The solution to this problem is to first enable the TakeOwnership privilege
and then to open the registry key with WRITE_OWNER access as shown below:

 RegOpenKeyEx(HKEY_CLASSES_ROOT,"Testkey",0,WRITE_OWNER,&hKey);

This function call will provide a handle to the registry, which can be used
in the following call to take ownership:

 RegSetKeySecurity(hKey,OWNER_SECURITY_INFORMATION, &SecurityDescriptor);

Please note that you will need to initialize the security descriptor being
passed to RegSetKeySecurity() and set the owner field to the new owner SID.

Taking ownership of a registry key is not a common operation. It is
typically an operation that an administrator would use as a last resort to
gain access to a registry key.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

TAPI Call Handles Returned from an Asynchronous LINE_REPLY
PSS ID Number: Q132191
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.51, 4.0
 - Microsoft Windows Telephony Software Development Kit (TAPI SDK)
 version 1.0
--

Several TAPI APIs, such as lineMakeCall and lineSetupConference, take the
address of a call handle as a parameter. Upon successful completion of
these APIs, the address pointed at is filled with the new call handle.

TAPI does not, however, fill this address until the application receives
the LINE_REPLY message indicating that the API completed successfully.
Thus, not only is the handle not valid until the LINE_REPLY, but the actual
address must still be valid when LINE_REPLY is recieved. It is recommended
that stack variables not be used because they will often go out of scope
before the LINE_REPLY message is received.

For example, this code fragment is incorrect:

 func()
 {
 HCALL hCall;
 ...
 AsyncID = lineMakeCall(hLine, &hCall, lpszDestAddress, 0, NULL);
 }

Here, lineMakeCall is going to return an asynchronous ID that will
eventually have a matching LINE_REPLY message. However, by the time the
LINE_REPLY message is retrieved, hCall will not be a valid variable and
&hCall will not be a valid pointer. Expect a general protection (GP) fault
or stack corruption.

In the following code, When LINE_REPLY for lineMakeCall is received,
&g_hCall is still valid and is filled with a valid call handle:

 HCALL g_hCall;
 func()
 {
 ...
 lineMakeCall(hLine, &g_hCall, lpszDestAddress, 0, NULL);

 // g_hCall is *not* valid until LINE_REPLY is received
 }

Additional reference words: 1.00 1.30 1.40 4.00
KBCategory: kbprg
KBSubcategory: TAPI

Text Alignment in Single Line Edit Controls
PSS ID Number: Q108940

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

Text in single line edit controls cannot be centered or right-aligned
(right-justified). Text in single line edit controls is left-aligned (left-
justified) by default. This is by product design, and therefore specifying
the ES_RIGHT or ES_CENTER style while creating the single line edit control
does not have any effect on the text alignment.

Windows does not allow text to be centered or right-aligned in a single
line edit control. However, an easy way to work around this problem is to
create a multiline edit control that is the same size as a single line edit
control.

Text in a multiline edit control can be centered or right/left aligned.
Note that the multiline edit control should be created without the
WS_VSCROLL or ES_AUTOVSCROLL style.

While single line edit controls may support text alignment in a future
release of Windows, Windows 3.x applications must use multiline edit
controls to achieve the same effect.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrCtl

The Clipboard and the WM_RENDERFORMAT Message
PSS ID Number: Q31668

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

The clipboard sends a WM_RENDERFORMAT message to an application to request
that application format the data last copied to the clipboard in the
specified format, and then pass a handle to the formatted data to the
clipboard.

If an application cannot supply the requested data, it should return a NULL
handle. Because most applications provide access to the actual data (not
rendered) through the CF_TEXT format, applications that use the clipboard
can get the applicable data when rendering fails.

If the application cannot render the data because the system is out of
memory, the application can call GlobalCompact(-1) to discard and compress
memory, then try the memory allocation request again.

If this fails to provide enough memory, the application can render the data
into a file. However, applications that use this technique must cooperate
in order to know that the information is in a file, the name of the file,
and the format of the data.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrClp

The Parts of a Windows Combo Box and How They Relate
PSS ID Number: Q65881

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

A Windows combo box is a compound structure composed of individual windows.
Three types of windows can be created as part of a combo box:

 - A combo box itself, of window class "ComboBox"
 - An edit control, of window class "Edit"
 - A list box, of window class "ComboLBox"

The relationship among these three windows varies depending upon the
different combo box styles.

MORE INFORMATION
================

For combo boxes created with the CBS_SIMPLE styles, the ComboBox window is
the parent of the edit control and the list box that is always displayed on
the screen. When GetWindowRect() is called for a combo box of this style,
the rectangle returned contains the edit control and the list box.

Combo boxes created with the CBS_DROPDOWNLIST style have no edit control.
The region of the combo box that displays the current selection is in the
ComboBox window itself. When GetWindowRect() is called for a combo box of
this style, the rectangle returned does not include the list box.

For combo boxes created with the CBS_DROPDOWN style, three windows are
created. The combo box edit control is a child of the ComboBox window. When
GetWindowRect() is called for a combo box of this style, the rectangle
returned does not include the list box.

However, the ComboLBox (list box) window for combo boxes that have the
CBS_DROPDOWN or CBS_DROPDOWNLIST style is not a child of the ComboBox
window. Instead, each ComboLBox window is a child of the desktop window.
This is required so that, when the drop-down list box is dropped, it can
extend outside the application window or dialog box. Otherwise, the list
box would be clipped at the window or dialog box border.

Because the ComboLBox window is not a child of the ComboBox window, there
is no simple method to get the handle of one window, given the other. For
example, given a handle to the ComboBox, the handle to any associated drop-

down list box is not readily available. The ComboLBox is a private class
registered by USER that is a list box with the class style CS_SAVEBITS.

Additional reference words: control focus release 3.00 3.10 3.50 3.51 4.00
95
KBCategory: kbui
KBSubcategory: UsrCtl

The SBS_SIZEBOX Style
PSS ID Number: Q102485

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

A size box is a small rectangle the user can expand to change the size of
the window. When you want a size box, you create a SCROLLBAR window with
the SBS_SIZEBOX flag. This action creates a size box with the height,
width, and position that you specified in the call to CreateWindow. If you
specify SBS_SIZEBOXBOTTOMRIGHTALIGN, the box will be aligned in the lower
right of the rectangle you specified when creating the window. If you
specify SBS_SIZEBOXTOPLEFTALIGN, the box will be aligned in the upper left
of the rectangle you specified in your call to CreateWindow().

MORE INFORMATION
================

The user moves the mouse pointer over to the box, presses and holds the
left mouse button, and drags the mouse pointer to resize the window. When
the user does this, the borders on the window (the frame) move. When the
user releases the mouse button, the window is resized.

You create a size box by creating a child window of type WS_CHILD |
WS_VISIBLE | SBS_SIZEBOX | SBS_SIZEBOXTOPLEFTALIGN. You don't have to do
any of the processing for this; the system will take care of it. You will
notice in your window procedure that you will get the scroll bar messages
plus the WM_MINMAXINFO message. Size boxes work similar to the way the
WS_THICKFRAME/WS_SIZEBOX style does on a window.

Under Windows NT, applications that create a size box either using
WS_SIZEBOX or WS_THICKFRAME or by created the SBS_SIZEBOX control have no
way of showing the user that such a feature exists. Under Windows 95, the
size box appears as a jagged edge, usually at the bottom right corner.

NOTE: Make sure that the main window is created with the WS_VSCROLL and
WS_HSCROLL styles.

Additional reference words: 3.10 3.50 4.00 sizebox
KBCategory: kbui
KBSubcategory: UsrCtl

The Use of PAGE_WRITECOPY
PSS ID Number: Q105532

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

The documentation to CreateFileMapping(), VirtualAlloc(), and
VirtualProtect() indicates that the PAGE_WRITECOPY protection gives
copy-on-write access to the committed region of pages. As it is,
PAGE_WRITECOPY makes sense only in the context of file mapping, where
you want to map something from the disk into your view and then modify
the view without causing the data to go on the disk.

The only case where VirtualAlloc() should succeed with PAGE_WRITECOPY
is the case where CreateFileMapping() is called with -1 and allocates
memory with the SEC_RESERVE flag and later on, VirtualAlloc() is used
to change this into MEM_COMMIT with a PAGE_WRITECOPY protection.

There is a bug in Windows NT 3.1 such that the following call to
VirtualAlloc() will succeed:

 lpCommit = VirtualAlloc(lpvAddr, cbSize, MEM_COMMIT, PAGE_WRITECOPY);

This call will fail under Windows NT 3.5.

NOTE: lpvAddr is a pointer to memory that was allocated with
MEM_RESERVE and PAGE_NOACCESS.

One case where this might be useful is when emulating the UNIX fork
command. Emulating fork behavior would involve creating instance data
and using threads or multiple processes.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseMm

The Use of the SetLastErrorEx() API
PSS ID Number: Q97926

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SetLastErrorEx() is intended for better debugging support, not for passing
additional error information.

The SetLastErrorEx() application programming interface (API) differs from
the SetLastError() API only in that it raises a debug "RIP" event. The RIP
event is intended to give text to the debugger so that the user can retry,
ignore, and so forth, these errors. SetLastErrorEx() raises an exception
only if SetDebugErrorLevel() has been called by the debugger to allow the
errors to be passed on.

The error type can be determined from the debugger by examining the debug
event structure that is passed with the event. The debug event structure
contains a RIP_INFO substructure.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseMisc

Thread Handles and Thread IDs
PSS ID Number: Q127992

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

The CreateThread() API is used to create threads. The API returns both a
thread handle and a thread identifier (ID). The thread handle has full
access rights to the thread object created. The thread ID uniquely
identifies the thread on the system level while the thread is running. The
ID can be recycled after the thread has been terminated. This relationship
is similar to that of the process handle and the process ID (PID).

There is no way to get the thread handle from the thread ID. While there is
an OpenProcess() API that takes a PID and returns the handle to the
process, there is no corresponding OpenThread() that takes a thread ID and
returns a thread handle.

The reason that the Win32 API does not make thread handles available this
way is that it can cause damage to an application. The APIs that take a
thread handle allow suspending/resuming threads, adjusting priority of a
thread relative to its process, reading/writing registers, limiting a
thread to a set of processors, terminating a thread, and so forth.
Performing any one of these operations on a thread without the knowledge of
the owning process is dangerous, and may cause the process to fail.

If you will need a thread handle, then you need to request it from the
thread creator or the thread itself. Both the creator or the thread will
have a handle to the thread and can give it to you using DuplicateHandle().
This requirement allows both applications to coordinate their actions.

NOTE: You can also take full control of the application by calling
DebugActiveProcess(). Debuggers receive the thread handles for a process
when the threads are created. These handles have THREAD_GET_CONTEXT,
THREAD_SET_CONTEXT, and THREAD_SUSPEND_RESUME access to the thread.

Additional reference words: 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseProcThrd

Thread Local Storage Overview
PSS ID Number: Q94804

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Thread local storage (TLS) is a method by which each thread in a given
process is given a location(s) in which to store thread-specific data.

Four functions exist for TLS: TlsAlloc(), TlsGetValue(), TlsSetValue(), and
TlsFree(). These functions manipulate TLS indexes, which refer to storage
areas for each thread in a process. A given index is valid only within the
process that allocated it.

Note that the Visual C++ compiler supports an alternate syntax:

 _declspec(thread)

which can be used in place of directly calling these APIs. Please see the
description of _declspec in the VC++ "Language and Run-time Help" helpfile
for more information.

MORE INFORMATION
================

A call to TlsAlloc() returns a global TLS index. This one TLS index is
valid for every thread within the process that allocated it, and should
therefore be saved in a global or static variable.

Thread local storage works as follows: when TlsAlloc() is called, every
thread within the process has its own private DWORD-sized space reserved
for it (in its stack space, but this is implementation-specific). However,
only one TLS index is returned. This single TLS index may be used by each
and every thread in the process to refer to the unique space that
TlsAlloc() reserved for it.

For this reason, TlsAlloc() is often called only once. This is convenient
for DLLs, which can distinguish between DLL_PROCESS_ATTACH (where the first
process's thread is connecting to the DLL) and DLL_THREAD_ATTACH
(subsequent threads of that process are attaching). For example, the first
thread calls TlsAlloc() and stores the TLS index in a global or static
variable, and every other thread that attaches to the DLL refers to the
global variable to access their local storage space.

Although one TLS index is usually sufficient, a process may have up to
TLS_MINIMUM_AVAILABLE indexes (guaranteed to be greater than or equal

to 64).

Once a TLS index has been allocated (and stored), the threads within the
process may use it to set and retrieve values in their storage spaces. A
thread may store any DWORD-sized value in its local storage (for example, a
DWORD value, a pointer to some dynamically allocated memory, and so forth).
The TlsSetValue() and TlsGetValue() APIs are used for this purpose.

A process should free TLS indexes with TlsFree() when it has finished using
them. However, if any threads in the process have stored a pointer to
dynamically allocated memory within their local storage spaces, it is
important to free the memory or retrieve the pointer to it before freeing
the TLS index, or it will be lost.

For more information, please see "Using Thread Local Storage" in the
"Processes and Threads" overview in the "Win32 Programmer's Reference".

Example

Thread A within a process calls TlsAlloc(), and stores the index returned
in the global variable TlsIndex:

 TlsIndex = TlsAlloc();

Thread A then allocates 100 bytes of dynamic memory, and stores it in its
local storage:

 TlsSetValue(TlsIndex, malloc(100));

Thread A creates thread B, which stores a handle to a window in its local
storage space referred to by TlsIndex.

 TlsSetValue(TlsIndex, (LPVOID)hSomeWindow);

Note that TlsIndex refers to a different location when thread B uses it,
than when thread A uses it. Each thread has its own location referred to by
the same value in TlsIndex.

Thread B may terminate safely because it does not need to specifically free
the value in its local storage.

Before thread A terminates, however, it must first free the dynamically
allocated memory in its local storage

 free(TlsGetValue(TlsIndex));

and then free the TLS index:

 if (!TlsFree(TlsIndex))
 // TlsFree() failed. Handle error.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseProcThrd

Time Stamps Under the FAT File System
PSS ID Number: Q101186

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

Windows NT considers the time stamp on a file stored on a FAT (file
allocation table) partition to be standard time if the current time is
standard time, and daylight time if the current time is daylight time,
regardless of what time of year the file was originally time stamped.

This is not an issue under NTFS, which consistently implements Universal
Coordinated Time.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseFileio

Timer Resolution in Windows NT
PSS ID Number: Q115232

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

In Win32-based applications, the GetTickCount() timer resolution on Windows
NT, version 3.1, is 15 milliseconds (ms) for x86 and 10 ms for MIPS and
Alpha. On Windows NT, version 3.5, the GetTickCount() timer resolution is
10 ms on the 486 or greater, but the resolution is still 15 ms on a 386.

NOTE: The measurements in milliseconds indicate the period of the
interrupt, not the units of the returned value.

The Win32 API QueryPerformanceCounter() returns the resolution of a high-
resolution performance counter if the hardware supports one. For x86, the
resolution is about 0.8 microseconds (0.0008 ms). For MIPS, the resolution
is about twice the clock speed of the processor. You need to call
QueryPerformanceFrequency() to get the frequency of the high-resolution
performance counter.

NOTE: These numbers are likely to change in future versions.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseMisc

Tips for Debugging ISAPI DLLs
PSS ID Number: Q152054
--
The information in this article applies to:

 - Microsoft Win32 SDK, version 4.0
 - Microsoft Internet Information Server, versions 1.0, 2.0
--

SUMMARY
=======

Writing an ISAPI extension or filter is no more difficult than writing any
other DLL, but debugging the DLL can be a challenge. This article provides
a few ideas for debugging an ISAPI DLL.

The following acronyms are used in this article:

 ISAPI - Internet Server Application Programming Interface
 WWW - World Wide Web
 IIS - Internet Information Server
 SDK - Software Development Kit
 DLL - Dynamic Link Library
 HTML - Hypertext Markup Language

The following approaches are discussed:

 - Turning off DLL caching
 - Using OutputDebugString in an ISAPI DLL
 - Using MessageBox
 - Writing output to a log file
 - Running IIS interactively
 - Using an alternate heap for memory
 - Using CGIWRAP to debug without a server
 - Using ISmoke to test an extension

MORE INFORMATION
================

ISAPI is a subset of the Win32 API. It allows WWW servers, such as
Microsoft's IIS, to be extended in two ways: extensions and filters. In an
ISAPI extension, a browser typically sends information entered in a form,
and the extension returns a complete HTML page built programmatically. In
an ISAPI filter, all browser data, both inbound and outbound, can be
modified before or after the server processes it. Extension and filter DLLs
must conform to a specification; there are specific functions that must be
implemented in order for the DLL to work.

Microsoft's IIS supports ISAPI on Windows NT Advanced Server versions 3.51
and 4.0. Microsoft's Peer Web Server supports ISAPI on Windows NT
Workstation 4.0 and Windows 95. This article focuses on IIS for Windows NT
Advanced Server, but many of the tips apply to all implementations of
ISAPI, even Web servers other than Microsoft's.

Tips for ISAPI Development

IIS runs as a Windows NT service in the local system account, which is what
makes debugging ISAPI DLLs difficult. Running as a service introduces
issues that are new to many programmers:

 - The DLL runs in the local system context.

 - There is no desktop.

 - ISAPI extension procedures have an impersonated security context.

 - ISAPI developers do not have access to the server source code so the
 developers are extending an application they did not write.

The following tips are intended to aid in the development of ISAPI DLLs.

Turning Off DLL Caching

It is often desirable during development to force your ISAPI DLL to unload
after each request, allowing you to replace it with a new version. IIS, by
default, will hold the DLL in memory, keeping the DLL file in use. To
modify this default cache setting, use the registry editor to change the
following key:

 HKEY_LOCAL_MACHINE
 System
 CurrentControlSet
 Services
 W3SVC
 Parameters

Set CacheExtensions to 0 to disable caching, or set it to 1 to enable
caching. When caching is turned off, extra loading and unloading makes
ISAPI extensions dramatically slower, so use this option only for
development.

Filter DLLs are always loaded when the IIS service is running, and there is
no way to change filter loading behavior. You must stop the IIS service
with the administration tool, copy your new version over the old, and then
restart the WWW service. The administration tool can run on a remote
development machine controlling the server over the network.

OutputDebugString

An easy technique to debug either an ISAPI filter or extension is to use
OutputDebugString. This function is part of Win32 and it is a standard way
to send a string to a debug monitor. Use DBMON, included as a sample in the
Win32 SDK, to view debug strings. A fix is necessary to view ISAPI debug
output with DBMON, because the DLL runs in the local system account while
DBMON runs in the logged-in user account. Starting with the Win32 SDK for
Windows NT 4 beta 2, DBMON creates a NULL DACL and passes the security

attributes to both CreateEvent calls and the CreateFileMapping call. You
can modify DBMON yourself if you do not have the current SDK. The code
below shows how to make a NULL DACL:

 SECURITY_ATTRIBUTES sa; SECURITY_DESCRIPTOR sd;

 sa.nLength = sizeof(SECURITY_ATTRIBUTES);
 sa.bInheritHandle = TRUE;
 sa.lpSecurityDescriptor = &sd;

 if(!InitializeSecurityDescriptor(&sd, SECURITY_DESCRIPTOR_REVISION))
 return; // Handle errors
 if(!SetSecurityDescriptorDacl(&sd, TRUE, (PACL)NULL, FALSE))
 return; // Handle errors

 // You may now pass &sa to CreateEvent and CreateFileMapping

MessageBox

The Online Help for MessageBox in the Win32 SDK describes a number of
rarely-used constants, including MB_SERVICE_NOTIFICATION and MB_TOPMOST. In
the context of ISAPI, add both of these flags to your message boxes because
without them, the message box call will fail. Your ISAPI DLL is running as
a service so it does not have a desktop, and these flags tell the operating
system to display the message on the logged-in user's desktop.

Please note that the value of MB_SERVICE_NOTIFICATION has changed on
Windows NT 4.0 because of a conflict with Windows 95. When you specify
MB_SERVICE_NOTIFICATION|MB_TOPMOST, your message will display properly on
all versions of Windows NT and Windows 95.

Do not use MessageBox for anything but debugging. If you need to record
error messages, use the Windows NT event log. See the Win32 sample
"logging" for information on how to use the event log. Depending on the SDK
version you have, the logging sample may be in the q_a subdirectory off the
root of the SDK CD, or it may be with other samples in \mstools\samples.

Output to a Log File

An easy way to track the flow of an ISAPI extension or filter is to use a
log file. You can use the normal Win32 file I/O functions such as
CreateFile, ReadFile, WriteFile, and CloseHandle. Your DLL's current
directory will be the system root (c:\winnt40\system32). Also, keep
security in mind because the default security context for your DLL is the
local system account. This applies even when impersonation is active. If
you do not allow the local system to create files in the appropriate
directory and do not specify a non-NULL security attribute, your CreateFile
call will fail.

The ISAPI homefilt sample in the SDK provides one example of a file-logging
mechanism.

Running IIS Interactively

A popular debugging option is to run IIS as a console application and use
Visual C++ or another debugger for full source debugging. Information to do
this is given in the SDK readme. Prior to Win32 SDK version 4 beta 2, the
readme was included in the ActiveX SDK from
http://www.microsoft.com/intdev. As of version 4 beta 2, ISAPI became part
of the Win32 SDK. Examine the Win32 SDK readme for the procedure to run IIS
as a console application.

Briefly, here are a few tips. IIS cannot run as a console application and a
service at the same time. You will have to stop all three IIS services,
WWW, FTP, and Gopher, before running IIS from a command prompt. Once IIS is
running, you can use PVIEW (part of Visual C++) or TLIST (part of the NT
resource kit) to get the process ID of INETINFO.EXE, and then use your
debugger to attach to the running process.

Another approach is to supply the full command line, inetinfo.exe -e W3SVC,
as described in the SDK readme, within the debug settings. For Visual C++,
choose the Build menu, select Settings, then select the Debug tab. Type the
full path name of "inetinfo.exe" as the Executable for Debug Session, and
type "-e W3SVC" in Program Arguments. See Visual C++ 4.1 tech note TN063:
Debugging Internet Extension DLLs, for details on using the Visual C++
debugger.

Running IIS as a console application still is not exactly the same as
running it as a service. For instance, authentication filters do not
function properly in the console version of IIS. Instead of debugging IIS
as a console application, it is possible to debug IIS running as a service.
Attach a debugger to the INETINFO.EXE process, then use a browser and
interact with your web site. When a debugger is attached to IIS, any
occurrence of DebugBreak() will stop the service and put the debugger in
full-source debugging mode. Each time you modify your DLL code, detach and
restart the service using the Microsoft Internet Service Manager tool.

The main cost of running IIS interactively is the start-up time required.
It takes a few seconds to start and stop your debugger and, during
development, this may become unacceptable. Be sure to consider the other
alternatives.

Using an Alternate Heap for Memory

An ISAPI DLL might share the process heap with the WWW service. ISAPI DLL
memory overwrites may not show up until later, and they may appear to be a
problem with IIS. When you suspect memory corruption problems, modify your
DLL code to use an alternate heap by calling HeapCreate, then HeapAlloc and
HeapFree for all memory allocations. If switching from the process heap to
a new heap changes the behavior of a crash, you can conclude that your DLL
is corrupting memory.

See the ISAPI sample CGIWRAP to isolate your extension DLL from the server.
CGIWRAP is an executable and will have its own address space so even when
your DLL corrupts memory, IIS will remain safe. Also, the CGIWRAP process
is terminated after each request is complete. This technique makes your

extension very slow but is a helpful interim solution until the corruption
bug is finally fixed.

The Win32 family of VirtualAlloc functions allows you to allocate 64K
blocks of memory and can modify the protection of a block of memory.
It can be helpful to use the memory protection provided by these functions
to diagnose memory overwrite bugs.

Finally, before your DLL is deployed in a production environment, check for
memory leaks. For example, cut and paste the following code to track the
number of bytes allocated. Call DumpBytesInUse() within your code to track
the number of bytes currently allocated:

 #define WIN32_LEAN_AND_MEAN
 #include <windows.h>

 #if 1 // change to #if 0 to turn off mem check

 DWORD g_dwTotal;

 //
 // Call MemAlloc just like you would call HeapAlloc
 //

 LPVOID MemAlloc (HANDLE hHeap, DWORD dwFlags, DWORD dwSize)
 {
 LPVOID p;

 p = HeapAlloc (hHeap, dwFlags, dwSize);
 if (p)
 g_dwTotal += dwSize;

 return p;
 }

 BOOL MemFree (HANDLE hHeap, DWORD dwFlags, LPVOID p)
 {
 DWORD dwSize;
 BOOL bReturn;

 dwSize = HeapSize (hHeap, dwFlags, p);
 bReturn = HeapFree (hHeap, dwFlags, p);

 if (dwSize != 0xffffffff && bReturn)
 g_dwTotal -= dwSize;

 return bReturn;
 }

 void DumpBytesInUse (void)
 {
 TCHAR szMsg[256];

 wsprintf (szMsg, "Bytes in use: %u\r\n", g_dwTotal);
 OutputDebugString (szMsg);

 }

 #else

 #define MemAlloc HeapAlloc
 #define MemFree HeapFree
 #define DumpBytesInUse(x)

 #endif

Using CGIWRAP to Debug Without a Server

An effective way to conduct basic testing on an ISAPI DLL is to use the
CGIWRAP sample. CGIWRAP is an executable that calls an ISAPI DLL. Although
it is intended to allow an ISAPI DLL run as a CGI executable, CGIWRAP can
be modified for use with a debugger.

There are two sources of input for an ISAPI DLL: HTTP header variables and
HTTP data. An ISAPI DLL retrieves header variables from GetServerVariable
and retrieves data from ReadClient. Similarly, a CGI executable gets its
header variables from the environment (with getenv) and gets its data from
standard input.

This means you can simulate a WWW server from the Command Line. Set
environment variables to match what is given to your ISAPI DLL and pipe a
file into CGIWRAP to simulate the inbound form data given to your DLL. When
CGIWRAP runs, it will translate environment variables and the piped input
into an ISAPI interface. Because you have the source to CGIWRAP, you can
set breakpoints on every line of code involved.

You can also improve the utility of CGIWRAP by modifying the sample. Add
your own Command Line options, including, perhaps, a "record" operation
when no Command Line options are specified. A record operation automates
the process of setting environment variables and piping standard input. The
idea is to run CGIWRAP as a normal CGI application from your calling web
page. CGIWRAP identifies that no Command Line parameters were sent, so it
records the environment and saves it to a file. Then, from a debugger (on
any machine), specify a Command Line option to CGIWRAP telling it to load
its environment from the previously saved file. CGIWRAP doesn't do this
now, but these changes are easy to make yourself.

Keep in mind that CGIWRAP is not exactly like IIS. For example, CGIWRAP
does not run in the context of a local system. This can make a tremendous
difference in the way your ISAPI DLL behaves. Fortunately, when your DLL
works with CGIWRAP but not with IIS, you'll know the problem is very likely
related to security.

Using ISmoke to Test an Extension

Another sample that is helpful in the development process is ISmoke. Use
the ISmoke sample to stress-test your ISAPI DLL. It is quite good at
detecting problems that arise when your DLL is used in production. While
the latest version of ISmoke still only tests extensions, not filters,

it runs in the proper security and is multi-threaded.

Because ISmoke does not support ISAPI filters, bugs that are caused by
filters won't show up. If your DLL works with ISmoke but has problems in
IIS, verify that your development setup does not have a buggy ISAPI filter
installed. If possible, test your ISAPI extension on an IIS setup that uses
no filters.

Additional reference words: 3.51 4.00 iis isapi cgiwrap ismoke debug www
 cgi activex cache
KBCategory: kbprg kbtshoot
KBSubcategory: kbnocat

Tips for Installing TAPI Service Providers
PSS ID Number: Q131356

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0
 - Microsoft Windows Telephony Software Development Kit (TAPI SDK)
 version 1.0

SUMMARY
=======

When installing TAPI Service Providers (TSPs), there is more involved than
just copying the TSP files to the system directory. The TAPI system files
may need to be installed, and the TSP must be installed into TAPI. However,
this process can vary greatly from one Windows version to another.

MORE INFORMATION
================

First and foremost, be sure to do version checking when installing all
files.

Second, use a setup application rather than relying on an .INF file. While
the ATSP sample uses a .INF file to install, there are two major problems
with using a .INF file:

 - TAPI needs to already be installed (which isn't guarenteed under Windows
 version 3.1 or Windows for Workgroups).

 - You can't do operating system version checking if you use an .INF file.

Files Necessary for Windows Version 3.1 or Windows for Workgroups

When a TSP is installed under Windows version 3.1 or Windows for
Workgroups, it must check and make sure all the necessary system files are
present. The files to be installed can be found in the TAPI 1.0 SDK \REDIST
directory and must be distributed with the TSP. Some of these are optional
and some are not. Here is a list of files and where they should be placed:

Mandidory TAPI files:

 TELEPHON.CPL [system]
 TAPI.DLL [system]
 TAPIADDR.DLL [system]
 TAPIEXE.EXE [system]
 TELEPHON.HLP [system]

Optional TAPI files:

 ATSPEXE.EXE [system]
 ATSP.TSP [system]

 ATSP.HLP [system]
 DIALER.EXE [windows]
 DIALER.HLP [windows]

Files Necessary for Windows 95

Because the Windows 95 system files are not redistributable and because
TAPI is installed automatically under Windows 95, the TAPI system files
must not be distributed with the TSP. The TAPI version 1.0 files are not
compatible with Windows 95, so it is important that no TAPI system files
are installed under Windows 95.

One complication for Windows 95 is the TELEPHON.CPL file. This file is
installed to the system directory by default along with all the rest of the
Windows 95 TAPI files. However, because this file is not needed by most
people using Windows 95, it is installed in the system directory as
TELEPHON.CP$ to reduce control panel clutter. TSPs that need this applet
should first look in the system directory for TELEPHON.CPL; if that isn't
found, the TSP should locate TELEPHON.CP$ (also looking in the system
directory), and rename it to TELEPHON.CPL.

Installing the TSP

Once all the files are installed, the TSP must now be installed into TAPI.
Under Windows version 3.1, this is done through the Telephony Control Panel
applet (TELEPHON.CPL). There are no APIs to automate the installation, so
TSP installation programs must either tell the user how to install their
TSP into TAPI or use an application such as MSTEST that can simulate
keystrokes to automate this part of the installation. Note that TSPs must
have version information (as demonstrated by the ATSP sample) to show in
the Add Driver dialog.

Adding TSPs through the Telephony Control Panel is also available under
Windows 95, but the exact sequence of keystrokes is slightly different.
However, several TAPI APIs (lineAddProvider, lineConfigProvider, and
lineRemoveProvider) have been added that make the TELEPHON.CPL unnecessary.
It's a good idea to have each TSP have its own control panel applet that
calls these APIs, rather than rely on TELEPHON.CPL. The setup program
should install the TSP directly by using these APIs instead of asking the
user to run a control panel applet.

Additional reference words: 1.00 1.30 1.40 4.00 95
KBCategory: kbprg
KBSubcategory: TAPI

Tips for Writing Multiple-Language Scripts
PSS ID Number: Q89865
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5
--

SUMMARY
=======

To aid you in writing multiple-language resources, the Win32 development
system supports language scripts.

MORE INFORMATION
================

To create a multiple language script, first create a single-language script
file (American English, for example), and duplicate the translations in
your script file. You need a complete translation only once for each major
language. Only those resources that have differences between the major
language and the sublanguage need be included in the sublanguage areas of
the script. The system will use the main language resource if it doesn't
find a resource for the sublanguage.

Sample Code

LANGUAGE LANG_ENGLISH,SUBLANG_ENGLISH_US
<original script file>
LANGUAGE LANG_ENGLISH,SUBLANG_ENGLISH_UK
<portions of script file that are different for UK>
LANGUAGE LANG_ENGLISH,SUBLANG_ENGLISH_AUS
<portions of script file that are different for Australia>
LANGUAGE LANG_ENGLISH,SUBLANG_ENGLISH_CAN
<portions of script file that are different for Canada>
LANGUAGE LANG_FRENCH,SUBLANG_FRENCH
<entire script file translated to French>
LANGUAGE LANG_FRENCH,SUBLANG_FRENCH_CAN
<portions of script file that are different for Canada>
LANGUAGE LANG_FRENCH,SUBLANG_FRENCH_SWISS
<portions of script file that are different for Switzerland>
LANGUAGE LANG_FRENCH,SUBLANG_FRENCH_BELGIAN
<portions of script file that are different for Belgium>
LANGUAGE LANG_SPANISH,SUBLANG_SPANISH
<entire script file translated to Spanish>

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: WIntlDev

Tips for Writing Windows Sockets Apps That Use AF_NETBIOS
PSS ID Number: Q129316

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 version 3.5

SUMMARY
=======

The six issues listed in this article must be addressed when writing
Windows Sockets applications that use the AF_NETBIOS protocol family.

NOTE: Windows 95 does not support AF_NETBIOS.

MORE INFORMATION
================

Issues to Address When Writing Windows Sockets Applications

1. When creating an AF_NETBIOS socket, specify -1 times lana for the
 protocol option.

 The Windows NT WinSock library allows the programmer to create a
 socket that allows communication over a particular lana. The lana
 number is specified via the protocol option of the socket() function.
 To create an AF_NETBIOS socket, specify -1 times the lana for the
 protocol option of the socket() function. For example:

 SOCKET hSock0 = socket(AF_NETBIOS, SOCK_DGRAM, 0); // lana 0;
 SOCKET hSock1 = socket(AF_NETBIOS, SOCK_DGRAM, -1); // lana 1;

 The lana numbers are basically indices to the list of transports
 supported by the NetBIOS implementation. A given host has one unique
 lana number for every installed transport that supports NetBIOS. For
 example, listed below are some possible lana numbers for a typical
 Windows NT configuration:

 Lana Transport
 --
 0 TCP/IP // lana 0 is the default NetBIOS transport
 1 IPX/SPX w/NetBIOS
 3 NetBEUI

 In the case of a multihomed host (a machine with multiple network
 adapters), the number of unique lana numbers equals the number of
 network transports that support NetBIOS times the number of network
 adapters. For example, if the machine depicted above contained
 two network adapters, it would have a total of 3 * 2 = 6 lana numbers.

 Also, please note the WSNETBS.H header included with the Windows NT

 version 3.5 SDK erroneously defines the NBPROTO_NETBEUI symbol. This
 symbol cannot be used as a protocol option and should be ignored.

2. Use the snb_type values provided by the WSNETBS.H header for NetBIOS
 name registration and deregistration.

 When filling out a sockaddr_nb structure, you must specify the
 appropriate value for the snb_type field. This field is used during
 the bind() operation to handle NetBIOS name registration. The WSNETBS.H
 header defines several values for this field; however only the
 following two values are currently implemented:

 - NETBIOS_UNIQUE_NAME

 Registers a unique NetBIOS name. This action is usually performed
 by a client or a server to register an endpoint.

 - NETBIOS_GROUP_NAME

 Registers a group name. This action is typically performed in
 preparation for sending or receiving NetBIOS multicasts.

 Names are registered during the bind() operation.

3. Use the supported socket types of SOCK_DGRAM and SOCK_SEQPACKET.

 Due to the nature of NetBIOS connection services, SOCK_STREAM
 is not supported.

4. Choose a NetBIOS port that does not conflict with your network
 client software.

 The NetBIOS port is an eight-bit value stored in the last position of
 the snb_name that is used by various network services to differentiate
 various type of NetBIOS names. When you register NetBIOS names, choose
 port values that do not cause conflicts with existing network services.
 This is of particular importance if you are registering a NetBIOS name
 that duplicates a user name or a machine name on the network. The
 following lists the reserved port values:

 0x00, 0x03, 0x06, 0x1f, 0x20, 0x21, 0xbe, 0xbf, 0x1b,
 0x1c, 0x1d, 0x1e

5. Applications should use all available lana numbers when initiating
 communication.

 Because the NetBIOS interface can take advantage of multiple transport
 protocols, it is important to use all lanas when initiating
 communication. Server applications should accept connections on
 sockets for each lana number, and client applications should attempt
 to connect on every available lana. In a similar fashion, data gram
 broadcasts should be sent from sockets created from each lana.

 The following diagram depicts the lana mappings for two machines.
 In order for a client application running on Machine A to communicate

 with a server application on Host B, the client application must create
 a socket on lana 3, and the server must create a socket on lana 1.
 Because the client and the server cannot know in advance which single
 lana to use, they must create sockets for all lanas.

 Host A (Client) Host B (Server)
 --------------- ---------------
 lana Transport lana Transport
 ---- --------- ---- ---------

 0 NetBEUI 0 TCP/IP
 3 IPX/SPX <==========> 1 IPX/SPX
 3 NetBEUI

 The above diagram illustrates several other important points about
 lanas. First, a transport that has a certain lana number on one host
 does not necessarily have the same lana number on other machines.
 Second, lana numbers do not have to be sequential.

 The EnumProtocols() function can be used to enumerate valid lana
 numbers. Listed below is a code fragment that demonstrates this type
 of functionality:

 #include <nspapi.h>

 DWORD cb = 0;
 PROTOCOL_INFO *pPI;
 BOOL pfLanas[100];

 int iRes,
 nLanas = sizeof(pfLanas) / sizeof(BOOL);

 // Specify NULL for lpiProtocols to enumerate all protocols.

 // First, determine the output buffer size.
 iRes = EnumProtocols(NULL, NULL, &cb);

 // Verify the expected error was received.
 // The following code must appear on one line.
 assert(iRes == -1 && GetLastError() ==
 ERROR_INSUFFICIENT_BUFFER);

 if (!cb)
 {
 fprintf(stderr, "No available NetBIOS transports.\n");
 break;
 }

 // Allocate a buffer of the specified size.
 pPI = (PROTOCOL_INFO*) malloc(cb);

 // Enumerate all protocols.
 iRes = EnumProtocols(NULL, pPI, &cb);

 // EnumProtocols() lists each lana number twice, once for

 // SOCK_DGRAM and once for SOCK_SEQPACKET. Set a flag in pfLanas
 // so unique lanas can be identified.

 memset(pfLanas, 0, sizeof(pfLanas));

 while (iRes > 0)
 // Scan protocols looking for AF_NETBIOS
 if (pPI[--iRes].iAddressFamily == AF_NETBIOS)
 // found one.
 pfLanas[pPI[iRes].iProtocol] = TRUE;

 fprintf(stderr, "Available NetBIOS lana numbers: ");
 while(nLanas--)
 if (pfLanas[nLanas])
 fprintf(stderr, "%d ", nLanas);

 free(pPI);
 }

6. Performance: Use of AF_NETBIOS is recommended for communication with
 down-level clients.

 On Windows NT, NetBIOS is a high level emulated interface.
 Consequently, applications that use the WinSock() function over NetBIOS
 obtain lower throughput than applications that use WinSock() over a
 native transport such as IPX/SPX or TCP/IP. However, due to the
 simplicity of the WinSock interface, it is a desirable interface for
 writing new 32-bit applications that communicate with NetBIOS
 applications running on down-level clients like Windows for Workgroups
 or Novell Netware.

Additional reference words: 3.50
KBCategory: kbnetwork kbcode
KBSubcategory: NtwkWinsock

Top-Level Menu Items in Owner-Draw Menus
PSS ID Number: Q69969

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Microsoft Windows version 3.0 allows an application to specify owner-draw
menus. This provides the application with complete control over the
appearance of items in the menu. However, Windows 3.0 only supports owner-
draw items in a pop-up menu. Top-level menu items with the MF_OWNERDRAW
style do not work properly.

In Windows 3.1, Windows NT, and Windows 95, top-level menu items with the
MF_OWNERDRAW style work properly.

MORE INFORMATION
================

An application may append an item with the MF_OWNERDRAW style to a top-
level menu. At this point, the parent application should receive a
WM_MEASUREITEM message and a WM_DRAWITEM message.

However, a WM_MEASUREITEM message is never sent to the parent window
for the menu item. In addition, the WM_DRAWITEM message is sent only
when the selection state of the item changes (the action field in the
DRAWITEMSTRUCT is equal to ODA_SELECTED). The WM_DRAWITEM message is
not sent with the action field in the DRAWITEMSTRUCT equal to
ODA_DRAWENTIRE.

Additional reference words: 3.00 3.10 3.50 4.00
KBCategory: kbui
KBSubcategory: UsrMen

Tracking Brush Origins in a Win32-based Application
PSS ID Number: Q102353

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

When writing to the Win32 API on Windows NT, it is no longer necessary to
keep track of brush origins yourself. GDI32 keeps track of the brush
origins by automatically recognizing when the origin has been changed. In
Windows, you have to explicitly tell GDI to recognize the change by calling
UnrealizeObject() with a handle to the brush. When a handle to a brush is
passed to UnrealizeObject() in Windows NT, the function does nothing,
therefore, it is still safe to call this API.

Win32s and Windows 95 require that you track the brush origins yourself,
just as Windows 3.x does.

In Windows 3.1, the default brush origin is the screen origin. In Windows
NT, the default origin is the client origin.

Additional reference words: 3.10 3.50 4.00
KBCategory: kbgraphic
KBSubcategory: GdiPnbr

Translating Client Coordinates to Screen Coordinates
PSS ID Number: Q11570

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The GetClientRect function always returns the coordinates (0, 0) for
the origin of a window. This behavior is documented in the "Microsoft
Windows Software Development Kit (SDK) Programmer's Reference"
manual.

MORE INFORMATION
================

To determine the screen coordinates for the client area of a window,
call the ClientToScreen function to translate the client coordinates
returned by GetClientRect into screen coordinates. The following code
demonstrates how to use the two functions together:

 RECT rMyRect;

 GetClientRect(hwnd, (LPRECT)&rMyRect);
 ClientToScreen(hwnd, (LPPOINT)&rMyRect.left);
 ClientToScreen(hwnd, (LPPOINT)&rMyRect.right);

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrWndw

Translating Dialog-Box Size Units to Screen Units
PSS ID Number: Q74280

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In the Microsoft Windows graphical environment, the MapDialogRect
function converts dialog-box units to screen units easily.

MORE INFORMATION
================

When a application dynamically adds a child window to a dialog box, it
may be necessary to align the new control with other controls that
were defined in the dialog box's resource template in the RC file.
Because the dialog box template defines the size and position of a
controls in dialog-box units rather than in screen units (pixels), the
application must translate dialog-box units to screen units to align
the new child window.

An application can use the following two methods to translate dialog-
box units to screen units:

1. The MapDialogRect function provides the easier method. This
 function converts dialog-box units to screen units automatically.

 For more details on this method, please see the documentation for
 the MapDialogRect function in the Microsoft Windows Software
 Development Kit (SDK).

2. Use the GetDialogBaseUnits function to retrieve the size of the
 dialog base units in pixels. A dialog unit in the x direction is
 one-fourth of the width that GetDialogBaseUnits returns. A dialog
 unit in the y direction is one-eighth of the height that the
 function returns.

 For more details on this method, see the documentation for the
 GetDialogBaseUnits function in the Windows SDK.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95 convert unit pixel
KBCategory: kbui
KBSubcategory: UsrDlgs

Transparent Blts in Windows NT
PSS ID Number: Q89375

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51

SUMMARY
=======

In order to perform a transparent blt in Microsoft Windows versions 3.0 and
3.1, the BitBlt() function must be called two or more times. This process
involves nine steps. (For more information on this process, see article
Q79212 in the Microsoft Knowledge Base.)

Windows NT introduces a new method of achieving transparent blts. This
method involves the use of the MaskBlt() function. The MaskBlt() function
lets you use any two arbitrary ROP3 codes (say, SRCCOPY and BLACKNESS) and
apply them on a pel-by-pel basis using a mask.

MORE INFORMATION
================

For this example, the source and target bitmaps contain 4 BPP. The call to
the MaskBlt() function is as follows:

 MaskBlt(hdcTrg, // handle of target DC
 0, // x coord, upper-left corner of target rectangle
 0, // y coord, upper-left corner of target rectangle
 15, // width of source and target rectangles
 15, // height of source and target rectangles
 hdcSrc, // handle of source DC
 0, // x coord, upper-left corner of source rectangle
 0, // y coord, upper-left corner of source rectangle
 hbmMask, // handle of monochrome bit-mask
 0, // x coord, upper-left corner of mask rectangle
 0, // y coord, upper-left corner of mask rectangle
 0xAACC0020 // raster-operation (ROP) code
);

The legend is as follows

 '.' = 0,
 '@' = 1,
 '+' = 2,
 '*' = 3,
 '#' = 15

Source Bitmap Mask Bitmap Target Bitmap Result
--

++++++*** @....... ############### #######*#######
++++++*** @@@...... ############### ######***######
++++++*** @@@@@..... ##...........## ##...+***+...##
+++***+++***+++ @@@@@@@.... ##...........## ##..**+++**..##
+++***+++***+++ ...@@@@@@@@@... ##...........## ##.***+++***.##
+++***+++***+++ ..@@@@@@@@@@@.. ##...........## ##+***+++***+##
++++++*** .@@@@@@@@@@@@@. ##...........## #**+++***+++**#
++++++*** @@@@@@@@@@@@@@@ ##...........## ***+++***+++***
++++++*** .@@@@@@@@@@@@@. ##...........## #**+++***+++**#
+++***+++***+++ ..@@@@@@@@@@@.. ##...........## ##+***+++***+##
+++***+++***+++ ...@@@@@@@@@... ##...........## ##.***+++***.##
+++***+++***+++ @@@@@@@.... ##...........## ##..**+++**..##
++++++*** @@@@@..... ##...........## ##...+***+...##
++++++*** @@@...... ############### ######***######
++++++*** @....... ############### #######*#######

Note that the ROP "AA" is applied where 0 bits are in the mask and the ROP
"CC" is applied where 1 bit is in the mask. This a transparency.

When creating a ROP4, you can use the following macro:

 #define ROP4(fore,back) ((((back) << 8) & 0xFF000000) | (fore))

This macro can be used to call the MaskBlt() function as follows:

 MaskBlt(hdcDest, xTrgt, yTrgt,
 cx, cy,
 hdcSrc, xSrc, ySrc,
 hbmMask, xMask, yMask,
 ROP4(PATCOPY, NOTSRCCOPY)
);

This call would draw the selected brush where 1 bit appears in the mask and
bitwise negation of the source bitmap where 0 bits appear in the mask.

Additional reference words: 3.10 3.50 pixel
KBCategory: kbgraphic
KBSubcategory: GdiBmp

Transparent Windows
PSS ID Number: Q92526

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Microsoft Windows version 3.1 does not support fully functional transparent
windows.

MORE INFORMATION
================

If a window is created using CreateWindowEx() with the WS_EX_TRANSPARENT
style, windows below it at the position where the original window was
initially placed are not obscured and show through. Moving the
WS_EX_TRANSPARENT window, however, results in the old window background
moving to the new position, because Windows does not support fully
functional transparent windows.

WS_EX_TRANSPARENT was designed to be used in very modal situations and the
lifetime of a window with this style must be very short. A good use of this
style is for drawing tracking points on the top of another window. For
example, a dialog editor would use it to draw tracking points around the
control that is being selected or moved.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrWndw

Trapping Floating-Point Exceptions in a Win32-based App
PSS ID Number: Q94998

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The _controlfp() function is the portable equivalent to the _control87()
function.

To trap floating-point (FP) exceptions via try-except (such as
EXCEPTION_FLT_OVERFLOW), insert the following before doing FP operations:

 // Get the default control word.
 int cw = _controlfp(0,0);

 // Set the exception masks OFF, turn exceptions on.
 cw &=~(EM_OVERFLOW|EM_UNDERFLOW|EM_INEXACT|EM_ZERODIVIDE|EM_DENORMAL);

 // Set the control word.
 _controlfp(cw, MCW_EM);

This turns on all possible FP exceptions. To trap only particular
exceptions, choose only the flags that pertain to the exceptions desired.

Note that any handler for FP errors should have _clearfp() as its first FP
instruction.

MORE INFORMATION
================

By default, Windows NT has all the FP exceptions turned off, and thus
computations result in NAN or INFINITY rather than an exception. Note,
however, that if an exception occurs and an explicit handler does not exist
for it, the default exception handler will terminate the process.

If you want to determine which mask bits are set and which are not during
exception handling, you need to use _clearfp() to clear the floating-point
exception. This routine returns the existing FP status word, giving the
necessary information about the exception. After this, it is safe to query
the chip for the state of its control word with _controlfp(). However, as
long as an unmasked FP exception is active, most FP instructions will
fault, including the fstcw in _controlfp().

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseExcept

Treeviews Share Image Lists by Default
PSS ID Number: Q131287

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s version 1.3

SUMMARY
=======

The LVS_SHAREIMAGELISTS style is available for listview controls to enable
the same image lists to be used with multiple listview controls. There is
no equivalent TVS_SHAREIMAGELISTS, however, for the treeview control
because treeviews share image lists by default.

MORE INFORMATION
================

By default, a listview control takes ownership of the image lists
associated with it. For listviews, this could be any of three image lists
(those with large icons, small icons, or state images). These three image
lists are set by calling ListView_SetImageList() with the flags
LVSIL_NORMAL, LVSIL_SMALL, or LVSIL_STATE respectively. The listview then
takes responsibility for destroying these image lists when it is destroyed.

Setting the LVS_SHAREIMAGELISTS style, however, moves ownership of the
image lists from the listview control to the application. Because this
style assumes that the image lists are shared by multiple listviews,
specifying this style requires that the application destroy the image lists
when the last listview using them is destroyed. Failure to do so causes a
memory leak in the system.

Similarly, because treeviews share image lists by default, an application
that associates an image list with a treeview should ensure that the image
list is destroyed after the last treeview using it is destroyed. Another
way to do this is to first set the treeview's image list to NULL by using
TreeView_SetImageList(); then destroy the handle to the previous image list
returned by the function.

Additional reference words: 1.30 4.00 95 Common Controls
KBCategory: kbui
KBSubcategory: UsrCtl

TrueType Font Converters and Editors
PSS ID Number: Q87817

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The text below lists a number of commercial software tools that
convert existing fonts to TrueType fonts or help build new fonts. The
tools are listed in alphabetical order by name. None of these tools is
recommended over any other, nor over any that are absent from the
list. Each of the tools has its own strengths and weaknesses. Before
making any purchase, examine the tool and its documentation to see if
it meets your needs. This list will be updated as more tools become
available.

Some of the following tools run on an Apple Macintosh while others run
on an IBM PC/AT or compatible computer. The same TrueType font can run
on a Macintosh or with Microsoft Windows operating system version 3.1.

To convert a font from the Macintosh to Windows 3.1, save the data
fork from a Macintosh font to a file, copy the file to an
MS-DOS-formatted disk, give the file a .TTF file extension, and use
the Windows 3.1 Control Panel to install the font.

The products included here are manufactured by vendors independent of
Microsoft; we make no warranty, implied or otherwise, regarding these
products' performance or reliability.

MORE INFORMATION
================

Last Update: 24 July 1992

 FONT CONVERSION UTILITIES
 =========================

AllType for MS-DOS

Author: Atech Software
 5964 La Place Court, Suite 125
 Carlsbad, CA 92008
 (619) 438-6883

Description: Character-based application running under MS-DOS.
 Converts almost any font format to any other. Supported
 formats include TrueType, Type-1, Type-3, Nimbus-Q, and
 Intellifont.

Evolution 2.0 for Macintosh

Author: Image Club Graphics, Inc.
 1902 11th St. SE, Suite 5
 Calgary, Alberta, Canada T2G 3G2
 (403) 262-8008
Description: Converts almost any font format to any other. Supported
 formats include TrueType, Type-1, and Type-3.

FontMonger for Windows
FontMonger for Macintosh

Author: Ares Software
 561 Pilgrim Drive, Suite D
 Foster City, CA 94404
 (415) 578-9090
Description: Converts almost any font format to any other. Supported
 formats include TrueType, Type-1, Type-3, and
 Intellifont. Also provides minor font editing by
 creating composite characters or rearranging the
 characters in a font.

Incubator for Windows

Author: Type Solutions, Inc.
 91 Plaistow Rd
 Plaistow, NH 03865
 (603) 382-6400
Description: Supports adding effects to TrueType fonts. Contact Type
 Solutions for more information.

Metamorphosis Professional for Macintosh
--

Author: Altsys Corp.
 269 W. Renner Rd
 Richardson, TX 75080
 (214) 680-2060
Description: Converts almost any font format to any other. Supported
 formats include TrueType, Type-1, Type-3, and PICT
 format. One interesting feature allows the user to read
 a Type-1 font from the ROM of an Apple LaserWriter
 printer and convert the font to another format.

 FONT EDITORS
 ============

Fontographer 3.5 for Windows
Fontographer 4.1 for Macintosh

Author: Altsys Corp.
 269 W. Renner Rd
 Richardson, TX 75080
 (214) 680-2060
Description: A complete font editing tool. Supports creating a font
 from scratch and modifying existing fonts. Supports a
 variety of formats including TrueType and Type-1.
 Includes an autohinter.

FontStudio 2.0 for Macintosh

Author: Letraset Graphic Design Software
 40 Eisenhower Dr
 Paramus, NJ 07653
 (800) 343-TYPE or (201) 845-6100
Description: A complete font editing tool. Supports creating fonts
 from scratch and modifying existing fonts. Supports a
 variety of formats including TrueType and Type-1.
 Includes an autohinter.

TypeMan 1.0 for Macintosh

Author: Type Solutions, Inc.
 91 Plaistow Rd
 Plaistow, NH 03865
 (603) 382-6400
Description: Designed for font foundries, this tool provides precise
 control over the hints in a font and includes an
 autohinter. Supports specifying a font in a high-level
 programming language, which the tool compiles to the
 binary TrueType format.

Additional reference words: 3.10 3.50 4.00 95 true type
KBCategory: kbgraphic
KBSubcategory: GdiTt

Trusted DDE Shares
PSS ID Number: Q128125

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.5

SUMMARY
=======

To allow someone else to connect to DDE shares when you are logged in, you
have to trust your existing DDE share. The reason is that when the other
person connects to the share remotely, the application he will connect to
is running in your security context, not the remote user's, because you are
the logged-on user. You need to give permission for the other person to
access the share. Even another person who is an administrator cannot trust
a share for your account.

In your code, you would use NDdeShareAdd() to create the share and
NDdeSetTrustedShare() to trust the share.

Alternatively, you can use DDESHARE to create the share. For more
information on DDESHARE, please see the following article in the Microsoft
Knowledge Base:

 ARTICLE-ID: Q114089
 TITLE : Using the Windows NT NetDDE Share Manager

If you have a DDE share that always needs to be available, you can write
a program that trusts the specific shares and sets up a logon script
to trust the share for every user. The logon script should be a .BAT
file that calls the .EXE file, so that you can add other things to the
logon script as necessary.

MORE INFORMATION
================

The online documentation for NDdeSetTrustedShare says:

 The NDdeSetTrustedShare function is called to promote the
 referenced DDE share to trusted status within the current
 user's context.

DDE shares are a machine resource, not an account resource, just as
shared drives are. However, NetDDE runs an application that must run
in the context of the current user. This is the reason that the share
must be trusted, so that the application can run in the user's context.

The prototype for the function is:

 UINT NDdeSetTrustedShare(lpszServer, lpszShareName, dwTrustOptions)

The parameter lpszServer is the address of the server name on which the
DDE share resides. The DDE Share Database (DSDM) will be modified. This
service manages the shared DDE conversations and is used by the NetDDE
service. This parameter will generally be the current machine, because
you can't trust a share for someone else.

The dwTrustOptions are NDDE_TRUST_SHARE_START and NDDE_TRUST_SHARE_INIT.
NDDE_TRUST_SHARE_START allows the DDE server, such as Excel, to be
started in the user's context. This allows a DDE client to make a NetDDE
connection without the DDE server already running. When the NetDDE agent
on the server machine detects the attempted connection, it launches the
associated DDE server application if it is not already running.

NDDE_TRUST_SHARE_INIT allows a client to initiate to the DDE server if it
is already executing in the user's context. This allows a DDE client to
make a NetDDE connection to a DDE server already running on the server
machine. If the DDE server is not already running, the connection will
fail.

Additional reference words: 3.50
KBCategory: kbui
KBSubcategory: UsrNetDde

Types of File I/O Under Win32
PSS ID Number: Q99173

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

There are multiple types of file handles that can be opened using the Win32
API and the C Run-time:

 Returned Type File Creation API API Set

 HANDLE CreateFile() Win32
 HFILE OpenFile()/_lcreat() Win32
 int _creat()/_open() C Run-time
 FILE * fopen() C Run-time

In general, these file I/O "families" are incompatible with each other. On
some implementations of the Win32 application programming interfaces
(APIs), the OpenFile()/_lcreat() family of file I/O APIs are implemented as
"wrappers" around the CreateFile() family of file I/O APIs, meaning that
OpenFile(), _lcreat(), and _lopen() end up calling CreateFile(), returning
the handle returned by CreateFile(), and do not maintain any state
information about the file themselves. However, this is an implementation
detail only and is NOT a design feature.

NOTE: You cannot count on this being true on other implementations of the
Win32 APIs. Win32 file I/O APIs may be written using different methods on
other platforms, so reliance on this implementation detail may cause your
application to fail.

The rule to follow is to use one family of file I/O APIs and stick with
them--do not open a file with _lopen() and read from it with ReadFile(),
for example. This kind of incorrect use of the file I/O APIs can easily be
caught by the compiler, because the file types (HFILE and HANDLE
respectively) are incompatible with each other and the compiler will warn
you (at warning level /w3 or higher) when you have incorrectly passed one
type of file handle to a file I/O API that is expecting another, such as
passing an HFILE type to ReadFile(HANDLE, ...) in the above example.

MORE INFORMATION
================

Compatibility

The OpenFile() family of file I/O functions is provided only for

compatibility with earlier versions of Windows. New Win32-based
applications should use the CreateFile() family of file I/O APIs, which
provide added functionality that the earlier file I/O APIs do not provide.

Each of the two families of C Run-time file I/O APIs are incompatible with
any of the other file I/O families. It is incorrect to open a file handle
with one of the C Run-time file I/O APIs and operate on that file handle
with any other family of file I/O APIs, nor can a C Run-time file I/O
family operate on file handles opened by any other file I/O family.

_get_osfhandle()

For the C Run-time unbuffered I/O family of APIs [_open(), and so forth],
it is possible to extract the operating system handle that is associated
with that C run-time handle via the _get_osfhandle() C Run-time API. The
operating system handle is the handle stored in a C Run-time internal
structure associated with that C Run-time file handle. This operating
system handle is the handle that is returned from an operating system call
made by the C Run-time to open a file [CreateFile() in this case] when you
call one of the C Run-time unbuffered I/O APIs [_open(), _creat(),
_sopen(), and so forth].

The _get_osfhandle() C Run-time call is provided for informational purposes
only. Problems may occur if you read or write to the file using the
operating system handle returned from _get_osfhandle(); for these reasons
we recommend that you do not use the returned handle to read or write to
the file.

_open_osfhandle()

It is also possible to construct a C Run-time unbuffered file I/O handle
from an operating system handle [a CreateFile() handle] with the
_open_osfhandle() C Run-time API. In this case, the C Run-time uses the
existing operating system handle that you pass in rather than opening the
file itself. It is possible to use the original operating system handle to
read or write to the file, but it is very important that you use only the
original handle or the returned C Run-time handle to access the file, but
not both, because the C Run-time maintains state information that will not
be updated if you use the operating system handle to read or write to the
file.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseFileio

Types of Thunking Available in Win32 Platforms
PSS ID Number: Q125710

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.50 and 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s version 1.3

SUMMARY
=======

Thunks allow code on one side of the 16-32 process boundary to call into
code on the other side of the boundary. Each Win32 platform employs one or
more thunking mechanisms. This table summarizes the thunking mechanisms
provided by the different Win32 platforms.

 +-Win32s-+-Windows 95-+-Windows NT-+
 Generic Thunk | | X | X |
 +--------+------------+------------+
 Universal Thunk | X | | |
 +--------+------------+------------+
 Flat Thunk | | X | |
 +--------+------------+------------+

Generic Thunks allow a 16-bit Windows-based application to load and call
a Win32-based DLL on Windows NT and Windows 95.

Windows 95 also supports a thunk compiler, so a Win32-based application
can load and call a 16-bit DLL.

Win32s Universal Thunks allow a Win32-based application running under
Win32s to load and call a 16-bit DLL. You can also use UT to allow a 16-
bit Windows-based application to call a 32-bit DLL under Win32s, but
this isn't officially supported. Certain things do not work on the 32-
bit side because the app was loaded with the context of a 16-bit
Windows-based application.

This article describes the types of thunking mechanisms available on each
Win32 platform.

MORE INFORMATION
================

Windows NT

Windows NT supports Generic Thunks, which allow 16-bit code to call into
32-bit code. Generic Thunks must be initiated from a 16-bit Windows-based
application. Once the thunk is established, the 32-bit code can make a
callback to the 16-bit code using WOWCallback16(). The generic thunk is

implemented by using a set of API functions that are exported by the WOW
KERNEL and WOW32.DLL.

In Windows NT, 16-bit Windows-based applications are executed in a
subsystem (or environment) called WOW (Windows On Win32). Each application
runs as a thread in a VDM (virtual DOS machine).

Using generic thunks is like explicitly loading a DLL. The four major APIs
used in generic thunking are: LoadLibraryEx32W(), FreeLibrary32W(),
GetProcAddress32W(), and CallProc32W(). Their functionality is very similar
to LoadLibraryEx(), FreeLibrary(), GetProcAddress(), and calling the
function through a function pointer. The Win32-based DLL called by the
thunk is loaded into the VDM address space. The following is a example of
thunking a call to GetVersionEx():

 void FAR PASCAL __export MyGetVersionEx(OSVERSIONINFO *lpVersionInfo)
 {
 HINSTANCE32 hKernel32;
 FARPROC lpGetVersionEx;

 // Load KERNEL32.DLL
 if (!(hKernel32 = LoadLibraryEx32W("KERNEL32.DLL", NULL, NULL)))
 {
 MessageBox(NULL, "LoadLibraryEx32W Failed", "DLL16", MB_OK);
 return;
 }

 // Get the address of GetVersionExA in KERNEL32.DLL
 if (!(lpGetVersionEx =
 GetProcAddress32W(hKernel32, "GetVersionExA")))
 {
 MessageBox(NULL, "GetProcAddress32W Failed", "DLL16", MB_OK);
 return;
 }
 lpVersionInfo->dwOSVersionInfoSize = sizeof(OSVERSIONINFO);

 // Call GetVersionExA
 CallProc32W(lpVersionInfo, lpGetVersionEx, 1, 1);

 // Free KERNEL32.DLL
 if (!FreeLibrary32W(hKernel32))
 {
 MessageBox(NULL, "FreeLibrary32W Failed", "DLL16", MB_OK);
 return;
 }
 return;
 }

Win32s

All 16-bit Windows-based and Win32-based applications run in a single
address space in Win32s. The mechanism that is provided for accessing
16-bit code from 32-bit code is called the Universal Thunk. The Universal
Thunks consists of 4 APIs. The major APIs, UTRegister() and UTUnRegister(),

are exported by KERNEL32. The prototype for UTRegister() is:

 BOOL UTRegister(HANDLE hModule, // Win32-based DLL handle
 LPCTSTR lpsz16BITDLL, // 16-bit DLL to call
 LPCTSTR lpszInitName, // thunk initialization procedure
 LPCTSTR lpszProcName, // thunk procedure
 UT32PROC *ppfn32Thunk, // pointer to thunk procedure
 FARPROC pfnUT32CallBack, // optional callback
 LPVOID lpBuff); // shared memory buffer

NOTES: lpszInitName, pfnUT32CallBack, and lpBuff are optional parameters.
The value for ppfn32Thunk is the returned value of the 32-bit function
pointer to the thunk procedure. The buffer lpBuff is a globally allocated
shared memory buffer that is available to the 16-bit initialization routine
via a 16-bit selelctor:offset pointer.

The function pointer returned in ppfn32Thunk has the following syntax:

 WORD (*ppfn32Thunk)(lpBuff, dwUserDefined, *lpTranslationList);

where lpBuff is the pointer to the shared data area, dwUserDefined is
available for application use (it is most commonly used as a switch
for multiple thunked functions), and lpTranslationList is an array of flat
pointers within lpBuff that are to be translated into selector:offset
pointers.

This method is not portable to other platforms.

Windows 95

Thunking in Windows 95 allows 16-bit code to call 32-bit code and vice-
versa. The mechanism used is a thunk compiler. To use the thunk compiler
you need to create a thunk script, which is the function prototype with
additional information about input and output variables. NOTE: These thunks
are not portable to other platforms.

The thunk compiler produces a single assembly language file. This single
assembly language file should be assembled using two different flags -
DIS_32 and -DIS_16 to produce a 16-bit and 32-bit object files. These
object modules should be liked to their respective 16-bit and 32-bit DLL's.
There are no special APIs used, all you have to do is call the function.

In addition to Flat Thunks, Windows 95 supports the Windows NT Generic
Thunk mechanism. Generic thunks are recommended for portability between
Windows 95 and Windows NT.

REFERENCES
==========

For more information on Generic Thunks, see GENTHUNK.TXT on the Win32 SDK
CD.

For more information on the Universal Thunk, see the "Win32s Programmer's
Reference" and the UTSAMP sample on the Win32 SDK CD.

Additional reference words: 1.30 3.50 4.00
KBCategory: kbprg
KBSubcategory: SubSys BseMisc W32s

Understanding Disk Volume Tracking in Windows 95
PSS ID Number: Q150582
--
The information in this article applies to:

 - Microsoft Win32 Application Programming Interface included with:
 Microsoft Windows 95 version 4.0
--

SUMMARY
=======

When users insert a disk in a floppy disk drive, Windows 95 tracks the
disk to prevent the user from opening a file, removing the disk,
and inadvertently inserting a different disk. Through this behavior,
Windows 95 helps users guard against corrupting the data on their
disks. This article explains how Windows 95 tracks disks and
discusses instances where software developers can consider overriding the
default mechanism Windows 95 uses to perform this task.

MORE INFORMATION
================

Volume Tracking Overview

One part of the Windows 95 disk system is a driver called the Volume
Tracking Driver. Its purpose is to uniquely identify disks and ensure that
the correct disk is in the floppy disk drive when data is written to a
file. The Volume Tracking Driver intercepts all writes to the floppy disk
drive and, when it detects an invalid write operation, displays a text-
mode blue screen prompting users to either insert the original disk or
cancel the invalid write operation. There is no way to prevent Windows 95
from displaying this blue screen because it serves as a warning to users
that an error has been made that could result in data loss.

The Volume Tracking Driver uniquely identifies disks by writing a
volume tracking serial number in the OEM ID field (offsets 0x3-0xB) of the
boot record, which is stored in the boot sector of the disk. This
serial number is different than the volume serial number created when the
disk is formatted and is used solely by the Volume Tracking Driver. The
Volume Tracking Driver assigns a volume tracking serial number the first
time a disk is inserted since Windows was last started. That number
identifies that particular disk until Windows 95 is restarted.

How to Override the Default Volume Tracking Method
--

There are times when the Volume Tracking Driver cannot or should not be
allowed to overwrite the OEM ID field of the boot record of a disk. For
example, write-protected disks physically prevent the Volume Tracking
Driver from overwriting the OEM ID field. Also, some software programs,
such as backups, rely on the OEM ID field to determine whether the disk
contains valid data. For instance, if a utility program stores a name in

the OEM ID field and the Volume Tracking Driver overwrites this
information, the disk becomes useless if the backup software checks for
the name.

When the Volume Tracking Drive is prevented from overwriting the OEM ID
field on a disk, it stores the disk's volume serial number and
label in memory and uses the combination of these to identify the disk.
Although this method does not modify the disk, it is slower than
storing a unique ID on the disk itself.

Although the Volume Tracking Driver cannot be disabled, it can be prevented
from modifying the OEM ID field of specific types of disks if the
following value is created for the registry key:

 HKEY_LOCAL_MACHINE\System\CurrentControlSet\control\
 FileSystem\NoVolTrack

The values in this key form a table of patterns and offsets that the Volume
Tracking Driver uses to determine which disks should not be modified.
When a new disk is inserted, the Volume Tracking Driver scans this
table looking for each pattern at its corresponding offset in the
disk's boot sector. If it finds a pattern, it does not update the OEM
ID field in the disk's boot record, but rather identifies the disk
by its volume serial number and label.

Each value of the NoVolTrack key is binary data formatted as a two-byte
offset in little-endian order followed by an arbitrarily long sequence of
bytes that make up a pattern. The Volume Tracking Driver ignores the label
of each value, but the labels are used to aid human readers in
understanding the type of disk to which the value refers. An example
table of values looks like the following:

 NoVolTrack
 Label Offset Pattern
 ------- ------ --------------------
 MyDisk 0050h MyDisk
 COOL 0100h COOL

In the Registry Editor, this table looks like the following:

 MyDisk 50 00 4D 79 44 69 73 6B
 COOL 00 01 43 4F 4F 4C

If your software relies on the OEM ID in the boot record of disks it
uses, you need to register your "disk type" by adding it to the table
of values in the NoVolTrack registry key.

Additional reference words: 4.00 floppy disk boot sector diskette
KBCategory: kbprg kbhowto
KBSubcategory: BseFileio

Understanding Volume-Level Security on Windows NT
PSS ID Number: Q150101

The information in this article applies to:

- Microsoft Win32 Application Programming Interface (API) included with
 Microsoft Windows NT, versions 3.5, 3.51, 4.0

SUMMARY
=======

This article describes how volume-level security behaves, and how it
differs from the file- and directory-level security provided by the New
Technology File System (NTFS).

Microsoft Windows NT provides auditing and access control facilities for
physical and logical volumes. Conceptually, volume-level security is
designed to control volume-level access, such as formatting operations,
rather than file- and directory-level operations. Volume-level security
also minimally protects logical volumes that are not formatted with NTFS,
such as floppy disks and compact discs.

MORE INFORMATION
================

Windows NT was designed to have security descriptors applied to volumes
control and audit volume-level access such as formatting a disk or reading
raw disk sectors. The file system with which the logical volume is
formatted is responsible for control and auditing of access to files and
directories. Currently, the only file system to support file- and directory-
based security is NTFS.

There are two types of volume-level operations that need to be understood:
physical drive access and logical volume access. Physical drive access
allows Win32-based applications to manage hard disk partition tables and
logical volumes. Logical volume access allows Win32-based applications to
manage the contents of a partition below the file system level. Logical
volume access is most often used to format a partition with a particular
file system, such as FAT or NTFS. The following sections explain how volume-
level security applies to each type of volume-level access.

Physical Drive Security

Win32-based applications can open handles to physical hard disk drives for
low-level access by calling CreateFile() with \\.\PHYSICALDRIVEx, where x
is the zero-based physical drive number. Once the applications have a
handle, they can use DeviceIoControl() to call IOCTL functions, or
ReadFile() and WriteFile() to perform sector reads and writes.

Access to physical drives is a built-in right of the Administrators group
and does not need to be enabled. Users who are not members of the
Administrators group cannot open physical drives under any circumstances.

Although any member of the Administrators group can enable access control
and auditing on physical drives, doing so provides little value for two
reasons, the first leading to the second:

1. Adding access control lists (ACLs) to a physical drive does not control
 or audit access to the logical volumes on the drive, or to files and
 directories within those logical volumes. Instead, the ACLs are used to
 control and audit access to the physical drive itself, such as opening
 the physical drive with CreateFile() using \\.\PHYSICALDRIVEx.

2. Because only members of the Administrators group can access physical
 drives, the only use for an ACL on a physical drive is to control or
 audit the access that they have. Because members can change the ACLs on
 physical drives, their access is not truly limited.

Finally, the ACLs applied to physical drives are in effect only until the
system is shut down or restarted.

Logical Volume Security

Win32-based applications can open logical volumes with CreateFile() by
specifying the file name as \\.\X:, where X is the actual drive letter.
Once this is done, the applications can use the handle to issue IOCTL
functions or read and write raw sectors.

Specifying access control on a logical volume controls access to the
logical volume itself and to all of the files and directories contained by
the volume allows Windows NT to provide a basic level of security to media
that is not formatted with NTFS, such as floppy disks, compact discs, and
hard disk partitions formatted with the FAT file system.

Access controls applied to removable media affect access to the drive, not
just to the media that was in the drive when the drive was secured. For
example, if users are prevented from accessing A:\, they are not able to
use drive A:, no matter which floppy disk is inserted.

Although access control protects a logical volume and all of its contents,
auditing only records accesses to the volume itself. Accesses to files and
directories within the volume are not recorded. This is analogous to the
way NTFS audits directories; only access to the directory itself is
audited. Thus, opening a logical volume by specifying \\.\X: as a file name
to CreateFile(), causes an entry to be placed in the security event log
while opening a file on the same volume does not.

Auditing and access control apply to logical volumes only as long as the
system is running. If you want to control access to or audit logical
volumes after the machine has been restarted, you must reapply the
security.

How to Enable Volume-Level Security

Access control and auditing are enabled by placing access control lists

(ACLs) on the volume. The discretionary ACL (DACL) provides access control
information, while the system ACL (SACL) provides auditing. To apply ACLs
to a volume, create a security descriptor with the desired ACLs, and then
use SetFileSecurity() to apply it. SetFileSecurity() can be used on both
physical and logical volumes and in addition to files and directories, as
follows:

 - Physical volumes must be specified as a string in the form
 \\.\PHYSICALDRIVEx, where x is the zero-based drive number.

 - Logical volumes must be specified as a string in the form \\.\x:,
 where x is the actual drive letter of the volume.

Additional reference words: 3.50 3.51 4.00 NTFS CD-ROM
KBCategory: kbprg
KBSubcategory: BseSecurity

Understanding Win16Mutex
PSS ID Number: Q125867

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Windows 95 offers preemptive multithreaded scheduling for Win32 processes,
yet also provides the familiar non-preemptive task switching found in
Windows 3.x for Win16 applications. Some of the Win32 system DLLs, such as
USER32.DLL and GDI32.DLL, thunk to their 16-bit counterparts for
compatibility and size. Unlike Windows 3.x, which did not preemptively
schedule processes, Windows 95 must be able to handle the possibility that
it might be reentered by two or more processes each calling the same API
functions. Windows 95 must do so in a way that uses little memory and is
compatible with all existing 16-bit applications and DLLs.

Win16Mutex is a global semaphore that is used to protect the 16-bit Windows
95 components from being reentered by preventing Win32 threads from
thunking to 16-bit components while other 16-bit code is running.
Win16Mutex is internal to Windows 95 and is not accessible from
applications or DLLs. This article explains how Win16Mutex works and offers
design tips for minimizing the effects Win16Mutex may have on Win32
applications.

MORE INFORMATION
================

Because Windows 3.x is a non-preemptive system, Windows 3.x did not need to
be designed to prevent the system from being reentered. Only one task
(application instance) at a time can call system services (API functions)
because other tasks cannot run until the active task voluntarily yields
control of the CPU. Since only one task can execute at a time, it is not
possible to have two different tasks calling the same API function, and
thus Windows does not need to protect itself from reentrancy.

Windows 95 differs from Windows 3.x because Windows 95 provides support for
both Win32 and Win16 applications. In Windows 95, every instance of every
Win16 application is a process with exactly one thread, and every Win32
process has at least one thread. Win32 threads are preemptively scheduled
and may even preempt Win16 processes. Because many Win32 API functions are
thunked to 16-bit Windows API functions, there is now a possibility for the
16-bit Windows components to be reentered. Since the 16-bit Windows
components are largely the same as in Windows 3.x, they need to be
protected from being reentered.

The Win16Mutex provides this protection by allowing only one thread (not
process) at a time to access the 16-bit APIs. Whenever Win16Mutex is owned

by a thread, any other thread that tries to claim Win16Mutex will block
until Win16Mutex is released. Now the question remains: "When does
Win16Mutex get claimed and released?"

Whenever a Win16 process is running, it owns Win16Mutex. That is, when a
Win16 process first gets a message via GetMessage or PeekMessage, the Win16
process claims Win16Mutex. The Win16 process releases Win16Mutex whenever
the process yields, such as when the process calls GetMessage or
PeekMessage and doesn't return. The only way a Win16 process can keep
Win16Mutex indefinitely is to never yield; since the message-processing
mechanism provides the scheduler in 16-bit Windows, the only way to never
yield is to stop processing messages (which makes the application
unresponsive to user input).

The only time a thread in a Win32 process claims Win16Mutex is when the
thread makes a call to an API function which thunks to one of the 16-bit
Windows components or when the thread thunks directly to a Win16 DLL.
Immediately after the call returns, the process releases Win16Mutex. Not
all API functions thunk to 16-bit components; most 32-bit USER and GDI
functions thunk to 16-bit USER and GDI, but none of the 32-bit KERNEL
functions thunk to 16-bit KRNL386. One exception is when a Win32 process
spawns a Win16 process, KERNEL32 thunks to KRNL386 to call the Win16
loader.

Putting 16-bit and 32-bit behaviors together, you can see that when a Win16
process is running, and a thread of a Win32 process preempts the Win16
process and calls a function which thunks to a 16-bit component, the Win32
thread is put to sleep until the Win16 process yields, which releases
Win16Mutex. Likewise, when one Win32 process's thread claims Win16Mutex and
then loses its timeslice, and another thread from either the same or a
different process tries to claim Win16Mutex, the second thread blocks until
Win16Mutex is released.

Win16Mutex is internal to Windows 95 and may not be manipulated or even
checked by applications and DLLs. Win16Mutex is implemented mainly in the
thunk layer so that every Win32 API which thunks to a Win16 component will
automatically claim Win16Mutex before entering 16-bit code. Additionally,
thunks created by the thunk compiler to allow Win32 applications and DLLs
to call 16-bit DLLs claim Win16Mutex automatically, so programmers do not
have to do so explicitly.

One way to lessen the impact that Win16 applications have on the
responsiveness of Win32 applications is to create multiple threads where
the primary thread (the initial thread of the process) controls the entire
user interface for the process and each additional thread performs some
useful task, such as reading or writing to a data file, but does not make
user interface or graphics calls. This way, if the Win32 process's primary
thread blocks waiting for a Win16 process to yield, its other threads are
still performing useful work.

Additional reference words: 4.00
KBCategory: kbprg
KBSubcategory: BseProcThread

UNICODE and _UNICODE Needed to Compile for Unicode
PSS ID Number: Q99359

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

To compile code for Unicode, you need to #define UNICODE for the Win32
header files and #define _UNICODE for the C Run-time header files. These
#defines must appear before the

 #include <windows.h>

and any included C Run-time headers. The leading underscore indicates
deviance from the ANSI C standard. Because the Windows header files are not
part of this standard, it is allowable to use UNICODE without the leading
underscore.

Additional reference words: 3.10 3.50
KBCategory: kbui
KBSubcategory: UsrNls

Unicode Conversion to Integers
PSS ID Number: Q89295
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5
--

SUMMARY
=======

Under Windows NT, strings may be either Unicode or ANSI. There is no
function for reliably converting a string that might be either Unicode or
ANSI to an integer. This is because, given a random set of bytes, it is
difficult to determine whether the string is in Unicode or ANSI. The
calling program has to know which format the string uses in order to
convert it.

If the string uses Unicode, the functions wcstol(), wcstoul(), and wcstod()
can be used to perform the conversion.

Note that when you are using the Win32 application programming interface
(API), you can choose what kind of characters you get from the console or
window manager. The names of the API functions that are called to use
Unicode and ANSI characters are different. For more details, see Chapter 93
in the overview, "Unicode."

To mark a string as Unicode, insert the byte-ordering-mark (BOM) 0xFEFF in
the string and/or file.

MORE INFORMATION
================

You can assume that the first 128 bytes in each character set are in the
same codepoint. For portability, you should code character conversions in
this range as:

 {
 TCHAR c;
 ...
 i = c - TEXT('0');
 }

The TEXT macro places an "L" before the constant if Unicode is defined.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: WIntlDev

Unicode Functions Supported by Windows 95
PSS ID Number: Q125671
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)
--

Unlike Windows NT, Windows 95 does not implement the Unicode (or wide
character) version of most Win32 functions that take string parameters.
With some exceptions, these functions are implemented as stubs that simply
return success without modifying any arguments.

In general, Windows 95 implements the ANSI version of these functions.
See the Win32 API documentation for information on particular functions
and differences between the various Win32 platforms.

One major exception to this rule is OLE. All native 32-bit OLE APIs
and interface methods use Unicode exclusively. For more information on
this, please see the OLE documentation.

Excluding OLE, Windows 95 supports the wide character version of the
following functions:

 EnumResourceLanguages
 EnumResourceNames
 EnumResourceTypes
 ExtTextOut
 FindResource
 FindResourceEx
 GetCharWidth
 GetCommandLine
 GetTextExtentExPoint
 GetTextExtentPoint32
 GetTextExtentPoint
 lstrlen
 MessageBoxEx
 MessageBox
 TextOut

In addition, Windows 95 implements the following two functions for
converting strings to or from Unicode:

 MultiByteToWideChar
 WideCharToMultiByte

Additional reference words: 4.00
KBCategory: kbprg
KBSubcategory: WIntlDev

Unicode Implementation in Windows NT 3.1 and 3.5
PSS ID Number: Q103977

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

Windows NT is the first widely available operating system to be built
upon the Unicode character encoding. Almost all of the strings used in
the system have 16-bits reserved for each character. However, Windows
NT does not yet realize the Unicode ideal of offering an editor
capable of handling one document containing all of the languages of
the world.

MORE INFORMATION
================

Unicode support in Windows NT:

 - All Windows USER objects support Unicode strings.
 - The Win32 console is Unicode enabled.
 - NTFS supports Unicode filenames.
 - All of the information strings in the registry are Unicode.
 - The L_10646.TTF (Lucida Sans Unicode) font covers over 1300 Unicode
 characters.
 - Most of the TrueType fonts include a Unicode encoding table.

Unicode features missing from Windows NT:

 - There is no font support for all of the Unicode characters.
 - Although the Win32 console is Unicode enabled, it is not possible to
 use Unicode fonts in the console. Most Unicode characters will be
 represented by the "default character" of the System font.
 - Winhlp32 is not Unicode enabled.
 - There is no general Unicode input method in Windows NT version 3.1. The
 shell applets and File Manager fully support Unicode. You can use the
 new Notepad and Character Mapper applets to create files with Unicode
 text. (Choose the Lucida Sans Unicode font in the Character Mapper, then
 choose the desired Unicode characters in the Character Mapper and copy
 them to the clipboard. Paste the clipboard contents into Notepad, making
 sure Notepad has the Lucida Sans Unicode font selected, and save the
 file as a "Unicode Files". Note, this same process can be used to give
 files Unicode filenames.)
 - The FAT and HPFS file systems do not support Unicode filenames.
 (Nor will they in the future; to accomplish this, use NTFS.)

Additional reference words: 3.10 3.50
KBCategory: kbui

KBSubcategory: UsrNls

Unimodem Only Supports INTERACTIVEVOICE for Outbound Calls
PSS ID Number: Q132192
--
The information in this article applies to:

 - Microsoft Windows Telephony Software Development Kit (SDK)
 version 1.0, for Windows version 3.1
 - Microsoft Win32 Software Development Kit (SDK), versions 3.51 and 4.0
--

SUMMARY
=======

Even though the Unimodem reports that it supports
LINEMEDIAMODE_INTERACTIVEVOICE in LINEDEVCAPS.dwMediaMode, it only
supports INTERACTIVEVOICE for outbound calls. If an application opens a
line for both LINEMEDIAMODE_INTERACTIVEVOICE and LINECALLPRIVILEGE_OWNER,
lineOpen fails with LINEERR_INVALMEDIAMODE.

MORE INFORMATION
================

Unimodem is designed to handle data calls, not voice calls. However, it
does provide the ability to dial the phone for use with normal,
interactive voice phone calls. This is done by supporting the
LINEMEDIAMODE_INTERACTIVEVOICE media mode as indicated in
LINEDEVCAPS.dwMediaMode. However, because Unimodem only supports dialing
INTERACTIVEVOICE and not answering INTERACTIVEVOICE calls, it fails a
lineOpen for LINEMEDIAMODE_INTERACTIVEVOICE that includes
LINECALLPRIVILEGE_OWNER.

The suggested solution is to first attempt to lineOpen the line for
LINEMEDIAMODE_INTERACTIVEVOICE and LINECALLPRIVILEGE_OWNER. If this fails,
then attempt to open with LINECALLPRIVILEGE_NONE (or MONITOR privileges).
If this succeeds, then the application can make, but not receive
INTERACTIVEVOICE calls and should indicate this capability to the user.

Additional reference words: 1.00 4.00
KBCategory: kbprg
KBSubcategory: TAPI

Uniqueness Values in User and GDI Handles
PSS ID Number: Q94917

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

User and GDI handles, are divided into two parts:

 - The lower 16 bits is an index into a system table of handle
 structures, which includes information such as the type of handle
 (window, menu, cursor, and so forth), as well as a value called the
 uniqueness.

 - The upper 16 bits contain the same uniqueness value.

The first time a handle is issued by the system, the uniqueness value is 0
(zero). It is incremented each time the handle is re-used. In Windows NT
3.1, if you pass in a value of 0xFFFF for the uniqueness, the client side
(that is, USER32.DLL) will look up the correct uniqueness value in shared
memory and use the correct handle. In Windows NT 3.5, use 0x0000 for the
uniqueness value.

This is important because it alleviates potential conflicts with re-used
handles. For example, when a window is destroyed, its handle is reused by
the system. The uniqueness value prevents an old handle to a destroyed
window from being misinterpreted by the system as the handle to a new
object, which was given the same handle value.

MORE INFORMATION
================

In Win32s, use 0x0000 in the upper 16 bits for the uniqueness.

Additional reference words: 3.10 3.50
KBCategory: kbui
KBSubcategory: UsrMisc

Use 16-Bit .FON Files for Cross-Platform Compatibility
PSS ID Number: Q100487

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

The AddFontResource() function installs a font resource in the GDI font
table. Under Windows NT and Windows 95, the module can be a .FON file or a
.FNT file. Under Windows 3.1, the module must be a .FON file. When using
Win32s, AddFontResource() passes its argument to the Win16 AddFontResource,
and therefore .FON files should be used for portability.

In addition, when running under Windows NT or Windows 95, the module can be
either a 32-bit "portable executable" or a 16-bit .FON file. However, if
the same Win32 executable is run under Win32s, the call to
AddFontResource() fails if the .FON is not in 16-bit format. Therefore, for
compatibility across platforms, use 16-bit .FON files. These can be created
using the Windows 3.1 Software Development Kit (SDK).

Additional reference words: 3.10 3.50 4.00
KBCategory: kbgraphic
KBSubcategory: GdiFnt

Use LoadLibrary() on .EXE Files Only for Resources
PSS ID Number: Q108448

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

The LoadLibrary() application programming interface (API) can be used to
load an executable module. A common use of this function is to load a
dynamic-link library (DLL), perform a subsequent call to GetProcAddress()
to get the address of an exported DLL routine, and call this DLL routine
through the address that is returned. Another use of LoadLibrary() is to
load an executable module and retrieve its resources.

In Windows NT, a LoadLibrary() of an .EXE file is supported only for the
purposes of retrieving resources. It was decided that it was rather
uncommon to load an .EXE for any other purpose, so this limitation was
imposed on LoadLibrary() to improve the performance in loading resources.
Calling a routine in an .EXE through an address obtained with
GetProcAddress() can cause an access violation.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseMisc

Use MoveWindow to Move an Iconic MDI Child and Its Title
PSS ID Number: Q70079

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.5

Although Windows does not have application programming interface (API)
calls to support dragging iconic windows (windows represented by an icon),
calls to MoveWindow() can be used to implement a dragging functionality for
iconic multiple-document interface (MDI) child windows.

However, the icon's title is not in the same window as the icon, so
when the icon is moved, the title will not automatically move with it.
The title is in a small window of its own, so a separate call to
MoveWindow() must be made to place the title window correctly below
the icon.

The information below describes how to get the window handle for the
small title window, so that the appropriate call to MoveWindow() can
be made.

The icon's title window is a window of class #32772. This window is a
child of the MDI client window, and its owner is the icon window.

To get the window handle to the appropriate icon title window for a
given icon, enumerate all the children of the MDI client window,
looking for a window whose owner is the icon.

You can use EnumChildWindows() to loop through all the children of the
MDI client window.

You can use GetWindow(..., GW_OWNER) to check the parent of each
window.

Additional reference words: 3.00 3.10 3.50
KBCategory: kbui
KBSubcategory: UsrMdi

Use of Allocations w/ cbClsExtra & cbWndExtra in Windows
PSS ID Number: Q11606

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

The following is an explanation of the use of the allocations with
cbClsExtra and cbWndExtra?:

1. cbClsExtra -- extra bytes to allocate to CLASS data structure in
 USER.EXE local heap when RegisterClass() is called. Accessed by
 Get/Set CLASS Word/Long ();.

2. cbWndExtra -- extra bytes to allocate to WND data structure in
 USER.EXE local heap when CreateWindow() is called. Accessed by
 Get/Set WND Word/Long ();.

You can use these structures at your discretion and for any purpose you
desire.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbui
KBSubcategory: UsrCls

Use of DLGINCLUDE in Resource Files
PSS ID Number: Q91697
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5,
 3.51, and 4.0
--

SUMMARY
=======

The dialog editor needs a way to know what include file is associated with
a resource file that it opens. Rather than prompt the user for the name of
the include file, the name of the include file is embedded in the resource
file in most cases.

MORE INFORMATION
================

Embedding the name of the include file is done with a resource of type
RCDATA with the special name DLGINCLUDE. This resource is placed into the
.RES file and contains the name of the include file. The dialog editor
looks for this resource when it loads a .RES file. If this resource is
found, then the include file is opened also; if not, the editor prompts the
user for the name of the include file.

In some Windows 3.1 build environments, the dialog editor was used to
create dialogs that were placed in more than one .DLG file. These different
.DLG files were then included in one .RC file, which was compiled with the
resource compiler. Therefore, the resource file gets multiple copies of a
RCDATA type resource with the same name, DLGINCLUDE, but the resource
compiler and dialog editor don't complain.

In the Win32 SDK, changes were made so that this resource has its own
resource type; it was changed from an RCDATA-type resource with the
special name, DLGINCLUDE, to a DLGINCLUDE resource type whose name can
be specified. The dialog editor would look for resources of the type
DLGINCLUDE.

We are being more strict about the need for resources to be unique in the
Win32 SDK than the Windows 3.1 SDK. This is good because there was never
any guarantee at run time as to which of the two or more resources would be
returned by LoadResource().

This means that some applications being ported to Windows NT give an error
when their resources are compiled because they have duplicate RCDATA type
resources with the same name (DLGINCLUDE). This error is by design. The
workaround is straightforward: delete all the DLGINCLUDE RCDATA type
resource statements from all the .DLG files.

Finally, because it does not make sense to have the DLGINCLUDE type
resources in the executable, the linker will strip them out so that they
don't get linked into the EXE.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsDlg

Use of DocumentProperties() vs. ExtDeviceMode()
PSS ID Number: Q92514

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

Windows-based applications have used ExtDeviceMode() to retrieve or modify
device initialization information for printer drivers. The Win32 API
introduces a new function DocumentProperties() that applications can use to
configure the settings of the printer.

Note that ExtDeviceMode() calls DocumentProperties(); therefore, it is
faster for applications to use DocumentProperties() directly.

Specifying the DM_UPDATE mask allows an application to change printer
settings when using DocumentProperties(). Applications should be aware
that the GetProcAddress() function is now case sensitive.

Windows-based applications running on Windows NT (WOW) can call
ExtDeviceMode(). The spooler's ExtDeviceMode() entry is intended for WOW
use.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprint
KBSubcategory: GdiPrn

Use of NULL_PEN, NULL_BRUSH, and HOLLOW_BRUSH
PSS ID Number: Q66532

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

GDI contains several "NULL" stock objects: NULL_BRUSH, HOLLOW_BRUSH, and
NULL_PEN. These objects are defined in WINDOWS.H (16-bit SDK) or in
WINGDI.H (32-bit SDK). These header files define HOLLOW_BRUSH as
NULL_BRUSH, so they are the same objects.

Note that NULL_BRUSH and NULL_PEN are NOT identical to the value NULL. The
value NULL is defined as 0 (zero) in WINDOWS.H and is not a valid stock
object.

Many GDI functions use the current brush to fill interiors and the current
pen to draw lines. In some cases, an application may not want to modify the
areas normally affected by the pen or brush. Selecting a NULL_PEN or
NULL_BRUSH into the device context tells GDI not to modify the normally
affected areas. In short, "NULL_" objects do not draw anything.

For example, the Rectangle() function uses the current brush to fill
the interior of the rectangle and the current pen to draw the border.
If NULL_PEN is selected into the device context, no border is drawn.
If NULL_BRUSH or HOLLOW_BRUSH is selected, the interior of the
rectangle is not painted. If both NULL_PEN and NULL_BRUSH are
selected, the rectangle will not be drawn.

Additional reference words: 3.00 3.10 3.50 4.00 95 hollow
KBCategory: kbgraphic
KBSubcategory: GdiPnbr

Use of Polygon() Versus PolyPolygon()
PSS ID Number: Q119164

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

Polygon() draws a polygon, while PolyPolygon() draws a series of polygons.
Using multiple calls to Polygon() can offer better performance than using a
single call to PolyPolygon(); this is because PolyPolygon() does not
consider the polygons to be independent, but considers them to be one
polygon with multiple disjointed edges. However, there are times when
PolyPolygon() is preferable, particularly if the number of polygons is
small.

MORE INFORMATION
================

PolyPolygon() batches polygons in a single call, so there is less call
overhead than there is for multiple calls to Polygon(). However, to perform
one combined fill, PolyPolygon() has to work with all the edges in all of
the polygons simultaneously, resulting in sorting overhead. The overhead
involved in sorting becomes quite expensive when there are a lot of
polygons, causing a net loss of performance in comparison to Polygon().

GDI batches multiple Polygon() calls to be more efficient. Setting the
batch limit higher than the default of 10 with GdiSetBatchLimit() improves
performance even further. GDI and some drivers optimize convex polygons,
but will only optimize a single polygon drawn with either Polygon() or
PolyPolygon().

Because PolyPolygon() treats all edges as part of one big polygon, it also
draws every pixel to be filled exactly once; this may be a performance
advantage if a lot of overlapping polygons are drawn, because Polygon()
draws every pixel in each polygon only once, even where there is an
overlap.

PolyPolygon() considers all the polygons when applying the current fill
mode, as set by calling SetPolyFillMode(). Consequently, if any polygons
overlap, the result of one PolyPolygon() call may be different than the
result of the equivalent multiple Polygon() calls. If the polygons overlap
and the raster operation takes the destination pixel values into account,
or if you want the fill rule to be applied to overlapping areas, then it is
preferable to use PolyPolygon().

Additional reference words: 3.10 3.50
KBCategory: kbgraphic
KBSubcategory: GdiDrw

Use Uppercase "K" for Keywords in Windows Help Files
PSS ID Number: Q64050
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
--

SUMMARY
=======

The standard keyword list must be defined by using capital "K" footnotes.
Lowercase "k" footnotes may not be used for defining either standard or
alternate keyword lists.

MORE INFORMATION
================

Using lowercase "k" footnotes can result in problems such as the following:

If your application calls WinHelp() using the HELP_KEY option for doing a
keyword search and you pass a LPSTR to a keyword defined in a footnote
attached to your topic, the Help system displays an "Invalid key word"
error message box. For example

 WinHelp(hWnd,cFileDir,HELP_KEY,(DWORD)(LPSTR)"help");

where

 hWnd is the handle of the calling window.
 cFileDir is the directory path and filename of the .HLP file.
 "help" is the keyword defined in the footnote section of the topic.

and the footnote section of the topic is as follows:

 k sample;help

Modifying the footnote for the topic to use an uppercase "K" solves the
problem.

 K sample;help

Additional reference words: 3.00 3.10 3.50 4.00 95 key word
KBCategory: kbtool
KBSubcategory: TlsHlp

Using #include Directive with Windows Resource Compiler
PSS ID Number: Q80945
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
--

SUMMARY
=======

The Windows Resource Compiler supports many standard C language
preprocessor directives such as "#define" to define symbolic
constants, and "#include" to include header and other resource files.

If an application developed for the Windows environment has more than
one resource, each resource can be maintained in a separate file.
Then, use the #include directive to direct the Resource Compiler to
build all the resources into one output file. Using this technique
prevents one resource file from becoming unmanageably large with an
overwhelming number of resources.

It is important to note that the Resource Compiler treats files with
the .C and .H extensions in a special manner. It assumes that a file
with one of these two extensions does not contain resources. When a
file has the .C or .H file extension, the Resource Compiler ignores
all lines in the file except for preprocessor directives (#define,
#include, and so forth). Therefore, a file that contains resources
that is included in another resource file should not have the .C or .H
file extension.

MORE INFORMATION
================

The following example demonstrates the implications of this situation.
The MSG.H file has the following contents:

 /*
 * This header file defines message IDs for strings in the
 * stringtable resource. All source files can use this header file
 * to reference specific strings.
 */
 #define STRING1 1
 #define STRING2 2
 #define STRING3 3

The STRTABLE.RC file has the following contents:

 /*
 * This file defines the stringtable resource contents for this
 * application. It should be included in the application's resource
 * file. It requires definitions from the MSG.H header file.

 */
 STRINGTABLE
 {
 STRING1, "This is string 1."
 STRING2, "This is string 2."
 STRING3, "This is string 3."
 }

The APP.RC file has the following contents:

 /*
 * This is the "main" resource definition file for this
 * application. Among other things, it includes the stringtable
 * resource definition from other header files.
 */

 RESOURCE 1 (MENU)
 RESOURCE 2 (RAW DATA)
 ...

 #include "MSG.H"
 #include "STRTABLE.RC"

The Resource Compiler treats both MSG.H and STRTABLE.RC as header
files. MSG.H does not include any resources; therefore, it can use the
standard .H file extension. However, because STRTABLE.RC includes a
resource (a STRINGTABLE), it cannot be named with a .C or .H file
extension.

Files that contain resources can have any legal MS-DOS file extension
other than .C and .H.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsRc

Using a Dialog Box as the Main Window of an Application
PSS ID Number: Q108936

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Dialog boxes might be used as the main window of an application for several
reasons. When an application uses a dialog box as the main window, the
following should be taken into consideration while designing such an
application:

 - The dialog box that acts as the main window of an application can be
 created without an owner.

 - If a modal dialog box is created as a main window,
 TranslateAccelerator() cannot be used.

 - The icon for the dialog box should be drawn manually when the dialog
 box is minimized.

MORE INFORMATION
================

You can create a modal or modeless dialog box as the main window of an
application. In doing so, there is no need to have an overlapped window
that acts as the owner of the dialog box. Memory for edit controls
created with the DS_LOCALEDIT flag set, and static controls, will come from
the heap represented by the hInstance passed to the CreateDialog() or
DialogBox() call.

When modal dialog boxes are chosen for this purpose, and accelerator keys
are defined in an application, Windows enters a modal message loop that
does not process accelerators, unless a WH_MSGFILTER hook is installed and
TranslateAccelerator() is called from the hook callback function.

One easy way to avoid this limitation is to create a modeless dialog box
and call TranslateAccelerator() from the main message loop.

The icon for a window is stored in its class information. Because a dialog
box is a window of global class that all applications in the system are
using, changing the icon for this application will change the icon for all
dialog boxes in the system. Below is one workaround for drawing the icon
manually when the dialog box is minimized:

Sample Code

BOOL WINAPI GenericDlgProc (HWND hwnd, UINT msg,
 WPARAM wParam, LPARAM lParam)
 {

 RECT rect ;
 switch (msg) {

 case WM_INITDIALOG:
 hIcon = LoadIcon(); // Load the icon that is to be displayed
 // when minimized.
 return TRUE ;

 case WM_ERASEBKGND:
 if (IsIconic(hwnd) && hIcon) {
 SendMessage(hwnd, WM_ICONERASEBKGND, wParam, 0L);
 return TRUE;
 }
 break;

 case WM_QUERYDRAGICON:
 return (hIcon);

 case WM_PAINT: {
 PAINTSTRUCT ps;

 BeginPaint(hwnd, &ps);

 if (IsIconic(hwnd)) //*** If iconic, paint the icon.
 {
 if (hIcon) {

 //center the icon correctly...
 GetClientRect(hwnd, &rect) ;
 rect.left = (rect.right - GetSystemMetrics(SM_CXICON)) >> 1;
 rect.top = (rect.bottom - GetSystemMetrics(SM_CYICON)) >> 1;
 DrawIcon(ps.hdc, rect.left, rect.top, hIcon);
 }
 }
 EndPaint(hwnd, &ps);
 }
 break;
 }
 return FALSE;

} //*** GenericDlgProc

The workaround described above assumes that the dialog box belongs to the
predefined dialog class. For private dialog box classes, there is no need
to manually draw the icon for the dialog box when it is minimized. You can
specify the icon while registering the dialog box class. Remember to set
the cbWndExtra field to DLGWINDOWEXTRA. When the dialog box is minimized,
the icon will be painted automatically.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95 DLGMAIN
KBCategory: kbui
KBSubcategory: UsrDlgs

Using a Fixed-Pitch Font in a Dialog Box
PSS ID Number: Q77991

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

To use a fixed-pitch font in a dialog box, during the processing of
the dialog box initialization message, send the WM_SETFONT message to
each control that will use the fixed font. The following code
demonstrates this process:

 case WM_INITDIALOG:
 SendDlgItemMessage(hDlg, ID_CONTROL, WM_SETFONT,
 GetStockObject(ANSI_FIXED_FONT), FALSE);
 /*
 * NOTE: This code will specify the fixed font only for the
 * control ID_CONTROL. To specify the fixed font for other
 * controls in the dialog box, additional calls to
 * SendDlgItemMessage() are required.
 */
 break;

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrDlgs

Using a Modeless Dialog Box with No Dialog Function
PSS ID Number: Q72136

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

When creating a modeless dialog box with the default dialog class, an
application normally passes a procedure-instance address of the dialog
function to the CreateDialog() function. This dialog function processes
messages such as WM_INITDIALOG and WM_COMMAND, returning TRUE or FALSE.

It is acceptable to create a modeless dialog box that uses NULL for the
lpDialogFunc parameter of CreateDialog(). This type of dialog box is useful
when the no controls or other input facilities are required. In this case,
using NULL simplifies the programming.

However, the dialog box must be closed through some means other than a push
button (for example, via a timer event).

NOTE: A modal dialog box that does not provide a means of closing itself
will hang its parent application because control will never return from the
DialogBox() function call.

If lpDialogFunc is NULL, no WM_INITDIALOG message will be sent, and
DefDlgProc() does not attempt to call a dialog function. Instead,
DefDlgProc() handles all messages for the dialog. The application that
created the modeless dialog must explicitly call DestroyWindow() to free
its system resources.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrDlgs

Using a Mouse with MEP Under Windows NT
PSS ID Number: Q83300
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5
--

The Microsoft Editor (MEP) included with the Win32 Software Development Kit
(SDK) can be used with a mouse to position the cursor.

By default, the mouse is not enabled for MEP. It is necessary to add the
switch "usemouse:yes" (without the quotation marks) to the TOOLS.INI file
under the [m mep] section. The TOOLS.INI file is a text file editable by
MEP or Notepad.

To change the position of the cursor, first position the mouse pointer on
the new location and then click the left mouse button.

Additional reference words: 3.10 3.50
KBCategory: kbtool
KBSubcategory: TlsMep

Using Built-In Printing Features from a Rich Edit Control
PSS ID Number: Q129860

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s version 1.3

SUMMARY
=======

The Rich Edit control contains built-in printing features that can be used
to send formatted text to the printer with minimal effort from the
programmer.

MORE INFORMATION
================

Printing from a Rich Edit control involves the use of the standard printing
APIs and two Rich Edit control messages, EM_FORMATRANGE and EM_DISPLAYBAND.
The EM_FORMATRANGE message can be used by itself or used in combination
with the EM_DISPLAYBAND message. Included below at the end of this article
is a code sample which demonstrates the usage of these messages.

EM_FORMATRANGE

This message is used to format the text for the printer DC and can
optionally send the output to the printer.

The wParam parameter for this message is a Boolean value that indicates
whether or not the text should be rendered (printed) to the printer. A zero
value only formats the text, while a nonzero value formats the text and
renders it to the printer.

The lParam parameter for this message is a pointer to the FORMATRANGE
structure. This structure needs to be filled out before sending the message
to the control.

FORMATRANGE Members

HDC hdc - Contains the device context (DC) to render to if the wParam
parameter is nonzero. The output is actually sent to this DC.

HDC hdcTarget - Contains the device context to format for, which is
usually the same as the hdc member but can be different. For example, if
you create a print preview module, the hdc member is the DC of the window
in which the output is viewed, and the hdcTarget member is the DC for the
printer.

RECT rc - Contains the area to render to. This member contains the
rectangle that the text is formatted to fit in, and subsequently printed
in. It also contains the margins, room for headers and footers, and so
forth. The rc.bottom member may be changed after the message is sent. If it
is changed, it must indicate the largest rectangle that can fit within the
bounds of the original rectangle and still contain the specified text
without printing partial lines. It may be necessary to reset this value
after each page is printed. These dimensions are given in TWIPS.

RECT rcPage - Contains the entire area of the rendering device. This area
can be obtained using the GetDeviceCaps() function. These dimensions are
given in TWIPS.

CHARRANGE chrg - Contains the range of characters to be printed. Set
chrg.cpMin to 0 and chrg.cpMax to -1 to print all characters.

The return value from EM_FORMATRANGE is the index of the first character on
the next page. If you are printing multiple pages, you should set
chrg.cpMin to this value before the next EM_FORMATRANGE message is sent.

When printing is complete, this message must be sent to the control with
wParam = 0 and lParam = NULL to free the information cache by the control.

EM_DISPLAYBAND

If you use 0 for the wParam parameter in the EM_FORMATRANGE message, then
you can use the EM_DISPLAYBAND message to send the output to the printer.

The wParam parameter for this message is not used and should be 0.

The lParam parameter for this message is a pointer to a RECT structure.
This RECT structure is the area to display to and is usually the same as
the rc member of the FORMATRANGE structure used in the EM_FORMATRANGE
message but can be different. For example, the rectangles are not the same
if you are printing on a certain portion of a page or built-in margins are
being used.

This message should only be used after a previous EM_FORMATRANGE message.

Sample Code

void Print(HDC hPrinterDC, HWND hRTFWnd)
 {
 FORMATRANGE fr;
 int nHorizRes = GetDeviceCaps(hPrinterDC, HORZRES),
 nVertRes = GetDeviceCaps(hPrinterDC, VERTRES),
 nLogPixelsX = GetDeviceCaps(hPrinterDC, LOGPIXELSX),
 nLogPixelsY = GetDeviceCaps(hPrinterDC, LOGPIXELSY);
 LONG lTextLength; // Length of document.
 LONG lTextPrinted; // Amount of document printed.

 // Ensure the printer DC is in MM_TEXT mode.

 SetMapMode (hPrinterDC, MM_TEXT);

 // Rendering to the same DC we are measuring.
 ZeroMemory(&fr, sizeof(fr));
 fr.hdc = fr.hdcTarget = hPrinterDC;

 // Set up the page.
 fr.rcPage.left = fr.rcPage.top = 0;
 fr.rcPage.right = (nHorizRes/nLogPixelsX) * 1440;
 fr.rcPage.bottom = (nVertRes/nLogPixelsY) * 1440;

 // Set up 1" margins all around.
 fr.rc.left = fr.rcPage.left + 1440; // 1440 TWIPS = 1 inch.
 fr.rc.top = fr.rcPage.top + 1440;
 fr.rc.right = fr.rcPage.right - 1440;
 fr.rc.bottom = fr.rcPage.bottom - 1440;

 // Default the range of text to print as the entire document.
 fr.chrg.cpMin = 0;
 fr.chrg.cpMax = -1;

 // Set up the print job (standard printing stuff here).
 ZeroMemory(&di, sizeof(di));
 di.cbSize = sizeof(DOCINFO);
 if (*szFileName)
 di.lpszDocName = szFileName;
 else
 {
 di.lpszDocName = "(Untitled)";

 // Do not print to file.
 di.lpszOutput = NULL;
 }

 // Start the document.
 StartDoc(hPrinterDC, &di);

 // Find out real size of document in characters.
 lTextLength = SendMessage (hRTFWnd, WM_GETTEXTLENGTH, 0, 0);

 do
 {
 // Start the page.
 StartPage(hPrinterDC);

 // Print as much text as can fit on a page. The return value is the
 // index of the first character on the next page. Using TRUE for the
 // wParam parameter causes the text to be printed.

#ifdef USE_BANDING

 lTextPrinted = SendMessage(hRTFWnd,
 EM_FORMATRANGE,
 FALSE,
 (LPARAM)&fr);

 SendMessage(hRTFWnd, EM_DISPLAYBAND, 0, (LPARAM)&fr.rc);

#else

 lTextPrinted = SendMessage(hRTFWnd,
 EM_FORMATRANGE,
 TRUE,
 (LPARAM)&fr);

#endif

 // Print last page.
 EndPage(hPrinterDC);

 // If there is more text to print, adjust the range of characters to
 // start printing at the first character of the next page.
 if (lTextPrinted < lTextLength)
 {
 fr.chrg.cpMin = lTextPrinted;
 fr.chrg.cpMax = -1;
 }
 }
 while (lTextPrinted < lTextLength);

 // Tell the control to release cached information.
 SendMessage(hRTFWnd, EM_FORMATRANGE, 0, (LPARAM)NULL);

 EndDoc (hPrinterDC);
 }

Additional reference words: 1.30 4.00 95
KBCategory: kbui
KBSubcategory: UsrCtl W32s

Using cChildren Member of TV_ITEM to Add Speed & Use Less RAM
PSS ID Number: Q131278

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s version 1.3

SUMMARY
=======

The cChildren member of the TV_ITEM structure is used to denote the number
of child items associated with a treeview item. When used correctly, the
cChildren member helps an application go faster and use less memory.

Applications may specify I_CHILDRENCALLBACK for this member, instead of
passing the actual number of child items. To retrieve the actual number of
child items associated with a treeview item, I_CHILDRENCALLBACK causes the
treeview to send a TVN_GETDISPINFO notification when the item needs to be
redrawn.

MORE INFORMATION
================

In a treeview with the TVS_HASBUTTONS style, specify a nonzero value for
the cChildren member to add the appropriate plus or minus (+/-) button (to
denote expand or collapse) to the left of the treeview item, without having
to insert each of the child items to the treeview. Specifying a zero value
indicates that the particular item does not have any child items associated
with it.

An application that does not use the cChildren member of the TV_ITEM
structure when inserting items to the treeview has to insert each of the
child items associated with that treeview item in order for the +/- button
to show up.

Using the cChildren member, therefore, helps to speed up an application
and reduce memory requirements by allowing the application to fill the tree
on demand.

Applications such as the Explorer, WinHelp, and RegEdit, which display huge
hierarchical structures, take advantage of this feature by initially
inserting only the visible items of the tree. The child items associated
with a particular item are not inserted until the user clicks the parent
item to expand it. At that point, the treeview's parent window receives a
TVN_ITEMEXPANDING notification message, and the application inserts the
child items for that parent item:

 // WM_NOTIFY message handler
 LRESULT MsgNotifyTreeView(HWND hwnd,

 UINT uMessage,
 WPARAM wparam,
 LPARAM lparam)
 {

 LPNMHDR lpnmhdr = (LPNMHDR)lparam;

 // Just before the parent item gets EXPANDED,
 // add the children.

 if (lpnmhdr->code == TVN_ITEMEXPANDING)
 {
 LPNM_TREEVIEW lpNMTreeView;
 TV_ITEM tvi;

 lpNMTreeView = (LPNM_TREEVIEW)lparam;
 tvi = lpNMTreeView->itemNew;

 if ((tvi.lParam == PARENT_NODE) &&
 (lpNMTreeView->action == TVE_EXPAND))
 {

 // Fill in the TV_ITEM struct
 // and call TreeView_InsertItem() for each child item.

 }
 }

 return DefWindowProc(hwnd, uMessage, wparam, lparam);
 }

When the user clicks the same parent item to collapse it, the application
removes all the child items from the tree by using TreeView_Expand
(,,TVE_COLLAPSE | TVE_COLLAPSERESET). The TVN_ITEMEXPANDED notification
message is a good place to do this:

 // WM_NOTIFY message handler
 LRESULT MsgNotifyTreeView(HWND hwnd,
 UINT uMessage,
 WPARAM wparam,
 LPARAM lparam)
 {

 LPNMHDR lpnmhdr = (LPNMHDR)lparam;

 // Just before the parent item is COLLAPSED,
 // remove the children.

 if (lpnmhdr->code == TVN_ITEMEXPANDED)
 {

 LPNM_TREEVIEW lpNMTreeView;
 TV_ITEM tvi2;

 lpNMTreeView = (LPNM_TREEVIEW)lparam;
 tvi2 = lpNMTreeView->itemNew;

 // Do a TVE_COLLAPSERESET on the parent to minimize memory use.

 if ((lpNMTreeView->action == TVE_COLLAPSE) &&
 (tvi2.lParam == PARENT_NODE))
 {
 TreeView_Expand (ghWndTreeView,
 tvi2.hItem,
 TVE_COLLAPSE | TVE_COLLAPSERESET);
 }
 }
 return DefWindowProc(hwnd, uMessage, wparam, lparam);
 }

Applications that dynamically change the number of child items associated
with a particular treeview item may specify I_CHILDRENCALLBACK for the
cChildren member of its TV_ITEM structure when it is inserted into the
tree. Thereafter, when that treeview item needs to be redrawn, the
treeview sends a TVN_GETDISPINFO to its parent window to retrieve the
actual number of child items and display the +/- button to the left of
the treeview item, as appropriate.

An application that uses I_CHILDRENCALLBACK may process the TVN_GETDISPINFO
notification as follows:

 // WM_NOTIFY message handler
 LRESULT MsgNotifyTreeView(HWND hwnd,
 UINT uMessage,
 WPARAM wparam,
 LPARAM lparam)
 {

 LPNMHDR lpnmhdr = (LPNMHDR)lparam;

 if (lpnmhdr->code == TVN_GETDISPINFO)
 {
 TV_DISPINFO FAR *lptvdi;

 lptvdi = (TV_DISPINFO FAR *)lparam;

 if ((lptvdi->item.mask & TVIF_CHILDREN) &&
(lptvdi->item.lParam == PARENT_NODE))
 lptvdi->item.cChildren = 1;

 }

 return DefWindowProc(hwnd, uMessage, wparam, lparam);
 }

Additional reference words: 4.00 95 Common Control performance speed up
KBCategory: kbui kbcode
KBSubcategory: UsrCtl

Using Device Contexts Across Threads
PSS ID Number: Q94236

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51

A window created with the CS_OWNDC style retains its device context (DC)
attributes across GetDC() calls.

However, the DC attributes are not retained if the GetDC() calls are called
from different threads. This is by design because DCs are thread-based. In
the Win32 user interface, if the calling thread is not the owner of the
window, then GetDC() returns a cache DC instead of the owned DC handle.

To save attributes across threads, one must create a routine to initialize
DC attributes, which is then called from threads not owning the given
window.

Additional reference words: 3.10 3.50
KBCategory: kbgraphic
KBSubcategory: GdiDc

Using Device-Independent Bitmaps and Palettes
PSS ID Number: Q72041

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The method Windows version 3.x uses to transfer colors from the color
table of a device-independent bitmap (DIB) to a device-dependent
bitmap (DDB) on a machine that supports palette operations depends on
the value of the wUsage parameter specified in calls to the
CreateDIBitmap or SetDIBits functions.

Specifying DIB_RGB_COLORS matches the colors in the DIB color table to
the logical palette associated with the device context (DC) listed in
the function call.

Specifying DIB_PAL_COLORS causes the entries in the DIB color table to
not be treated as RGB values; instead, they are treated as word
indexes into the logical palette associated with the DC listed in the
function call.

To create a device-dependent (displayable) bitmap from a DIB that
retains the same colors, follow these five steps:

1. Extract the colors from the DIB header.

2. Use the CreatePalette function to make a logical palette with
 those colors.

3. Use the SelectPalette function to select the logical palette
 into a device context.

4. Use the RealizePalette function to map the logical palette into
 the device context.

5. Call the CreateDIBitmap function using the device context that
 has the logical palette selected.

Because the CreateDIBitmap function creates a bitmap compatible with
the device, to create a device-dependent monochrome bitmap from a DIB,
call the CreateBitmap function with the desired width and height,
specifying one color plane and one bit per pixel. Then call the
SetDIBits function to render the image in the newly created

monochrome bitmap.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbgraphic
KBSubcategory: GdiPal

Using Drag-Drop in an Edit Control or a Combo Box
PSS ID Number: Q86724

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In the Microsoft Windows environment, an application can register an
edit control or a combo box as a drag-drop client through the
DragAcceptFiles function. The application must also subclass the
control to process the WM_DROPFILES message that Windows sends when
the user drops a file.

MORE INFORMATION
================

The following seven steps demonstrate how to implement drag-drop in an
edit control. The procedure to implement drag-drop in a combo box is
identical.

1. Add SHELL.LIB to the list of libraries required to build the file.

2. Add the name of the subclass procedure (MyDragDropProc) to the
 EXPORTS section of the module definition (DEF) file.

3. Include the SHELLAPI.H file in the application's source code.

4. Declare the following procedure and variables:

 BOOL FAR PASCAL MyDragDropProc(HWND, unsigned, WORD, LONG);

 FARPROC lpfnDragDropProc, lpfnOldEditProc;
 char szTemp64[64];

5. Add the following code to the initialization of the dialog box:

 case WM_INITDIALOG:
 // ... other code

 // ------- edit control section --------
 hWndTemp = GetDlgItem(hDlg, IDD_EDITCONTROL);
 DragAcceptFiles(hWndTemp, TRUE);

 // subclass the drag-drop edit control
 lpfnDragDropProc = MakeProcInstance(MyDragDropProc, hInst);

 if (lpfnDragDropProc)
 lpfnOldEditProc = SetWindowLong(hWndTemp, GWL_WNDPROC,
 (DWORD)(FARPROC)lpfnDragDropProc);
 break;

6. Write a subclass window procedure for the edit control.

 BOOL FAR PASCAL MyDragDropProc(HWND hWnd, unsigned message,
 WORD wParam, LONG lParam)
 {
 int wFilesDropped;

 switch (message)
 {
 case WM_DROPFILES:
 // Retrieve number of files dropped
 // To retrieve all files, set iFile parameter
 // to -1 instead of 0
 wFilesDropped = DragQueryFile((HDROP)wParam, 0,
 (LPSTR)szTemp64, 63);

 if (wFilesDropped)
 {
 // Parse the file path here, if desired
 SendMessage(hWnd, WM_SETTEXT, 0, (LPSTR)szTemp64);
 }
 else
 MessageBeep(0);

 DragFinish((HDROP)wParam);
 break;

 default:
 return CallWindowProc(lpfnOldEditProc, hWnd, message,
 wParam, lParam);
 break;
 }
 return TRUE;
 }

7. After the completion of the dialog box procedure, free the edit
 control subclass procedure.

 if (lpfnDragDropProc)
 FreeProcInstance(lpfnDragDropProc);

Additional reference words: 3.10 3.50 3.51 4.00 95 combobox
KBCategory: kbui
KBSubcategory: UsrDnd

Using DWL_USER to Access Extra Bytes in a Dialog Box
PSS ID Number: Q88358

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Windows extra bytes are used to store private information specific to
an instance of a window. For dialog boxes, these extra bytes are
already allocated by the dialog manager. The offset to the extra byte
location is called DWL_USER.

DWL_USER is the 8th byte offset of the dialog extra bytes. The
programmer has 4 bytes (a long) available from this offset for
personal use.

CAUTION: DO NOT use more than 4 bytes of these extra bytes, as the
rest of them are used by the dialog manager.

Example

 DWORD dwNumber = 10;
 .
 .
 .
 .
 case WM_INITDIALOG:
 SetWindowLong(hWnd,DWL_USER,dwNumber); // Store value 10 at
 // byte offset 8
 dwNumber = GetWindowLong(hWnd,DWL_USER); // Retrieve the value

NOTE: GetWindowWord and SetWindowWord could be used instead.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrDlgs

Using ENTER Key from Edit Controls in a Dialog Box
PSS ID Number: Q102589

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Windows-based applications often display data-entry dialog boxes to request
information from users. These dialog boxes may contain several edit
controls and two command (push) buttons, labeled OK and CANCEL. An example
of a data-entry dialog box is one that requests personal information, such
as social security number, address, identification (ID) number, date/time,
and so on, from users. Each of these items is entered into an edit control.

By default, the TAB key is used in a dialog box to shift focus between
edit controls. As a common user-interface, however, one could also use
the ENTER (RETURN) key to move between the edit controls (for example,
after the user enters a piece of information, pressing ENTER moves the
focus to the next field).

There are a few ways to enable the use of the ENTER key to move
between edit controls. One method is to make use of WM_COMMAND and the
notification messages that come with it in the dialog box for edit
controls and buttons. Another method involves subclassing the edit
controls. A third involves using App Studio and Class Wizard and creating a
new dialog box member function.

MORE INFORMATION
================

Method I: (WM_COMMAND)

This method is based on the following behavior of dialog boxes (Dialog
Manager) and focus handling in Windows.

If a dialog box or one of its controls currently has the input focus,
then pressing the ENTER key causes Windows to send a WM_COMMAND
message with the idItem (wParam) parameter set to the ID of the
default command button. If the dialog box does not have a default
command button, then the idItem parameter is set to IDOK by default.

When an application receives the WM_COMMAND message with idItem set to
the ID of the default command button, the focus remains with the
control that had the focus before the ENTER key was pressed. Calling

GetFocus() at this point returns the handle of the control that had
the focus before the ENTER key was pressed. The application can check
this control handle and determine whether it belongs to any of the
edit controls in the dialog box. If it does, then the user was
entering data into one of the edit controls and after doing so,
pressed ENTER. At this point, the application can send the
WM_NEXTDLGCTL message to the dialog box to move the focus to the next
control.

However, if the focus was with one of the command buttons (CANCEL or
OK), then GetFocus() returns a button control handle, at which point
one can dismiss the dialog box. The pseudo code for this logic
resembles the following in the application's dialog box procedure:

 case WM_COMMAND:

 if(wParam=IDOFDEFBUTTON || IDOK) {
 // User has hit the ENTER key.

 hwndTest = GetFocus() ;
 retVal = TesthWnd(hWndTest) ;

 //Where retVal is a boolean variable that indicates whether
 //the hwndTest is the handle of one of the edit controls.

 if(hwndTest) {
 //Focus is with an edit control, so do not close the dialog.
 //Move focus to the next control in the dialog.

 PostMessage(hDlg, WM_NEXTDLGCTL, 0, 0L) ;
 return TRUE ;
 }
 else {
 //Focus is with the default button, so close the dialog.
 EndDialog(hDlg, TRUE) ;
 return FALSE ;
 }
 }
 break ;

Method II

This method involves subclassing/superclassing the edit control in the
dialog box. Once the edit controls are subclassed or superclassed, all
keyboard input is sent the subclass/superclass procedure of the edit
control that currently has input focus, regardless of whether or not
the dialog box has a default command button. The application can trap
the key down (or char) messages, look for the ENTER key, and do the
processing accordingly. The following is a sample subclass procedure
that looks for the ENTER key:

//*---
//| Title:
//| SubClassProc

//|
//| Parameters:
//| hWnd - Handle to the message's destination window
//| wMessage - Message number of the current message
//| wParam - Additional info associated with the message
//| lParam - Additional info associated with the message
//|
//| Purpose:
//| This is the window procedure used to subclass the edit control.
//*---

long FAR PASCAL SubProc(HWND hWnd, WORD wMessage,WORD wParam,LONG lParam)
{

 switch (wMessage)
 {

 case WM_GETDLGCODE:
 return (DLGC_WANTALLKEYS |
 CallWindowProc(lpOldProc, hWnd, wMessage,
 wParam, lParam));

 case WM_CHAR:
 //Process this message to avoid message beeps.
 if ((wParam == VK_RETURN) || (wParam == VK_TAB))
 return 0;
 else
 return (CallWindowProc(lpOldProc, hWnd,
 wMessage, wParam, lParam));

 case WM_KEYDOWN:
 if ((wParam == VK_RETURN) || (wParam == VK_TAB)) {
 PostMessage (ghDlg, WM_NEXTDLGCTL, 0, 0L);
 return FALSE;
 }

 return (CallWindowProc(lpOldProc, hWnd, wMessage,
 wParam, lParam));
 break ;

 default:
 break;

 } /* end switch */

Method 3

This method involves using App Studio and ClassWizard and creating a new
dialog box member function.

This method will allow a user to press the ENTER key and have the focus
advance to the next edit control. If the focus is currently on the last
edit control in the dialog box, the focus will advance to the first edit
control.

First, use App Studio to change the ID of the OK button of the dialog box.
The default behavior of App Studio is to give the OK button the ID IDOK.
The OK button's ID should be changed to another value, such as IDC_OK.
Also, change the properties of the OK button so that it is not a default
pushbutton.

Next, use ClassWizard to create a new dialog box member funciton. Name the
new member function something like OnClickedOK. This function should be
tied to the BN_CLICKED message from the IDC_OK control.

Once this is done, write the body of the OnClickedOK function. You should
put the code that you would normally put in the OnOK function into the new
OnClickedOK function, including a class's OnOK function.

Add the following prototype to the header file for the dialog box:

 protected:
 virtual void OnOK();

Add an OnOK function to the dialog box and code is as demonstrated below:

void CMyDialog::OnOK()
{
 CWnd* pwndCtrl = GetFocus();
 CWnd* pwndCtrlNext = pwndCtrl;
 int ctrl_ID = pwndCtrl->GetDlgCtrlID();

 switch (ctrl_ID) {
 case IDC_EDIT1:
 pwndCtrlNext = GetDlgItem(IDC_EDIT2);
 break;
 case IDC_EDIT2:
 pwndCtrlNext = GetDlgItem(IDC_EDIT3);
 break;
 case IDC_EDIT3:
 pwndCtrlNext = GetDlgItem(IDC_EDIT4);
 break;
 case IDC_EDIT4:
 pwndCtrlNext = GetDlgItem(IDC_EDIT1);
 break;
 case IDOK:
 CDialog::OnOK();
 break;
 default:
 break;
 }
 pwndCtrlNext->SetFoucs();
}

Additional reference words: 3.10 3.50 3.51 4.00 95 push RETURN keydown
KBCategory: kbui
KBSubcategory: UsrDlgs

Using Extra Fields in Window Class Structure
PSS ID Number: Q10841

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

In order to generate several child windows of the same class, each having
its own set of static variables and independent of the sets of the
variables in the sibling windows, you need to use the cbWndExtra field in
WNDCLASS, the window-class data structure, when registering a window; then,
use SetWindowWord() (or Long) and GetWindowWord() (or Long). These
functions will either get or set additional information about the window
identified by hWnd.

Use positive offsets as indexes to access any additional bytes that were
allocated when the window class structure was created, starting at zero for
the first byte of the extra space. Similarly, if you want to refer to bytes
already defined by Windows within the structure, use offsets defined with
the GWW and GWL prefixes.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbui
KBSubcategory: UsrCls

Using FileOpen Common Dialog w/ OFN_ALLOWMULTIPLESELECT Style
PSS ID Number: Q130761

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

This article covers the format of file names returned by the FileOpen
common dialog with the OFN_ALLOWMULTISELECT style.

The FileOpen common dialog can be used to specify the location (drive and
directory) and name of a file or a set of files. One of the flags needed to
provide mulitple-file selection from the FileOpen common dialog is the
OFN_ALLOWMULTISELECT flag. When this flag is used, and the user makes a
valid selection, the file or files chosen by the user are returned in the
lpstrFile member of the OPENFILENAME structure. The format of the string
returned in the lpstrFile member depends on how many files (single or
multiple) the user selected. This article assumes that the OFN_EXPLORER
Style is set for the file open dialog.

MORE INFORMATION
================

If multiple files were selected, the string is of this form:

 Drive: \Directory Name\0FileName 1\0FileName 2\0FileName n\0\0.

The Directory Name is listed first. Then each file that was selected is
listed with a terminating NULL Character, except for the last filename,
which is terminated with two NULL characters. The two NULL characters
signal the end of the string.

If a single file was selected, the string is of this form:

 Drive: \Directory Name\FileName\0\0.

The Directory Name in this case is not terminated by a NULL character, and
the file name is terminated with two NULL characters.

Applications must parse the string returned in the lsptrFile member. In
doing so, they should make provisions in the parsing code to have a case
where the user can make a single selection (even though the
OFN_ALLOWMULTISELECT flag is set) or multiple selections.

NOTE: When using OFN_ALLOWMULTISELECT under Windows 95, you need to use
the OFN_EXPLORER flag to get the explorer style dialog and NULL terminated
strings. If you don't use OFN_EXPLORER with OFN_ALLOWMULTISELECT, you

get the old style dialog and space-delimited strings.

Additional reference words: 4.00
KBCategory: kbui
KBSubcategory: UsrCmnDlg

Using GDI-Synthesized Italic Fonts
PSS ID Number: Q74467

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In the Microsoft Windows graphical environment, when an application
uses an italic font synthesized by the graphics device interface
(GDI), each character and its whole character cell are "sheared," or
slanted, to the right, which can cause some unexpected results.

MORE INFORMATION
================

The capital H in the example below illustrates how GDI synthesizes an
italic font:

 . | | . . | | .
 . | | . . | | .
 . |----| . italicizes to . |----| .
 . | | . . | | .
 . | | . . | | .

Note two items in this case:

1. If the text background color is changed so that it does not match
 the window background color, the text background color occupies the
 sheared character cell (in other words, it is also slanted). Gaps
 occur in the background where normal text is adjacent to italic
 text.

2. The italic character is farther to the right in relation to the
 lower-left corner of the character cell than is the normal
 character. Therefore, if normal and italic text start at the same x
 coordinate on different lines, the italic text appears farther to
 the right.

To determine the number of units by which the character cell is
sheared, call the GetTextMetrics function to fill a TEXTMETRIC data

structure with information about the font. The tmOverhang member
describes the amount of shear.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbgraphic
KBSubcategory: GdiFnt

Using GetDIBits() for Retrieving Bitmap Information
PSS ID Number: Q85846

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

When saving a bitmap in .DIB file format, the GDI function is used to
retrieve the bitmap information. The general use of this function and
the techniques for saving a bitmap in .DIB format are largely
unchanged; however, this article provides more details on the use of
the Win32 API version of the GetDIBits() function.

MORE INFORMATION
================

The function can be used to retrieve the following information:

 - Data in the BitmapInfoHeader (no color table and no bits)

 - Data in the BitmapInfoHeader and the color table (no bits)

 - All the data (BitmapInfoHeader, color table, and the bits)

The fifth and the sixth parameters of the function are used to tell
the graphics engine exactly what the application wants it to return.
If the fifth parameter is NULL, then no bits will be returned. If the
biBitCount is 0 (zero) in the sixth parameter, then no color table
will be returned. In addition, the biSize field of the
BitmapInfoHeader must be set to either the size of BitmapInfoHeader or
BitmapCoreHeader for the function to work properly.

Refer to the SAVEBMP.C file in the MANDEL sample for details. This sample
is included with the Win32 SDK.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbgraphic
KBSubcategory: GdiBmp

Using GetForegroundWindow() When Desktop Is Not Active
PSS ID Number: Q118624

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

GetForegroundWindow() is documented to return the handle of the foreground
window, that is, the window that the user is currently working with. The
proper handle is returned when the desktop that the application is running
on is active; however, when another desktop is active,
GetForegroundWindow() returns NULL.

This is expected behavior. There is no way to get the active window in your
own desktop while another desktop is active.

The application desktop is one desktop. Other desktops include the logon
and screen saver desktops. If GetForegroundWindow() returned a handle to
the logon dialog box, it would be possible to create an application that
could get user passwords. This would violate Windows NT security.

For this reason, it is not possible to create screen savers that melt
or drop out.

Additional reference words: 3.10 3.50
KBCategory: kbui
KBSubcategory: UsrWndw

Using GetUpdateRgn()
PSS ID Number: Q99047

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The documentation provided with the Microsoft Windows Software
Development Kit (SDK) for Microsoft Windows version 3.1 does not
address all the issues surrounding the use of the GetUpdateRgn()
function. This article complements the documentation of
GetUpdateRgn().

MORE INFORMATION
================

The handle to the region (hRgn) does not have to be selected into a
device context (DC) to be able to use it with GetUpdateRgn(). Even if
the hRgn is selected as the clipping region for a DC, Windows only
makes a copy of the hRgn for the hDC instead of using the hRgn
directly.

When hRgn is used with GetUpdateRgn(), Windows will ignore any
existing region in hRgn. It will replace any existing region with the
current update region of the window.

Calling GetUpdateRgn() soon after BeginPaint() always yields an empty
region because BeginPaint() validates the update region.

A typical Windows query function (functions that typically begin with
Get and Is) does not initiate any action. GetUpdateRgn() is not a
typical function in this respect. The third parameter, fErase, works
as advertised to initiate a repaint on request.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrPnt

Using GMEM_DDESHARE in Win32 Programming
PSS ID Number: Q99114

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

The GMEM_DDESHARE flag remains a legitimate value for GlobalAlloc(). This
flag can be used to indicate that the memory will be used for one of the
following so that the system can optimize the allocation for these special
needs:

 DDE
 OLE 1.0
 Clipboard operations

However, GlobalAlloc(GMEM_DDESHARE, ...) cannot be used to allocate a
block of memory that can be shared between processes. This flag was never
intended for this purpose, even under Windows versions 3.0 and 3.1 (3.x).
GlobalAlloc(GMEM_DDESHARE, ...) works in this case because all Windows-
based applications share the same address space; this is not the case under
Windows NT.

All allocations of global shared memory can be used within the process that
they are allocated in, but another mechanism is required to share memory
between processes.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseMm

Using Graphics Within a Help File
PSS ID Number: Q90291

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows version 3.1
 - Microsoft Win32 SDK, versions 3.51 and 4.0

SUMMARY
=======

This article explains how to use graphics in a Help file with both the help
compiler 3.1 (HC30.EXE, HC31.EXE, and HCP.EXE) and the help compiler 4.0
(HCW.EXE).

MORE INFORMATION
================

TYPES OF GRAPHICS

With the Help Compiler, four types of graphics can be displayed within help
topics: bitmaps, metafiles, segmented hypergraphics, and multiple
resolution bitmaps. With HC30 and HC31, these graphics are limited to 16
colors but it is possible to use embedded windows to create a 256-color
bitmap. HCW is capable of displaying 16 million colors.

The following section discusses the details of the graphics formats listed
above, and provides details on their advantages and disadvantages.

Bitmaps

A bitmap is an image that is described by a matrix of memory bits that,
when copied to a device, define the color and pattern of a corresponding
matrix of pixels on the display surface of the device. The advantage to
using a bitmap is that drawing a bitmap is very fast. The disadvantage is
that the size of a bitmap is very large. Bitmaps can be created with a
graphics editor, such as Paintbrush.

Metafiles

A metafile is a collection of GDI commands that creates desired text or
images. There are two advantages to using metafiles: the size of the
metafile is small, and metafiles are less device-dependent than bitmaps.
The disadvantage of using a metafile is that it takes a long time to draw
one.

Segmented Hypergraphics

A segmented hypergraphic is a graphic that has hot spots defined in various

regions of the graphic. Clicking hot spots either executes a macro or jumps
to a context string. To make a segmented hypergraphic, use the segmented
hypergraphic (hot spot) editor (SHED.EXE) included with the Windows 3.1
SDK.

Multiple Resolution Bitmaps

A multiple resolution bitmap is a single bitmap file that contains one or
more bitmaps that have been marked for use with specific displays. The
advantages of multiple resolution bitmaps are:

1. Bitmaps are prevented from appearing too big or too small on
 different resolutions.

2. Bitmaps are prevented from looking stretched or compressed from
 display to display.

3. Colors are mapped correctly on different displays.

The disadvantage of multiple resolution bitmaps is that the files are
large. multiple resolution bitmaps can be created from bitmap files
with the multiple resolution bitmap compiler, MRBC.

PLACING GRAPHICS

Direct Pasting

Bitmaps and metafiles can be pasted directly from the clipboard into
an RTF source file. This allows the help author to see what the topic
will look like while it is being edited. There are several
disadvantages to this method. The first disadvantage only applies to HC30
and HC31. It is that any graphic pasted directly into a topic is limited to
64K. This is the result of the help compiler's 64K per paragraph limit when
processing RTF source files. The second disadvantage applies to all the
help compilers. It is size. If the same graphic is used multiple times
within the same source file, then a copy of the graphic is made each time
it is placed within the source.

By Reference

All of the graphics can be placed "by reference." To insert a graphic
by reference, the help author must type {bm? graphic.ext} where bm? is
bml, bmr, or bmc and graphic.ext is the name of the graphic file that
the author wants to have placed in the help topic. The bml command is
used for a left-justified graphic, the bmr command is used for a right
justified graphic, and the bmc command is used for a character
justified graphic (that is, the graphic is inserted into the paragraph
as if it were a character).

One of the advantages of placing a graphic by reference is that it
lifts the 64K limit on a graphic. Also, a graphic placed by reference

is actually just a "pointer" to the real graphic. Therefore, if the
same graphic is used multiple times, it is only "stored" once within
the .HLP file.

The disadvantage of placing graphics by reference is that the help
author does not see how the topic will appear while in the RTF editor.
The bitmap files inserted by reference must be found in the directory
specified by either the ROOT or BMROOT settings in the [OPTIONS]
section of the help project file. If the bitmap is not located in one
of these directories, then the file must be listed in the [BITMAPS]
section of the project file, so the help compiler can locate the
bitmap.

Hot Spots and Pop Ups

When placing a graphic into an RTF source file, it can be turned into
a hot spot or pop up, similar to other text. Just select the graphic
and turn on the double or single underline attribute followed
immediately by the hidden text for the context string or macro.

Additional reference words: 3.10 4.00 95 WinHelp
KBCategory: kbtool
KBSubcategory: TlsHlp

Using Network DDE Under Win32s
PSS ID Number: Q125475

The information in this article applies to:

 - Microsoft Win32s, version 1.2

Network Dynamic Data Exchange (NetDDE) has limited support in Win32s. You
can use DDE across the network, however the NDde APIs are not supported
under Win32s and will not be supported in the future.

The NDde APIs, such as NDdeShareAdd(), are used to create the NetDDE
shares, not for the actual communication. Therefore, to use NetDDE with
Win32s, manually create the shares with the DDESHARE utility included in
the Windows for Workgroups Resource Kit or by thunking to the 16-bit NDde
APIs. Then communicate through DDE or DDEML.

Additional reference words: 1.20
KBCategory: kbprg kbnetwork
KBSubcategory: W32s

Using NTFS Alternate Data Streams
PSS ID Number: Q105763

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

The documentation for the NTFS file system states that NTFS supports
multiple streams of data; however, the documentation does not address
the syntax for the streams themselves.

The Windows NT Resource Kit documents the stream syntax as follows:

 filename:stream

Alternate data streams are strictly a feature of the NTFS file system
and may not be supported in future file systems. However, NTFS will be
supported in future versions of Windows NT.

Future file systems will support a model based on OLE 2.0 structured
storage (IStream and IStorage). By using OLE 2.0, an application can
support multiple streams on any file system and all supported operating
systems (Windows, Macintosh, Windows NT, and Win32s), not just Windows NT.

MORE INFORMATION
================

The following sample code demonstrates NTFS streams:

#include <windows.h>
#include <stdio.h>

void main()
{
 HANDLE hFile, hStream;
 DWORD dwRet;

 hFile = CreateFile("testfile",
 GENERIC_WRITE,
 FILE_SHARE_WRITE,
 NULL,
 OPEN_ALWAYS,
 0,
 NULL);
 if(hFile == INVALID_HANDLE_VALUE)
 printf("Cannot open testfile\n");
 else
 WriteFile(hFile, "This is testfile", 16, &dwRet, NULL);

 hStream = CreateFile("testfile:stream",
 GENERIC_WRITE,
 FILE_SHARE_WRITE,
 NULL,
 OPEN_ALWAYS,
 0,
 NULL);
 if(hStream == INVALID_HANDLE_VALUE)
 printf("Cannot open testfile:stream\n");
 else
 WriteFile(hStream, "This is testfile:stream", 23, &dwRet, NULL);
}

The file size obtained in a directory listing is 16, because you are
looking only at "testfile", and therefore

 type testfile

produces the following:

 This is testfile

However

 type testfile:stream

produces the following:

 The filename syntax is incorrect

In order to view what is in testfile:stream, use:

 more < testfile:stream

 -or-

 mep testfile:stream

where "mep" is the Microsoft Editor available in Win32 SDK.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseFileio

Using One IsDialogMessage() Call for Many Modeless Dialogs
PSS ID Number: Q71450

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In the Windows environment, an application can implement more than one
modeless dialog box with a single call to the IsDialogMessage() function.
This can be done by using the following three-step method:

1. Maintain the window handle to the currently active modeless dialog
 box in a global variable.

2. Pass the global variable as the hDlg parameter to the
 IsDialogMessage() function, which is normally called from the
 application's main message loop.

3. Update the global variable whenever a modeless dialog box's window
 procedure receives a WM_ACTIVATE message, as follows:

 - If the dialog is losing activation (wParam is 0), set the global
 variable to NULL.

 - If the dialog is becoming active (wParam is 1 or 2), set the
 global variable to the dialog's window handle.

MORE INFORMATION
================

The information below demonstrates how to implement this technique.

1. Declare a global variable for the modeless dialog box's window
 handle.

 HWND hDlgCurrent = NULL;

2. In the application's main message loop, add a call to the
 IsDialogMessage() function.

 while (GetMessage(&msg, NULL, 0, 0))
 {
 if (NULL == hDlgCurrent || !IsDialogMessage(hDlgCurrent, &msg))
 {
 TranslateMessage(&msg);

 DispatchMessage(&msg);
 }
 }

3. In the modeless dialog box's window procedure, process the
 WM_ACTIVATE message.

 switch (message)
 {
 case WM_ACTIVATE:
 if (0 == wParam) // becoming inactive
 hDlgCurrent = NULL;
 else // becoming active
 hDlgCurrent = hDlg;

 return FALSE;
 }

For more information on the WM_ACTIVATE message, see page 6-47 in
"Microsoft Windows Software Development Kit Reference Volume 1" for the
Windows SDK version 3.0 and page 87 of "Programmer's Reference, Volume 3:
Messages, Structures, and Macros" for the Windows SDK version 3.1.

For details on the IsDialogMessage() function, see page 4-266 in "Windows
Software Development Kit Reference Volume 1" for the Windows SDK version
3.0 and page 553 of "Programmer's Reference, Volume 2: Functions" for the
Windows SDK version 3.1.

For details on using a modeless dialog box in an application for the
Windows environment, see Chapter 10 of "Programming Windows," second
edition, (Microsoft Press) written by Charles Petzold.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrDlgs

Using Printer Escapes w/PS Printers on Windows NT & Win32s
PSS ID Number: Q124135

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Win32s versions 1.1, 1.15, 1.15a, and 1.2

SUMMARY
=======

To identify and print to PostScript printers from a Win32-based application
under Windows NT and under Win32s, you need to special-case your code. This
is because the printer drivers respond to different Printer Escapes under
Windows NT and Windows/Win32s.

This article discusses how to identify and print to PostScript printers on
both Windows NT and Win32s.

MORE INFORMATION
================

Identification

To identify the printer as a PostScript printer, use this code:

 int gPrCode = 0; // Set according to platform.

 if(Win32s) // Using the Win16 driver.
 {
 gPrCode = PASSTHROUGH;
 if((Escape(printerIC, GETTECHNOLOGY, NULL, NULL, (LPSTR)szTech) &&
 !lstrcmp(szTech, "PostScript")) &&
 Escape(printerIC, QUERYESCSUPPORT, sizeof(int),
 (LPSTR)gPrCode, NULL)
 {
 // The printer is PostScript.
 ...
 }
 }
 else // Using Win32 driver under Windows NT.
 {
 gPrCode = POSTSCRIPT_PASSTHROUGH; // Fails with Win16 driver
 if(Escape(printerIC, QUERYESCSUPPORT, sizeof(int), (LPSTR)gPrCode,
 NULL))
 {
 // The printer is PostScript.
 ...
 }
 }

Printing

To send PostScript data to the printer on either platform, use this code:

// Assuming a buffer, szPSBuf, of max size MAX_PSBUF containing
// nPSData bytes of PostScript data.

 char szBuf[MAX_PSBUF+sizeof(short)];

// Store length in buffer.
 *((short *)szBuf) = nPSData;

// Store data in buffer.
 memcpy((char *)szBuf + sizeof(short), szPSBuf, nPSData);

// Note that gPrCode (set when identifying the printer) depends on
// the platform.
 Escape(printerDC, gPrCode, (int) nPSData, szBuf, NULL);

However, your output may appear scaled or translated incorrectly or data
may be transformed off the page under Win32s.

The origin and scale for Windows printer drivers is not the PostScript
default (bottom left/72 dpi) but is instead at the upper left and at the
device scale(300 dpi). Therefore, before sending data to the printer, you
may need to send a couple of PostScript commands to scale or translate the
matrix. For example, for scaling, send the following escape to scale the
PostScript transform to 72 dpi:

 xres = GetDeviceCaps(printerDC, LOGPIXELSX);
 yres = GetDeviceCaps(printerDC, LOGPIXELSY);

// Two leading spaces for the following operation.
 wsprintf(szBuf, " %d 72 div %d 72 div scale\n", xres, yres);

// Put actual size into buffer
 *((short *)szBuf) = strlen(szBuf)-2;
 Escape(printerDC, gPrCode, strlen(szBuf)-2, szBuf, NULL);

Additional reference words: 1.10 1.20 3.10 3.50
KBCategory: kbprint kbcode
KBSubcategory: GdiPrn W32s

Using Private Templates with Common Dialogs
PSS ID Number: Q74609

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.5

SUMMARY
=======

An application which uses the common dialog library (COMMDLG.DLL) can
provide its own dialog resource template to be used instead of the standard
template. In this way, the application can include private dialog items
specific to its needs without losing the benefits of using the COMMDLG's
dialog handling.

MORE INFORMATION
================

Each common dialog data structure contains an lpTemplateName element. (Note
that the Print Dialog structure contains two such elements, each with a
distinct name -- see specifics of PrintDlg for details.) This element
points to a null-terminated string that names the dialog box template
resource to be substituted for the standard dialog template. If the dialog
resource is numbered, the application can use the MAKEINTRESOURCE macro to
convert the number into a pointer to a string. Alternatively, the
application can choose to pass a handle to a preloaded dialog template. The
Flags element of the dialog data structure must be set to indicate which
method is being used.

After loading the application's dialog template, the common dialog DLL
initializes the dialog items as it would for the standard template.
This leads to an important point: all dialog items in the standard
template must also exist in the application's private template. Note
that the items do not have to be enabled or visible -- they just have
to exist.

Once the DLL has finished handling the WM_INITDIALOG message, it
passes that message on to the application's dialog hook function. The
hook function handles WM_INITDIALOG by initializing the application's
private dialog items. It can also disable and hide any items from the
standard template that the application does not want to use.

The hook function should process messages and notifications concerning
the private dialog items.

Additional reference words: 3.10 3.50
KBCategory: kbui
KBSubcategory: UsrCmnDlg

Using Quoted Strings with Profile String Functions
PSS ID Number: Q69752

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Microsoft Windows provides profile files which are a mechanism for an
application to store configuration about itself. The WIN.INI file is
the system profile file in which Windows stores configuration
information about itself. In versions of Windows prior to version 3.0,
applications also stored configuration information in the WIN.INI
file. Windows 3.0 introduced private profile files, which can store
application-specific information.

An application can retrieve information from a profile file by calling
the GetProfileString or GetPrivateProfileString function. If the
profile file associates the specified lpKeyName value with a string
that is delimited by quotation marks, Windows discards the quotation
marks when it copies the associated string into the application-
provided buffer.

For example, if the following entry appears in the profile file:

 [application name] [application name]
 keyname = 'string' or keyname = "string"

The GetPrivateProfileString and GetProfileString functions read the
string value and discard the quotation marks.

MORE INFORMATION
================

This behavior allows spaces to be put into a string. For example, the
profile entry

 keyname = string

returns the string without a leading space, whereas

 keyname = ' string' or keyname = " string"

returns the string with a leading space.

Doubling quotation marks includes quotation marks in the string. For

example:

 keyname = ''string'' or keyname = ""string""

returns the string with its quotation marks -- 'string' or "string".

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrIni

Using ReadFile() and WriteFile() on Socket Descriptors
PSS ID Number: Q104536
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5
--

Socket handles for Windows NT sockets are object handles. For example, you
can pass a socket handle in the appropriate state to the ReadFile(),
ReadFileEx(), WriteFile(), or WriteFileEx() application programming
interface (API) to receive and send data. The socket descriptor passed to
the file APIs must be a connected, TCP descriptor.

NOTE: There is no way to specify send and receive out-of-band data.

To use a Windows Sockets handle, the ReadFile() and WriteFile() APIs must
use asynchronous access. That is, you must specify the overlapped parameter
in the call to ReadFile() and WriteFile(). This will allow you to be
notified when the I/O has completed.

This functionality is based upon the implementation of Windows Sockets and
may not be available to all implementations. For example, although this
works in the Win32 subsystem, it is not supported under Win32s.

Additional reference words: 3.10 3.50
KBCategory: kbnetwork
KBSubcategory: NtwkWinsock

Using RLE Bitmaps for Animation Applications In Windows
PSS ID Number: Q75214

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Animation that uses a "brute-force" animation scheme, displaying
successive complete bitmaps, can be slow and choppy. The alternative
approach, displaying an initial frame and then modifying the elements
that change, can save a great deal of time, memory, and disk space.

MORE INFORMATION
================

Animation applications typically use a very simple algorithm to
display a sequence of bitmaps, or frames, one right over another, on
the same display surface. When the application stores an entire frame
in the device-independent bitmap (DIB) format, it suffers from three
particular bottlenecks:

1. With large frames or long sequences, the storage file becomes quite
 large.

2. Loading an entire sequence requires a large amount of memory.

3. Available Windows functions, such as BitBlt or SetDIBitsToDevice,
 may be too slow to animate the sequence smoothly.

For an animation sequence of bitmaps with a consistent set of colors,
preprocessing the animation sequence and storing it in the run-length-
encoded (RLE) format enables an application to run faster with a
smaller storage file and memory requirement. Note that this RLE file
is different from an RLE compressed DIB. This RLE format consists of
several frames that are compressed according to the differences
between frames. This process is straightforward and consists of five
steps:

1. Select the first frame in the sequence and store it in the DIB
 format.

2. Compare the DIB bitmaps of consecutive frames. Due to the nature of
 animation sequences, the number of differences is often quite small
 compared to the size of the entire frame.

3. Encode the set of changed pixels into RLE format. The encoded frame
 will contain information only on the pixels that change, the delta
 records will skip the unchanged pixels. The RLE bitmap is stored
 instead of the latter frame. For example, the RLE-encoded
 difference between the first and second frames is stored as the
 second frame.

4. When the entire sequence is preprocessed, bring each frame into the
 system as a BITMAPINFO structure and stream of bits. Since only the
 first frame is in the DIB format, the memory requirement is quite
 low. Moreover, frames that contain an identical set of colors can
 share the BITMAPINFO structure, only the biCompression and
 biSizeImage fields must be changed.

5. At display time, load the first frame as a DIB. Then use the
 SetDIBitsToDevice function to display subsequent frames in the
 sequence. Because this function requires much less information,
 the sequence can be animated much more quickly and smoothly.

Additional reference words: 3.00 3.10 3.50 4.00 95 rle
KBCategory: kbgraphic
KBSubcategory: GdiBmp

Using RPC Callback Functions
PSS ID Number: Q96781
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0
--

SUMMARY
=======

The standard remote procedure call (RPC) model has a server containing one
or more exported function calls, and a client, which calls the server's
exported functions. However, Microsoft's implementation of RPC defines
callbacks as a special interface definition language (IDL) attribute
allowing a server to call a client function.

Callbacks can be used only in the context of a server call. Thus, a server
may call a client's callback function only when the server is performing a
client's remote procedure call (before it returns from processing). For
example:

 CLIENT SERVER
 ------ ------

 Client makes RPC call. --->
 <--- Server calls callback procedure.
Client returns from callback. --->
 <--- Server calls callback procedure.
Client returns from callback. --->
 <--- Server returns from original RPC call.

MORE INFORMATION
================

Callbacks are declared in the RPC .IDL file and defined in the source of
the client. The following demonstrates how callbacks are declared and
defined:

[SAMPLE.IDL]
[
 uuid(9FEE4F51-0396-101A-AE4F-08002B2D0065),
 version(1.0),
 pointer_default(unique)
]

{
 void RPCProc([in, string] unsigned char *pszStr);
 [callback] void CallbackProc([in,string] unsigned char *pszStr);
}

[SAMPLEC.C (Client)]

/*
 Callback RPC call (initiated from server, executed on client).
*/
void CallbackProc(unsigned char *pszString)
{
 printf("Call from server, printed on client: %s", pszStr);
}

[SAMPLES.C (Server)]
/*
 "Standard" RPC call (initiated from client, executed on server).
 Makes a call to client callback procedure, CallbackProc().
*/
void RPCProc(unsigned char *pszStr)
{
 printf("About to call Callback() client function.."
 CallbackProc(pszStr);
 printf("Called callback function.");
}

In the makefile for the sample, the "-ms_ext" switch must be used for the
MIDL compile. For example:

 midl -ms_ext -cpp_cmd $(cc) -cpp_opt "-E" sample.idl

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbnetwork
KBSubcategory: NtwkRpc

Using SendMessage() As Opposed to SendDlgItemMessage()
PSS ID Number: Q12273

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

The following information describes under what circumstances it
is appropriate to use either the SendMessage() or SendDlgItemMessage()
function.

Both SendMessage() and SendDlgItemMessage() can be used to add strings
to a list box. SendMessage() is used to send a message to a specific
window using the handle to the list box. SendDlgItemMessage() is used
to send a message to the child window of a given window using the list
box resource ID. SendDlgItemMessage() is most often used in dialog box
functions that have a handle to the dialog box and not to the child
window control.

The SendDlgItemMessage() call

 SendDlgItemMessage (hwnd, id, msg, wParam, lParam)

is equivalent to the following SendMessage() call:

 hwnd2 = GetDlgItem (hwnd, id);
 SendMessage (hwnd2, msg, wParam, lParam);

Please note that PostMessage() should never be used to talk to the
child windows of dialog boxes for the following reasons:

1. PostMessage() will only return an error if the message was not
 posted to the control's message queue. Since many messages are
 sent to control return information, PostMessage() will not work,
 since it does not return the information to the caller.

2. 16-bit only: Messages such as the WM_SETTEXT message that include a far
 pointer to a string can potentially cause problems if posted
 using the PostMessage() function. The far pointer may point into a
 buffer that is inside the DS (data segment). Because
 PostMessage() does not process the message immediately, the DS
 might get moved. If the DS is moved before the message is
 processed, the far pointer to the buffer will be invalid.

Additional reference words: 3.00 3.10 3.50
KBCategory: kbui
KBSubcategory: UsrMsg

Using SendMessageTimeout() in a Multithreaded Application
PSS ID Number: Q106716

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

SendMessageTimeout() is new to the Win32 application programming interface
(API). The function sends a message to a window and does not return until
either the window procedure processes the message or the timeout occurs.

MORE INFORMATION
================

This article uses the following scenario to illustrate the behavior of this
function:

Suppose that Win1 and Win2 are created by the same application and
that the following code is included in their window procedures:

 <WindowProc for window Win1>
 ...
 case <xxx>:
 ...
 SendMessageTimeout(hWnd2, // window handle
 WM_USER+1, // message to send
 wParam, // first message parameter
 lParam, // second message parameter
 SMTO_NORMAL, // flag *
 100, // timeout (in milliseconds)
 &ret); // return value
 ...
 break;

 case WM_USER+2:
 <time-consuming procedure>
 break;

* Note that the SMTO_NORMAL flag indicates that the calling thread can
process other requests while waiting for the API to return.

 <WindowProc for window Win2>
 ...
 case WM_USER+1:
 ...
 SendMessage(hWnd1, // window handle
 WM_USER+2, // message to send

 wParam, // first message parameter
 lParam); // second message parameter
 OtherStuff();
 ...
 break;

If Win1 executes this SendMessageTimeout() and Win2 uses SendMessage() to
send a message to Win1, Win1 can process the message because SMTO_NORMAL
was specified. If the SendMessageTimeout() expires while the execution is
currently in the window procedure for Win1, the state of the system will
depend on who owns the windows.

If both windows were created by the same thread, the timeout is not used
and the process proceeds exactly as if SendMessage() was being used. If the
windows are owned by different threads, the results can be unpredictable,
because the timeout is restarted whenever a message or some other system
event is received and processed. In other words, the receipt by Win1 of
WM_USER+2 causes the timeout to restart after the message is processed. If
the function executed by Win2, OtherStuff(), then uses up more than 100
milliseconds without awakening the thread that created Win1, the original
SendMessageTimeout() will timeout and return. The OtherStuff() function
continues to completion but any value that was to be returned to Win1 will
be lost. Note that the code paths will always complete.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrMisc

Using Serial Communications Under Win32s
PSS ID Number: Q105759
--
The information in this article applies to:

 - Microsoft Win32s versions 1.0, 1.1, and 1.2
--

Windows NT and Windows provide significantly different serial
communications application programming interfaces (APIs). Win32s does not
support the Win32 Communications API.

A good approach to take in writing a Win32-based application targetted for
Win32s that uses serial communications is to create a pair of dynamic-link
libraries (DLLs) with the same name. One DLL will use Win32 Communications
APIs and be installed under Windows NT. The other DLL will use the
Universal Thunk to call a 16-bit DLL that will call the Windows
Communications API. This DLL will be installed under Win32s.

For more information on the Universal Thunk, see the "Win32s Programmers
Guide" included with the Software Development Kit (SDK). In addition, there
is a sample in MSTOOLS\WIN32S\UT\SAMPLES\UTSAMPLE.

Additional reference words: 1.00 1.10 1.20 comm
KBCategory: kbprg
KBSubcategory: W32s

Using SetClassLong Function to Subclass a Window Class
PSS ID Number: Q32519

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

It is possible to subclass an entire window class by using the
SetClassLong() function. However, doing so will only subclass windows
of that class created after the call to the SetClassLong() function.
Windows created before the call to the SetClassLong() function are not
affected.

NOTE: In Win32, SetClassLong() only affects Windows in the same address
space. For example, if you subclass EDIT, only edit controls created in
your application will be subclassed.

MORE INFORMATION
================

Calling the SetClassLong() function with the GCL_WNDPROC index changes
the class function address for that window class, creating a subclass
of the window class. When a subsequent window of that class is created,
the new class function address is inserted into its window structure,
subclassing the new window. Windows created before the call to the
SetClassLong() function (in other words, before the class function
address was changed) are not subclassed.

An application should not use the SetClassLong() function to subclass
standard Windows controls such as edit controls or buttons. If, for
example, an application were to subclass the entire "edit" class,
then subsequent edit controls created by other applications would be
subclassed.

An application can subclass individual standard Windows controls that
it has created by calling the SetWindowLong() function.

Additional reference words: listbox scrollbar 3.00 3.10 3.50 4.00 95
KBCategory: kbui
KBSubcategory: UsrWndw

Using SetThreadLocale() for Language Resources
PSS ID Number: Q99392

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

Under Windows NT, each resource loading application programming interface
(API) is based on the thread's locale. Each thread has a locale--usually
the default system locale.

You can change the thread locale by calling SetThreadLocale(). To obtain
the language resource you want, just set the thread locale to the locale
you want, then call the normal resource loading API.

Additional reference words: 3.10 3.50
KBCategory: kbui
KBSubcategory: UsrNls WintlDev

Using SndPlaySound to Play Wave Files
PSS ID Number: Q133064
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK), version 3.1
 - Microsoft Win32 Software Development Kit (SDK), version 3.5
--

The sndPlaySound() multimedia API function is capable of playing memory
images using the SND_MEMORY flag if the waveform audio exists as a .WAV
file, a wave resource, or is dynamically constructed by the application.

When using the SND_MEMORY flag, the data must be allocated from global
memory using the GPTR and GMEM_SHARED flags and possess both the
RIFF and PCM information.

The following code demonstrates how to use the SND_MEMORY flag.

 { // Sample code to demonstrate SND_MEMORY flag and memory files.

 // Sound resource bound within executable.

 if (hWaveRes = FindResource(ghInst,"TADA","WAVE"))

 { // Resource intact; load into GLOBAL MEMORY/GMEM_SHARED memory

 if (hGlobMem = LoadResource(ghInst,hWaveRes))

 { // Load resource into global memory and play.

 // Play sound resource via sndPlaySound() using
 // SND_MEMORY flag.

 // Application waits until sndPlaySound completes
 // given SND_SYNC.

 // SND_MEMORY (first parameter is ptr to memory image
 // vs. filename).

 sndPlaySound((LPSTR)LockResource(hGlobMem),
 SND_SYNC | SND_MEMORY);

 FreeResource(hGlobMem); // Required in 16-bit
 // applications.

 } // Load resource into global memory and play.

 else MessageBox(NULL,"No resource!","Multimedia Sampler!",
 MB_ICONHAND);

 GlobalFree(hGlobMem);

 } // Resource found.

 else MessageBox(NULL,"Lost resource!","Multimedia Sampler!",
 MB_ICONHAND);

 }

Additional reference words: 3.10 3.50 kbinf win16sdk mmio mmioOpen mmioRead
KBCategory: kbmm kbcode
KBSubcategory: MMWave

Using Tabs with Initialization File APIs
PSS ID Number: Q132180

This information applies to:

 - Microsoft Win32 Software Development Kit (SDK) version 4.0

SUMMARY
=======

Windows 95 does not support the use of the tab (that is, \t) character as
part of the lpszString parameter of WritePrivateProfileString or
WriteProfileString. In addition, GetPrivateProfileString does not return
any characters in a key that occur after a tab character.

This behavior is for backward compatibility with applications that assume
that comments are separated from entries by tabs.

NOTE: Windows NT does support the use of the tab character.

MORE INFORMATION
================

If a call made to either WritePrivateProfileString or WriteProfileString
that contains the tab character as part of the lpszString parameter, the
desired effect will not occur. Both of these functions will return TRUE
(that is, successful completion); however, any data that was to follow the
tab character will be missing. The newly created or modified key of the
.INI file will indicate the loss of data.

When using the GetPrivateProfileString API to retrieve a string from
a specified section in an .INI file, if the string is in the form:

 lpszKey=ValuePart1 <tab> ValuePart2

then GetPrivateProfileString returns ValuePart1, but does not return
ValuePart2 because of the tab.

Code to Demonstrate Behavior

The following code demonstrates this loss of data after a call to
WritePrivateProfileString:

void main()
{
 char szBuf[200];

 if (!WritePrivateProfileString("TEST",
 "TESTKEY",
 "Test String \t more text",
 "TEST.INI"))
 {

 FormatMessage(
 FORMAT_MESSAGE_FROM_SYSTEM,
 NULL,
 GetLastError(),
 MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US),
 szBuf,
 199,
 NULL);

 MessageBox(NULL, szBuf,
 "Error calling WritePrivateProfileString",
 MB_OK);
 }
}

Additional reference words: 95 4.00
KBCategory: kbenv
KBSubcategory: KrMisc

Using Temporary File Can Improve Application Performance
PSS ID Number: Q103237

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

The use of temporary files can significantly increase the performance of an
application.

MORE INFORMATION
================

By using CreateFile() with the FILE_ATTRIBUTE_TEMPORARY flag, you let the
system know that the file is likely to be short lived. The temporary file
is created as a normal file. The system needs to do a minimal amount of
lazy writes to the file system to keep the disk structures (directories and
so forth) consistent. This gives the appearance that the file has been
written to the disk. However, unless the Memory Manager detects an
inadequate supply of free pages and starts writing modified pages to the
disk, the Cache Manager's Lazy Writer may never write the data pages of
this file to the disk. If the system has enough memory, the pages may
remain in memory for any arbitrary amount of time. Because temporary files
are generally short lived, there is a good chance the system will never
write the pages to the disk.

To further increase performance, your application might mark the file as
FILE_FLAG_DELETE_ON_CLOSE. This indicates to the system that when the last
handle of the file is closed, it will be deleted. Although the system
generally purges the cache to ensure that a file being closed is updated
appropriately, because a file marked with this flag won't exist after the
close, the system foregoes the cache purge.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseFileio

Using Text Bullets in a Rich Edit Control
PSS ID Number: Q129859

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s version 1.3

The Rich Edit control contains a built-in text bullet feature that is used
to add paragraph bullets to the text. To use this feature, you must send
the Rich Edit control a EM_SETPARAFORMAT message. The EM_SETPARAFORMAT
message takes a pointer to a PARAFORMAT structure as its lParam parameter.
In the PARAFORMAT structure, it is necessary to zero out the structure and
fill in the following members:

 UINT cbSize - Contains the size of the structure. Use
 sizeof(PARAFORMAT).

 DWORD dwMask - Contains the attributes to set. For bullets, use
 PFM_NUMBERING | PFM_OFFSET.

 WORD wNumbering - Contains the value that specifies numbering options.
 For bullets, set this member equal to PFN_BULLET.

 LONG dxOffset - Contains the value that specifies indentation of the
 second line and subsequent lines, relative to the starting indentation.
 For bullets, this value must be positive because the bullet is displayed
 in the area between the starting indentation and the offset. If this
 value is too small, the bullets are not displayed.

Additional reference words: 1.30 4.00 95
KBCategory: kbui
KBSubcategory: UsrCtl W32s

Using the C Run-Time
PSS ID Number: Q94248
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0
--

SUMMARY
=======

This document contains the following sections:

 Section 1: Three Forms of C Run-Time (CRT) Library Are Available
 Section 2: Using the CRT Libraries When Building a DLL
 Section 3: Using NTWIN32.MAK to Simplify the Build Process
 Section 4: Problems Encountered When Using Multiple CRT Libraries
 Section 5: Mixing Library Types

MORE INFORMATION
================

Section 1: Three Forms of C Run-Time (CRT) Libraries Are Available

There are three forms of the C Run-time library provided with the Win32
SDK:

 - LIBC.LIB is a statically linked library for single-threaded programs.

 - LIBCMT.LIB is a statically linked library that supports multithreaded
 programs.

 - CRTDLL.LIB is an import library for CRTDLL.DLL that also supports
 multithreaded programs. CRTDLL.DLL itself is part of Windows NT.

Microsoft Visual C++ 32-bit edition contains these three forms as well,
however, the CRT in a DLL is named MSVCRT.LIB. The DLL is redistributable.
Its name depends on the version of VC++ (ie MSVCRT10.DLL or MSVCRT20.DLL).
Note however, that MSVCRT10.DLL is not supported on Win32s, while
CRTDLL.LIB is supported on Win32s. MSVCRT20.DLL comes in two versions: one
for Windows NT and the other for Win32s.

Section 2: Using the CRT Libraries When Building a DLL
--

When building a DLL which uses any of the C Run-time libraries, in order to
ensure that the CRT is properly initialized, either

1. the initialization function must be named DllMain() and the entry point
 must be specified with the linker option -entry:_DllMainCRTStartup@12

 - or -

2. the DLL's entry point must explicitly call CRT_INIT() on process attach
 and process detach

This permits the C Run-time libraries to properly allocate and initialize C
Run-time data when a process or thread is attaching to the DLL, to properly
clean up C Run-time data when a process is detaching from the DLL, and for
global C++ objects in the DLL to be properly constructed and destructed.

The Win32 SDK samples all use the first method. Use them as an example.
Also refer to the Win32 Programmer's Reference for DllEntryPoint() and the
Visual C++ documentation for DllMain(). Note that DllMainCRTStartup() calls
CRT_INIT() and CRT_INIT() will call your application's DllMain(), if it
exists.

If you wish to use the second method and call the CRT initialization code
yourself, instead of using DllMainCRTStartup() and DllMain(), there are two
techniques:

1. if there is no entry function which performs initialization code, simply
 specify CRT_INIT() as the entry point of the DLL. Assuming that you've
 included NTWIN32.MAK, which defines DLLENTRY as "@12", add the following
 option to the DLL's link line:

 -entry:_CRT_INIT$(DLLENTRY)

 - or -

2. if you *do* have your own DLL entry point, do the following in the entry
 point:

 a. Use this prototype for CRT_INIT():

 BOOL WINAPI _CRT_INIT(HINSTANCE hinstDLL, DWORD fdwReason,
 LPVOID lpReserved);

 For information on CRT_INIT() return values, see the documentation
 DllEntryPoint; the same values are returned.

 b. On DLL_PROCESS_ATTACH and DLL_THREAD_ATTACH (see "DllEntryPoint" in
 the Win32 API reference for more information on these flags), call
 CRT_INIT(), first, before any C Run-time functions are called or any
 floating-point operations are performed.

 c. Call your own process/thread initialization/termination code.

 d. On DLL_PROCESS_DETACH and DLL_THREAD_DETACH, call CRT_INIT() last,
 after all C Run-time functions have been called and all floating-
 point operations are completed.

 Be sure to pass on to CRT_INIT() all of the parameters of the entry
 point; CRT_INIT() expects those parameters, so things may not work
 reliably if they are omitted (in particular, fdwReason is required to
 determine whether process initialization or termination is needed).

 Below is a skeleton sample entry point function that shows when and how
 to make these calls to CRT_INIT() in the DLL entry point:

 BOOL WINAPI DllEntryPoint(HINSTANCE hinstDLL, DWORD fdwReason,
 LPVOID lpReserved)
 {
 if (fdwReason == DLL_PROCESS_ATTACH || fdwReason == DLL_THREAD_ATTACH)
 if (!_CRT_INIT(hinstDLL, fdwReason, lpReserved))
 return(FALSE);

 if (fdwReason == DLL_PROCESS_DETACH || fdwReason == DLL_THREAD_DETACH)
 if (!_CRT_INIT(hinstDLL, fdwReason, lpReserved))
 return(FALSE);
 return(TRUE);
 }

 NOTE that this is *not* necessary if you are using DllMain() and
 -entry:_DllMainCRTStartup@12.

Section 3: Using NTWIN32.MAK to Simplify the Build Process
--

There are macros defined in NTWIN32.MAK that can be used to simplify your
makefiles and to ensure that they are properly built to avoid conflicts.
For this reason, Microsoft highly recommends using NTWIN32.MAK and the
macros therein.

For compilation, use:

 $(cvarsdll) for apps/DLLs using CRT in a DLL

For linking, use one of the following:

 $(conlibsdll) for console apps/DLLs using CRT in a DLL
 $(guilibsdll) for GUI apps using CRT in a DLL

Section 4: Problems Encountered When Using Multiple CRT Libraries

If an application that makes C Run-time calls links to a DLL that also
makes C Run-time calls, be aware that if they are both linked with one of
the statically-linked C Run-time libraries (LIBC.LIB or LIBCMT.LIB), the
.EXE and DLL will have separate copies of all C Run-time functions and
global variables. This means that C Run-time data cannot be shared between
the .EXE and the DLL. Some of the problems that can occur as a result are:

 - Passing buffered stream handles from the .EXE/DLL to the other module
 - Allocating memory with a C Run-time call in the .EXE/DLL and
 reallocating or freeing it in the other module
 - Checking or setting the value of the global errno variable in the
 .EXE/DLL and expecting it to be the same in the other module. A related
 problem is calling perror() in the opposite module from where the C Run-
 time error occurred, since perror() uses errno.

To avoid these problems, link both the .EXE and DLL with CRTDLL.LIB or

MSVCRT.LIB, which allows both the .EXE and DLL to use the common set of
functions and data contained within CRT in a DLL, and C Run-time data such
as stream handles can then be shared by both the .EXE and DLL.

Section 5: Mixing Library Types

You can link your DLL with CRTDLL.LIB/MSVCRT.LIB regardless of what your
.EXE is linked with if you avoid mixing CRT data structures and passing
CRT file handles or CRT FILE* pointers to other modules.

When mixing library types adhere to the following:

 - CRT file handles may only be operated on by the CRT module that created
 them.

 - CRT FILE* pointers may only be operated on by the CRT module that
 created them.

 - Memory allocated with the CRT function malloc() may only be freed or
 reallocated by the CRT module that allocated it.

To illustrate this, consider the following example:

 - .EXE is linked with MSVCRT.LIB
 - DLL A is linked with LIBCMT.LIB
 - DLL B is linked with CRTDLL.LIB

 If the .EXE creates a CRT file handle using _create() or _open(), this
 file handle may only be passed to _lseek(), _read(), _write(), _close(),
 etc. in the .EXE file. Do not pass this CRT file handle to either DLL.
 Do not pass a CRT file handle obtained from either DLL to the other DLL
 or to the .EXE.

 If DLL A allocates a block of memory with malloc(), only DLL A may call
 free(), _expand(), or realloc() to operate on that block. You cannot
 call malloc() from DLL A and try to free that block from the .EXE or
 from DLL B.

 NOTE: If all three modules were linked with CRTDLL.LIB or all three were
 linked with MSVCRT.LIb, these restrictions would not apply.

When linking DLLs with LIBC.LIB, be aware that if there is a possibility
that such a DLL will be called by a multithreaded program, the DLL will
not support multiple threads running in the DLL at the same time, which can
cause major problems. If there is a possibility that the DLL will be called
by multithreaded programs, be sure to link it with one of the libraries
that support multithreaded programs (LIBCMT.LIB, CRTDLL.LIB or MSVCRT.LIB).

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsMisc

Using the Call-Attributed Profiler (CAP)
PSS ID Number: Q118890
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT,
 versions 3.1 and 3.5
--

SUMMARY
=======

The call-attributed profiler (CAP) allows you to profile function calls
within an application.

MORE INFORMATION
================

To profile an application using CAP, perform the following steps:

1. Replace the Windows NT system DLLs that your application uses with
 DLLs that contain debugging information. To find out which DLLs
 your application uses, run the APF32CVT.EXE utility provided with
 the Win32 SDK. The syntax to use is as follows:

 apf32cvt <application>

 This will list the DLLs to which your program is linked. The system
 DLLs that contain debugging information can be found in the
 \SUPPORT\DEBUGDLL\i386 of the Win32 SDK CD. Rename the DLLs in your
 WINNT\SYSTEM32 directory and copy the debugging DLLs to the
 WINNT\SYSTEM32 directory. You will need to reboot the machine to use
 the DLLs.

2. Recompile your application. If you are using the NTWIN32.MAK file
 in your makefile, all you need to do is to set the environment
 variable PROFILE=on. Otherwise, add /Gh and /Zd to the compiler
 options yourself and be sure that you are linking with the options
 "-debugtype:coff" and "-debug:partial,mapped".

3. Place a CAP.INI file in either the root directory of the drive, the
 application directory, the WINDOWS directory, or the root of the C
 drive. The CAP.INI file specifies the applications for which the
 profiler will gather information. At minimum, CAP.ini must contain
 the following:

 [EXES]
 <app>.exe
 [PATCH IMPORTS]
 <app>.exe
 [PATCH CALLERS]

 where <app> is the application to be profiled. The file CAP.TXT
 included in the \BIN directory of the SDK provides an excellent

 example.

4. Run the application. The profiling information is gathered
 and stored in a file with the same base name as the application
 and a .END extension. This information is in an ASCII format and
 can be viewed by any text editor. You can also use the CAPVIEW
 sample to view a graphical representation of the information.

Walter Oney points out in "Removing Bottlenecks from Your Program with
Windows NT Performance-tuning Tools," from the April 1994 edition of
"Microsoft Systems Journal," that the Visual C++ linker does not correctly
generate debugging information that CAP can use. This is not correct. The
problem is that the SDK 3.1 linker uses "-debug:mapped" by default, but the
Visual C++ linker does not. Adding the switch to the link line (as in
step 2, above) corrects this problem.

A common problem is for the profiling output to have "??? : ???" in place
of the function names from your application. For example:

 1 ??? : ??? (Address=0x77889a1b) 1 4717 4717
 4717 4717 4717 n/a n/a

This occurs if you use the wrong linker options. You should use
"-debugtype:coff" and "-debug:partial,mapped".

Another common problem is to have function pointers instead of the Win32
API names. For example:

 1 0x77e9b10f 1 1577 1577
 1577 1577 1577 n/a n/a

This happens when you do not replace the system DLLs that your application
calls with the DLLs that contain debugging information.

REFERENCES
==========

The release notes for CAP.TXT can be found in the MSTOOLS\BIN directory.

The best source of information is "Optimizing Windows NT" by Russ Blake
in the "Windows NT Resource Kit, Vol. 3".

Additional reference words: 3.10 3.50
KBCategory: kbtool
KBSubcategory: TlsMisc

Using the DeferWindowPos Family of Functions
PSS ID Number: Q87345

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In the Microsoft Windows graphical environment, an application can use
the BeginDeferWindowPos, DeferWindowPos, and EndDeferWindowPos
functions when it moves or sizes a set of windows simultaneously.
Using these functions avoids unnecessary screen painting, which would
occur if the windows were moved individually.

The eighth parameter to the DeferWindowPos function can be any one of
eight flag values that affect the size and position of each moved or
sized window. One of the flags, SWP_NOREDRAW, disables repainting and
prevents Windows from displaying any changes to the screen. This flag
effects both the client and nonclient areas of the window. Any portion
of its parent window uncovered by the move or size operation must be
explicitly invalidated and redrawn.

If the moved or sized windows are child windows or pop-up windows,
then the SWP_NOREDRAW flag has the expected effect. However, if the
window is an edit control, a combo box control, or a list box control,
then specifying SWP_NOREDRAW has no effect; the control is drawn at
its new location and its previous location is not erased. This
behavior is caused by the manner in which these three control classes
are painted. Buttons and static controls function normally.

To work around this limitation and move a group of edit, list box, and
combo box controls in a visually pleasing manner, perform the
following three steps:

1. Use the ShowWindow function to hide all of the controls.

2. Move or size the controls as required with the MoveWindow and
 SetWindowPos functions.

3. Use the ShowWindow function to display all of the controls.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95 combobox listbox
KBCategory: kbui
KBSubcategory: UsrWndw

Using the Document Properties Dialog Box
PSS ID Number: Q118622

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

A number of applications display a printer-configuration dialog box titled
"Document Properties" when the user chooses File from the application menu,
chooses Print, and then chooses the Setup button.

The DocumentProperties() API is used to display this dialog box. You need
to call DocumentProperties() with the DM_IN_PROMPT bit set in the last
parameter (fMode). You also need to call OpenPrinter() before calling
DocumentProperties().

MORE INFORMATION
================

The following code demonstrates how to call DocumentProperties():

Sample Code

 HDC hPrnDC;
 LPDEVMODE lpDevMode = NULL;
 LPDEVNAMES lpDevNames;
 LPSTR lpszDriverName;
 LPSTR lpszDeviceName;
 LPSTR lpszPortName;
 PRINTDLG pd;
 HANDLE hPrinter;
 int nDMSize;
 HANDLE hDevMode;
 NPDEVMODE npDevMode;
 DEVMODE DevModeIn;

 // Get the defaults without displaying any dialog boxes.

 pd.Flags = PD_RETURNDEFAULT;
 pd.hDevNames = NULL;
 pd.hDevMode = NULL;
 pd.lStructSize = sizeof(PRINTDLG);
 PrintDlg((LPPRINTDLG)&pd);

 lpDevNames = (LPDEVNAMES)GlobalLock(pd.hDevNames);
 lpszDriverName = (LPSTR)lpDevNames + lpDevNames->wDriverOffset;

 lpszDeviceName = (LPSTR)lpDevNames + lpDevNames->wDeviceOffset;
 lpszPortName = (LPSTR)lpDevNames + lpDevNames->wOutputOffset;

 OpenPrinter(lpszDeviceName,&hPrinter,NULL);

 // A zero for last param returns the size of buffer needed.

 nDMSize = DocumentProperties(hWnd,hPrinter,lpszDeviceName,NULL,NULL,0);
 if ((nDMSize < 0) || !(hDevMode = LocalAlloc (LHND, nDMSize)))
 return NULL;

 npDevMode = (NPDEVMODE) LocalLock (hDevMode);

 // Fill in the rest of the structure.

 lstrcpy (DevModeIn.dmDeviceName, lpszDeviceName);
 DevModeIn.dmSpecVersion = 0x300;
 DevModeIn.dmDriverVersion = 0;
 DevModeIn.dmSize = sizeof (DevModeIn);
 DevModeIn.dmDriverExtra = 0;

 // Display the "Document Properties" dialog box.

 DocumentProperties(hWnd,hPrinter,lpszDeviceName,npDevMode,&DevModeIn,
 DM_IN_PROMPT|DM_OUT_BUFFER);

 // Get the printer DC.

 hPrnDC = CreateDC
(lpszDriverName,lpszDeviceName,lpszPortName,(LPSTR)npDevMode);
 LocalUnlock (hDevMode);

 // Use the printer DC.

 ...

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprint
KBSubcategory: GdiPrn

Using the DRAWPATTERNRECT Escape in Windows
PSS ID Number: Q75380

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The DRAWPATTERNRECT escape is implemented by the PCL/HP driver for
Hewlett-Packard (HP) LaserJet printers and compatibles. The escape is
used to draw a patterned rectangle without using the graphics banding
bitmap. Using this escape can enhance the performance for many
applications, particularly when a majority of users have
LaserJet-compatible printers.

MORE INFORMATION
================

The HP LaserJet Plus and all later LaserJets implement a command
called a rule. A rule is a rectangle filled with some pattern, such as
a black rule, a quasi-halftone gray scale, or a hatch pattern.

The output does not go through the graphics banding bitmap (it is
actually sent to the printer in the text band). The DRAWPATTERNRECT
escape can be used to print line and block graphics in the text band
without using graphics banding at all. Because many applications use
only horizontal and vertical lines or blocks, this is a significant
optimization.

An application should determine support for rules using the
QUERYESCSUPPORT escape. In particular, the application should not
check for the PCL/HP driver, since other page printer drivers may
implement the escape as well.

There are some limitations to the escape. First, rules drawn with
DRAWPATTERNRECT are not subject to clipping regions in the Device
Context (DC). Second, rules cannot be opaqued; no white pixel in the
graphics band will erase a pixel drawn by a rule (the same limitation
occurs for PCL text). Once a rule is drawn, it cannot be erased.

If these limitations are acceptable, if all graphics on the page are
likely to be horizontal and vertical lines, and if a significant
number of users are expected to have LaserJet-type printers (which is
the case for most Windows-based applications), the DRAWPATTERNRECT escape
should be used.

If for any reason DRAWPATTERNRECT cannot be used, then the application
should generally use the PatBlt function. If the device is a
plotter, the Rectangle function should be used. In the case of the
PatBlt function, if a black rectangle is to be printed, the BLACKNESS
raster operator (ROP) should be used to avoid the overhead of
selecting and later deselecting a black brush into the printer DC.

Additional reference words: 3.00 3.10 3.50 4.00 95 HPPCL HP-PCL
KBCategory: kbprint
KBSubcategory: GdiPrn

Using the DS_SETFONT Dialog Box Style
PSS ID Number: Q87344

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In the Microsoft Windows graphical environment, an application can
affect the appearance of a dialog box by specifying the DS_SETFONT
style bit. DS_SETFONT is available only when the application creates a
dialog box dynamically from a memory-resident dialog box template
using the CreateDialogIndirect, CreateDialogIndirectParam,
DialogBoxIndirect, or DialogBoxIndirectParam function. The second
parameter to each of these functions is the handle to a global memory
object that contains a DLGTEMPLATE dialog box template data structure.
The dwStyle (first) member of the DLGTEMPLATE structure contains style
information for the dialog box.

When an application creates a dialog box using one of these functions,
Windows determines whether the template contains a FONTINFO data
structure by checking for the DS_FONTSTYLE bit in the dwStyle member
of the DLGTEMPLATE structure. If this bit is set, Windows creates a
font for the dialog box and its controls based on the information in
the FONTINFO structure. Otherwise, Windows uses the default system
font to calculate the size of the dialog box and the placement and
text of its controls.

If Windows creates a font based on the FONTINFO data structure, it
sends a WM_SETFONT message to the dialog box. If Windows uses the
system default font, it does not send a WM_SETFONT message. A dialog
box can change the font of one or more of its controls by creating a
font and sending a WM_SETFONT message with the font handle to the
appropriate controls.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrDlgs

Using the FORCEFONT .HPJ Option
PSS ID Number: Q93395
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK, versions 3.5, 3.51, and 4.0
--

The FORCEFONT Help project file (HPJ) option can only be used with the
following font names:

 Helv
 Helvetica
 Courier
 Tms Rmn
 Times
 Symbol

Though Helv, Helvetica, Times, and Tms Rmn are not Windows 3.1 fonts, each
of them is mapped to a 3.1 font in the [FontSubstitutes] section of WIN.INI
by Windows Setup. They are mapped as follows:

 Helv=MS Sans Serif
 Tms Rmn=MS Serif
 Times=Times New Roman
 Helvetica=Arial

To force a Help file to use MS Sans Serif, the FORCEFONT option should be:

 FORCEFONT=Helv

Additional reference words: 3.10 3.50 4.00 95 HC30 HC31 HCP help compiler
MAPFONTSIZE
KBCategory: kbtool
KBSubcategory: TlsHlp

Using the GetWindow() Function
PSS ID Number: Q33161

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

An application can use the GetWindow function to enumerate the windows
that have a specified relationship to another window. For example, an
application can determine the windows that are children of the
application's main window.

MORE INFORMATION
================

The GetWindow function returns NULL when no more windows match the
specified criteria. Given a window handle, hWnd, the following code
determines how many siblings the associated window has:

 int CountSiblings(HWND hWnd)
 {
 HWND hWndNext;
 short nCount = 0;

 hWndNext = GetWindow(hWnd, GW_HWNDFIRST);
 while (hWndNext != NULL)
 {
 nCount++;
 hWndNext = GetWindow(hWndNext, GW_HWNDNEXT);
 }

 return nCount;
 }

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrWndw

Using the Registry Under Win32s
PSS ID Number: Q129542

The information in this article applies to:

 - Microsoft Win32s, version 1.2

SUMMARY
=======

A Win32s-based application running under Win32s is limited to the Windows
version 3.1 view of the registry. This means that there are no named
values. In addition, HKEY_CLASSES_ROOT is available, but not
HKEY_LOCAL_MACHINE or HKEY_CURRENT_USER.

The Windows version 3.1 registry is very limited in size. Microsoft
recommends that you store only the OLE registration information in the
Windows registry.

MORE INFORMATION
================

While Win32s does support some Registry APIs that Windows does not, it does
not support all of the Win32 Registry APIs. For a complete list of the
Registry APIs supported under Win32s, please see the file WIN32API.CSV,
which is included with the Win32 Software Development Kit (SDK) and in
Microsoft Visual C++ (32-bit edition).

NOTE: All supported Registry APIs, except for RegQueryValueA() and
RegQueryValueExA(), return the error codes defined for Windows verion 3.1,
not the codes defined by the Win32 API.

Additional reference words: 1.20
KBCategory: kbprg
KBSubcategory: W32s

Using the Windows 95 Common Controls on Windows NT and Win32s
PSS ID Number: Q125672

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s version 1.3

SUMMARY
=======

To provide greater compatibility between Windows 95, Windows NT, and
Win32s, the common control library from Windows 95 has been ported to
Windows NT and Win32s starting with Windows NT version 3.51 and Win32s
version 1.3.

MORE INFORMATION
================

The COMCTL32.DLL that provides the common controls in Windows 95 is not
compatible with Windows NT or Win32s, so adding the controls to Windows NT
is not as simple as copying the DLL. Also, the COMCTL32.DLL that comes
with Windows NT version 3.51 and with Win32s is not redistributable.
Customers that want to run programs using the new controls must be running
Windows NT version 3.51 or Win32s version 1.3.

Windows NT version 3.51 and Win32s version 1.3 are targeted to be released
before the release of Windows 95, so any changes in the functionality of
these controls between the release of Windows NT and Win32s and the release
of Windows 95 will be added to Windows NT and Win32s in their next updates.

Additional reference words: 4.00 1.30 3.51
KBCategory: kbui
KBSubcategory: UsrCtl

Using the WM_VKEYTOITEM Message Correctly
PSS ID Number: Q108941

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The WM_VKEYTOITEM message is sent by a list box with the
LBS_WANTKEYBOARDINPUT style to its owner in response to a WM_KEYDOWN
message. The return value from this message specifies the action that the
application performed in response to the message. A return value of -2
indicates that the application handled all aspects of selecting the item
and requires no further action by the list box.

This is true only for certain keys such as the UP ARROW (VK_UP), DOWN ARROW
(VK_DOWN), PAGE DOWN (VK_NEXT) and PAGE UP (VK_PREVIOUS) keys. All other
keys are handled in the normal way by the list box, regardless of the
return value from the WM_VKEYTOITEM message.

MORE INFORMATION
================

The documentation for the WM_VKEYTOITEM message indicates that the owner of
a list box control can trap the WM_VKEYTOITEM message that is generated in
response to a WM_KEYDOWN message and return -2 if the application does not
want the default list box window procedure to take further action.

This is valid only for keys that are not translated into a character by the
list box control in Windows. If the WM_KEYDOWN message translates to a
WM_CHAR message and the application processes the WM_VKEYTOITEM message
generated as a result of the keydown, the list box ignores the return value
(it will go ahead and do the default processing for that character).

WM_KEYDOWN messages generated by keys such as VK_UP (UP ARROW), VK_DOWN
(DOWN ARROW), VK_NEXT (PAGE DOWN) and VK_PREVIOUS (PAGE UP) are not
translated to WM_CHAR messages. In such cases, trapping the WM_VKEYTOITEM
message and returning a -2 prevents the list box from doing the default
processing for that key.

For example, if an application traps the DOWN ARROW key and does some
nondefault processing (such as moving the selection to the item two indexes
below the currently selected item) and then returns -2, the list box
control will not do any more processing with this message.

Alternatively, if the application trapped the "A" key, does some nondefault

processing, and returns -2, the list box code will still do the default
processing. The list box will select an item in the list box that starts
with an "A" (if one is present).

To trap keys that generate a char message and do special processing, the
application must subclass the list box and trap both the WM_KEYDOWN and
WM_CHAR messages, and process the messages appropriately in the subclass
procedure.

NOTE: This discussion is for regular list boxes that are created with the
LBS_WANTKEYBOARDINPUT style. If the list box is owner draw, the application
must process the WM_CHARTOITEM message. For more information on the
WM_CHARTOITEM message, refer to the SDK documentation.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95 listbox
KBCategory: kbui
KBSubcategory: UsrCtl

Using UnregisterClass When Removing Custom Control Class
PSS ID Number: Q67248

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

In the Microsoft Windows environment, when no running application
requires a custom control class, the class should be removed from
memory to free the system resources it uses.

If an application registers a control class for temporary use, the
application should use the UnregisterClass function when the control
is no longer needed. If the application is terminated, Windows
automatically removes any classes that the application registered;
therefore, explicit use of UnregisterClass is not required. However,
pairing calls to the RegisterClass and UnregisterClass functions is a
good programming practice.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrCtl

Using volatile to Prevent Optimization of try/except
PSS ID Number: Q91149

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The following is an example of a valid optimization that may take
programmers by surprise.

1. A variable (temp) used only within the try-except body is declared
 outside it, and therefore is global with respect to the try.

2. Assignment to the variable (temp) is in the program only for a possible
 side effect of doing a read memory access through the pointer.

MORE INFORMATION
================

For example:

 VOID
 puRoutine(PULONG pu)
 {
 ...
 ULONG temp; // Just for probing
 ...
 try {
 temp = *pu; // See if pu is a valid argument
 }

 except {
 // Handle exception
 }
 }

The compiler optimizes and eliminates the entire try-except statement
because temp is not used later.

If the value of temp were used globally, the compiler should treat the
assignment to temp as volatile and do the assignment immediately even if it
is overwritten later in the body of the try. The reasoning is that, at
almost any point in the try body, control may jump to the except (or an
exception filter). Presumably the programmer accessing the variable outside
the try wants to get the current (most recently assigned) value.

The way to prevent the compiler from performing the optimization is:

 temp = (volatile ULONG) *pu;

If a temporary variable is not needed, given the example, the read access
should still be specified as volatile, for example:

 *(volatile PULONG) pu;

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseExcept

Using VxDs and Software Interrupts Under Win32s
PSS ID Number: Q105760
--
The information in this article applies to:

 - Microsoft Win32s versions 1.0, 1.1, and 1.2
--

Calling VxDs directly from a Win32-based application is not supported under
Win32s. Win32s does not support the VxD interfaces, so the call is handled
by the underlying Windows system. The Win32-based application runs with 32-
bit stack and code sections, but Windows expects only 16-bit segments.
Therefore, the calls to the VxD cannot be handled by Windows as expected.

To call software interrupts (such as Interrupt 2F) from a Win32-based
application running under Windows 3.1 via Win32s, place the call in a 16-
bit dynamic-link library (DLL) and use the Universal Thunks to access this
DLL. To convert the addresses between segmented and linear address, use
UTSelectorOffsetToLinear() and UTLinearToSelectorOffset().

Additional reference words: 1.00 1.10 1.20
KBCategory: kbprg
KBSubcategory: W32s

Using Windows Sockets Under Win32s and WOW
PSS ID Number: Q105757
--
The information in this article applies to:

 - Microsoft Win32s versions 1.1 and 1.2
--

SUMMARY
=======

Win32s versions 1.1 and later provide a thunking layer for Windows Sockets.
A 16-bit Windows Sockets 1.1 package must be installed on the Windows
machine. Otherwise, the system will report that WINSOCK.DLL was not found.
Windows NT provides a versions 1.0- and 1.1-compliant WOW (Windows on
Win32) thunking layer.

MORE INFORMATION
================

There are a number of vendors that sell Windows Sockets packages. Windows
Sockets support is available from Microsoft for LAN Manager version 2.2 for
MS-DOS and Windows 3.1 at no additional cost. Similar support is also being
shipped in "Microsoft TCP/IP for Windows For Workgroups" and the "Microsoft
Network Client."

If you have LAN Manager with Microsoft TCP/IP, you can pick up everything
you need from ftp.microsoft.com. Or, call Microsoft Sales at (800) 426-
9400.

The following is information on how to subscribe to an Internet mailing
list for Windows Socket programming as of 07/94:

 Send mail to majordomo@mailbag.intel.com with a body that has

 SUBSCRIBE WINSOCK <your_full_internet_email_address>.

 If you want to be on the winsock hackers mailing list (for implementors
 of Windows sockets), use the following body in a separate piece of
 email.

 SUBSCRIBE WINSOCK-HACKERS <your_full_internet_email_address>.

Other lists available include:

 winsnmp
 winsock-2
 ws2-app-review-board
 ws2-appletalk
 ws2-conn-oriented-media
 ws2-decnet
 ws2-generic-api-ext
 ws2-ipx-spx
 ws2-name-resolution

 ws2-oper-framework
 ws2-osi
 ws2-spec-clarif
 ws2-tcp-ip
 ws2-transp-review-board
 ws2-wireless

Use the command 'info <list>' to get more information about a specific
list.

Additional reference words: 1.10 1.20
KBCategory: kbprg
KBSubcategory: W32s

Validating User Account Passwords Under Windows NT
PSS ID Number: Q98891

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51

Windows NT stores account names and passwords in the security accounts
manager (SAM) database. Windows NT checks this database to validate
passwords when users log on.

In Windows NT 3.1 and 3.5, there is no nonprivileged service that takes a
user name and a password and returns an indication of whether or not the
user account password is valid. There is a privileged service that handles
this password validation; it is for use by logon processes such as
winlogon.

Windows NT 3.51 introduces new Win32 APIs for logon support:

 LogonUser
 ImpersonateLoggedOnUser
 CreateProcessAsUser

MORE INFORMATION
================

The SAM application programming interface (API) functions were not
exposed due to their changing nature. Microsoft is working on a
developer's kit that will provide guidelines and tutorial information
about most of the security API functions, including the SAM APIs.

Exposing the SAM API will not compromise security because the
passwords are encrypted within SAM; they are one-way encrypted such
that not even SAM can decrypt them. Even a dictionary attack (encrypt
an entire dictionary and see if any of the words match) would not be
easy, because there is no SAM API function that will read the
encrypted password.

Additional reference words: 3.10 3.50 non-privileged
KBCategory: kbprg
KBSubcategory: BseSecurity

Validating User Accounts (Impersonation)
PSS ID Number: Q96005

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51

SUMMARY
=======

Some applications need the ability to execute processes in the context of
another user. This impersonation restricts (or expands) the permissions of
the account in which the application was executed (file access, permission
to change system time, permission to shut down the system, and so forth).

For example, an administrator executes a network server program that allows
remote users to log on to the system and perform actions, as if they were
logged on to the system locally. Because the administrator initiated the
server program and is currently logged on, all actions the server program
performs will be in the security context of the administrator. If a guest
user logs on remotely, he/she will have all the permissions the
administrator account has.

With the Win32 API under Windows NT 3.1 and 3.5, impersonating a remote
client is possible only via the ImpersonateDDEClientWindow(),
ImpersonateNamedPipeClient() and RpcImpersonateClient() APIs.

Windows NT 3.51 introduces new Win32 APIs (Logon Support APIs) to deal with
this problem:

 LogonUser
 ImpersonateLoggedOnUser
 CreateProcessAsUser

MORE INFORMATION
================

For versions of Windows NT prior to 3.51
--

A common application of impersonation is network server programs (daemons).
For example, a remote login daemon needs a user to be able to to log in to
a remote host and have the host impose all restrictions of the client login
account.

If the daemon is using named pipes, dynamic data exchange (DDE), or a
remote procedure call (RPC) (using the named pipes transport), the client
account may be impersonated on the server daemon, which will impose all the
restrictions of the client's user account.

Using other network interfaces (such as Windows sockets--network

programming interfaces), security cannot be monitored by the system. A
workaround would be to impose password-level security on "login" to the
application. The passwords would be maintained by the application in a
private accounts database. However, none of the user actions are performed
in the security context of the actual client user's account. Therefore,
after the server/daemon has validated the client, the server must be
careful to only perform actions on behalf of the client that the server
knows the client should be allowed to do.

Another option is to create a network share with restricted access. The
WNetAddConnection2() API can verify access to this system resources [disk
or printer network resource (share)]. If the network share was set up to
allow access by a restricted group of people, the WNetAddConnection2()
could validate actual user accounts, maintained by Windows NT. As with the
previous option, the daemon must be careful to perform only restricted
actions on behalf of the client. This option could be used for file server
daemons.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseSecurity

Value Returned by GetWindowLong(hWnd, GWL_STYLE)
PSS ID Number: Q83366

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

GetWindowLong(hWnd, GWL_STYLE) returns the window style information
stored at the GWL_STYLE offset of the window data structure identified
by hWnd. This offset contains the current state of the window, rather
than the style specified when the window was created.

Windows can set and clear the following styles over the lifetime of a
window: WS_CLIPSIBLINGS, WS_DISABLED, WS_HSCROLL, WS_MAXIMIZE,
WS_MINIMIZE, WS_SYSMENU (for MDI child windows), WS_THICKFRAME,
WS_VISIBLE, and WS_VSCROLL. Windows will not dynamically set or clear
any of the other styles. An application can modify the style state at
the GWL_STYLE offset at any time by calling SetWindowLong(hWnd,
GWL_STYLE, dwNewLong), but Windows will not be aware that the style
has changed. Windows maintains some internal flags on the window style
and may use these rather than checking the GWL_STYLE offset of the
window data structure.

GetWindowLong(hWnd, GWL_STYLE) returns a LONG value, which contains
the currently active styles combined by the Boolean OR operator. An
application can change the information stored at the GWL_STYLE offset
by calling SetWindowLong(hWnd, GWL_STYLE, dwNewLong).

MORE INFORMATION
================

The following table lists the windows styles that Windows updates
throughout the life span of a window. In the Change column below, an
"S" indicates that the style is set and a "C" indicates that the style
is cleared. The Where column lists the source module involved. Windows
will change a window's styles as follows:

Style Change Window Where Why
----- ------ ------ ----- ---

WS_CLIPSIBLINGS

 S Overlapped WMCREATE.C Set on creation.

WS_CLIPSIBLINGS

 S Popup WMCREATE.C Set on creation.

WS_DISABLED S & C Any WMACT.C Set or cleared when
 EnableWindow function
 disables or enables
 window.

WS_HSCROLL S & C SB_HORZ WINSBCTL.C Set or cleared as scroll
 bar range changed (for
 window scroll bar, not the
 SCROLL BAR class).

WS_HSCROLL S & C SB_HORZ SBRARE.C Set or cleared in
 ShowScrollBar (for window
 scroll bar, not the SCROLL
 BAR class).

WS_HSCROLL S & C List boxes LBOXCTL1.C Set if scroll bar required
 to see contents.

WS_HSCROLL S & C MDI frame MDIWIN.C Set if required to see
 children.

WS_MAXIMIZE C Any WMCREATE.C On creation (reset
 immediately in
 WMMINMAX.C).

WS_MAXIMIZE C Any WMMOVE.C Cleared if window resized.

WS_MAXIMIZE S & C Any WMMINMAX.C Set if window maximized,
 cleared if no longer
 maximized.

WS_MINIMIZE C Any WMCREATE.C On creation (reset
 immediately in
 WMMINMAX.C).

WS_MINIMIZE C Any WMMOVE.C Cleared if window resized.

WS_MINIMIZE S & C any WMMINMAX.C Set if window minimized,
 cleared if no longer
 minimized.

WS_SYSMENU S & C MDI child MDIMENU.C Cleared if child is
 maximized and uses frame
 menu. Set when child no
 longer maximized.

WS_THICKFRAME

 S & C Any WINSBCTL.C State changed for only a
 few instructions during
 painting.

WS_VISIBLE C Any WMCREATE.C Cleared and then reset by
 call to ShowWindow.

WS_VISIBLE S & C Any WMSHOW.C Cleared if window hidden
 in ShowWindow, set if
 shown.

WS_VISIBLE S & C Any WMSWP.C Cleared if window hidden
 in ShowWindow, set if
 shown.

WS_VISIBLE C MDI client MDIWIN.C Cleared when current MDI
 child is maximized, and
 new child is activated.
 Immediately reset with
 call to ShowWindow.

WS_VISIBLE S Desktop INLOADW.C Ensure desktop visible.

WS_VISIBLE S & C Any MSDWP.C Set or cleared when
 DefWindowProc receives
 WM_SETREDRAW message to
 turn drawing on or off,
 respectively.

WS_VISIBLE S & C MDI client MDIWIN.C Cleared and then
 immediately reset to
 optimize painting.

WS_VSCROLL S & C SB_VERT WINSBCTL.C Set or cleared as scroll
 bar range changed (for
 window scroll bar, not the
 SCROLL BAR class).

WS_VSCROLL S & C List boxes LBOXCTL1.C Set if scroll bar required
 to see entire contents.

WS_VSCROLL S & C MDI frame MDIWIN.C Set if required to see
 children.

WS_VSCROLL S & C SB_VERT SBRARE.C Set/cleared in
 ShowScrollBar (for window
 scroll bar, not the SCROLL
 BAR class).

In addition to the information above, the GetWindowLong function
always reports some style bits to be clear, as follows:

 - Combo boxes always report the following styles as clear:

 CBS_HASSTRINGS, CBS_SORT, WS_BORDER, WS_HSCROLL, and WS_VSCROLL

 - All edit controls report the WS_BORDER style clear.

 - Multiline edit controls report the WS_HSCROLL style clear if the

 control contains centered or right-justified text.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrWndw

Various Ways to Access Submenus and Menu Items
PSS ID Number: Q71454

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In calls to Microsoft Windows functions that create, modify, and destroy
menus, an application can access an individual menu item by either its
position or its item ID. A pop-up menu must be accessed by its position
because it does not have a menu-item ID.

Specifically, when an application calls the EnableMenuItem() function to
enable, disable, or dim (gray) an individual menu item, the application can
specify either the MF_BYPOSITION or the MF_BYCOMMAND flag in the wEnable
parameter. When the application calls EnableMenuItem() to access a pop-up
menu, it must specify the MF_BYPOSITION flag.

The information below provides examples of the following:

 - Retrieving a menu handle for a submenu
 - Accessing a submenu
 - Accessing a menu item

MORE INFORMATION
================

The following resource-file menu template provides the basis for the source
code examples in this article. The template describes a top-level menu with
two pop-up submenus. One of the submenus contains a third, nested submenu.

 GenericMenu MENU
 BEGIN
 POPUP "&Help"
 BEGIN
 MENUITEM "&About Generic...", IDM_ABOUT
 END

 POPUP "&Test"
 BEGIN
 POPUP "&Nested"
 BEGIN
 MENUITEM "&1 Beep", IDM_1BEEP
 MENUITEM "&2 Beeps", IDM_2BEEPS
 END

 END
 END

Retrieving the Handle to a Submenu

Code such as the following can be used to obtain handles to the menus:

 HMENU hMainMenu, hHelpPopup, hTestPopup, hNestedPopup;

 <other program lines>

 hMainMenu = GetMenu(hWnd);
 hHelpPopup = GetSubMenu(hMainMenu, 0);
 hTestPopup = GetSubMenu(hMainMenu, 1);
 hNestedPopup = GetSubMenu(hTestPopup, 0);

The second parameter of the GetSubMenu() function, nPos, is the position
of the desired submenu. Positions are numbered starting at zero for
the first menu item.

Disabling a Submenu

The following call disables and dims the nested pop-up menu:

 EnableMenuItem (hTestPopup, 0, MF_BYPOSITION | MF_GRAYED);

The following call disables and dims the Test pop-up menu:

 EnableMenuItem (hMainMenu, 1, MF_BYPOSITION | MF_GRAYED);

The second parameter of the EnableMenuItem() function, wIDEnabledItem, is
the position of the submenu. As above, positions are numbered starting at
zero. Note that the call must specify the MF_BYPOSITION flag because a pop-
up menu does not have a menu-item ID.

Disabling a Menu Item

The 1 Beep menu item can be disabled and dimmed by using any one of
the following calls:

 EnableMenuItem(hMainMenu, IDM_1BEEP, MF_BYCOMMAND | MF_GRAYED);
 EnableMenuItem(hTestPopup, IDM_1BEEP, MF_BYCOMMAND | MF_GRAYED);
 EnableMenuItem(hNestedPopup, IDM_1BEEP, MF_BYCOMMAND | MF_GRAYED);
 EnableMenuItem(hNestedPopup, 0, MF_BYPOSITION | MF_GRAYED);

A menu item can be specified by either by its menu-item ID value (using the
MF_BYCOMMAND flag) or by its position (using the MF_BYPOSITION) flag. If
the application specifies the menu-item ID value, Windows must walk the
menu structure and search for a menu item with the correct ID. This implies

the each menu-item ID value must be unique for a given menu.

Other Windows Menu Functions

Although the EnableMenuItem() function is used in the example above, the
same general approach is used for all Windows menu functions; access
pop-up menus by position, and access menu items by position or menu-
item ID.

Additional reference words: 3.00 3.10 3.50 4.00 95 dimmed unavailable
KBCategory: kbui
KBSubcategory: UsrMen

Video for Windows 1.1--Automatic Window Shift Problem
PSS ID Number: Q118390
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 SDK, version 4.0
--

When a video playback window is created using MCI, the Video for Windows
(VfW) system software may shift the window a small distance vertically or
horizontally from the original location.

The video software does this to align the window on even-byte boundaries in
video memory for optimal playback speed. When the window is located on a
byte boundary, the video software is not required to perform bit-intensive
calculations during video playback, increasing the playback speed.

This behavior is particular to Video for Windows and cannot be controlled
by the application being affected.

Additional reference words: 3.10 4.00 95
KBCategory: kbmm kbprg
KBSubcategory: MMVideo

Viewing Globals Out of Context in WinDbg
PSS ID Number: Q105583
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0
--

When viewing global variables (either with the ? command or via the Watch
window) and the variables go out of context, their values become:

 CXX0017 Error: symbol not found

An example of this is when a common dialog box is open in the application.
If you break into an application that is inside COMDLG32.DLL and try to do
a ?gVar, where gVar is a global variable in the application, WinDbg will
not find the symbol because the context is wrong. To view the value of gVar
in MYAPP, use the following:

 ?{,,myapp}gVar

WinDbg will then have no trouble locating the symbolic information.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsWindbg

Virtual Memory and Win32s
PSS ID Number: Q124137

The information in this article applies to:

 - Microsoft Win32s versions 1.1, 1.15, 1.15a, and 1.2

SUMMARY
=======

This article discusses virtual memory issues under Win32s. These issues
include how memory is managed, file mappings, and VirtualAlloc().

MORE INFORMATION
================

Memory Management

Win32s does not manage the virtual memory by itself. Win32s sits on top
of the Win386 virtual memory manager (VMM). The Win32s VxD and Win386
must cooperatively manage the memory.

Windows sets the amount of virtual memory (VM) at boot time, based on
the amount of free physical RAM. Windows is also responsible for managing
the physical pages.

The pages that map to the Win32-based application's code and data are
reserved at application initialization time. This decreases the available
virtual memory but not necessarily the available RAM. In 16-bit Windows-
based applications, the selectors are initialized at initialization time,
but they are marked as discarded and are loaded only when the segments are
touched. This may lead you to think that a Win32 version of you application
takes significantly more memory than its 16-bit Windows version. However,
in reality, the available memory drops more when the Win32-based
application is loaded, even though the actual RAM usage during execution
may be lower.

NOTE: Code pages are never backed by the .EXE file, but are always backed
by the pagefile.

File Mappings

Because of the way memory is managed, you cannot have a file mapping that
is larger than the amount of virtual memory available on Win32s. This works
fine on Windows NT and Windows 95. Win32s allocates regular virtual memory
for the memory mapped section even though it does not need swap space, and
the amount of VM set by Windows is too small to use for mapping large
files.

VirtualAlloc()

VirtualAlloc() reserves or commits pages in virtual memory. When virtual
memory is allocated (committed), the page is still not present. Touching
the page will make it present and initialized to zero. Unlike Windows NT,
some of the address space on Win32s is not allocated by VirtualAlloc().
You can use VirtualQuery() for every address in the USER address space,
as reported by GetSystemInfo().

VirtualAlloc() allocates private memory, so one process cannot commit or
free memory reserved by another process. This is true for all Win32
platforms. However, on Win32s, the memory is still accessible by all
processes because there is a shared address space provided by Windows.

NOTE: A "not enough memory" error occurs if you reserve memory using
VirtualAlloc() in one application and then try to commit the memory from a
second application. This happens because the call to commit from the second
application is interpreted as a call to reserve. You need to commit at an
address that is not available such as an address already reserved by the
first application.

Additional reference words: 1.10 1.20
KBCategory: kbprg
KBSubcategory: W32s

VirtualLock() Only Locks Pages into Working Set
PSS ID Number: Q94996

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

VirtualLock() causes pages to be locked into an application's working set
(virtual memory); it does not lock them absolutely into physical memory.
VirtualLock() essentially means "this page is always part of the process's
working set."

The system is free to swap out any virtually locked pages if it swaps out
the whole process. And when the system swaps the process back in, the
virtually locked pages (similar to any virtual pages) may end up residing
in different real pages.

It is wise to use VirtualLock() very sparingly because it reduces the
flexibility of the system.

Depending upon memory demands on the system, the memory manager may vary
the number of pages a process can lock. Under typical conditions you can
expect to be able to VirtualLock() approximately 28 to 32 pages.

In Windows NT 3.5, you can use SetProcessWorkingSetSize() to increase the
size of the working set, and therefore increase the number of pages that
VirtualLock() can lock.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseMm

Watching Local Variables That Are Also Globally Declared
PSS ID Number: Q98288
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5.
 3.51, and 4.0
--

SUMMARY
=======

Consider debugging the following program in WinDbg:

 int x = 1;
 int y = 2;

 void main()
 {
 int x = 2;
 x++;
 y++;
 }

Notice that there is a global variable x and a local variable x.

Before you step into main, if you set watchpoints on x and y, the
Watch window will display a value for y but for x will say "Expression
cannot be evaluated." To see the value for x, use ::x and x will
evaluate to the local x in main once you've stepped into main.

MORE INFORMATION
================

When debugging an application, the X86 C++ evaluator is loaded. Given
this, you can use the scope resolution operator in a watch statement
to view a hidden global variable. Without the use of the scope
resolution operator, there is no way (short of watching it in a memory
window) to watch a hidden global variable.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsWindbg

When to Select and Realize OpenGL Palettes
PSS ID Number: Q151489
--
The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT, versions 3.51, 4.0
 - Microsoft Windows 95, version 4.0
--

SUMMARY
=======

An OpenGL application must select and realize its palette before setting
the current rendering context with wglMakeCurrent.

MORE INFORMATION
================

An OpenGL application typically makes its rendering context current one
time only when the application is created, or repeatedly just prior to
rendering, as in WM_PAINT for example.

In the first case, the palette must be created, selected, and realized
prior to the initial wglMakeCurrent.

In the second case, the palette should be selected and realized before
every call to wglMakeCurrent.

Additional reference words: 3.51 4.00 render colors hrc RGBA
KBCategory: kbgraphic
KBSubcategory: GdiMisc

When to Use Synchronous Socket Handles & Blocking Hooks
PSS ID Number: Q131623

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)
 versions 3.1, 3.5, 3.51, and 4.0

SUMMARY
=======

By default, all socket handles are opened as overlapped handles so that
asynchronous I/O can be performed on them. However, in many situations you
may find it preferable to have nonoverlapped (synchronous) socket handles.

For example, only nonoverlapped handles can be used with the C run-time
libraries or used as standard I/O handles for a process. Under Windows NT
and Windows 95, the SO_OPENTYPE socket option allows an application to open
non-overlapped socket handles.

MORE INFORMATION
================

There are some Windows Sockets features that you cannot use with
synchronous sockets. Here is an extract from the Winsock Help file:

 The WSAAsyncSelect call cannot be used with synchronous sockets and
 will fail with the error WSAEINVAL. It is also not possible to set the
 SO_SNDTIMEO and SO_RCVTIMEO socket options on synchronous sockets;
 setsockopt with these options on synchronous sockets fails with
 WSAEINVAL as well.

Due to the non-preemptive nature of Windows version 3.1 and Windows for
Workgroups version 3.11, the Winsock specification details a mechanism by
which a Winsock application can "yield" processor time. For more
information, please search for WSASetBlockingHook() in the Winsock Help
file.

NOTE: Use of a blocking hook is not recommended on a 32-bit platform. If a
32-bit application chooses to install a blocking hook, the blocking hook
will be disabled if the application is run under Windows NT, but it will
remain enabled if the application is run under Windows 95.

REFERENCES
==========

Online winsock help file

Additional reference words: 3.10 3.50 3.51 4.00
KBCategory: kbnetwork
KBSubcategory: NtwkWinsock

Where to Get Support for MS-DOS-Based Sockets Applications
PSS ID Number: Q138964

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5,
 3.51, 4.0

SUMMARY
=======

It is not possible to run 16-bit MS-DOS-based sockets applications under
Windows NT or Windows 95. This is because the protocol stacks under Windows
NT and Windows 95 use DLLs and do not expose an interrupt interface.

MORE INFORMATION
================

Please note that 16-bit MS-DOS-based applications are different from 32-bit
console applications. It is possible to write sockets applications that
make use of the winsock interface exposed by the protocol stacks under
Windows NT and Windows 95. To do this, please refer to the Win32 SDK
Winsock reference.

If you want to write 16-bit MS-DOS-based sockets application that run under
Windows NT or Windows 95, contact the following company. They supply
software (Virtual sockets library) that make it possible:

JSB Corporation
108 Whispering Pines Drive
Suite 115
Scotts Valley
California 95066
USA

Tel : (408) 438-8300
 (800) 359-3408

Fax : (408) 438-8360

http://www.jsbus.com

The JSB Corporation is a vendor independent of Microsoft; we make no
warranty, implied or otherwise, regarding the performance or reliability of
JSB Corporation products.

Additional reference words: 3.10 3.50 3.51 4.00
KBCategory: kb3rdparty kbnetwork
KBSubcategory: NtwkWinsock

Where to Get the Microsoft SNMP Headers and Libraries
PSS ID Number: Q127902

The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.5, 3.51,
 and 4.0
 - Microsoft Windows for Workgroups SDK, version 3.11

The 32-bit SNMP headers and libraries are available in both the Microsoft
Win32 SDK and Microsoft Visual C++ version 2.0 and later. These files are
for use with the Microsoft implementation of SNMP. They will not work with
other implementations because Microsoft does not conform to the WINSNMP
standard of management APIs.

The headers and libraries for the SNMP agent (parts of SNMP.H and SNMP.LIB)
can be used with Windows NT and Windows 95. The headers and libraries for
the Management APIs (parts of SNMP.H, MGMTAPI.H, parts of SNMP.LIB, and
MGMTAPI.LIB) are for use with Windows NT only.

Microsoft offers no 16-bit SNMP for Windows for Workgroups, however, there
are other companies that do offer SNMP for Windows for Workgroups. Here are
two companies that we know of that offer 16-bit SNMP:

 Company: NetManage
 10725 N. De Anza Blvd.
 Cupertino, CA 95014
 Product: Chameleon Utilities
 Phone: (408) 973-7171
 Fax: (408) 257-6405

 FTP Software
 Corporate Headquarters
 2 High Street
 North Andover, MA 01845-2620
 Phone: (508) 685-4000
 Fax: (508) 794-4488

The third-party products discussed here are manufactured by vendors
independent of Microsoft; we make no warranty, implied or otherwise,
regarding these products' performance or reliability.

Additional reference words: 3.50 4.00 95
KBCategory: kbnetwork kb3rdparty
KBSubcategory: NtwkSnmp

Which Windows NT (Server or Workstation) Is Running?
PSS ID Number: Q124305

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

You can determine which variant of Windows NT (Windows NT Server or Windows
NT Workstation) is running by using the technique described in this
article. Then you can use this information to execute code based on which
variant is running.

MORE INFORMATION
================

To find out which product is currently running, you need to determine the
value of the following registry entry:

HKEY_LOCAL_MACHINE\SYSTEM\
CurrentControlSet
Control\
ProductOptions

Use the following table to determine which product is running:

ProductType Product
--
WINNT Windows NT Workstation is running
SERVERNT Windows NT Server is running
LANMANNT Windows NT Advanced Server is running (Server as Domain
 controller)

The sample code creates a WhichNTProduct() function to indicate whether
Windows NT Server or Windows NT Workstation in currently running. The
following table gives the meaning for each return value:

Return Value Meaning

RTN_SERVER Windows NT Server is running
RTN_WORKSTATION Windows NT Workstation is running
RTN_NTAS Windows NT Advanced Server is running
RTN_UNKNOWN Unknown product type was encountered
RTN_ERROR Error occurred

To get extended error information, call GetLastError(). Some error checking
is omitted, for brevity.

Sample Code

#define RTN_UNKNOWN 0
#define RTN_SERVER 1
#define RTN_WORKSTATION 2
#define RTN_NTAS 3
#define RTN_ERROR 13

unsigned int WhichNTProduct(void)

DWORD
WhichNTProduct(
 void
)
{
 #define MY_BUFSIZE 32 // arbitrary. Use dynamic allocation
 HKEY hKey;
 TCHAR szProductType[MY_BUFSIZE];
 DWORD dwBufLen=MY_BUFSIZE;
 LONG lRet;

 if(RegOpenKeyEx(HKEY_LOCAL_MACHINE,

TEXT("SYSTEM\\CurrentControlSet\\Control\\ProductOptions"),
 0,
 KEY_QUERY_VALUE,
 &hKey) != ERROR_SUCCESS) return RTN_ERROR;

 lRet = RegQueryValueEx(hKey,
 TEXT("ProductType"),
 NULL,
 NULL,
 (LPBYTE)szProductType,
 &dwBufLen);

 RegCloseKey(hKey);

 if(lRet != ERROR_SUCCESS) return RTN_ERROR;

 // check product options, in order of likelihood
 if(lstrcmpi(TEXT("WINNT"), szProductType) == 0) return RTN_WORKSTATION;
 if(lstrcmpi(TEXT("SERVERNT"), szProductType) == 0) return RTN_SERVER;
 if(lstrcmpi(TEXT("LANMANNT"), szProductType) == 0) return RTN_NTAS;

 // else return Unknown
 return RTN_UNKNOWN;
}

Additional reference words: 3.10 3.50
KBCategory: kbprg kbcode
KBSubcategory: BseMisc

Why LoadLibraryEx() Returns an HINSTANCE
PSS ID Number: Q102128

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

In the Win32 Help files, LoadLibrary() is typed to return a HANDLE, while
LoadLibraryEx() is prototyped to return a HINSTANCE.

An HINSTANCE return from LoadLibraryEx() is useful because processes that
load dynamic-link libraries (DLLs) do not necessarily want the overhead of
having to page in code for a DllEntryPoint routine when the DLL does not
need to initialize information. This is especially useful when you have
multiple threads that attach to already loaded DLLs. In this case, you may
want to not implicitly load via LoadLibrary() and instead use
LoadLibraryEx() to explicitly load without having to page in the code for
every attach.

LoadLibraryEx() is also useful if you want to retrieve resources from a DLL
or an EXE. In this case, you would use LoadLibraryEx() to load the module
you want into your address space, without executing DLLEntryPoint, and then
use the resource application programming interfaces (APIs) to access the
data.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseDll

Win32 Drag and Drop Server
PSS ID Number: Q105530

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

The supported method for creating a drag and drop server is to use OLE
(Object Linking and Embedding) version 2.0. This works on Windows,
Windows NT, and Windows 95 and will work on future versions of these
operating systems.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrDnd

Win32 Equivalents for C Run-Time Functions
PSS ID Number: Q99456

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Many of the C Run-time functions have direct equivalents in the Win32
application programming interface (API). This article lists the C Run-time
functions by category with their Win32 equivalents or the word "none" if no
equivalent exists.

MORE INFORMATION
================

NOTE: the functions that are followed by an asterisk (*) are part of the
16-bit C Run-time only. Functions that are unique to the 32-bit C Run-time
are listed separately in the last section. All other functions are common
to both C Run-times.

Buffer Manipulation

 _memccpy none
 memchr none
 memcmp none
 memcpy CopyMemory
 _memicmp none
 memmove MoveMemory
 memset FillMemory, ZeroMemory
 _swab none

Character Classification

 isalnum IsCharAlphaNumeric
 isalpha IsCharAlpha, GetStringTypeW (Unicode)
 __isascii none
 iscntrl none, GetStringTypeW (Unicode)
 __iscsym none
 __iscsymf none
 isdigit none, GetStringTypeW (Unicode)
 isgraph none
 islower IsCharLower, GetStringTypeW (Unicode)
 isprint none
 ispunct none, GetStringTypeW (Unicode)
 isspace none, GetStringTypeW (Unicode)
 isupper IsCharUpper, GetStringTypeW (Unicode)
 isxdigit none, GetStringTypeW (Unicode)

 __toascii none
 tolower CharLower
 _tolower none
 toupper CharUpper
 _toupper none

Directory Control

 _chdir SetCurrentDirectory
 _chdrive SetCurrentDirectory
 _getcwd GetCurrentDirectory
 _getdrive GetCurrentDirectory
 _mkdir CreateDirectory
 _rmdir RemoveDirectory
 _searchenv SearchPath

File Handling

 _access none
 _chmod SetFileAttributes
 _chsize SetEndOfFile
 _filelength GetFileSize
 _fstat See Note 5
 _fullpath GetFullPathName
 _get_osfhandle none
 _isatty GetFileType
 _locking LockFileEx
 _makepath none
 _mktemp GetTempFileName
 _open_osfhandle none
 remove DeleteFile
 rename MoveFile
 _setmode none
 _splitpath none
 _stat none
 _umask none
 _unlink DeleteFile

Creating Text Output Routines

 _displaycursor* SetConsoleCursorInfo
 _gettextcolor* GetConsoleScreenBufferInfo
 _gettextcursor* GetConsoleCursorInfo
 _gettextposition* GetConsoleScreenBufferInfo
 _gettextwindow* GetConsoleWindowInfo
 _outtext* WriteConsole
 _scrolltextwindow* ScrollConsoleScreenBuffer
 _settextcolor* SetConsoleTextAttribute
 _settextcursor* SetConsoleCursorInfo
 _settextposition* SetConsoleCursorPosition
 _settextwindow* SetConsoleWindowInfo
 _wrapon* SetConsoleMode

Stream Routines

 clearerr none
 fclose CloseHandle
 _fcloseall none
 _fdopen none
 feof none
 ferror none
 fflush FlushFileBuffers
 fgetc none
 _fgetchar none
 fgetpos none
 fgets none
 _fileno none
 _flushall none
 fopen CreateFile
 fprintf none
 fputc none
 _fputchar none
 fputs none
 fread ReadFile
 freopen (std handles) SetStdHandle
 fscanf none
 fseek SetFilePointer
 fsetpos SetFilePointer
 _fsopen CreateFile
 ftell SetFilePointer (check return value)
 fwrite WriteFile
 getc none
 getchar none
 gets none
 _getw none
 printf none
 putc none
 putchar none
 puts none
 _putw none
 rewind SetFilePointer
 _rmtmp none
 scanf none
 setbuf none
 setvbuf none
 _snprintf none
 sprintf wsprintf
 sscanf none
 _tempnam GetTempFileName
 tmpfile none
 tmpnam GetTempFileName
 ungetc none
 vfprintf none
 vprintf none
 _vsnprintf none
 vsprintf wvsprintf

Low-Level I/O

 _close _lclose, CloseHandle

 _commit FlushFileBuffers
 _creat _lcreat, CreateFile
 _dup DuplicateHandle
 _dup2 none
 _eof none
 _lseek _llseek, SetFilePointer
 _open _lopen, CreateFile
 _read _lread, ReadFile
 _sopen CreateFile
 _tell SetFilePointer (check return value)
 _write _lread

Console and Port I/O Routines

 _cgets none
 _cprintf none
 _cputs none
 _cscanf none
 _getch ReadConsoleInput
 _getche ReadConsoleInput
 _inp none
 _inpw none
 _kbhit PeekConsoleInput
 _outp none
 _outpw none
 _putch WriteConsoleInput
 _ungetch none

Memory Allocation

 _alloca none
 _bfreeseg* none
 _bheapseg* none
 calloc GlobalAlloc
 _expand none
 free GlobalFree
 _freect* GlobalMemoryStatus
 _halloc* GlobalAlloc
 _heapadd none
 _heapchk none
 _heapmin none
 _heapset none
 _heapwalk none
 _hfree* GlobalFree
 malloc GlobalAlloc
 _memavl GlobalMemoryStatus
 _memmax GlobalMemoryStatus
 _msize* GlobalSize
 realloc GlobalReAlloc
 _set_new_handler none
 _set_hnew_handler* none
 _stackavail* none

Process and Environment Control Routines
--

 abort none
 assert none
 atexit none
 _cexit none
 _c_exit none
 _exec functions none
 exit ExitProcess
 _exit ExitProcess
 getenv GetEnvironmentVariable
 _getpid GetCurrentProcessId
 longjmp none
 _onexit none
 perror FormatMessage
 _putenv SetEnvironmentVariable
 raise RaiseException
 setjmp none
 signal (ctrl-c only) SetConsoleCtrlHandler
 _spawn functions CreateProcess
 system CreateProcess

String Manipulation

 strcat, wcscat lstrcat
 strchr, wcschr none
 strcmp, wcscmp lstrcmp
 strcpy, wcscpy lstrcpy
 strcspn, wcscspn none
 _strdup, _wcsdup none
 strerror FormatMessage
 _strerror FormatMessage
 _stricmp, _wcsicmp lstrcmpi
 strlen, wcslen lstrlen
 _strlwr, _wcslwr CharLower, CharLowerBuffer
 strncat, wcsncat none
 strncmp, wcsncmp none
 strncpy, wcsncpy none
 _strnicmp, _wcsnicmp none
 _strnset, _wcsnset FillMemory, ZeroMemory
 strpbrk, wcspbrk none
 strrchr, wcsrchr none
 _strrev, _wcsrev none
 _strset, _wcsset FillMemory, ZeroMemory
 strspn, wcsspn none
 strstr, wcsstr none
 strtok, wcstok none
 _strupr, _wcsupr CharUpper, CharUpperBuffer

MS-DOS Interface

 _bdos* none
 _chain_intr* none
 _disable* none
 _dos_allocmem* GlobalAlloc
 _dos_close* CloseHandle
 _dos_commit* FlushFileBuffers

 _dos_creat* CreateFile
 _dos_creatnew* CreateFile
 _dos_findfirst* FindFirstFile
 _dos_findnext* FindNextFile
 _dos_freemem* GlobalFree
 _dos_getdate* GetSystemTime
 _dos_getdiskfree* GetDiskFreeSpace
 _dos_getdrive* GetCurrentDirectory
 _dos_getfileattr* GetFileAttributes
 _dos_getftime* GetFileTime
 _dos_gettime* GetSystemTime
 _dos_getvect* none
 _dos_keep* none
 _dos_open* OpenFile
 _dos_read* ReadFile
 _dos_setblock* GlobalReAlloc
 _dos_setdate* SetSystemTime
 _dos_setdrive* SetCurrentDirectory
 _dos_setfileattr* SetFileAttributes
 _dos_setftime* SetFileTime
 _dos_settime* SetSystemTime
 _dos_setvect* none
 _dos_write* WriteFile
 _dosexterr* GetLastError
 _enable* none
 _FP_OFF* none
 _FP_SEG* none
 _harderr* See Note 1
 _hardresume* See Note 1
 _hardretn* See Note 1
 _int86* none
 _int86x* none
 _intdos* none
 _intdosx* none
 _segread* none

Time

 asctime See Note 2
 clock See Note 2
 ctime See Note 2
 difftime See Note 2
 _ftime See Note 2
 _getsystime GetLocalTime
 gmtime See Note 2
 localtime See Note 2
 mktime See Note 2
 _strdate See Note 2
 _strtime See Note 2
 time See Note 2
 _tzset See Note 2
 _utime SetFileTime

Virtual Memory Allocation

 _vfree* See Note 3
 _vheapinit* See Note 3
 _vheapterm* See Note 3
 _vload* See Note 3
 _vlock* See Note 3
 _vlockcnt* See Note 3
 _vmalloc* See Note 3
 _vmsize* See Note 3
 _vrealloc* See Note 3
 _vunlock* See Note 3

32-Bit C Run Time

 _beginthread CreateThread
 _cwait WaitForSingleObject w/ GetExitCodeProcess
 _endthread ExitThread
 _findclose FindClose
 _findfirst FindFirstFile
 _findnext FindNextFile
 _futime SetFileTime
 _get_osfhandle none
 _open_osfhandle none
 _pclose See Note 4
 _pipe CreatePipe
 _popen See Note 4

NOTE 1: The _harderr functions do not exist in the Win32 API. However, much
of their functionality is available through structured exception handling.

NOTE 2: The time functions are based on a format that is not used in Win32.
There are specific Win32 time functions that are documented in the Help
file.

NOTE 3: The virtual memory functions listed in this document are specific
to the MS-DOS environment and were written to access memory beyond the 640K
of RAM available in MS-DOS. Because this limitation does not exist in
Win32, the standard memory allocation functions should be used.

NOTE 4: While _pclose() and _popen() do not have direct Win32 equivalents,
you can (with some work) simulate them with the following calls:

 _popen CreatePipe
 CreateProcess

 _pclose WaitForSingleObject
 CloseHandle

NOTE 5: GetFileInformationByHandle() is the Win32 equivalent for the
_fstat() C Run-time function. However, GetFileInformationByHandle() is not
supported by Win32s version 1.1. It is supported in Win32s 1.2.
GetFileSize(), GetFileAttributes(), GetFileTime(), and GetFileTitle() are
supported by Win32s 1.1 and 1.2.

Additional reference words: 3.10 3.50 4.00 95

KBCategory: kbprg
KBSubcategory: BseMisc

Win32 Graphical Setup Over Network Drives
PSS ID Number: Q98838

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

The graphical setup for the Win32 Software Development Kit (SDK) does not
include network drives in the list of drives to choose from, however, the
setup program does support installing to network drives.

In addition, you can use the manual install program, manual.bat, to install
to local or network drives.

Additional reference words: 3.10 3.50
KBCategory: kbsetup
KBSubcategory: Setins

Win32 Priority Class Mechanism and the START Command
PSS ID Number: Q90910

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

The Win32 priority class mechanism is exposed through CMD.EXE's START
command.

START accepts the following switches:

 /LOW - Start the command in the idle priority class.

 /NORMAL - Start the command in the normal priority class
 (this is the default).

 /HIGH - Start the command in the high priority class.

 /REALTIME - Start the command in the real-time priority class.

For a complete list of START switches, type the following command at
the Windows NT command prompt:

 start /?

Win32 has also been modified to inherit priority class if the parent's
priority class is idle; thus, a command such as

 start /LOW nmake

causes build and all descendants (compiles, links, and so on) to run in the
idle priority class. Use this method to do a real background build that
will not interfere with anything else on your system.

A command such as

 start /HIGH nmake

runs BUILD.EXE in the high priority class, but all descendants run in the
normal priority class.

MORE INFORMATION
================

Be very careful with START /HIGH and START /REALTIME. If you use either of
these switches to start applications that require a lot of cycles, the
applications will get all the cycles they ask for, which may cause the

system to appear hung.

Additional reference words: 3.10
KBCategory: kbprg
KBSubcategory: BseProcThrd

Win32 SDK Knowledge Base Available as Help File (JUN 1995)
PSS ID Number: Q106544
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) versions 3.1, 3.5,
 3.51, and 4.0
 - Microsoft Win32s, versions 1.2 and 1.25a
--

The Win32 SDK Knowledge Base has been compiled into a help file.

 ARCHIVE NAME FILENAME TOPIC MODIFY DATE

 WIN32KB.EXE WIN32KB.HLP Win32 SDK 28-JUN-1995

Download WIN32KB.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download WIN32KB.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \SOFTLIB\MSLFILES directory
 Get WIN32KB.EXE

Additional reference words: 1.20 3.10 3.50 4.00 95
KBCategory: kbref kbfile
KBSubcategory: GenSDK

Win32 Shell Dynamic Data Exchange (DDE) Interface
PSS ID Number: Q105446

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51

SUMMARY
=======

Information on the DDE Interface to Program Manager can be found in the
Win32 application programming interface (API) reference under the topic
"Shell Dynamic Data Exchange Interface."

The SDK contains a sample program that interfaces with Program
Manager. The sample can be found in MSTOOLS\SAMPLES\DDEML\DDEPROG.

MORE INFORMATION
================

AppProperties cannot be used to get the item icon, description, or
working directory, as it can in Windows 3.1. Therefore, GetIcon(),
GetDescription(), and GetWorkingDir() do not work in Windows NT.
However, AppProperties can still be used to dump out the contents of a
group, by specifying the group name in lParam.

Here's how a Win32-based application can get the item icon, the
description, and the working directory:

1. Initiate a conversation with the Shell as follows

 SendMessage(-1, WM_DDE_INITIATE, hWndApp, lParam);

 where lParam points to an atom representing:

 LOWORD | HIWORD

 Shell | AppIcon : To get an item's icon
 Shell | AppDescription : To get an item's description
 Shell | AppWorkingDir : To get an item's working directory

2. Get the item DDE number.

 The DDE number is stored by Program Manager in the STARUPINFO
 structure of the application when the application is started. The
 application can get the startup information with:

 GetStartupInfo(&StartupInfo);

 The field lpReserved in the STARUPINFO structure is in the

 following format

 dde.#, hotkey.##

 where the DDE number is # and the hot key for the item is ##.

3. Request data as follows

 SendMessage(hwndProgMan, WM_DDE_REQUEST, hwndApp, lParam);

 where the lParam HIWORD is the item's DDE number obtained in step 2.

4. The data is returned in lParam of WM_DDE_DATA message. The DDE data
 value is a string for AppDescription and AppWorkingDir DDE
 transactions. For AppIcon, the data value has the following
 structure:

 typedef struct _PMIconData {
 DWORD dwResSize;
 DWORD dwVer;
 BYTE iResource; // icon resource
 } PMICONDATA, *LPPMICONDATA;

 To create the icon, the application must call:

 hIcon = CreateIconFromResource((LPBYTE)&(lpPMIconData->iResource),
 lpPMIconData->dwResSize,
 TRUE,
 lpPMIconData->dwVer
);

Additional reference words: 3.10 3.50
KBCategory: kbui
KBSubcategory: UsrDde

Win32 Software Development Kit Buglist
PSS ID Number: Q95804
--
The information in this article applies to:

 - FastTips for the Microsoft Win32 Software Development Kit (SDK)
 versions 3.5, 3.51, and 4.0
--

INSTRUCTIONS
============

Microsoft FastTips is available 24 hours a day, 7 days a week, from a touch-
tone telephone. To order items from this catalog, first select the items
you want to receive, noting the five- to six-digit number of the Item ID
shown below for each item, and then:

- Dial the toll-free FastTips number (800) 936-4300.
- When prompted, select the Win32 Software Development Kit.
- Press one (1) on your phone keypad to select Express Order Service.
- When prompted, select the delivery method, fax.
- When prompted, enter your three-digit area code and seven-digit fax
 number on your phone keypad.
- When prompted, enter the number of the Item ID and press #, for up
 to five items.

When finished, simply hang up. If you have problems receiving a fax, please
call (206) 635-3105.

ARTICLE LISTING
===============

ITEM ID ARTICLE TITLE PAGES
--
Q 121907 BUG: Win32 SDK Ver. 3.5 Bug List for Win32 SDK and Win32 API 4
Q 122048 BUG: Win32 Ver 3.5 SDK Bug List at Release - Subsystems & WOW 2
Q 122679 BUG: Win32 SDK Version 3.5 Bug List - OLE 2
Q 122681 BUG: Win32 SDK Version 3.5 Bug List - WinDbg Debugger 4
Q 125872 BUG: GetKerningPairs Sometimes Fails on Win32s Version 1.2 1

Q 126865 BUG: Bad Characters in 32-bit App on Win32s on Russian Windows 1
Q 128701 BUG: CreateDC Does Not Thunk DEVMODE Structure Correctly 1
Q 129861 BUG: Pressing SHIFT+ESC Doesn't Generate WM_CHAR on Windows 95 1
Q 130138 BUG: Win32s 1.25a Bug List 2
Q 130611 BUG: Using WM_SETREDRAW w/ TreeView Control Gives Odd Results 1

Q 130691 BUG: ESC/ENTER Keys Don't Work When Editing Labels in TreeView 1
Q 130699 BUG: SNMP Service Produces Bad "Error on getproc(InitEx) 127" 2
Q 130717 BUG: Console Applications Do Not Receive Signals on Windows 95 1
Q 130860 BUG: FindFirstFile() Does Not Handle Wildcard (?) Correctly 1
Q 131416 BUG: WNetGetUniversalName Fails Under Windows 95 2

End of listing.

Additional reference words: 3.50 4.00 95
KBCategory: kbref kbtlc
KBSubcategory: GenSDK

Win32 Subsystem Object Cleanup
PSS ID Number: Q89290
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5
--

SUMMARY
=======

The Win32 subsystem guarantees that all Win32 objects owned by a
process will be freed when an application terminates. To accomplish
this, the Win32 subsystem keeps track of who owns these objects; it
also keeps a reference count. Reference counts are used when the
object is owned by more then one process. For example, a memory mapped
file can be used to provide interprocess communication, where more
than one process would own that object. The subsystem must make sure
that the reference count is zero before the object can be freed.

Freeing of Win32 objects can occur at different times. In general, it
occurs at process termination, but for some objects, it occurs at thread
termination.

NOTE: When running Win32-based applications with Windows 3.1 using the
Win32s environment, it is the responsibility of the Win32-based application
to ensure that all allocated GDI objects are deleted before the program
terminates. This is different from the behavior of the application with
Windows NT. With Windows NT, the GDI subsystem cleans up all orhphaned GDI
objects. Because there is no GDI subsystem with Windows 3.1, this behavior
is not supported.

MORE INFORMATION
================

At process or thread termination, the Win32 subsystem searches its lists to
find objects owned by this process or thread. Those that are owned by the
terminating process or thread and whose reference counts will be set to
zero when the process or thread is fully terminated will be freed.

The freeing of objects is slightly different for Win32-based applications
running under Win32s on Windows 3.1. The 16-bit objects (GDI objects,
windows, global memory, etc.) follow the same clean-up rules as Windows-
based applications do under Window 3.1. The 32-bit objects, such as memory
allocated via VirtualAlloc(), shared memory via mapped file I/O, 32-bit
modules, thunks allocated on the fly (for hook procedures, wndprocs etc.)
are all handled by Win32s and freed at process termination.

The following is a list of Win32 objects. Note that it may not be complete.

 BASE: console, event, file (including file mapping), mutex,
 semaphore, thread, process, pipe (including named pipes)

 GDI: device context (DC), bitmap, pen, brush, font, region, palette

 USER: window, cursor, icon, menu, accelerator table, desktop,
 DDE communication objects, DDE conversation objects, dialog

Additional reference words: 3.10
KBCategory: kbprg
KBSubcategory: SubSys

Win32s 1.30a Bug List at the Time of Its Release
PSS ID Number: Q138234

The information in this article applies to:

 - Microsoft Win32s version 1.30a

SUMMARY
=======

This article lists the known bugs in Win32s version 1.30a at the time of
its release.

MORE INFORMATION
================

- Incorrect context at EXIT_PROCESS_DEBUG_EVENT.

- DEBUG_EVENT.RIP_INFO not supported.

- Progman gets restored when debugger app exits.

- Problem with journaling hooks on Win32s when using MSTest.

- OLE: need try/except at 32-bit entrypoints.

- EXCEPTION_RECORD: The # of params and Info array always zero.

- Frame: Access Violation in PackFindData@8 (FindFirstFile looking
 for arrow.pcx).

- Using StartDoc, the return value is correct but the printer does
 not output the document.

- CVW32s: int 3 disables receipt of bp for DbgBreakpoint.

- CVW32s: Machine deadlock w/debugger, div0.exe & FatalAppExit.

- CVW32s: Ubrowse.exe runs on NT, but not Win32s example.

- cvw/win32s: restart of mfc app blows.

- cvw/w32s: exception; procterm; l; g; async stop doesn't stop.

- EM_GETWORDBREAKPROC return code incorrect. If an application sends
 the EM_GETWORDBREAKPROC message to an edit control, it will receive
 the address of a 32->16 callback thunk with no code on the other
 end of the stub.

- Dialog procs should return BOOL not DWORD.

- The DDE message thunks force the fAckReq bit to 1 if WM_DDE_DATA
 is sent with it set to 0. This forces the client to post the

 WM_DDE_ACK message so that the thunk layer can know when to free
 up data allocated for thunking the WM_DDE_DATA message. The server
 isn't expecting the ACK in this case. The thunk layer will
 recognize the forced ACK, however the code to consume it has not
 been implemented yet. Problems so far unseen but still possible.

- Int 3 cannot be trapped via SEH on Win32s.

- Win32's CreateFile() opens files in cooked mode as opposed to raw mode.

- Some time functions, such as ctime(), return values that are off by
 nine hours. This happens when the TZ environment variable is not
 defined. When TZ is defined and set to 0, these time functions return
 the correct value. The time offset is determined by the TZ environment
 variable, and when it is not defined a default of -9 is used.

- MSTest script Mantapp.mst detects stack overflow when test runs out
 of memory the second time.

- _lopen - Wrong error code when file does not exist. _lopen failes
 with error code 87 instead of error code 2 (ERROR_FILE_NOT_FOUND).
 Win32s is unable to determine from the return value provided by
 Windows if the call failed due to the file not being there.

- Cannot do ReadProcessMemory() on memory that has hardware bp set on it.

- MFC Speakn sample won't run on Win32s.

- UT Diagram in Programmers Reference is incorrect.

- CRT: getdcwd/getcwd does not work on Win32s.

- Exception in DLL termination routine causes the system to quit.

- PlayMetaFileRecord/EnumMetaFile contains incorrect lpHTable.

- Windbg assertion on HOST machine.

- The .pif files are not supported.

- PlaySound() with SND_RESOURCE.

- File mapping rounded to a whole number of pages, a multiple of 256
 instead of 4096. The workaround is to use SetFilePointer() and
 SetEndOfFile() after closing the mapping handles, but before closing
 the file.

- chdrive() and SetCurrentDirectory() fail on PCNFS drive.

- Microsoft Excel bapco MSTest script does not run to completion.

- Dynamic dialog boxes under Win32s. An ANSI Win32 application loads a
 dialog box resource directly from its executable via LoadResource().
 Traverses the dialog box template and renders its controls into another
 dialog box. The application then displays the dialog box which

 re-positions some of its controls during WM_INITDIALOG. In Windows NT,
 the controls rearrange as intended whereas in Win32s, they appear
 misaligned by 50 pixels or so.

- GetExitCodeProcess() does not return exit codes for 16-bit
 Windows-based applications.

- Limitation in how NCB memory needs to be allocated on Win32s. The Win31
 netbios VxD expects the memory to be allocated from the Win31 memory
 space to lock that specific memory page. If the memory is allocated from
 somewhere else such as from the Win32s sparse area, it will fail. In
 this specific case, allocate a buffer using GlobalAlloc(), memcpy in it
 the data retrieved, and call Netbios.

- biSizeImage field of BITMAPINFOHEADER is zero. GetDIBits() is
 not placing the correct value for this field into the buffer.

- Only the first CBT hook gets messages.

- Registry functions return incorrect result code. Registry functions
 such as RegCreateKey() return incorrect results upon failure. The
 Windows 3.1 return code is returned, not the Windows NT return code.
 The functions that return correct results are: RegQueryValueA() and
 RegQueryValueExA()

- General protection (GP) fault in WinExec() 16-bit application context.

- Bad handles from CreateProcess16() if the child doesn't yield.

- GlobalReAlloc(x,y,GMEM_MOVEABLE) returns wrong handle type.

- GMEM_SHARE memory must be freed explicitly.

- RestartThread() writes to debuggee stack.

- The memory for CallBack frames is allocated once. The allocation
 size is 64K. In most cases this is too large, and in some
 extreme cases this 64K may be exhausted.

- CreateDirectory() handles errors differently between Windows NT and
 Win32s. Under Windows NT, all failures are handled correctly. For
 example, directory already exists, no space left on device, and so on.
 Under Win32s, all errors are handled identically (error #5, "Access is
 denied").

- SetCurrentDirctory(): different error codes on Windows NT and Win32s.
 SetCurrentDirectory() works differently under Windows NT 3.5 and
 Win32s. For example, if there is no floppy disk in drive B, and
 SetCurrentDirectory() is called with "b:\", under Windows NT error
 #21 is returned, "The device is not ready," while under Win32s, error
 #161, "The specified path is invalid" is returned.

- signal(SIGINT, SIGABRT, SIGTERM): need instance data.

- FindText() leaks memory and may cause a general protection (GP) fault.

- spawnl doesn't pass parameters to an MS-DOS-based application.

- Win32s does not support forwarded exports.

- module management APIs missing ANSI to OEM translation.

- PlaySound() w/ SND_NOWAIT.

- FormatMessage() doesn't set last error.

- Createfile(), when used on a write-protected floppy disk, fails.
 GetLastError() returns 2 instead of 19.

- Win32app cannot be browsed if the same application is running.

- Setup doesn't create backup files for some of the OLE files.

- winhlp32:Compare macro does not display windows side by side.

- MEASUREITEMSTRUCT and DRAWITEMSTRUCT are missing fields in menus.

- HeapValidate() fails on a new heap. HeapValidate() is not supported
 in the retail version of Win32s. GetLastError() returns
 ERROR_CALL_NOT_IMPLEMENTED. HeapValidate() is supported only in the
 debug version of Win32s and in both the retail and debug versions of
 Windows NT.

 Other new heap APIs that are not supported in Win32s are:

 HeapCompact()
 HeapCreateTags()
 HeapExtend()
 HeapLock()
 HeapQueryTag()
 HeapSummary()
 HeapUnlock()
 HeapUsage()
 HeapWalk()

 All these APIs, including HeapValidate, are documented as not
 supported on Win32s and Windows 95.

- winhlp32:delete of annotation in popup causes unh exception.

- winhlp32:PopupContext macro produces incorrect error message.

- winhlp32: PC macro with non-help file.

- winhlp32:PopupID with non-existing context string.

- A file opened as GENERIC_READ only can still be written to.

- winhlp32 doesn't play .avi files.

- winhlp32:new highlight feature is not consistent.

- winhlp32:System error on write protected medium.

- winhlp32:bitmap in Shed.hlp does not print correctly.

- winhlp32:winword produces error when attempting to print from a
 secondary window.

- winhlp32:Clicks go through File Manager.

- MPLAY32.EXE of Windows NT 3.1 does not run on Win32s.

- winhlp32:Window title does not change back.

- winhlp32:kicked out of help after opening non-helpfile.

- SearchPath() doesn't find file if Path is empty. NULL for lpszPath
 is fine, but an lpszPath = "" will not work the same as on Windows NT.

- Wrong exception reported for overflow exception.

- VerLanguageNameA() not exported by version.dll.

Additional reference words: 1.30a
KBCategory: kbprg kbbuglist
KBSubcategory: W32s

Win32s 1.30c Bug List at the Time of Its Release
PSS ID Number: Q148862

The information in this article applies to:

 - Microsoft Win32s version 1.3c

SUMMARY
=======

This article lists all the known bugs in Win32s version 1.30c at the time
of its release.

MORE INFORMATION
================

 - Incorrect context at EXIT_PROCESS_DEBUG_EVENT.

 - DEBUG_EVENT.RIP_INFO is not supported.

 - Progman is restored when the debugger application exits.

 - Problem with journaling hooks on Win32s when using MSTest.

 - OLE: need try/except at 32-bit entrypoints.

 - EXCEPTION_RECORD: The number of params and Info array is always zero.

 - Frame: Access Violation in PackFindData@8 (FindFirstFile looking
 for Arrow.pcx).

 - Using StartDoc, the return value is correct but the printer does
 not print the document.

 - CVW32s: int 3 disables the receipt of bp for DbgBreakpoint.

 - CVW32s: Machine deadlock with the debugger, div0.exe, and FatalAppExit.

 - CVW32s: Ubrowse.exe runs on Windows NT but not Win32s example.

 - cvw/win32s: restart of MFC application fails.

 - cvw/w32s: exception; procterm; l; g; async stop doesn't stop.

 - EM_GETWORDBREAKPROC return code is incorrect. If an application sends
 the EM_GETWORDBREAKPROC message to an edit control, it will receive
 the address of a 32->16 callback thunk with no code on the other
 end of the stub.

 - Dialog procs should return BOOL not DWORD.

 - The DDE message thunks force the fAckReq bit to 1 if WM_DDE_DATA is sent
 with it set to 0. This forces the client to post the WM_DDE_ACK message

 so that the thunk layer can know when to free up data allocated for
 thunking the WM_DDE_DATA message. The server isn't expecting the ACK in
 this case. The thunk layer will recognize the forced ACK, however the
 code to consume it has not been implemented yet.

 - Int 3 cannot be trapped by way of SEH on Win32s.

 - Win32's CreateFile() opens files in cooked mode as opposed to raw mode.

 - Some time functions, such as ctime(), return values that are off by
 nine hours. This happens when the TZ environment variable is not
 defined. When TZ is defined and set to 0, these time functions return
 the correct value. The time offset is determined by the TZ environment
 variable, and when it is not defined, a default of -9 is used.

 - Microsoft Test script Mantapp.mst detects stack overflow when the test
 runs out of memory the second time.

 - _lopen gives the wrong error code when the file does not exist. _lopen
 fails with error code 87 instead of error code 2 (ERROR_FILE_NOT_FOUND).
 Win32s is unable to determine from the return value provided by Windows
 if the call failed due to the file not being there.

 - Cannot run ReadProcessMemory() on memory that has hardware bp set on it.

 - UT Diagram in the Programmers Reference is incorrect.

 - CRT: getdcwd/getcwd does not work on Win32s.

 - An exception in the DLL termination routine causes the system to quit.

 - PlayMetaFileRecord/EnumMetaFile contains incorrect lpHTable.

 - A Windbg assertion occurs on the HOST machine.

 - PlaySound() with SND_RESOURCE doesn't work correctly.

 - File mapping rounded to a whole number of pages (a multiple of 256
 instead of 4096). The workaround is to use SetFilePointer() and
 SetEndOfFile() after closing the mapping handles, but before closing
 the file.

 - chdrive() and SetCurrentDirectory() fail on the PCNFS drive.

 - Microsoft Excel bapco Microsoft Test script does not run to completion.

 - Dynamic dialog boxes under Win32s: An ANSI Win32 application loads a
 dialog box resource directly from its executable through LoadResource(),
 traverses the dialog box template, and renders its controls into another
 dialog box. The application then displays the dialog box, which
 repositions some of its controls during WM_INITDIALOG. In Windows NT,
 the controls rearrange as intended, but in Win32s, they appear
 misaligned by 50 pixels or so.

 - GetExitCodeProcess() does not return exit codes for 16-bit Windows-based

 applications.

 - The CRT function system() does not work the way it did in Windows NT.

 - There is a limitation in how NCB memory needs to be allocated on Win32s.
 The Win31 netbios VxD expects the memory to be allocated from the Win31
 memory space to lock that specific memory page. If the memory is
 allocated from somewhere else such as from the Win32s sparse area, the
 memory allocation will fail. In this specific case, allocate a buffer
 using GlobalAlloc(), memcpy in it the data retrieved, and call Netbios.

 - biSizeImage field of BITMAPINFOHEADER is zero. GetDIBits() is not
 placing the correct value for this field into the buffer.

 - Only the first CBT hook gets messages.

 - Registry functions return incorrect result code. Registry functions
 such as RegCreateKey() return incorrect results upon failure. The
 Windows 3.1 return code is returned, not the Windows NT return code.
 The functions that return correct results are: RegQueryValueA() and
 RegQueryValueExA()

 - General protection (GP) fault in WinExec() 16-bit application context.

 - Bad handles from CreateProcess16() if the child doesn't yield.

 - GlobalReAlloc(x,y,GMEM_MOVEABLE) returns the wrong handle type.

 - GMEM_SHARE memory must be freed explicitly.

 - RestartThread() writes to the debuggee stack.

 - The memory for CallBack frames is allocated once. The allocation size is
 64K. In most cases, this is too large, and in some extreme cases this
 64K may be exhausted.

 - GetShortPathName() does not check the correctness of the path.

 - CreateDirectory() handles errors differently in Windows NT from the way
 it handles errors in Win32s. Under Windows NT, all failures (directory
 already exists, no space left on device, and so on) are handled
 correctly. Under Win32s, all errors are handled identically (error #5,
 "Access is denied").

 - SetCurrentDirctory() gives different error codes on Windows NT from what
 it gives on Win32s. SetCurrentDirectory() works differently under
 Win32s. For example, if there is no floppy disk in drive B, and
 SetCurrentDirectory() is called with "b:\" under Windows NT, error
 #21 is returned ("The device is not ready") while under Win32s, error
 #161 is returned ("The specified path is invalid").

 - signal(SIGINT, SIGABRT, SIGTERM) needs instance data.

 - FindText() leaks memory and may cause a general protection (GP) fault.

 - spawnl doesn't pass parameters to an MS-DOS-based application.

 - Win32s does not support forwarded exports.

 - module management APIs missing ANSI to OEM translation.

 - GetIconInfo()'s piconinfo->fIcon member is always set to 1.

 - PlaySound() with SND_NOWAIT doesn't work correctly.

 - FormatMessage() doesn't set the last error.

 - Createfile(), when used on a write-protected floppy disk, fails.
 GetLastError() returns 2 instead of 19.

 - Win32app cannot be browsed if the same application is running.

 - Setup doesn't create backup files for some of the OLE files.

 - winhlp32:Compare macro does not display windows side by side.

 - MEASUREITEMSTRUCT and DRAWITEMSTRUCT are missing fields in menus.

 - HeapValidate() fails on a new heap. HeapValidate() is not supported
 in the retail version of Win32s. GetLastError() returns
 ERROR_CALL_NOT_IMPLEMENTED. HeapValidate() is supported only in the
 debug version of Win32s and in both the retail and debug versions of
 Windows NT.

 Other new heap APIs that are not supported in Win32s are:

 HeapCompact()
 HeapCreateTags()
 HeapExtend()
 HeapLock()
 HeapQueryTag()
 HeapSummary()
 HeapUnlock()
 HeapUsage()
 HeapWalk()

 All these APIs, including HeapValidate, are documented as not
 supported on Win32s and Windows 95.

 - winhlp32:delete of annotation in popup causes unh exception.

 - GrayString() with a NULL callback address causes a Fatal Exit in the
 debug version of Windows.

 - SetEnvironment does not handle various errors correctly

 - winhlp32:PopupContext macro produces incorrect error message.

 - winhlp32:PC macro with non-help file doens't work correctly.

 - winhlp32:PopupID with non-existing context string doesn't work
 correctly.

 - A file opened as GENERIC_READ only can still be written to.

 - CreateFile does not update attributes when file is opened for the
 second time.

 - PrintDlg Error - Print Dialog succeeds with NULL hPrintTemplate
 and PD_ENABLEPRINT.

 - PrintDlg Error - Print Dialog succeeds with NULL hSetupTemplate
 and PD_ENABLESETUPTEMPLATE

 - PrintDlg Error - Print Dialog succeeds with NULL hInstance.

 - PrintDlg Error - If the From value is greater than the To value in the
 Print dialog, it still returns SUCCESS instead of an error value.

 - PrintDlg Error - If the From or To entry is empty in the Print dialog,
 it still returns SUCCESS instead of an error value.

 - winhlp32 doesn't play .avi files.

 - winhlp32:new highlight feature is not consistent.

 - winhlp32:System error on write protected medium.

 - winhlp32:bitmap in Shed.hlp does not print correctly.

 - winhlp32:winword produces error when attempting to print from a
 secondary window.

 - winhlp32:Clicks go through File Manager.

 - Mplay32.exe of Windows NT 3.1 does not run on Win32s.

 - winhlp32:Window title does not change back.

 - winhlp32:kicked out of help after opening non-helpfile.

 - SearchPath() doesn't find file if Path is empty. NULL for lpszPath
 is fine, but an lpszPath = "" will not work the same as on Windows NT.

 - VerLanguageNameA() is not exported by Version.dll.

 - Low level wave in win32s (WAVEHDR.dwBytesRecorded) is set to zero.

 - MoveFile fails on Novell client 4.0 when the source is a local file
 and the target is a remote file.

 - SetWindowLong (GWL_USERDATA) causes a warning from the debug version of
 Windows when the window is destroyed

 - Setting a word break function on an edit control causes a general

 protection (GP) fault.

 - Tooltips does not appear in Edit controls

 - WinHelp doesn't handle the HELP_TCARD parameter properly.

 - WM_CHOOSEFONT_GETLOGFONT does not work correctly.
 * #711

Additional reference words: 1.30c bugs buglist
KBCategory: kbprg kbbuglist
KBSubcategory: W32s

Win32s and LAN Manager APIs
PSS ID Number: Q109204
--
The information in this article applies to:

 - Microsoft Win32s versions 1.0, 1.1, 1.15, 1.2, 1.25, and 1.25a
--

NOTE: Win32s provides support for NetBIOS and Windows Sockets.

There is a NETAPI32.DLL shipping with Win32s. However, this doesn't have
support for Microsoft LAN Manager application programming interfaces
(APIs). This is not a bug because LAN Manager APIs are not supported on
Win32s. However, if NETAPI32.DLL is not in the system and an application
uses LAN Manager APIs, the application will not load because the loader
cannot resolve the entry-points from the nonexistent dynamic-link library
(DLL).

One of the solutions is to use Universal Thunks. Using Universal Thunks,
calls can be made to 16-bit DLLs. Therefore, the 16-bit NETAPI.DLL that
ships with LAN Manager can be accessed by this mechanism.

Sample programs using Universal Thunks are provided in the Win32 SDK and
the Visual C++ SDK. The sample on the Win32 SDK is in the
MSTOOLS\WIN32S\UT\SAMPLES directory. On the Visual C++ 32-bit Edition
CD-ROM, the sample is located in the MSVC32S\WIN32S\UT\SAMPLES directory.

Additional reference words: 1.00 1.10 1.20
KBCategory: kbprg
KBSubcategory: W32s

Win32s and Windows NT Timer Differences
PSS ID Number: Q105758
--
The information in this article applies to:

 - Microsoft Win32s versions 1.0, 1.1, and 1.2
--

Under Windows NT, timers are system objects; as such, they are not owned by
an application. SetTimer() can be called from within one application with a
handle to a window that was created by a different application. This
application would process the WM_TIMER messages in the window procedure.
The timer event will continue to occur even after the application that
created the timer has terminated. Note that it is fairly uncommon for a
Win32-based application to create a timer for another application, but this
method does work.

Because Win32s runs on top of Windows 3.1 and shares many of its
characteristics, timers are owned by the application that calls SetTimer().
The timer event terminates when the application that owns the timer
terminates.

Additional reference words: 1.00 1.10 1.20
KBCategory: kbprg
KBSubcategory: W32s

Win32s Device-Independent Bitmap Limit
PSS ID Number: Q115084
--
The information in this article applies to:

 - Microsoft Win32s, versions 1.1, 1.15, 1.2, and 1.25a
--

Under versions of Win32s prior to 1.25, a device-independent bitmap (DIB)
is limited to a size of 2.3 MB. This size was chosen to accomodate a bitmap
of 1024 by 768 pixels at 24 bits per pixel.

In Win32s 1.25a, this limit was increased to 1280 by 1024 pixels at 24 bits
per pixel.

This limit can cause a variety of problems to occur, such as painting
problems with SetDIBitstoDevice() if a larger bitmap is used.

Additional reference words: 1.10 1.20
KBCategory: kbprg
KBSubcategory: W32s

Win32s Is No Longer Limited to 256 Selectors
PSS ID Number: Q147428
--
The information in this article applies to:

 - Microsoft Win32s version 1.2 and later
--

Prior to version 1.2, Win32s had a limit of 256 selectors that it
maintained for selector synthesis and once a selector had been allocated,
it could not be reused after freeing it.

When thunking pointers down to the 16-bit side, Win32s allocates selectors
on the fly for mapping the 0:32 linear address to the 16:16 address that
the 16-bit side could use. These synthesized selectors were saved in an
internal table and reused later whenever needed. It was this table that was
limited only to 256 selectors in Win32s prior to version 1.20. Since Win32s
could reuse these synthesized selectors, they can not be freed either.

However, this problem was eliminated in Win32s version 1.2 and the solution
was further enhanced in Win32s version 1.25. Now, the current version of
Win32s (version 1.30c) is no longer limited to 256 selectors.

However, it is still possible that a Win32s application could consume all
available selectors in the system and potentially bring Windows 3.x to a
halt, but such a scenario rarely occurs and is probably specific to a given
application.

Additional reference words: 1.20 256 selector synthesis fix kbinf
KBCategory: kbprg
KBSubcategory: w32s

Win32s Message Queue Checking
PSS ID Number: Q97918
--
The information in this article applies to:

 - Microsoft Win32s versions 1.1 and 1.2
--

Win32-based applications that are designed to run with Win32s need to check
the message queue through a GetMessage() or PeekMessage() call to avoid
locking up the system. With Windows NT this is not a problem, because the
input model is desynchronized. That is, each thread has its own input event
queue rather than having one queue for the entire system. In a synchronous
input model, one application can block all of the others by allowing the
single system queue to fill up with its messages. With Windows NT, an
application that lets its input queue fill up will not affect other
applications.

For more information, please see chapter 3 of the "Win32s Programmer's
Reference".

Additional reference words: 1.10 1.20
KBCategory: kbprg
KBSubcategory: W32s

Win32s NetBIOS Programming Considerations
PSS ID Number: Q104314
--
The information in this article applies to:

 - Microsoft Win32s version 1.0, 1.1, and 1.2
--

This article addresses common questions about NetBIOS programming under
Win32s.

Under Windows 3.1, you normally do not issue a RESET command due to the
common name table. When running your Win32-based application under Windows
version 3.1, you may issue a NetBIOS RESET command. Win32s keeps an
internal list of all the names added in the Windows 3.1 NetBIOS name table
by Win32 processes. A RESET on Win32s mimics the RESET on Windows NT by
clearing the names added by that process from the system-wide name table.
As a result, issuing a RESET command as the first NetBIOS command (as
required by Windows NT) on Win32s does not clear out all of the names.

The Windows 3.1 NetBIOS VxD expects memory allocated for the NetBIOS
Control Block (NCB) and the data buffer (NCB.ncb_buffer) to be allocated
with GlobalAlloc(). The VxD will lock the specified memory page. If a Win32-
based application running under Win32s passes the Netbios() command virtual
memory, Netbios() will return error 0x22, indicating that there are too
many commands outstanding. On Win32s, each piece of memory that might
pass through Netbios() must be allocated with GlobalAlloc().

The Win32s NetBIOS thunk layer translates the ncb_buffer pointer in the NCB
itself. The translation back from a 16-bit to original 32-bit pointer is
done for asynchronous commands in the Win32s private post routine. A
problem might occur when an application checks the NCB and finds that
the netbios() command is completed (ncb_retcode == NRC_GOODRET), but the
Win32s post routine was not called yet. The ncb_buffer has not been
translated back. The best way to avoid problems is to define and use a post
routine. At that point you are sure that the netbios() command is completed
and the NCB is correct. If you don't want to use a post routine, you should
make sure that the command was completed by checking the the ncb_retcode
field and verifying that the ncb_buffer pointer is a 32-bit pointer.

There is also no need to page lock the NetBIOS post routine code under
Win32s. NetBIOS post routine on Win32s is not called at interrupt time. The
post routine is called in the context of the process, and therefore there
is no need to page lock the post routine code.

Additional reference words: 1.00 1.10 1.20
KBCategory: kbprg
KBSubcategory: W32s

Win32s OLE 16/32 Interoperability
PSS ID Number: Q123422

The information in this article applies to:

 - Microsoft Win32s version 1.20

The OLE support provided in Win32s version 1.2 provides full 16/32
interoperabililty for local servers (EXE servers). Therefore, you can
embed a 32-bit object implemented by a local server in a 16-bit container
and vice-versa.

There is no built-in support in Win32s for 16/32 interoperability for
in-process servers (DLL servers). However, you can use Universal Thunks
to load a 16-bit DLL in the context of a 32-bit process. This allows you
to embed a 16-bit object implemented by a DLL server in a 32-bit
container. However, it is quite complicated to write this code because:

 - Any OLE interface has a hidden "this" pointer which you must handle in
 your thunking code.
 - OLE uses callbacks. If your 32-bit container calls IDataObject:DAdvise,
 then your 16-bit server may call back into the 32-bit side with the
 Advise interface. Your thunking code will have to handle this type of
 conversation.

NOTE: Embedding a 32-bit object implemented by an in-process server in a
16-bit container is supported under Windows NT 3.5. However, this
functionality may not work correctly for your in-process server because
IDispatch and any custom interfaces do not work.

Additional reference words: 1.20
KBCategory: kbole
KBSubcategory: W32s

Win32s Translated Pointers Guaranteed for 32K
PSS ID Number: Q100833
--
The information in this article applies to:

 - Microsoft Win32s versions 1.0, 1.1, and 1.2
--

SUMMARY
=======

Translated pointers are guaranteed to be valid only for 32K, rather than
64K, which selectors are usually limited to. This limitation is for
performance reasons.

Selectors are tiled every 32K. A 0:32 pointer can be quickly translated
into a 16:16 pointer, which will be valid for a minimum of 32K. In other
words, the offset portion of the 16:16 pointer is not guaranteed to be 0
(zero) when translated. As a result, even though the translated selectors
have a limit of 64K, the offset passed to the 16-bit side may be as large
as 32K-1.

Selectors are created on a 32K alignment so that if you pass several
pointers to the same range, the Universal Thunk (UT) uses the same
selector. Selectors are freed when application terminates.

The alternative is to create a selector for each and every translation,
which is very slow.

MORE INFORMATION
================

For any given address, there are two selectors that point to it, but only
one has a limit less than 32K:

 +-------+-------+-------+-------+-------+-------+
 |Selector 2(64K)|Selector 4(64K)|Selector 6(64K)|
 +-------+-------+-------+-------+-------+-------+-------+
 |Selector 1(64K)|Selector 3(64K)|Selector 5(64K)| |
 +-------+-------+-------+-------+-------+-------+-------+
 | 32K | 32K | 32K | 32K | 32K | 32K | 32K |
 +-------+-------+-------+-------+-------+-------+-------+

Under Win32s, 16-bit and 32-bit applications share the same global data
space; therefore, it is possible to share a buffer of up to 64K in size
with a far pointer or more than 64K with a huge pointer by doing the
following:

1. Do a GlobalAlloc() on the 32-bit side. Be sure to use GMEM_MOVEABLE.
2. Copy the data.
3. Send the handle to the 16-bit side.
4. Get a pointer to the data on the 16-bit side by using GlobalLock().

When you pass a pointer to a block that was allocated via GlobalAlloc()

from the 32-bit side, it costs no selectors. The translated pointer is
valid until the memory is freed.

Additional reference words: 1.00 1.10 1.20
KBCategory: kbprg
KBSubcategory: W32s

Win32s Version 1.25a Limitations
PSS ID Number: Q131896

The information in this article applies to:

 - Microsoft Win32s, version 1.25a

SUMMARY
=======

The following lists the limitations of Win32s, not including the complete
list of unsupported Win32 APIs. For information on which Win32 APIs are and
are not supported under Win32s, please see the "Win32 Programmer's
Reference" or the WIN32API.CSV file.

MORE INFORMATION
================

 - Thread creation is not supported.

 - Win32s uses the Windows version 3.1 nonpreemptive scheduling mechanism.

 - 32-bit processes should be started from a 16-bit application through
 WinExec() or Int 21 4B. LoadModule() does not start a 32-bit process.

 - Win32-based applications cannot use the EM_SETHANDLE or EM_GETHANDLE
 messages to access the text in a multiline edit control. These messages
 allow the sharing of local memory handles between an application and
 USER.EXE. In Win32s, an application's local heap is 32-bit, so USER.EXE
 cannot interpret a local handle. To read and write multi-line edit
 control text, an application should use WM_GETTEXT and WM_SETTEXT.

 Text for multi-line edit controls is stored in the 16-bit local heap in
 DGROUP, which is allocated by Windows version 3.1 for the WIN32S.EXE
 stub loaded before each Win32-based application is loaded. This means
 that the size of edit control text is limited to somewhat less than 64K.

 - The CBT hook thunks do not copy back the contents of structures, so any
 changes are lost.

 - Win32-based applications should not call through the return from
 SetWindowsHook(). SetWindowsHook() returns a pointer to the next hook in
 the chain. To call this function, the application should call
 DefHookProc(), and pass a pointer to a variable where this address is
 stored. Because Win32s simulates the old hook API in terms of the new,
 SetWindowsHook() actually passes back a hook handle, not a function
 pointer.

 - Resource integer IDs must be 16-bit values.

 - PostMessage() and PeekMessage() do not thunk structures. These functions
 do not allocate space for repacking structures, because there is no way
 to know when to free up the space.

 - Private application messages should not use the high word of wParam.
 Win32s uses Windows to deliver window messages. For unknown messages,
 wParam is truncated to make it fit into 16-bits. Therefore, Win32-based
 applications should not put 32-bit quantities into the wParam of
 privately-defined messages, which are unknown to the thunk layer.

 - After calling FindText(), an application cannot directly access the
 FINDREPLACE structure. When an application calls the common dialog
 function FindText(), it passes a FINDREPLACE structure. The FindText()
 dialog communicates with the owner window through a registered message,
 in which the lParam points to the structure. The thunks repack this
 structure in place, so that unless the application is processing the
 registered message, it should not access the structure.

 - Subclassing a window that owns a FindText() common dialog does not work.
 The FindText() thunk repacks the FINDREPLACE structure in place. This
 means that 32-bit window procedures cannot subclass 16-bit owners of
 FindText() dialogs without likely trashing four bytes beyond the end of
 the structure, because the 32-bit FINDREPLACE is four bytes bigger than
 the 16-bit version.

 For 32-bit owners of the dialog box, there are also problems. Whenever
 the structure might be referenced by 16-bit code, it needs to be in the
 16-bit format. However, when the FindText() dialog box terminates, the
 structure needs to be in 32-bit format so that the application can read
 the final values. The dialog box indicates to its owner that it is about
 to be destroyed by sending the commdlg_FindReplace message with the
 FR_DIALOGTERM bit set in the Flags field of the FINDREPLACE structure.
 After sending this message, the FindText() dialog box does not reference
 the structure anymore, so the commdlg_FindReplace thunk leaves it in
 32-bit format.

 The problem occurs when the owner has been subclassed. Once the message
 has moved to the 32-bit side, the structure will not be reconverted to
 16-bits. Suppose the dialog box owner was subclassed by a 16-bit window
 procedure, which was in turn subclassed by a 32-bit window procedure.
 When a message is sent to the owner, it will first go to 32-bits, then
 to 16-bits, then back to 32-bits to the original window procedure:

 1. 16->32 message sent to 32-bit subclasser (struct repacked to 32-bits)
 2. 32->16 message sent to 16-bit subclasser (struct not repacked)
 3. 16->32 message sent to 32-bit original WndProc (struct not repacked)

 The 16-bit subclasser cannot interpret the message parameters because
 they are in 32-bit format. Between steps 2 and 3, the structure is not
 repacked because it's already in 32-bit format.

 Therefore, when a Win32-based application calls FindText(), allocate the
 following:

 1. A structure that contains the htask of WIN32S.EXE.

 2. The original 32-bit FINDREPLACE pointer.

 3. A count of the number of times the structure has been thunked without
 returning.

 4. A 16-bit format copy of FINDREPLACE.

 The structure is repacked into the 16-bit version and this copy is
 passed to Windows. The count is initially 0. When the
 commdlg_FindReplace message is sent in either direction (16->32 or
 32->16), repack the structure on the stack. If it was originally 32-bit,
 increment the count. When returning in either direction, unpack the
 structure and, if originally 32-bit, decrement the count.

 If the Flags field of the structure has the FR_DIALOGTERM bit set, the
 structure is originally 32-bit, and the count goes to 0 on a return,
 then repack the structure back to the original 32-bit space.

 - DDE messages are always posted, not sent, except for two:
 WM_DDE_INITIATE and WM_DDE_ACK (responding to the former). The sent form
 of WM_DDE_ACK is different from the posted form. When sent, no thunking
 of lParam is necessary when going between 16- and 32-bit format.
 However, when posting, the lParam parameter is repacked as two DWORDS
 into private memory, allocated by COMBO.DLL (or by USER.DLL in Windows
 NT). The thunk layer makes this distinction through the InSendMessage()
 function. Therefore, a Win32-based application should not do anything in
 the processing of a WM_DDE_INITIATE message that would cause the return
 code from InSendMessage() to be FALSE.

 - The following DDE messages are handled differently by applications under
 Windows and Win32:

 WM_DDE_ACK
 WM_DDE_ADVISE
 WM_DDE_DATA
 WM_DDE_EXECUTE
 WM_DDE_POKE

 Because of the widening of handles, there is not enough space in the
 Win32 message parameters for all the Windows data. Win32-based
 applications are required to call helper functions that package the data
 into memory (DDEPACK structure) referenced by a special handle. Win32s
 implements the helper functions and allocates the DDEPACK structure on
 behalf of 16-bit code when necessary.

 As with other memory handles shared through DDE, there are rules
 concerning who frees the memory allocated by these helper routines.

 lParam = PackDDElParam(...)
 if (PostMessage(...,lParam))
 receiving window has obligation of freeing memory
 lParam now invalid for this process
 else
 FreeDDElParam(...,lParam)

 A Win32s hook procedure that has called CallNextHookProc() should not
 use the lParam handle as the later's return code indicates that the

 message has been processed. The hooks that could possibly process a DDE
 message are:

 WH_DEBUG
 WH_HARDWARE
 WH_KEYBOARD
 WH_MOUSE
 WH_MSGFILTER
 WH_SYSMSGFILTER

 In each case, if the hook proc (and therefore CallNextHookEx()) returns
 a non-zero value, the message was either discarded or processed.
 Windows-based procedures should not use the lParam of a DDE message
 after handing it off to any other message API because they cannot know
 if the message has been processed, so they must assume that it has been.

 - WDEB386 does not support FreeSegment() for 32-bit segments. Win32s
 Kernel Debugger support depends on it.

 - The maximum size of shared memory is limited by Windows memory.

 CreateFileMapping(hFile,
 lpsa,
 fdwProtect,
 dwMaximumSizeHigh,
 dwMaximumSizeHigh,
 lpszMapName)

 lpsa - Ignored.
 dwMaximumSizeHigh - Must be zero.

 MapViewOfFile(hMapObject,
 fdwAccess,
 dwOffsetHigh,
 dwOffsetLow,
 cbMap)

 dwOffsetHigh - Must be zero.

 - SetClipbrdData() must be used only with a global handle. Otherwise, the
 data can't be accessed by other applications.

 - Win32s supports printing exactly as Windows version 3.1 does. Win32s
 does not add beziers, paths, or transforms to GDI; to allow applications
 to use these features on PostScript printers, you must call the Escape
 function with the appropriate escape codes.

 Applications link to Windows version 3.1 printer drivers through
 LoadLibrary() and GetProcAddress(), which have special support for this
 purpose. There is no general mechanism allowing a Win32-based
 application to link to a 16-bit DLL.

 - Win32s does not support these escape codes:

 BANDINFO ;24
 GETSETPAPERBINS ;29
 ENUMPAPERMETRICS ;34
 EXTTEXTOUT ;512
 SETALLJUSTVALUES ;771

 - Integer atoms must be in the range 0-0x3FFF. This restriction is
 necessary for the current implementation of the window properties API
 thunks: SetProp(), GetProp(), RemoveProp(), EnumProps(), and
 EnumPropsEx(). Integer atoms above 0x4000 are rejected by the thunk
 layer.

 - Arrays must fit in 64K after converting to 16-bit format. An array
 passed to a function such as SetCharABCWidths() or Polyline() must fit
 within 64K after its elements have been converted to their 16-bit form.
 Its 32-bit form may be bigger than 64K.

 - All Windows version 3.1 APIs that return void, return 1 to the
 Win32-based application.

 You can simulate a boolean return value by validating the API parameters
 and returning FALSE if one is bad. However, you can't always do complete
 validation, and if the API is called, you must assume it succeeded
 unless there is a method to verify whether or not it succeeded.

 - Win32 child window IDs must be sign-extended 16-bit values. This
 excludes the use of 32-bit pointer values as child IDs.

 - When calling PeekMessage(), a Win32-based application should not filter
 any messages for Windows internal window classes (button, edit,
 scrollbar, and so on). The messages for these controls are mapped to
 different values in Win32, and checking for the necessity of mapping is
 time-consuming.

 - The dwThreadId parameter in SetWindowsHookEx() is ignored. The
 dwThreadId is translated to hTask in Windows 3.1. There's a bug in
 Windows version 3.1 where if hTask!=NULL, the call may fail.

 - CreateWindowEx() has a DWORD dwExStyle parameter. In Windows 3.1 the
 hiword of dwExStyle is cleared as a protection against garbage in the
 hiword before it's used. Win32s passes CreateWindowEx() to the 16 bit
 CreateWindowEx() and the hi 16 bits in the dwExStyle are lost.

 - Floating point (FP) emulation by exception cannot be performed in 16-bit
 applications. When tasks are switched between applications, the CR0-EM
 bit state is not preserved in order to support 32-bit application FP
 emulation by exception without breaking the existing 16-bit applications
 that use FP instructions. The CR0-EM bit is assumed to be cleared during
 execution of 16-bit application FP instructions. Upon executing a 16-bit
 application FP instruction, the bit is cleared and reset when switching
 back to a 32-bit application. The CR0-EM bit management is done in the
 Win32s VxD, thus disabling the possibility of getting an int 7 exception
 just by setting the CR0-EM bit in a 16-bit application.

 - EndDialog() nResult parameter is sign-extended. Applications specify the

 return value for the DialogBox() function by way of the nResult
 parameter to the EndDialog() API. This parameter is of type int, which
 is 32-bit in Win32s. However, this value is thunked through to the
 Windows version 3.1 EndDialog() API, which truncates it to a 16-bit
 value. Win32s sign-extends the return code from DialogBox().

 - GetClipBox() returns SIMPLEREGION(2) and COMPLEXREGION(3). Because
 Windows NT is a preemptive multitasking system, GetClipBox() on Windows
 NT never returns SIMPLEREGION(2). The reason for this is that between
 the time the API was called and the time the application gets the
 result, the region may change. Win32s can return both SIMPLEREGION(2)
 and COMPLEXREGION(3).

 - PeekMessage() filtering for posted messages (hWnd==-1) is not supported.
 The hWnd is replaced with NULL.

 - Message queue length is limited to Windows default: 8 or whatever
 length was set by DefaultQueueSize=n in the WIN.INI file. This limit may
 be increased in the future to a larger size, but there will always be a
 limit.

 - GetFileTime() and SetFileTime() process only the lpLastWriteTime
 parameter and return an error if this parameter is not supplied.
 In the DEBUG version, supplying the other parameters causes a warning
 message to be displayed.

 - The precision of the time of a file is two seconds (MS-DOS limitation).

 - CreateProcess has the following limitations:

 - fdwCreate - Only DEBUG_PROCESS and DEBUG_ONLY_THIS_PROCESS are
 supported.

 - Process priority is always NORMAL.

 - lpsaProcess, lpsaThread - Security information ignored.

 - Always use device-independent bitmaps for color bitmaps. Win32s supports
 the four Win32 device-dependent bitmap APIs. These are device-dependent
 in the sense that the bitmap bits are supplied without a color table to
 explain their meaning.

 CreateBitmap
 CreateBitmapIndirect
 GetBitmapBits
 SetBitmapBits

 These are well defined and fully supported for monochrome bitmaps. For
 color bitmaps, these APIs are not well defined and Win32s relies on the
 Windows display driver for their support. This means that an application
 cannot know the format of the bits returned by GetBitmapBits() and
 should not attempt to directly manipulate them. The values returned by
 GetDeviceCaps() for PLANES and BITSPIXEL and the values returned by
 GetObject() for a bitmap do not necessarily indicate the format of the
 bits returned by GetBitmapBits(). It is possible for the GDI DIB APIs to

 be unsupported on some displays. However, it is now rare for display
 drivers to not support DIBs. The one case where you may encounter a lack
 of DIB support is with printer drivers, which may not support the
 GetDIBits() API, though most do support the SetDIBits() API.

 Win32s does not transform the bits in any way when passing them on to a
 Windows version 3.1 API. When running an application that creates a
 device-dependent bitmap via CreateBitmap() or CreateBitmapIndirect(), be
 aware that the bits it is passing in may not be in the right format for
 the device. Windows NT takes care of this by treating the bits as a DIB
 whose format is consistent with the PLANES and BITSPIXEL values; but
 Win32s simply passes them through.

 - GetPrivateProfileString() and GetProfileString() return an error when
 the lpszSection parameter is NULL. Under Windows NT, they give all the
 sections in the .INI file.

 - String resources are limited to a length of 255, as they were in Windows
 version 3.1.

 - TLS locations are the same in all processes for a specific DLL. This is
 because Win32s does not support per-instance data for DLLs. The TLS
 locations are unique per DLL. Each DLL should call TlsAlloc() only once
 if it is runing on Win32s. The index returned will be valid for all
 Win32 processes.

 - GlobalCompact() is thunked through to Windows version 3.1
 GlobalCompact(). This API has no effect on memory allocated through
 VirtualAlloc(), which does not come from the Windows global heap.

 - GetVolumeInformation() does not support the Volume ID.

 - GetFileInformationByHandle() create time and access time are always 0
 (MS-DOS limitations). The volume id, file index low/high are also 0
 (Win32s limitations). This affects the CRT fstat() as well.

 - CreatePolyPolygonRgn() requires a closed polygon, as it does under
 Windows version 3.1. If the polygons are not closed, the Windows NT call
 closes the polygons for you. In Windows version 3.1 or Win32s, if the
 polygons are not closed, the call does not create the region correctly,
 or it returns an error for an invalid parameter.

 - Win32s does not support the DIB_PAL_INDICES option for SetDIBits(). It
 will be supported in a future release. DIB_PAL_PHYSINDICES and
 DIB_PAL_LOGINDICES are not supported either.

 - The WH_FOREGROUNDIDLE hook type is not supported. Windows version 3.1
 does not provide the necessary support.

 - The brush styles BS_DIBPATTERNPT and BS_PATTERN8X8 are not supported and
 cause an error to be returned.

 - The hFile in DLL and PROCESS DEBUG events is not supported in Win32s
 because there is no support for duplicating file handles between
 processes (basically an MS-DOS limitation).

 There are two way to access the image bytes: ReadProcessMemory() or open
 the file in compatibility mode using the name provided in lplpImageName.

 - Under Windows NT, NetBIOS keeps a different name table for each process.
 On Win32s, there is only one NetBIOS name table for the system. Each
 name (group or unique) added by a process is kept in a doubly-linked
 list. Through NCBRESET or by destroying the process, you delete all the
 names that were added by the process. Win32s does not implement the full
 NetBIOS 3.0 specification, which has a separate name table per process.

 - When calling 32-bit code from 16-bit code with UT (for example, from an
 interrupt routine), the stack must be at least 10K. The interrupt
 routine must assure that the stack will be big enough.

 - GetThreadContext() and SetThreadContext() can be called only from within
 an exception handler or an exception debug event. At all other times,
 these functions return FALSE and the error code is set to
 ERROR_CAN_NOT_COMPLETE.

 - CreateProcess() PROCESS_INFORMATION is not supported for 16-bit
 applications. A valid structure must be passed to CreateProcess(), but
 the function fills all the fields with NULLs and zeroes.

 - Win32s does not support the Windows NT event mechanism, therefore the
 ncb_event field in NCB structure is not supported.

 - CreateFileMapping() does not support SEC_NOCACHE or SEC_NOCOMMIT. The
 call fails with ERROR_INVALID_PARAMETER.

 - WaitForDebugEvent() does not fully support the dwTimeout parameter. If
 the parameter is zero, WaitForDebugEvent() behaves the same as under
 Windows NT. Otherwise, the parameter is treated as if it were INFINITE.
 However, the function returns if any messages arrive. If a message
 arrives, the return value is FALSE. The calling process should call
 SetLastError(0) before calling WaitForDebugEvent() and examine
 GetLastError() if WaitForDebugEvent() returns FALSE. If the error is
 zero, it means that a message arrived and the process should process
 the message. Otherwise, the process should handle the error.

 - If a section contains duplicated keys, GetPrivateProfileSection()
 returns the duplicated keys, but all values are the same as the value
 of the first key.

 Suppose a section contains these keys:

 key1=x1
 key2=x2
 key2=x3
 key2=x4
 key3=x5
 key2=x6

 The values returned are:

 key1=x1
 key2=x2
 key2=x2
 key2=x2
 key3=x5
 key2=x2

 - String IDs of resources should not be longer than 255 characters.

 - String IDs must be in the English language. The resources themselves
 can be mulitilingual.

 - GetDlgItemInt() only translates up to 16-bit int/unsigned values. This
 is because it gets its value from Windows, which translates only 16-bit
 values. As a workaround, call GetDlgItem() and translate the value
 using atoi() or sscanf().

Additional reference words: limits
KBCategory: kbprg
KBSubcategory: W32s

WinDbg Message "Breakpoint Not Instantiated"
PSS ID Number: Q99953
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0
--

The WinDbg message "Breakpoint Not Instantiated" indicates that the
debugger could not resolve an address. This can happen for several reasons:

 - A specified symbol does not exist. In this case, check for
 misspelling and check the state of the "ignore case" option if the
 symbol contains mixed case.

 -or-

 - The symbol exists, but the EXE or DLL was built with the wrong
 debugging information, or none at all. Use the -Zi and -Od compiler
 options and use the -debug:full, -debugtype:cv, and -pdb:none linker
 options.

 -or-

 - The symbol exists, but it is in a module that has not yet been
 loaded. If the symbol is in a DLL that is dynamically loaded the
 breakpoint was probably set before the DLL was loaded. The message
 is harmless, because WinDbg will instantiated the BP when the module
 is loaded.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbtool
KBSubcategory: TlsWindbg

Window Message Priorities
PSS ID Number: Q96006

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Under Windows NT, messages have the same priorities as with Windows 3.1.

With normal use of GetMessage() (passing zeros for all arguments except the
LPMSG parameter) or PeekMessage(), any message on the application queue is
processed before user input messages. And input messages are processed
before WM_TIMER and WM_PAINT "messages."

MORE INFORMATION
================

For example, PostMessage() puts a message in the application queue.
However, when the user moves the mouse or presses a key, these messages are
placed on another queue (the system queue in Windows 3.1; a private, per-
thread input queue in Win32).

GetMessage() and its siblings do not look at the user input queue until the
application queue is empty. Also, the WM_TIMER and WM_PAINT messages are
not handled until there are no other messages (for the thread) to process.
The WM_TIMER and WM_PAINT messages can be thought of as boolean toggles,
because multiple WM_PAINT or WM_TIMER messages waiting in the queue will be
combined into one message. This reduces the number of times a window must
repaint itself.

Under this scheme, prioritization can be considered tri-level. All posted
messages are higher priority than user input messages because they reside
in different queues. And all user input messages are higher priority than
WM_PAINT and WM_TIMER messages.

The only difference in the Windows NT model from the Windows versions 3.x
model is that there is effectively a system queue per thread (for user
input messages) rather than one global system queue. The prioritization
scheme for messages is identical.

For information concerning SendMessage() from one thread to another, please
see the following article(s) in the Microsoft Knowledge Base:

 ARTICLE-ID: Q95000
 TITLE : SendMessage() in a Multithreaded Environment

Additional reference words: 3.10 3.50 3.51 4.00 95

KBCategory: kbui
KBSubcategory: UsrWndw

Window Owners and Parents
PSS ID Number: Q84190

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In the Windows environment, two relationships that can exist between
windows are the owner-owned relationship and the parent-child
relationship.

The owner-owned relationship determines which other windows are
automatically destroyed when a window is destroyed. When window A is
destroyed, Windows automatically destroys all of the windows owned by
A.

The parent-child relationship determines where a window can be drawn
on the screen. A child window (that is, a window with a parent) is
confined to its parent window's client area.

This article discusses these relationships and some Windows functions
that provide owner and parent information for a given window.

MORE INFORMATION
================

Although WS_OVERLAPPED windows don't typically have owners, they can.
Please see Kyle Marsh's MSDN article "Win32 Window Hierarchy and Styles,"
which says:

 Overlapped windows may own other top-level windows or be owned by
 other top-level windows or both.

Alternatively, the desktop window can be considered the owner
and parent of a WS_OVERLAPPED-style window. A WS_OVERLAPPED-style
window can be drawn anywhere on the screen and Windows will destroy
any existing WS_OVERLAPPED-style windows when it shuts down.

A window created with the WS_POPUP style does not have a parent by
default; a WS_POPUP-style window can be drawn anywhere on the screen.
A WS_POPUP-style window will have a parent only if it is given one
explicitly through a call to the SetParent function.

The owner of a WS_POPUP-style window is set according to the
hWndParent parameter specified in the call to CreateWindow that

created the pop-up window. If hWndParent specifies a nonchild window,
the hWndParent window becomes the owner of the new pop-up window.
Otherwise, the first nonchild ancestor of hWndParent becomes the owner
of the new pop-up window. When the owner window is destroyed, Windows
automatically destroys the pop up. Note that modal dialog boxes work
slightly differently. If hWndParent is a child window, then the owner
window is the first nonchild ancestor that does not have an owner (its
top-level ancestor).

A window created with the WS_CHILD style does not have an explicit
owner; it is implicitly owned by its parent. A child window's parent
is the window specified as the hWndParent parameter in the call to
CreateWindow that created the child. A child window can be drawn only
within its parent's client area, and is destroyed along with its
parent.

An application can change a window's parent by calling the SetParent
function after the window is created. Windows does not provide a
method to change a window's owner.

Windows provides three functions that can be used to find a window's
owner or parent:

 - GetWindow(hWnd, GW_OWNER)
 - GetParent(hWnd)
 - GetWindowWord(hWnd, GWW_HWNDPARENT)

GetWindow(hWnd, GW_OWNER) always returns a window's owner. For child
windows, this function call returns NULL. Because the parent of the
child window behaves similar to its owner, Windows does not maintain
owner information for child windows.

The return value from the GetParent function is more confusing.
GetParent returns zero for overlapped windows (windows with neither
the WS_CHILD nor the WS_POPUP style). For windows with the WS_CHILD
style, GetParent returns the parent window. For windows with the
WS_POPUP style, GetParent returns the owner window.

GetWindowWord(hWnd, GWW_HWNDPARENT) returns the window's parent, if it
has one; otherwise, it returns the window's owner.

Two examples of how Windows uses different windows for the parent and
the owner to good effect are the list boxes in drop-down combo boxes
and the title windows for iconic MDI (multiple document interface)
child windows.

Due to its size, the list box component of a drop-down combo box may
need to extend beyond the client area of the combo box's parent
window. Windows creates the list box as a child of the desktop window
(hWndParent is NULL); therefore, the list box will be clipped only by
the size of the screen. The list box is owned by the first nonchild
ancestor of the combo box. When that ancestor is destroyed, the list
box is automatically destroyed as well.

When an MDI child window is minimized, Windows creates two windows: an

icon and the icon title. The parent of the icon title window is set to
the MDI client window, which confines the icon title to the MDI client
area. The owner of the icon title is set to the MDI child window.
Therefore, the icon title is automatically destroyed with the MDI
child window.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrWndw

WindowFromPoint() Caveats
PSS ID Number: Q65882

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

When the coordinates passed to the WindowFromPoint() function correspond to
a disabled, hidden, or transparent child window, the handle of that
window's parent is returned.

To retrieve the handle of a disabled, hidden, or transparent child window,
given a point, the ChildWindowFromPoint() function must be used.

MORE INFORMATION
================

The following code fragment demonstrates the use of the
ChildWindowFromPoint() function during the processing of a WM_MOUSEMOVE
message. This code finds the topmost child window at a given point,
regardless of the current state of the window.

In this fragment, hWnd is the window receiving this message and is assumed
to have captured the mouse via the SetCapture() function.

HWND hWndChild, hWndPoint;
POINT pt;
 .
 .
 .
 case WM_MOUSEMOVE:
 pt.x = LOWORD(lParam);
 pt.y = HIWORD(lParam);

 /*
 * Convert point to screen coordinates. When the mouse is
 * captured, mouse coordinates are given in the client
 * coordinates of the window with the capture.
 */
 ClientToScreen(hWnd, &pt);

 /*
 * Get the handle of the window at this point. If the window
 * is a control that is disabled, hidden, or transparent, then
 * the parent's handle is returned.

 */
 hWndPoint = WindowFromPoint(pt);

 if (hWndPoint == NULL)
 break;

 /*
 * To look at the child windows of hWnd, screen coordinates
 * need to be converted to client coordinates.
 */
 ScreenToClient (hWndPoint, &pt);

 /*
 * Search through all child windows at this point. This
 * will continue until no child windows remain.
 */
 while (TRUE)
 {
 hWndChild = ChildWindowFromPoint(hWndPoint, pt);

 if (hWndChild && hWndChild != hWndPoint)
 hWndPoint = hWndChild;
 else
 break;
 }

 // Do whatever processing is desired on hWndPoint

 break;

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrWndw

Windows 95 Does Not Support Template Files
PSS ID Number: Q138955

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API)
 included with Microsoft Windows 95 version 4.0

SUMMARY
=======

The hTemplate parameter in the CreateFile API is not supported in Windows
95. It is supported only in Windows NT.

MORE INFORMATION
================

The hTemplate parameter in CreateFile allows you to create a new file using
another file as a template. The template is used to set the file attributes
(normal, hidden, system, and read-only) of the new file. It is also used to
copy the extended attributes (EA) from the template to the new file.

Additional reference words: 4.00
KBCategory: kbprg
KBSubcategory: BseFileio

Windows 95 Network Programming Support
PSS ID Number: Q125702
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)
--

Windows 95 supports the network programming interfaces listed in the table
below:

Interface Comments
--

Microsoft RPC Supports a subset of the protocol sequences specified in
 Microsoft RPC 1.0. For additional information, please see
 the following article(s) in the Microsoft Knowledge Base:

 ARTICLE-ID:Q125701
 TITLE :Windows 95 RPC: Supported Protocol Sequences

Windows Sockets Supports the TCP/IP and IPX/SPX network transports. For
 (WinSock) additional information, please see the
 following article(s) in the Microsoft Knowledge Base:

 ARTICLE-ID:Q125704
 TITLE :Multiprotocol Support for Windows Sockets

NetBIOS Supports NetBIOS v3.0, including the Microsoft extension
 function NCBENUM.

Network DDE Includes the NetDDE agent and a 16 bit NetDDE API DLL.
 (NetDDE) 32-bit applications must thunk to NDDEAPI.DLL. For
 additional information, please see the following
 article(s) in the Microsoft Knowledge Base:

 ARTICLE-ID:Q125703
 TITLE :Windows 95 Support for Network DDE

Additional reference words: 4.00
KBCategory: kbnetwork kbnetwork
KBSubcategory: NtwkMisc

Windows 95 RegOpenKeyEx Incompatible with Windows NT
PSS ID Number: Q137202

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SYMPTOMS
========

A Win32-based application runs under Windows 95 but does not run correctly
under Windows NT. Or a Windows-based application runs under Windows 95 but
leaks registry handles under Windows NT.

CAUSE
=====

Windows NT RegOpenKeyEx always returns a unique handle. Windows 95
RegOpenKeyEx returns the same handle each time the same key is opened.
Windows 95 keeps a reference count, incrementing it each time the key
is opened with RegOpenKeyEx and decrementing it each time the key is
closed with RegCloseKey. The key remains open as long as the reference
count is greater than zero.

Consider the following code:

 RegOpenKeyEx(OldKey, NULL, 0, MAXIMUM_ALLOWED, &NewKey)
 RegCloseKey(NewKey)
 RegQueryValue(NewKey,...)
 RegCloseKey(NewKey)

This code is incorrect, but it works under Windows 95 because OldKey and
NewKey refer to the same key. However, the code fails under Windows NT,
because NewKey is not valid after it is closed.

In a related issue, RegOpenKey with a NULL subkey string on Windows NT
will return the same handle that was passed in. Under Windows 95, the
reference count is incremented.

 RegOpenKey(OldKey, NULL, 0, MAXIMUM_ALLOWED, &NewKey)
 RegCloseKey(OldKey)
 RegQueryValue(NewKey,...)
 RegCloseKey(NewKey)

This code works under Windows 95 because NewKey is still valid after
closing OldKey, but the code fails under Windows NT. Code that is correct
for Windows NT (don't close the handle until both OldKey and NewKey are no
longer needed) leaks registry handles under Windows 95.

RESOLUTION
==========

You should use RegOpenKeyEx and make sure that there is a corresponding
close call for each open call. This will ensure that you do not use any
handle that has been closed.

STATUS
======

This behavior is by design.

Additional reference words: 4.00 Windows 95
KBCategory: kbprg kbprb
KBSubcategory: BseMisc

Windows 95 RPC: Supported Protocol Sequences
PSS ID Number: Q125701
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)
--

The Windows 95 RPC runtime libraries support a subset of the protocol
sequences introduced in Microsoft RPC 1.0. Here is the list of supported
protocol sequences:

 Protocol Sequence Comments

 ncacn_ip_tcp Requires TCP/IP installation
 ncacn_nb_nb NetBEUI is the only supported NetBIOS transport
 ncacn_np Support for client applications only
 ncacn_spx Requires IPX/SPX installation
 ncalrpc Local communication only

Regarding ncacn_np: Windows 95 does not support server-side named pipes,
so ncacn_np is not a valid protocol sequence for RPC servers running on
Windows 95. However, ncacn_np is valid for RPC client applications.

Additional reference words: 4.00 NETWORKING
KBCategory: kbnetwork
KBSubcategory: NtwkRpc

Windows 95 Support for LAN Manager APIs
PSS ID Number: Q125700
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK)
--

Windows 95 supports a subset of the Microsoft LAN Manager API. This is
a list of the supported functions:

 NetAccessAdd
 NetAccessCheck
 NetAccessDel
 NetAccessEnum
 NetAccessGetInfo
 NetAccessGetUserPerms
 NetAccessSetInfo
 NetConnectionEnum
 NetFileClose2
 NetFileEnum
 NetSecurityGetInfo
 NetServerGetInfo
 NetServerSetInfo
 NetSessionDel
 NetSessionEnum
 NetSessionGetInfo
 NetShareAdd
 NetShareDel
 NetShareEnum
 NetShareGetInfo
 NetShareSetInfo

Windows 95 support for these functions differs from Windows NT in two
ways. First, since Windows 95 doesn't support Unicode, these functions
require ANSI strings. Second, Windows 95 exports the Lan Manager
functions from SVRAPI.DLL instead of NETAPI32.DLL. If an attempt is
made to run a native Windows NT application on Windows 95, the
following error will result:

 "The <application> file is linked to missing export NETAPI32.DLL
 <Net...API>"

To handle these differences, applications targeted to both Windows NT
and Windows 95 should do the following:

1. Avoid importing Lan Manager functions from NETAPI32.DLL at link time.
 Instead, applications should do a run time version check and
 dynamically link to NETAPI32.DLL for Windows NT or SVRAPI.DLL for
 Windows 95.

 For additional information on version checking, please see the following
 article(s) in the Microsoft Knowledge Base:

 ARTICLE-ID:Q92395
 TITLE :Determining System Version from a Win32-based Application

2. Make sure the application doesn't depend on the presence of unsupported
 API's.

3. When calling Lan Manager API's, pass strings using a character set
 appropriate for the host operating system. Use Unicode strings for
 Windows NT and ANSI strings for Windows 95.

If you are only targetting Windows 95 and wish to use SVRAPI.DLL, SVRAPI.H
and SVRAPI.LIB are included in the Windows 95 DDK. NOTE: The formal
parameter lists for the LAN Manager APIs may be slightly different between
the header files for Windows NT and Windows 95.

Additional reference words: 4.00 95
KBCategory: kbnetwork
KBSubcategory: NtwkLmapi

Windows 95 Support for Network DDE
PSS ID Number: Q125703

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

Network DDE is a technology that allows applications that use the DDE
transport to transparently exchange data over a network. It consists
of two major components:

1. The NetDDE agent. This is a service that acts as a proxy for the remote
 DDE application. It communicates with all local DDE applications, and
 with remote NetDDE agents using NetBIOS as shown in this chart:

 Machine A Machine B
 +-----------+ +-----------+
 | | | |
 | DDE App 1 | | DDE App 2 |
 | | | |
 +-----------+ +-----------+
 ^ | ^ |
 | | | |
 | | | |
 | | | |
 DDE DDE
 Conversation Conversation
 | | | |
 | | | |
 | V | V
 +------+ +------+
 |NetDDE| |NetDDE|
 | Agent| < ------ NetBIOS session ------ > | Agent|
 +------+ +------+

2. A DLL that implements NetDDE API functions such as NDdeShareAdd,
 NDdeShareDel, and so on. This DLL is usually named NDDEAPI.DLL.

In the interests of backwards compatibility, Windows 95 includes a NetDDE
agent and a 16-bit NetDDE API DLL. However, Windows 95 does not include a
32-bit NetDDE API DLL. Consequently, 32-bit applications that use NetDDE
API functions will need to thunk to the 16-bit NETAPI.DLL.

Additional reference words: 4.00
KBCategory: kbnetwork kbui
KBSubcategory: UsrNetDde

Windows 95 Uses Known16DLLs Registry Key to Find 16-bit DLLs
PSS ID Number: Q141969

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface included with:
 Microsoft Windows 95

SUMMARY
=======

The process of loading a DLL, implicitly or explicitly, invokes Windows 95
to search for the specified DLL in a predefined order until the DLL is
found or all search efforts are exhausted. In Windows 95, the string values
associated with the Known16DLLs registry key have the ability to reset the
normal search order used to locate and load a 16-bit DLL to a new
predefined order. Thus, a string value that identifies a 16-bit DLL and is
also associated with the Known16DLLs registry key will force Windows 95 to
begin its search for the DLL in the System directory - not the current
directory.

MORE INFORMARTION
=================

In Windows 95, the predefined order that is used to locate and load a
16-bit DLL is specified as follows:

1. The current directory.

2. The Windows directory (the directory containing Win.com).

3. The Windows system directory (the directory containing such system files
 as Gdi.exe).

4. The directory containing the executable file for the current task.

5. The directories listed in the PATH environment variable.

This search order is reset if a 16-bit DLL being loaded has a string value
with the same name as the 16-bit DLL specified in the Known16DLLs registry
key. The Known16DLLs registry key is located at:

 HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\SessionManager

The data associated with the DLL string value can take any form. An example
of such a string value is:

Name Data

"COMMCTRL.DLL" "SYSTEM COMMCTRL.DLL"

When a string value for a 16-bit DLL exists, the new search order is as

follows:

1. The Windows system directory.

2. The Windows directory.

3. The current directory.

4. The directory from which the application loaded.

5. The directories that are listed in the PATH environment variable.

There are three ways that this DLL string value can be added to the
registry:

 - An end user can use Regedit.exe to add the 16-bit DLL string value to
 the Known16DLLs registry key.

 -or-

 - The 16-bit DLL string value can be added programmatically to the
 Known16DLLs registry key using registry APIs.

 -or-

 - Windows 95 can automatically add the 16-bit DLL string value to the
 Known16DLLs registry key.

The first two ways to add the 16-bit DLL string value are basic and require
no further explanation; however, the third method is more complex. Each
time a 16-bit DLL is loaded from the Windows System directory, Windows 95
checks the Known16DLLs registry key for a string value that has that same
name. If the string value does not exist, Windows 95 creates it in the
Known16DLLs registry key. Thus, any application that uses a DLL that has
the same name as a DLL listed in the Known16DLLs registry key will always
use the reset search order to locate the DLL. As long as the DLL exists in
the Windows System directory and can be loaded by another application,
deletion of the string value will not be effective in returning the search
order to its original predefined state.

Additional reference words: search path 16 3.1 loadlibrary win95 order
KBCategory: kbenv kbhowto
KBSubcategory: BseDll

Windows 95 Uses KnownDLLs Registry Key to Find 32-bit DLLs
PSS ID Number: Q151646

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface included with:
 - Microsoft Windows 95

 - Microsoft Win32 Software Development Kit for:
 - Microsoft Windows 95

SUMMARY
=======

The process of loading a DLL, implicitly or explicitly, invokes Windows 95
to search for the specified DLL in a predefined order until the DLL is
found or all search efforts are exhausted. In Windows 95, the string values
associated with the KnownDLLs Registry key have the ability to reset the
normal search order used to locate and load a 32-bit DLL to a new
predefined order. Thus, a string value that identifies a 32-bit DLL and is
also associated with the KnownDLLs Registry key will force Windows 95 to
begin its search for the DLL in the System directory, not the current
directory.

MORE INFORMATION
=================

In Windows 95, the predefined order used to locate and load a 32-bit DLL is
specified as follows:

1. The directory from which the application loaded.

2. The current directory.

3. The Windows system directory. Use the GetSystemDirectory function to
 get the path of this directory.

4. The Windows directory. Use the GetWindowsDirectory function to get the
 path of this directory.

5. The directories that are listed in the PATH environment variable.

This search order is reset if:

1. The DLL name passed to LoadLibrary specifies the .DLL extension.

2. The 32-bit DLL specified has a Registry string value with the same
 name, excluding the extension, as the 32-bit DLL specified in the
 KnownDLLs Registry key. The KnownDLLs Registry key is located at:

 HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\SessionManager

The data associated with the DLL string value must specify the actual DLL

name for the DLL to be found and loaded. This DLL name does not need to
match the string value name and is not required to following any naming
convention. Some examples of such string values are:

 Name Data

 MYDLL1 MYDLL.DLL
 MYDLL2 MYREALDLL2.DLL

When a string value for a 32-bit DLL exists, the new search order in the
Windows system directory is as follows:

1. If MYDLL1.DLL is passed to LoadLibrary, the Registry key MYDLL1 is used
 to load MYDLL.DLL.

2. If the DLL name specified in the data value, MYDLL.DLL for example,
 cannot be found, LoadLibrary on MYDLL1.DLL will fail and a call to
 GetLastError will return error 2 "The system cannot find the file
 specified".

3. If MYDLL.DLL or MYDLL is passed to LoadLibrary, the normal search
 pattern is used to locate and load MYDLL.DLL.

Following are ways that this DLL string value can be added to the Registry:

 - An end user can use Regedit.exe to add the 32-bit DLL string value to
 the KnownDLLs Registry key.

 -or-

 - The 32-bit DLL string value can be added programmatically to the
 Known32DLLs Registry key using Registry APIs.

To revert back to the default search pattern, the Registry key must be
removed.

Additional reference words: search path loadlibrary win95 order
KBCategory: kbenv kbusage kbprg
KBSubcategory: BseDll

Windows Dialog-Box Style DS_ABSALIGN
PSS ID Number: Q11590

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

The Windows dialog-box style DS_ABSALIGN (used in WINDOWS.H) means
"Dialog Style ABSolute ALIGN." Specifying this style in the dialog
template tells Windows that the dtX and dtY values of the DLGTEMPLATE
struct are relative to the screen origin, not the owner of the dialog
box. When this style bit is not set, the dtX and dtY fields are
relative to the origin of the parent window's client area.

Use this term if the dialog box must always start in a specific part
of the display, no matter where the parent window is on the screen.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrDlgs

Windows Does Not Support Nested MDI Client Windows
PSS ID Number: Q74041

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The Microsoft Windows implementation of the multiple document
interface (MDI) does not support nested MDI client windows. In other
words, neither an MDI client window nor an MDI child window can have
an MDI client window as a child.

MORE INFORMATION
================

A Windows MDI client window is a member of the MDIClient window class,
and the Windows MDI model assumes that the parent of an MDIClient
window is a top-level frame window with a valid menu bar. This
assumption is necessary to implement the basic functionality defined
by the MDI interface, and it precludes the possibility of using nested
MDIClient windows. However, an application can have multiple top-level
windows, and each top-level window can have a separate MDIClient
window as a child.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrMdi

Windows Help PositionWindow Macro Documented Incorrectly
PSS ID Number: Q83911
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) version 3.1
 - Microsoft Win32 SDK, versions 3.5 and 3.51
--

SUMMARY
=======

In source files for Windows Help, the help author can specify the
size, position, and state of a window with the PositionWindow macro.

MORE INFORMATION
================

According to page 326 of the "Microsoft Windows Software Development
Kit: Programmer's Reference, Volume 4: Resources," the state parameter
to the PositionWindow macro is either 0 to specify a normal sized
window or 1 to specify a maximized window. This information is
incorrect. The state parameter can assume any of ten different values,
as follows:

 Corresponding
 Value Windows Constant Action
 ----- ---------------- ------

 0 SW_HIDE Hides the window and passes activation to
 another window.

 1 SW_SHOWNORMAL Activates and displays a window. If the
 window is minimized or maximized, Windows
 restores it to its original size and
 position.

 2 SW_SHOWMINIMIZED Activates the window and displays it as an
 icon.

 3 SW_SHOWMAXIMIZED Activates the window and displays it as a
 maximized window.

 4 SW_SHOWNOACTIVATE Displays a window in its most recent size
 and position. The window that is currently
 active remains active.

 5 SW_SHOW Activates a window and displays it in its
 current size and position.

 6 SW_MINIMIZE Minimizes the specified window and
 activates the top-level window in the
 window-manager's list.

 7 SW_SHOWMINNOACTIVE Displays the window as iconic. The window
 that is currently active remains active.

 8 SW_SHOW Displays the window in its current state.
 The window that is currently active remains
 active.

 9 SW_RESTORE Same as SW_SHOWNORMAL.

Note that these constants are valid only for Windows and may change if
Help is ported to another platform.

Additional reference words: 3.10 3.50
KBCategory: kbtool
KBSubcategory: TlsHlp

Windows NT Servers in Locked Closets
PSS ID Number: Q90083

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

Some installations are required to restrict access to a server such that
access to the server's keyboard/mouse is unavailable to most personnel.
Such a server is referred to as a server in a locked closet.

The server administrators may provide an emergency reset button to end
users (for example, factory floor workers) in case the system locks up and
no administrators are present. In the case where an emergency reset button
cannot be provided, an administrator must come and physically unlock the
closet in order to get the system up again.

Windows NT requires that the user press CTRL+ALT+DEL to log on. This
requirement implies that Windows NT doesn't lend itself well to the server
in a locked closet situation. Indeed, someone must press CTRL+ALT+DEL and
enter a user ID and a password in order to log on and use the keyboard or
mouse to interact locally with a Windows NT machine. However, it is
possible to configure the machine as a server in a locked closet such that
an administrator is not required to unlock the door to reset the system.
The administrator can configure the system so that services are started
automatically during boot. Once all the services are started, then the
system is fully functional and the administrator need not intervene. If
certain services fail to come up, but network service does come up, then
the system can be remotely administered.

MORE INFORMATION
================

Remote administration is possible, assuming that the required basic system
services are running. The machine must be on the network. The process
requires only the Windows NT product. In other words, Windows NT Advanced
Server is not an additional requirement.

Make sure that the following steps have been taken to start system services
automatically at system boot and to enable remote administration in case of
failure:

1. Use the Service Control Manager to install any application code that
 must be started as soon as the Windows NT machine reboots.

 Write an application that installs the services and specifies that they
 should be started automatically. To find more information on the Win32
 APIs that support Services, search on "Services Overview" in the Win32

 API help text.

 Once this is done, the necessary application code can be made to start
 automatically upon system reboot, without anyone needing to press
 CTRL+ALT+DEL to log on or to take any other action using the server's
 local mouse/keyboard.

2. Make sure that the Workstation and Server services start automatically
 upon reboot.

 Use the Services application in Control Panel to ensure that both
 the Workstation and Server services start automatically upon
 reboot. Choose the Help button for instructions on how to install a
 service and how to configure it to start automatically.

 This will permit an authorized person to remotely administer the system
 from another machine on the network. Thus, if something from step 1 goes
 wrong, the administrator still does not need to physically unlock the
 closet and log on. The administrator can log on to any machine on the
 network and use the tools on that machine to interact with the server.

Remote administration via dial-up telephone lines is available, but
requires RAS (Microsoft Remote Access Service). RAS permits a machine to
dial over telephone lines into a network, and to become a full participant
on the network. In this way, a system dialing in over RAS can be used to
remotely administer the system in the locked closet.

Note that while these steps allow servers locked in closets to be restored
without an administrator, it is still preferable to install a UPS
(uninterruptable power supply). Servers in locked closets usually need to
provide uninterrupted service to their clients, so a UPS is a better
solution. The capability to do remote administration serves as a backup in
case of failure.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseMisc

Windows NT Support for the MS-DOS LAN Manager APIs
PSS ID Number: Q110776
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK) for Windows NT
 versions 3.1 and 3.5
--

There is no list that shows specifically which MS-DOS LAN Manager APIs
(application programming interfaces) are supported in a VDM (virtual DOS
machine) on Windows NT. This article discusses what influenced whether or
not an API would be implemented.

The set of APIs that is supported is relatively small. It was necessary to
implement named pipes, mailslots, NetServerEnum(), and the NetUseXXX APIs.
The APIs that are commonly used in shipping applications were implemented,
if possible. There were certain APIs that were impossible to implement from
the VDM. The remaining APIs were not added either because Microsoft did not
feel that they were used in applications or because they did not make sense
in this context, such as the NetServiceXXX APIs.

Additional reference words: 3.10 3.50
KBCategory: kbnetwork
KBSubcategory: NtwkLmapi

Windows NT Virtual Memory Manager Uses FIFO
PSS ID Number: Q98216

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

On page 193 of "Inside NT," Helen Custer states that the Windows NT virtual
memory manager uses a FIFO (first in, first out) algorithm, as opposed to a
LRU (least recently used) algorithm, which the Windows virtual memory
manager uses. While it is true that FIFO can result in a commonly used page
being discarded or paged to the pagefile, there are reasons why this
algorithm is preferable.

Here are some of the advantages:

 - FIFO is done on a per-process basis; so at worst, a process that
 causes a lot of page faults will slow only itself down, not the
 entire system.

 - LRU creates significant overhead--the system must update its page
 database every single time a page is touched. However, the database
 may not be properly updated in certain circumstances. For example,
 suppose that a program has good locality of reference and uses a
 page constantly so that it is always in memory. The operating
 system will not keep updating the timestamp in the page database,
 because the process is not hitting the page table. Therefore this
 page may age even though it is in nearly constant use.

 - Pages that are "discarded" are actually kept in memory for a while,
 so if a page is really used frequently, it will be brought back
 into memory before it is written to disk.

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseMm

Windows Regions Do Not Scale
PSS ID Number: Q71229

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

The coordinates of Windows regions are in device units, not logical
units. Therefore, if the mapping mode is not MM_TEXT, region
coordinates do not scale as would be expected. This causes particular
problems in metafiles because metafiles often use MM_ISOTROPIC or
MM_ANISOTROPIC modes to make pictures appear the same on devices with
different resolutions.

To work around this problem, applications should avoid using regions
if the mapping mode is changed from MM_TEXT. Regions should also be
avoided in metafiles, unless the application knows the scaling factor
and can adjust region coordinates itself.

MORE INFORMATION
================

If the applications that will read and write the metafile are
developed together, the writing application can include an MFCOMMENT
escape in the metafile to store the region components. This
information can be used by the reading application to scale the
metafile.

However, this comment is not standard across all applications. This
method would not be expected to work if the metafile is imported into
a commercial application.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbgraphic
KBSubcategory: GdiDc

Windows Socket API Specification Version
PSS ID Number: Q85965
--
The information in this article applies to:

 - Microsoft Win32 Software Development Kit (SDK), versions 3.1, 3.5,
 3.51, and 4.0
--

The Windows Sockets API Specification version 1.1 is now available in
two formats. WINSOCK.DOC is a Word for Windows, version 2.0, document
and WINSOCK.TXT is an ASCII-text-format document.

These files contain the Windows Sockets API Specification version 1.1,
which defines a standard binary interface for tcp/ip transports based
on the Berkeley Sockets interface originally in Berkeley UNIX with
Windows-specific extensions. This specification has been endorsed by
20 leading companies, and defines the sockets interface in Windows NT.
The specification will be supported by various vendors in their
upcoming tcp/ip product releases for Windows for MS-DOS.

The Windows Sockets API Specification is contained in a file called WINSOCK
(contains ASCII text version) and a file called WINSOCKW (contains a Word
for Windows version) which is located in the Microsoft Software Library.

Download WINSOCK.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download WINSOCK.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \softlib\mslfiles directory
 Get WINSOCK.EXE

Download WINSOCKW.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download WINSOCKW.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \softlib\mslfiles directory
 Get WINSOCKW.EXE
Additional reference words: 1.00 1.10 3.10 3.50 4.00 95
KBCategory: kbref
KBSubcategory: NtwkWinsock

Windows WM_SYSTIMER Message Is an Undocumented Message
PSS ID Number: Q108938

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

The WM_SYSTIMER message in Windows is an undocumented system message; it
should not be trapped or relied on by an application. This message can
occasionally be viewed in Spy or in CodeView while debugging.

Windows uses the WM_SYSTIMER message internally to control the scroll rate
of highlighted text (text selected by the user) in edit controls, or
highlighted items in list boxes.

NOTE: The WM_SYSTIMER message is for Windows's internal use only and can be
changed without prior notice.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrMsg

WM_ACTIVATEAPP Has lParam of Zero (0)
PSS ID Number: Q135785

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s version 1.3

SUMMARY
=======

Although the current Win32 documentation does not specifically indicate
this, it is possible (and very likely) that the WM_ACTIVATEAPP message
will be received by an application with the lParam equal to 0. You can
in fact get 0 in lParam when activating and deactivating.

MORE INFORMATION
================

In previous versions of Windows, activation and deactivation used to be
synchronous. This meant that you could never switch away from an
application that was locked up because the application becoming active had
to wait for a synchronous reply from the application being deactivated. The
activating application would get stuck waiting for the deactivating
application to process and return from the WM_ACTIVATEAPP, WM_ACTIVATE, and
WM_NCACTIVATE messages.

In Windows 95 and Windows NT, Microsoft removed every place where these
types of synchronous lockups can occur. When asynchronous activation
occurs, the activating application becomes active immediately, and the
messages to the deactivating application occur later. This means two
things:

 - An application can be terminated in the middle of this process. If this
 happens, the thread ID/task handle that is passed in the lParam is
 invalid.

 - When the deactivated application gets notified, it is possible that the
 activated application is no longer active. A third application might
 have been activated in the interim.

Additional reference words: 4.00 1.30 Windows 95
KBCategory: kbui
KBSubcategory: UsrWndw

WM_CHARTOITEM Messages Not Received by Parent of List Box
PSS ID Number: Q72552

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

When keyboard input is sent to a list box that has the
LBS_WANTKEYBOARDINPUT style bit set, its parent does not receive
WM_CHARTOITEM messages; however, WM_VKEYTOITEM messages are received. This
is because the list box has the LBS_HASSTRINGS style bit set.

This behavior is by design. Windows sets the LBS_HASSTRINGS style bit for
all list boxes except owner-draw list boxes. An owner-draw list box can be
created with this style bit turned on or off. For owner-draw list boxes,
the state of the LBS_HASSTRINGS style bit determines which messages are
sent. WM_CHARTOITEM messages and WM_VKEYTOITEM messages are mutually
exclusive.

The documentation for WM_CHARTOITEM states:

 Only owner-draw list boxes that do not have the LBS_HASSTRINGS style can
 receive this message.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95 listbox
KBCategory: kbui
KBSubcategory: UsrInp

WM_COMMNOTIFY is Obsolete for Win32-Based Applications
PSS ID Number: Q94561

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

Under Windows version 3.1, the WM_COMMNOTIFY message is posted by a
communication device driver whenever a COM port event occurs. The message
indicates the status of a window's input or output queue.

This message is not supported for Win32-based applications. However, WOW
supports the EnableCommNotification() API for 16-bit Windows-based
applications running on Windows NT.

MORE INFORMATION
================

To duplicate the Windows 3.1 functionality for a Win32-based application,
refer to the TTY sample, included with the SDK. The TTY sample is a common
code base sample, which uses EnableCommNotification() under Windows 3.1 to
tell COMM.DRV to post messages to the TTY window.

In Win32, this behavior is simulated with a secondary thread which uses
WaitCommEvent() to block on the port and PostMessage() to indicate
when the desired event has occurred.

TTY.C defines WM_COMMNOTIFY if WIN32 is defined. Using this method,
WM_COMMNOTIFY notifications are simulated but use the same message
definition as Windows 3.1.

The TTY sample is located on the Win32 SDK CD in \MSTOOLS\SAMPLES\COMM.

Additional reference words: 3.10 3.50 4.00 95
KBCategory: kbprg
KBSubcategory: BseCommapi

WM_CTLCOLORxxx Message Changes for Windows 95
PSS ID Number: Q130952

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

SUMMARY
=======

In previous versions of Windows, an application could change the
background, text, and/or text background colors of controls by performing
certain actions in response to WM_CTLCOLORxxx messages.

However, in Windows 95, the messages sent by different types of controls
are somewhat different.

MORE INFORMATION
================

The following list outlines the changes in WM_CTLCOLORxxx messages sent by
standard controls in Windows 95:

WM_CTLCOLORBTN

Sent By: command buttons (regular and default)

Changes made during this message have no effect on command buttons. Command
buttons always use system colors for drawing themselves.

WM_CTLCOLORSTATIC

Sent By: Any control that displays text which would be displayed using the
default dialog/window background color. This includes check boxes, radio
buttons, group boxes, static text, read-only or disabled edit controls, and
disabled combo boxes (all styles).

The changes affect the text drawn in the control. Changes do not affect the
checkmarks on the buttons or the outline of the group box.

WM_CTLCOLOREDIT

Sent By: Enabled, non-read-only edit controls and enabled combo boxes (all
styles)

The changes affect the background, text, and text background of these
controls. For combo boxes, the changes made in this message affect only the
"edit" portion of the control. The list portion is affected by the

WM_CTLCOLORLISTBOX message.

In previous versions of Windows, radio buttons, check boxes and group boxes
would send WM_CTLCOLORBTN messages and paint themselves accordingly. In
Windows 95, these controls send WM_CTLCOLORSTATIC messages instead.

These changes were implemented to make changing the appearance of controls
more logical (text on the dialog background is now classified as "static").

Additional reference words: 4.00
KBCategory: kbui
KBSubcategory: UsrCtl

WM_DDE_EXECUTE Message Must Be Posted to a Window
PSS ID Number: Q77842

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

Chapter 15 of the "Microsoft Windows Software Development Kit
Reference, Volume 2" documents the dynamic data exchange (DDE)
protocol. The following statement is found on page 15-2:

 An application calls the SendMessage() function to issue the
 WM_DDE_INITIATE message or a WM_DDE_ACK message sent in response to
 WM_DDE_INITIATE. All other messages are sent using the PostMessage()
 function.

In the book "Windows 3: A Developer's Guide" by Jeffrey M. Richter (M
& T Computer Books), the sample setup program uses the SendMessage()
function to send itself a WM_DDE_EXECUTE message that violates the DDE
protocol and may not work in future versions of Windows.

In Richter's sample, no real DDE conversation exists. The correct
method to achieve the desired result is to use the SendMessage()
function to send a user-defined message to the window procedure. When
this message is processed, proceed accordingly.

For more information on user-defined messages, see chapter 6 of the
"Microsoft Windows Software Development Kit Reference, Volume 1" for the
Windows SDK version 3.0 and chapter 2 of the "Programmer's Reference,
Volume 3: Messages, Structures, and Macros" from the Windows SDK version
3.1.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrDde

WM_KEYDOWN Under Japanese Windows 95 and Windows NT
PSS ID Number: Q150021
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK), version 3.1
 - Microsoft Win32 Software Development Kit (SDK) for:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95
--

On Microsoft Japanese Windows 95, the IME system no longer uses the
keyboard hook to pick up keyboard messages. Therefore, all keyboard
messages are passed on to the application. The result is that the same
application running under Japanese Windows 95 receives WM_KEYDOWN messages
and WM_KEYUP messages, while an application running under Japanese Windows
3.1. does not receive WM_KEYDOWN messages.

If you do not want your application running under Japanese Windows 95 to
receive WM_KEYDOWN messages while the IME is working, you can modify the
Win.ini file as follows:

 [IME Compatibility]
 APPNAME=0x00010000

where APPNAME is the name of the application.

Additional reference words: 4.00 3.50 3.51 IME
KBCategory: kbprg
KBSubcategory: wintldev

WM_SIZECLIPBOARD Must Be Sent by Clipboard Viewer App
PSS ID Number: Q74274

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

The WM_SIZECLIPBOARD message is not generated by the Windows graphical
environment; the clipboard viewer generates this message.

An application that can display the clipboard contents, such as the
CLIPBRD.EXE application in Windows version 3.0, is a clipboard viewer.
When the size of the clipboard viewer's client area changes and the
clipboard contains a data handle for the CF_OWNERDISPLAY format, the
clipboard viewer must send the WM_SIZECLIPBOARD message to the current
clipboard owner. The GetClipboardOwner function returns the window
handle of the current clipboard owner. This window handle is the
handle in the last call to OpenClipboard.

When sending the WM_SIZECLIPBOARD message, the clipboard viewer must
specify two parameters. The wParam parameter identifies the clipboard
viewer's window handle. The low-order word of the lParam parameter
contains the handle to a block of global memory that holds a RECT data
structure. The RECT structure defines the area in the clipboard viewer
that the clipboard owner should paint.

Additional reference words: 3.00 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrClp

WM_SYSCOLORCHANGE Must Be Sent to Windows 95 Common Controls
PSS ID Number: Q129595

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.51
 - Microsoft Windows 95 version 4.0
 - Microsoft Win32s version 1.3

SUMMARY
=======

You must ensure that applications that use the new common controls
introduced in Windows 95 and Windows NT version 3.51 forward the
WM_SYSCOLORCHANGE message to the controls.

MORE INFORMATION
================

Windows 95 makes it very easy for the user to change the colors of common
user interface objects, therefore it is critical that applications not rely
on particular colors being constant. When the user changes the color
settings, Windows 95 will send a WM_SYSCOLORCHANGE message to all top level
windows. Because this message is sent only to top level windows, the common
controls will not be notified of the color change unless the application
forwards the WM_SYSCOLORCHANGE message to the control.

An example of why this is important is the toolbar control. If the color
settings are such that the "3D Objects" color is set to light gray, the
toolbar will create its buttons to light gray. However if the
WM_SYSCOLORCHANGE message is not forwarded to the toolbar and the 3D Object
color is changed to blue, the toolbar buttons will remain light gray while
all the other buttons in the system change to blue.

Additional reference words: 1.30 4.00 grey
KBCategory: kbui
KBSubcategory: UsrCtl

Working Set Size, Nonpaged Pool, and VirtualLock()
PSS ID Number: Q108449

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1 and 3.5

SUMMARY
=======

This article discusses memory management issues such as working set size,
nonpaged pool, and locking pages into physical memory via VirtualLock().

MORE INFORMATION
================

Working Set

A process's working set is the set of pages that it has currently in
memory. The values for maximum working set and minimum working set are
hard-coded in Windows NT and are thus impossible to change. There are three
values hard-coded for the maximum working set. The value used for maximum
working set depends on whether your machine is considered to be a small,
medium, or large machine:

 Small machine--less than 16 megabytes (MB)
 Medium machine--between 16 MB and 20 MB
 Large machine--greater than 20 MB

The system tries to keep about 4 MB free to reduce the paging that occurs
when loading a new process, allocating memory, and so forth. Any free RAM
beyond what the system requires is available for the system to use to
increase your working set size if your process is doing a lot of paging.

Process pages that are paged out of your process space are moved into the
"standby list," where they remain until sufficient free RAM is available,
or until system memory is low and they need to be reused. If these pages
are accessed by your process while they are still on the standby list and
more RAM has become available, they will be "soft-faulted" back into the
working set. This does not require any disk access, so it is very quick.
Therefore, even though you have an upper limit to the size of your working
set, you can still have quite a few process pages in memory that can be
pulled back into your working set very quickly.

To minimize working set requirements and increase performance, use the
Working Set Tuner, WST.EXE, to order the functions within your code. One
way to help an application receive a larger working set is to use the
Network application in the Control Panel to set the server configuration to
"Maximize Throughput for Network Applications."

Nonpaged Pool

System memory is divided into paged pool and nonpaged pool. Paged pool can
be paged to disk, whereas nonpaged pool is never paged to disk. In Windows
NT 3.1, the default amount of nonpaged pool also depends on whether your
machine is considered small, medium, or large. In other words, you will
have X amount of nonpaged pool on a 16 MB machine, Y amount of nonpaged
pool on a 20 MB machine, and Z amount of nonpaged pool on a machine with
more than 20 MB (the exact values for X, Y, and Z were not made public).

Important system data is stored in nonpaged pool. For example, each Windows
NT object created requires a block of nonpaged pool. In fact, it is the
availability of nonpaged pool that determines how many processes, threads,
and other such objects can be created. The error that you will receive if
you have too many object handles open is:

 1816 (ERROR_NOT_ENOUGH_QUOTA)

Many 3.1 applications ran into this error because of the limited amount of
nonpaged pool. This limit were addressed in Windows NT 3.5. We found that

 - Some objects were too large
 - Sharing an object caused excessive quota charges
 - The quota limits were artificial and fixed

The resources used by each object were evaluated and many were drastically
reduced in Windows NT 3.5.

In Windows NT 3.1, every time an object was shared, quota was charged for
each shared instance. For example, if you opened a file inheritable and
then spawn a process and have it inherit your handle table, the quota
charged for the file object was double. Each handle pointing to an object
cost quota. Most applications experienced this problem. Under Windows NT
3.5, quota is only charged once per object rather than once per handle.

Windows NT 3.1 had a fixed quota for paged and nonpaged pool. This was
determined by the system's memory size, or could be controlled by the
registry. The limits were artificial. This was due to the poor design of
quotas with respect to sharing. It was also affected by some objects lying
about their actual resource usage. In any case, Windows NT 3.5 has revised
this scheme.

The Windows NT 3.1 "Resource Kit, Volume I" documents that it is possible
to change the amount of nonpaged pool by modifying the following registry
entry:

 HKEY_LOCAL_MACHINE\SYSTEM\
 CurrentControlSet\
 Control\
 Session Manager\
 Memory Management\
 NonPagedPoolSize

WARNING: This modification can cause the system to crash, and therefore

Microsoft does not recommend that this registry entry be changed.

Quotas can still be controlled in Windows NT 3.5 using these Windows NT 3.1
registry values. However, this technique is now almost never needed. The
new quota mechanism dynamically raises and lowers your quota limits as you
bump into the limits. Before raising a limit, it coordinates this with the
memory manager to make sure you can safely have your limit raised without
using up all of the systems resources.

VirtualLock()

To lock a particular page into memory so that it cannot be swapped out to
disk, use VirtualLock(). The documentation for VirtualLock() states the
following:

 Locking pages into memory may degrade the performance of the system by
 reducing the available RAM and forcing the system to swap out other
 critical pages to the paging file. There is a limit on the number of
 pages that can be locked: 30 pages. The limit is intentionally small to
 avoid severe performance degradation.

There is no way to raise this limit in Windows NT 3.1--it is fixed at 30
pages (the size of your working set). The reason that you see a severe
performance degradation when an application locks these pages is that
Windows NT must reload all locked pages whenever there is a context switch
to this application. Windows NT was designed to minimize page swapping, so
it is often best to let the system handle swapping itself, unless you are
writing a device driver that needs immediate access to memory.

Windows NT 3.5 allows processes to increase their working set size by using
SetProcessWorkingSetSize(). This API is also useful to trim your minimum
working set size if you want to run many processes at once, because each
process has the default minimum working set size reserved, no matter how
small the process actually is. The limit of 30 pages does not apply to
VirtualLock() when using SetProcessWorkingSetSize().

Additional reference words: 3.10 3.50
KBCategory: kbprg
KBSubcategory: BseMm

Writing Code that Works with Different International Formats
PSS ID Number: Q130056
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
 - Microsoft Win32 Software Development Kit (SDK) version 3.5
 - Microsoft Win32s version 1.2
--

SUMMARY
=======

Some European coutries like Germany use a different floating point format
that doesn't include the decimal point (.). This has caused problems whtn
the actual numbers use the decimal point format (xxx.xx) and the German
version of Microsoft Excel is expecting a comma (xxx,xx).

Some developers have made the mistake of hard-coding formats or searching
for all periods and replacing them with commas. This is not good
programming practice.

Microsoft Excel uses the Control Panel Number Format for its separators.
So, regardless of what language version of Windows it runs on, it always
uses the correct separators. Microsoft recommends that you use the same
approach. Always use the separators defined in the number format of control
panel.

MORE INFORMATION
================

All the international information is stored in the WIN.INI file under the
[intl] heading. The application should look for the value of "sDecimal."
It can query this value using the GetProfileString API. If the application
uses this approach, it will have the correct separator for all countries.

To avoid potential problems, never make assumptions about number formats,
currency formats (that is, don't hard-code the dollar symbol), date
formats, or time formats. These are different for different countries. Use
the settings from the Control Panel.

If an application does any text processing, such as sorting or
upper/lowercase conversions, it should use the Windows APIs and not
supply its own conversion tables and functions. For example, if an
application use APIs such as AnsiLower, it will work regardless of
language because it obtains the data from the language DLL.

To output floating point numbers in Windows, Microsoft recommends that you
use wsprintf. The concept of an "international format string" only has
meaning when the string is output to the user. Internal to the computer,
for all calculations and manipulations, the concept does not apply. Thus
the application can keep its floats in the native format and only convert
to strings before calling the wsprintf function.

There is no need to load conversions from float to string, and vice versa.
In other words, there is no need to write any functions such as
InterStringToFloat(), InterFloatToString(), and so on.

Here's a simple algorithm you could use.

1. Convert your float to a string by using the _fcvt or _gcvt standard C
 functions.

2. Get the sThousand and sDecimal separators from the WIN.INI file by using
 the GetProfileString API.

3. Call wsprintf to output the converted string, using sThousand and
 sDecimal in the formatting string.

The following is an example of a mistake made by a developer who was not
thinking internationally:.

 if language=English
 Output_English_Float ()
 else
 Output_International_Float ()

This is not correct. Think of English as just another language and write a
single Output_Float() function that covers all languages.

Also, for ease of localization, a developer should place all strings in the
resource file. This avoids having to search through all the C files looking
for strings to translate.

Additional reference words: 1.20 3.10 3.50 localization kbinf foreign
KBCategory: kbother
KBSubcategory: wintldev

Writing Multiple-Language Resources
PSS ID Number: Q89866

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

When you are writing multiple-language resources, the dialog box
identifiers need to be identical for each language instance, as
demonstrated below.

 #define DialogID 100

 DialogID DIALOG 0, 0, 210, 10
 LANGUAGE LANG_ENGLISH,SUBLANG_ENGLISH_US
 .
 .
 .
 DialogID DIALOG 0, 0, 210, 10
 LANGUAGE LANG_FRENCH,SUBLANG_FRENCH

The FindResource() application programming interface (API) function is used
by the system to fetch the dialog box. FindResource() gets the locale
information for the process, then attempts to fetch the resource with that
language identifier using FindResourceEx(), the language-specific API
function for fetching resources. If FindResourceEx() fails to load the
language-specific dialog box, FindResource() then attempts to load the
neutral dialog box, which should fetch LANG_FRENCH,SUBLANG_FRENCH, if the
locale is SUBLANG_FRENCH_CAN or similar.

The LANGUAGE identifiers and the VERSIONINFO language identifiers should
also be identical. The code page for resources is always the Unicode code
page. The system will translate from Unicode to the required code page.

The preferred method of developing multiple-language resources is to
include a LANGUAGE statement for each language supported rather than using
the CODEPAGE, LANGUAGE identifier, and VERSIONINFO information. Although
the CODEPAGE information will work, the new method is easier to use.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrNls WintlDev

WS_EX_WINDOWEDGE Doesn't Work Without a Window Frame Style
PSS ID Number: Q136311

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows 95 version 4.0

The WS_EX_WINDOWEDGE style is new to Windows 95. The style specifies that a
window has a border with a raised edge. If the WS_EX_WINDOWEDGE style is
used on a window that doesn't have either the WS_THICKFRAME or WS_DLGFRAME
style, the WS_EX_WINDOWEDGE style has no effect. This is because the
WS_EX_WINDOWEDGE style modifies the window's frame. Therefore, if no frame
is specified, then the window does not receive the 3-D effect.

This problem typically occurs when you are trying to give a raised edge to
a control. Because controls by default have no frame, only a border, the
WS_EX_WINDOWEDGE style is ignored. To work around the problem, add the
WS_DLGFRAME style to the control.

Additional reference words: 95 raised edge child window.
KBCategory: kbui
KBSubcategory: UsrWndw

wsprintf() Buffer Limit in Windows
PSS ID Number: Q77255

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.1 and 3.0

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.1, 3.5, and 3.51
 - Microsoft Windows 95 version 4.0

The wsprintf(lpOutput, lpFormat [, argument] ...) and wvsprintf()
functions format and store a series of characters and values in a
buffer specified by the first parameter, lpOutput. This buffer is
limited to 1K (1024 bytes); in other words, the largest buffer that
wsprintf can use is 1K.

If an application tries to use a buffer larger than 1K, the string
will be truncated automatically to a length of 1K.

Additional reference words: 3.00 3.10 3.50 4.00 95
KBCategory: kbgraphic
KBSubcategory: GdiDrw

XFONT.C from SAMPLES\OPENGL\BOOK Subdirectory
PSS ID Number: Q124870

The information in this article applies to:

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT version 3.5

SUMMARY
=======

XFONT.C from the SAMPLES\OPENGL\BOOK subdirectory is not in the MAKEFILE,
and subsequently is never built.

MORE INFORMATION
================

XFONT.C should not be built because the sample uses X Windows system-
specific functions. To use fonts with Windows NT version 3.5 OpenGL, use
the wglUseFontBitmaps() and glCallLists() functions as described in the
OpenGL online reference. Another alternative is to use auxDrawStr(). Note
that auxDrawStr is defined in GLAUX.H as:

 #ifdef UNICODE
 #define auxDrawStr auxDrawStrW
 #else
 #define auxDrawStr auxDrawStrA
 #endif
 void APIENTRY auxDrawStrA(LPCSTR);
 void APIENTRY auxDrawStrW(LPCWSTR);

REFERENCES
==========

For further information on using fonts with OpenGL, please refer to the
OpenGL online reference titled "Fonts and Text."

Additional reference words: 3.50
KBCategory: kbgraphic kbgraphic
KBSubcategory: GdiOpenGL

XTYP_EXECUTE and its Return Value Limitations
PSS ID Number: Q102574

The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.1

 - Microsoft Win32 Application Programming Interface (API) included with:

 - Microsoft Windows NT versions 3.5 and 3.51
 - Microsoft Windows 95 version 4.0

SUMMARY
=======

A DDEML client application can use the XTYP_EXECUTE transaction to
cause a server to execute a command or a series of commands. To do
this, the client creates a buffer that contains the command string,
and passes either a pointer to this buffer or a data handle
identifying the buffer, to the DdeClientTransaction() call.

If the server application generates data as a result of executing the
command it received from the client, the return value from the
DdeClientTransaction() call does not provide a means for the client to
access this data.

MORE INFORMATION
================

For an XTYP_EXECUTE transaction, the DdeClientTransaction() function
returns TRUE to indicate success, or FALSE to indicate failure. In
most cases, this provides inadequate information to the client
regarding the actual result of the XTYP_EXECUTE command.

Likewise, the functionality that DDEML was supposed to provide through
the lpuResult parameter of the DdeClientTransaction() function upon
return is currently not supported, and may not be supported in future
versions of DDEML. The lpuResult parameter was initially designed to
provide the client application access to the server's actual return
value (for example, DDE_FACK if it processed the execute, DDE_FBUSY if
it was too busy to process the execute, or DDE_FNOTPROCESSED if it
denied the execute).

In cases where the server application generates data as a result of an
execute command, the client has no means to get to that data, nor does
it have a means to determine the status of that execute command
through the DdeClientTransaction() call.

An example of this might be one where the DDEML client application
specifies a command to a server application such as "OpenFile
<FileName>" to open a file, or "DIR C:\WINDOWS" to get a list of files
in a given directory.

There are two ways that the client application can work around this
limitation and gain access to the data generated from the
XTYP_EXECUTE command:

Method 1

The client can issue an XTYP_REQUEST transaction (with the item name
set to "ExecuteResult", for example) immediately after its
XTYP_EXECUTE transaction call returns successfully. The server can
then return a data handle in response to this request, out of the data
generated from executing the command.

Method 2

The client can establish an ADVISE loop with the server (with
topic!item name appropriately set to Execute!Result, for example) just
before issuing the XTYP_EXECUTE transaction. As soon as the server
then executes the command, it can immediately update the advise link
by calling DdePostAdvise(), and return a data handle out of the data
generated from executing the command. The client then receives the
data handle in its callback function, as an XTYP_ADVDATA transaction.

Note that these workarounds apply only if one has access to the server
application's code. Third-party server applications that provide no
means to modify their code as described above can't obtain any data
generated by the application as a result of an XTYP_EXECUTE back to
the client.

Additional reference words: 3.10 3.50 3.51 4.00 95
KBCategory: kbui
KBSubcategory: UsrDde

Rebasing Win32 DLLs: The Whole
Story
Ruediger R. Asche
Microsoft Developer Network Technology Group

September 18, 1995

Abstract
This article discusses the ramifications of dynamic-link library (DLL) rebasing under both Microsoft®
Windows NT® and Windows® 95. ("Rebasing" in this context refers to the process of changing the base
address of a DLL in memory space.) A sample application accompanies this article, as well as a suite of
DLLs to provide comparison figures.

Introduction
One of the questions I have heard a lot recently from developers at Microsoft is, "Gee, what happens if
the operating system has to rebase my DLLs? What is the penalty for that, and is there any way that I can
prevent the penalty? Is there any way I can change the code to generate fewer fixups?"

I thought that was a really good question, so I decided to temporarily relocate to Empiric-land, investigate
the costs of DLL loading, and pour a bucket of numbers at your feet so that you can decide for yourself
what to do about the DLLs.

The results presented in this paper are probably not revolutionary, nor are they surprising: Prefer one
large DLL over several small ones; make sure that the operating system does not need to search for the
DLLs very long; and avoid many fixups if there is a chance that the DLL may be rebased by the operating
system (or, alternatively, try to select your base addresses such that rebasing is unlikely). However, as the
old saying goes, "The journey is the goal." In other words, on the way to writing this paper, I found a
number of little things about DLLs and memory management that I think are worth sharing. A more
appropriate title for the paper might actually have been "Bits and Pieces about DLLs."

In this paper I describe a sample test application that I wrote to measure DLL loading times, as well as
providing a set of DLLs to measure.

The Application
The architecture of the test set to measure dynamic-link library (DLL) load times is very simple: The
PAGETEST application, written using the Microsoft® Foundation Class libraries (MFC), consists of two
threads. The first (main application) thread creates and owns a mutex object. This first thread samples the
current time and then calls LoadLibrary to explicitly load one of a number of libraries I provide (I discuss
the libraries in the next section). Meanwhile, the second thread waits for the mutex object to become
signaled.

All of the libraries consist of the DLL entry procedure only. In the PROCESS_ATTACH dispatch point of
the DLL entry procedure, the mutex object is signaled. At that point, the secondary application thread
wakes up and computes the difference between the current time and the time sampled before
LoadLibrary was called. This difference is roughly the elapsed time that was used to load the DLL into
memory. The MFC application has an option to load and unload the DLL repeatedly (50 times) so that a
meaningful average loading time can be computed.

I will not discuss the specifics of the application here¾it's a fairly straightforward MFC application, with all
the relevant code located in the view class. The view is derived from CEasyOutputView to provide for
easy display of results. (Please see "Windows NT Security in Theory and Practice" for details.)

Note that this empirical test has a number of drawbacks that may distort the actual results:

· We are assuming that the time-sampling mechanism is efficient, reliable, and has a granularity that
is fine enough. (I use the system performance counters.)

· We are assuming that the thread-switching mechanism is consistently efficient and does not have
too bad an effect on the time it takes to wake up the secondary thread.

· The results from the tests naturally depend to a high degree on the underlying hardware (that is, the
processor speed of the machine on which the test is run, the number of processors, the speed of
the hard disk controller, and so forth).

· The results were sampled using specific versions of the software involved (operating system
versions, C run-time library versions, and so forth).

· Normally most DLLs are loaded implicitly, not explicitly, and it is assumed that the implicit and
explicit loading of DLLs takes the same amount of time, all other things being equal.

To make things worse, the numbers I did obtain vary widely at times.

Thus, you should take the results of the tests with a grain of salt. The most important deduction to make
from the results is not the absolute load times, but the relative times¾in other words, how changing one
property changes the loading behavior, and how different strategies compare to each other.

If you wish to recreate the test results on your machine, follow the DLL positioning instructions in the next
section, run PTAPP.EXE, and choose Run All Tests from the Multiple Test menu.

The DLLs
I considered a number of properties of DLLs relevant to their load time:

· The size of the library

· The number of items to be relocated

· Whether the DLL initializes C startup code or not

· Whether the DLL exports symbols or not

· Whether the DLL implicitly links to other libraries or not

· How long it takes the operating system to locate the DLL executable

Aside from these issues, there are also a few factors independent of the DLL that determine how slowly
or quickly a DLL can be loaded¾for example, the underlying operating system, the overall current work
load on the machine, the application's working set, whether the DLL needs to be rebased, and so forth.

To make a long story short, I wrote 18 little (or not-so-little) DLLs that represent almost all permutations of
the following properties:

· DLL size (can be small or large)

· If it's a large DLL, has load-time fixups or not

· C run-time support (none, implicitly linked, or explicitly linked)

· Symbols exported from the DLL (yes or no)

I loaded each of the 18 DLLs, under both Windows NT® version 3.51 and Windows® 95 on the same
machine, at its preferred base address and with the preferred virtual memory range taken. Each test was
also run first with the DLL located in the current directory and then deep down in the path to measure how
long it takes the operating system to locate the DLL in the search path. As I mentioned earlier, each test
was run 50 times to obtain a meaningful average value.

The first observation I made was that under Windows NT, the initial load time for any given DLL was
about three times the time it would subsequently take to load the same DLL on the average. This is a side
effect of Windows NT's memory management design: Once the DLL is initially loaded and subsequently
unloaded, the pages that belong to the DLL image remain in memory; they are inserted into what is called
the standby list (a system-maintained list of discarded pages that can be made available to the application
if it should need the pages again or if another application requesting new memory should need them). For
a more thorough description of the standby list, please consult Helen Custer's Inside Windows NT, pages
194-196.

Reloading the DLL's pages from the standby pages is much more efficient than reloading from the disk.
Over time, the pages will migrate from the standby list to the free list such that, if there is a lot of memory
allocation and access activity goes on between the initial and subsequent DLL loading tests, the time
difference will even out. To simulate this behavior (and make sure that I could obtain meaningful average
DLL loading times from several tests), I added a little option that allows the test application to hog as

much memory as it possibly can so that the standby list will be exhausted quickly. There is also a little
utility that comes with the Windows NT Resource Kit that can be used to force pages off the standby list
(CLEARMEM.EXE).

That worked, but unfortunately, right after I freed the hogged memory, the load time was about 20 times
the average load time¾or 7 times the initial load time!

This phenomenon put me into some kind of Catch-22 situation: On the one hand, I wanted to obtain a
reliable average figure for DLL loading times under normal working conditions; on the other hand, the only
reliable and consistent figures I could obtain were not the ones under normal working conditions! My way
out of that dilemma is a little daring but, I hope, valid: I base my results on the comparisons between the
average DLL load times and assume that the relationships between the initial and subsequent average
load times are constant so that the comparison values are still meaningful under normal working
conditions.

If you wish to rebuild the DLLs or add your own DLL variations, or if you are just curious to see what I did
to build 18 DLLs, read on; otherwise, skip this subsection and continue under the heading titled "The
Theory."

Building the DLLs
The DLLs were built using Visual C++™ version 2.2 using a makefile generated by Visual C++. You will
find the project in the attached sample code in the PAGETEST subdirectory. Each of the 18 DLLs is built
from the same project; you should build each DLL as the retail (no debug) version and then copy the
generated executable to a new location using the naming convention that follows.

The PTAPP sample application expects the name of the DLL to encode the information about what the
DLL contains. Each letter in the DLL's name represents one property, according to the following scheme:

· The first letter expresses whether the DLL is small (that is, does not contain any data) or large (that
is, has 100,000 static data elements). An S in this position indicates small, an L indicates large, and
F indicates that all of the 100,000 data elements are initialized to a relocatable string, the address of
which must be fixed up at load time when the DLL is rebased.

Note that 100,000 relocatable strings does not necessarily mean 100,000 relocations. There is a
problem with the linker in Visual C++ version 2.x that will limit to 64K the number of relocatable
items in a portable executable (PE) file. Thus, if you run an .EXE header utility such as YAHU on
one of the DLLs whose name begins with an F, you will find that there are only about 34K of
relocations. This problem will be fixed in upcoming versions of Visual C++.

· The second letter indicates whether the DLL supports C run-time code or not. This letter can either
be N (meaning that the DLL has a custom entry point that does not call the C run-time initialization
code), C (meaning that the DLL's entry point is DllMain, which implicitly initializes the C run-time
support) or D (meaning that the DLL has a custom entry point that calls _CRT_INIT to initialize the
C run-time library dynamically).

· Finally, the third letter is N if the DLL does not export any symbols or E if a function is exported. The
remaining letters are currently unassigned.

For example, SCNNNNNN.DLL is a small DLL that implicitly calls the C run-time initialization code,
but does not export a symbol. FNENNNNN.DLL is a large DLL with many relocations that does not
call the C run-time initialization code but exports a symbol.

In order not to introduce any unwanted side effects into the comparisons, I made the DLLs as small as I
possibly could. The smallest DLL I provide has nothing but a custom DLL entry point that does not
initialize the C run-time support code.

There is no MFC support in any of the DLLs because MFC DLLs implicitly link to other DLLs and perform
custom initializations that I did not want introduced into the measurements. All of the other variations of
DLLs are built with small modifications to the project, as follows:

· In order to make a small DLL into a large DLL, add the symbol MANYPAGES to the preprocessor
directives. Generate a large DLL with many fixups by adding both MANYPAGES and FIXUPS to the
preprocessor definitions. To build a DLL with a custom entry point that calls the C run-time
initialization code, add the symbol DYNACRT; to build a DLL with implicit C run-time initialization
code, add the symbol STANDARDENTRY and rename the DLL entry point in the
Settings/Link/Entry text box to DllMain. Finally, to have the DLL export a symbol, add the
preprocessor directive HASSYMBOLS.

· For the ambitious, I also define a symbol, HUGEBINARY, that will generate a really big DLL (a DLL
with about 15,000 data pages which, if combined with the FIXUPS symbol, will yield about 15,000

relocations). The DLL is 40 to 61 MB in size, depending on whether you define FIXUPS or not;
therefore, I do not include the binary in the DLL test set.

Whatever options you use to build the DLL, the resulting executable will be called PAGETEST.DLL in the
WINREL subdirectory of the PAGETEST project. After building the DLL, you should copy the DLL to a
different location, renaming the DLL according to the above naming conventions.

To see how searching for the DLL binary affects the load time, I kept two copies of each DLL on my
machine¾one in the same directory as PTAPP.EXE (the test application) and one in the subdirectory that
is listed at the very end in the search path (in my case, C:\DOS). After having run the test with the DLL
found in the same directory as the executable, I renamed all of the DLLs to force the operating system to
look for the DLLs in another directory.

When I built the DLLs, I ran into a few scenarios where I changed one option for test purposes and was
unable to recreate the original configuration afterwards. Thus, just to make sure that you can rebuild the
DLLs exactly as I built them, here are the project options I used.

· Compiler

/nologo /MT /W3 /GX /YX /O2 /D <see above> /FAcs /Fa "WinRel/" FR
"WinRel/" /Fp
"WinRel/pagetest.pch" /Fo "WinRel" /c

· Preprocessor

The exact preprocessor options depend on the type of library built, as explained before.

· Linker

kernel32 advapi msvcrt /nologo /subsystem:windows /DLL /incremental:no
/PDB:
"WinRel/pagetest.pdb" /MACHINE:I386

Note The PE file format contains time stamps. That means that if you build the same DLL
two times, the resulting binary images will not be identical. A byte-byte-byte file-comparison
utility should report six differing bytes in two groups of three consecutive bytes, one for every
pair of independently built, but otherwise identical, DLLs.

The Theory
The operating system has to go through these steps to load a DLL:

1. Locate the DLL executable file on disk.

2. Traverse the list of DLLs loaded into the application's address space to determine if the DLL is
already loaded.

3. Allocate the memory for the DLL to reside in and map the DLL binary into that memory. (In Windows
NT, this happens through section objects.)

4. Perform various manipulations in order for the DLL to work (that is, resolve fixups in the DLL, and
so forth).

Various factors determine how fast a DLL will be loaded. Here is a (possibly incomplete) list of the ones
that need to be taken into consideration:

· The underlying hardware and software: How fast the computer is and what operating system it runs.

· The current state of the system and the application: How tight the system is on virtual memory, and
if the DLL can be loaded at the preferred base address.

· The DLL itself: How big it is, how many locations in the DLL need to be fixed up (in conjunction with
two above), and whether the DLL implicitly links to other DLLs that also need to be loaded.

This list tells us that rebasing a DLL is by no means the only factor that determines a DLL's loading time.
In this article I present a lot of numbers that should give you an idea of how widely the loading time for a
DLL can vary and how much an application can influence the loading time.

Note that rebasing a DLL may result not only in a greater load time, but also in a penalty in pagefile
usage. One of the first steps in loading a DLL consists of creating a section object¾that is, a contiguous
region of memory that is backed by the DLL executable file. Whenever a page of the DLL is removed from
an application's working set, the operating system will reload that page from the DLL executable file the
next time the page is accessed.

Of course, when a DLL is rebased, this scheme no longer works because the pages that contain
relocated addresses differ from the corresponding pages in the DLL executable image. Thus, as soon as
the operating system attempts to fix up an address when loading an executable file, the corresponding
page is copied (because the section was opened with the COPY_ON_WRITE flag), all the changes are
made to the copy, and the operating system makes a note that from now on the page is to be swapped
from and to the system pagefile instead of the executable image.

There are two potential performance hits in this setup: First, each page that contains an address to be
relocated takes up a page on the system pagefile (which will, in effect, reduce the amount of virtual
memory available to all applications); and second, as the operating system performs the first fixup in a
DLL's page, a new page must be allocated from the pagefile, and the entire page is copied.

The act of performing fixups also increases a DLL's load time, although the algorithm that scans the
relocation section of the DLL and applies the fixups is fairly efficient. (The complexity of the traversal is
simply a linear function of the number of fixups to be performed.)

Fixups
A couple of frequently asked questions about DLL rebasing are, "What exactly is a fixup, and is there any
way that I can code so that I avoid a lot of fixups in my executable?" The answer to both questions
depends to a high degree on the platform for which a particular executable has been built. In this article, I
will limit the discussion to executables built for Intel 386, 486, and Pentium processors. (Note that
executables built for other platforms have different notions of what a fixup is.)

On 386, 486, or Pentium processors, there are basically two things that can cause an address to be
marked as relocatable: static objects and absolute jumps.

First, if a static object is referenced by DLL code, the absolute address of the object is used (assuming
that the DLL is loaded into its preferred address). For example, in the code fragment

LPSTR lpName="Name";

the DLL loader will allocate the string "Name" in the DLL's data segment and fill the beginning address of
that string into the location that corresponds to the variable lpName. If the string "Name" must be
relocated because the DLL could not be loaded at its base address, lpName must be updated
accordingly. Note that in this case, every reference to lpName from within the code must also be fixed up.

Objects that can be subject to relocation are literal strings (for example, the string "Name" in the example
above), as well as global and static data of every type, including statically allocated C++ objects. Note
that especially in C++ there may be many hidden cross-references from one static object to another.
Uninitialized data will (trivially) not be fixed up during the relocation process, but references to uninitialized
static data will.

The second category of items that can be relocated in an i386 executable is absolute jumps and function
calls, including calls to system functions. Note that there is not much you can do in your code to avoid
relocations, except for cutting down on statically allocated data. One way to accomplish that would be to
avoid resource references by name in favor of referencing resources by ordinal (inasmuch as each name
that you explicitly use in your code automatically becomes a potentially relocatable item).

I would not recommend, however, that you design your DLL code with the specific goal of minimizing load
time unless (1) the number of statically allocated objects can be significantly reduced, and (2) such a
coding practice does not sacrifice other goals in your software design.

One optimization you can perform rather easily, however, is to sort your relocatable data out into only a
few pages. It is obvious that two pages with one relocatable item each will both need to be backed by the
pagefile if the DLL needs to be rebased. If both relocatable items will occur in the same page, there is
only one page that is affected. You might want to check with the pragma (data_seg) directive to ensure
that as many relocatable items as possible go into as few pages as absolutely necessary.

The Tools
The fun part about gathering the DLL load times was that I got to understand the internal workings of the
operating systems, as well as the executable format, a little bit better. Here are a few tools I considered
very useful for dissecting the DLLs as images and at run time:

· An executable header utility (such as YAHU, written about in the technical article "YAHU, or Yet
Another Header Utility") can tell you almost everything about the DLL after it has been built but
before it is loaded¾for example, how many sections there are, how big each section is, how many
relocations there are, and so forth.

· A process walker (for example, PWALK from the Win32 SDK) can tell you where in a process's
address space a DLL has been loaded, and where the individual sections of the DLL go.

· A process viewer (for example PVIEW from the Windows NT Resource Kit) tells you how many
pages the DLL uses in memory at any given time.

· The performance monitor that is shipped with Windows NT (by default installed in the Administrative
Tools group) is an excellent tool to monitor the impact of DLL loading on the system, for example, in
terms of pagefile usage.

Let us look at how we can use these tools to get a better understanding of the internal workings of a DLL.
Running YAHU on the DLL SNNNNNNN.DLL, we obtain the following information on the five sections in
the DLL:

· Section .TEXT, size 0x28 bytes, located 0x400 bytes behind the beginning of the file. This section
contains the complete DLL code. This section will be loaded one page (0x1000) behind the start
address of the DLL image.

· Section .DATA, size 9, located 0x600 bytes behind the beginning of the file. This section contains all
the initialized data and will be loaded two pages (0x2000) behind the start address of the DLL
image.

· Section .IDATA, size 0x6c, located 0x800 bytes behind the beginning of the file. In this section you
will find the import data; that is, the names of the DLLs that the executable links to and the names
of the functions called in those DLLs. This section will be loaded three pages (0x3000) behind the
start address of the DLL image.

· Section .EDATA, size 0x35, located 0xA00 bytes behind the beginning of the file. This section
contains the DLL's export information and will be loaded four pages (0x4000) behind the start
address of the DLL image.

· Section .RELOC, size 0x32, located 0xC00 bytes into the file. This section contains the complete
relocation information for the entire DLL and will be loaded five pages (0x5000) behind the start of
the DLL image in memory.

In other DLLs, you may find more sections¾for example, the .BSS section, which contains uninitialized
data.

Note that the offsets of the respective sections in the file help you to look at the binary data. For example,
open the DLL in binary mode in Visual C++, and scroll down to offset 0xc00. You will see eight bytes of

heading followed by six data bytes. The exact format of the relocation records is described in the
Microsoft Systems Journal article "Peering Inside the PE: A Tour of the Win32 Executable File Format"
(Pietrek 1994) in the Development Library. Note that the information in the .RELOC section gives you all
you need to determine where in memory the relocations will be performed.

Thus, the DLL image of SNNNNNNN.DLL consists of six pages: The PE header and the five sections
listed above, each of which happens to consist of one page. Now run PTAPP.EXE under control of
PWALK, and select a small DLL with no exports and no CRT support from the Select DLL menu. You
should see a message saying that SNNNNNNN.DLL was located somewhere on your hard drive. Choose
Load DLL from the Run Single Tests menu. You should now see a message saying that the DLL was
loaded at some address. Then go back to PWALK, rewalk the process, and scroll down to the address
that PTAPP reported as the loading address (if the DLL was loaded at the preferred base address, this
would be 0x10000000). You will then see the six pages of the DLL exactly in the order they were specified
in the executable header. Note that the page that belongs to the .RELOC section is listed as a second
page in the .EDATA section.

Then run PVIEW.EXE and select the process PTAPP.EXE from the process list combo box. In the User
Address Space group box, select SNNNNNNN.DLL from the combo box. You should now see all of the
DLL's pages sorted by access type: The DLL is listed as occupying a total of 24K (six pages). 12K (or
three pages) are listed as read-only¾the DLL header page beginning at 0x10000000 and the two pages
in the .EDATA section beginning at 0x10004000. One page in the .IDATA section is marked as read/write.
(This must be read/write because an import designation may refer to a DLL that must be rebased, so
entries in this section may actually have to be updated.) The one page in the .TEXT section is marked as
execute, and the .DATA section page has copy-on-write protection.

If you run the same procedure on one of the large DLLs, you will see that the .DATA section will grow as
expected, and all of the relocatable data in that section will be marked as copy-on-write. As mentioned
before, the copy-on-write scheme ensures that relocations will be performed not on the physical page of
the DLL image, but on a copy on the pagefile.

The Numbers
One of the caveats I mentioned earlier about measuring DLL load times is that your mileage may vary
greatly. I ran the test set several times and found that, although some patterns and general relationships
can be detected, the influence of the overall machine work load may skew the results widely¾differences
of up to 20 percent from one test run to the other are not atypical.

Let me first describe how I obtained the numbers and then interpret the results. Please refer to Appendix
A for the test runs on which I based the evaluations in this paper.

In order to obtain a set of numbers, run the test application PTAPP and choose Run All Tests from the
Run Multiple Tests menu. This will invoke a script that loads all of the 18 DLLs 50 times each. (An
individual scenario can be tested by choosing a particular DLL from the Select DLL menu, choosing Finish
to locate the DLL and initialize the test, and then choosing Run Without Hogging from the Run Multiple
Tests menu. A DLL can be loaded in a one-shot fashion using the Load DLL menu item from the Run
Single Tests menu.) Caution: The test takes several minutes to complete.

The result of each test will be displayed in the application's main window. The first line displays the
resolution of the system performance counter (this can be used to compute absolute times), and after the
last test, you will find a table of 36 figures. These numbers are the average load times (in performance-
counter ticks) for each of the 18 DLLs loaded both at the preferred address and rebased. As I mentioned
earlier, the number of ticks, in conjunction with the performance counter resolution, can be used to
compute the absolute loading times through this formula:

loading times in seconds = number of ticks/ performance counter resolution.

The test application also computes the relative load time in parentheses behind each result; this is based
on the smallest result encountered while running the test.

In order to obtain the four sets of 36 numbers each (as listed in Appendix A), you should run the test
application four times: twice under Windows NT (once with the DLLs located in the same directory as
PTAPP.EXE, and once with the DLLs located deep down in the search path), and twice under Windows
95 (same conditions).

As I mentioned before, none of the results I present are groundbreakingly new nor surprising. Here are
the important conclusions:

· The figures for Windows NT and Windows 95 do not differ wildly, except that Windows 95 does
seem to load small DLLs slower and large DLLs faster than Windows NT.

· All other things being equal, the size of the DLL does not matter; that is, the costs for loading a
small DLL and a large DLL are pretty much equal. Thus, if possible, you should avoid writing a lot of
small DLLs and instead write fewer large DLLs if load time is an issue for you. Note that this
observation holds true over a very wide range of DLL sizes¾when I ran the test on the huge binary
DLL I mentioned earlier (the one with 15,000 pages), the load time did not differ very much from the
load time for the small DLL that contains six pages total.

· Rebasing the DLL incurs an overhead of about 600 percent on Windows NT and around 400
percent on Windows 95. Note, however, that this implies a great number of fixups (34,000 in the
sample suite). For a typical DLL, the number is much smaller on the average; for example, in the
debug version of MFC30D.DLL, which ships with Visual C++ version 2.x, there are about 1700
fixups, which is about 5 percent of the 34,000 fixups in the sample suite.

· The single biggest factor that slows down the loading of DLLs is the location of the DLL. The

documentation for LoadLibrary describes the algorithm that the operating system uses for locating
the DLL image; a DLL located at the first search position (the current directory) loads in typically 20
percent or less of the time as the same DLL located deep down in the path loads. It is fairly obvious
that the exact load time difference depends a lot on the length of the path, the efficiency of the
underlying file system, and the number of files and directories that need to be searched.

Here are the numbers in neat, digestible format. Please refer to Appendix A for information on how the
numbers were pulled together.

{ewc msdncd, EWGraphic, bsd23456 0 /a "SDKW.WPG"}

Figure 1. Windows NT 3.51 DLL load times

{ewc msdncd, EWGraphic, bsd23456 1 /a "SDKW.WPG"}

Figure 2. Windows 95 DLL load times

The Recommendations
The single, major thing you can do to speed up DLL loading is to ensure that the operating system does
not spend a lot of time locating the DLL¾either put the DLL in the same directory from which the
executable is started, or start the executable with your environment variable set up so that the DLL in
question can be located quickly. This is something you can do without even touching the DLL. If you load
the DLL repeatedly and explicitly, you can use the SearchPath application programming interface (API) to
first obtain the full path name of the DLL location so that you can provide the operating system with an
exact location before loading the DLL.

The other main optimization that can help you speed up DLL loading¾if there are a significant number of
relocation items in the DLL¾is to try to ensure that the DLL will not have to be rebased by the operating
system. You will also notice that for very small DLLs, the presence of the C run-time initialization code
may slow down the DLL loading a little bit.

As you can see from the numbers above, there is a fixed cost in loading a DLL, regardless of its size;
thus, you are much better off writing one bigger DLL instead of a number of small DLLs.

Finally, I need to reiterate that due to the way both Windows NT and Windows 95 handle the
management of pages that are to be discarded (the pages are, in fact, kept in memory and will be reused
over time), the loading of an executable is much faster if the same executable has already been loaded
into any application's address space or has recently been loaded and is still on the standby list.

What Else Is There?
I wouldn't like to end this article without mentioning another issue that is related to DLL loading: binding
import addresses to external DLLs. Fortunately for me, there is no need to explicitly discuss this issue
here because pretty much everything that is to be said has already been said in Matt Pietrek's article
series on DLL binding in the "Windows Q&A" column in Microsoft Systems Journal, which describes the
internals of DLL import binding as well as the usage of the BIND utility. (See the reference in the
"Bibliography" section.)

Bibliography
Custer, Helen. Inside Windows NT. Redmond, WA: Microsoft Press, 1993.

Pietrek, Matt. "Peering Inside the PE: A Tour of the Win32 Executable File Format. "Microsoft Systems
Journal 9 (March 1994). (Development Library, Books and Periodicals)

Pietrek, Matt. "Windows Q&A." Microsoft Systems Journal 10 (July 1995). (Development Library, Books
and Periodicals)

Pietrek, Matt. "Windows Q&A." Microsoft Systems Journal 10 (August 1995). (Development Library,
Books and Periodicals)

Appendix A. Results from a Test Run
All tests were executed on an i486 machine running at 33 MHz with 24 MB of RAM. Note that the
references (1.0 base value) differ from test set to test set. In the charts, the values from the respective
second test sets (DLLs located in the search path) have been adjusted relative to the reference value of
the first test set.

Table 1. Windows NT 3.51, DLLs Located in Current Directory
(Reference: 1.0 == 17.5 ms)
1a. DLLs Loaded at Preferred Address

DLL Type Small DLL Large DLL Large DLL with Fixups

No CRT, no exports 1.0 1.0 1.0

No CRT, exports 1.1 1.0 1.1

DllMain, no exports 1.25 1.22 1.24

DllMain, exports 1.23 1.18 1.21

CRT_INIT, no exports 1.18 1.2 1.15

CRT_INIT, exports 1.2 1.19 1.21

1b. DLLs Rebased

DLL Type Small DLL Large DLL Large DLL with Fixups

No CRT, no exports 1.25 1.23 6.4

No CRT, exports 1.26 1.3 6.38

DllMain, no exports 1.4 1.4 6.5

DllMain, exports 1.29 1.42 6.52

CRT_INIT, no exports 1.4 1.4 6.45

CRT_INIT, exports 1.3 1.3 6.4

Table 2. Windows NT 3.51, DLLs Located in Search Path (Reference:
1.0 == 85.4 ms)
2a. DLLs Loaded at Preferred Address

DLL Type Small DLL Large DLL Large DLL with Fixups

No CRT, no exports 1.0 1.0 1.0

No CRT, exports 1.0 1.0 1.0

DllMain, no exports 1.0 1.0 1.0

DllMain, exports 1.0 1.0 1.0

CRT_INIT, no exports 1.0 1.0 1.1

CRT_INIT, exports 1.0 1.0 1.0

2b. DLLs Rebased

DLL Type Small DLL Large DLL Large DLL with Fixups

No CRT, no exports 1.1 1.0 2.1

No CRT, exports 1.1 1.0 2.1

DllMain, no exports 1.1 1.1 2.1

DllMain, exports 1.0 1.0 2.1

CRT_INIT, no exports 1.1 1.1 2.1

CRT_INIT, exports 1.1 1.0 2.1

Table 3. Windows 95, DLLs Located in Current Directory (Reference:
1.0 == 21.0 ms)
3a. DLLs Loaded at Preferred Address

DLL Type Small DLL Large DLL Large DLL with Fixups

No CRT, no exports 1.0 1.2 1.2

No CRT, exports 1.0 1.2 1.1

DllMain, no exports 1.0 1.2 1.2

DllMain, exports 1.1 1.2 1.2

CRT_INIT, no exports 1.0 1.2 1.1

CRT_INIT, exports 1.0 1.2 1.2

3b. DLLs Rebased

DLL Type Small DLL Large DLL Large DLL with
Fixups

No CRT, no exports 1.1 1.2 4.0

No CRT, exports 1.1 1.2 3.8

DllMain, no exports 1.1 1.2 4.0

DllMain, exports 1.1 1.2 4.0

CRT_INIT, no exports 1.1 1.2 4.0

CRT_INIT, exports 1.1 1.2 4.1

Table 4. Windows 95, DLLs Located in Search Path (Reference: 1.0
== 94.7 ms)
4a. DLLs Loaded at Preferred Address

DLL Type Small DLL Large DLL Large DLL w/ Fixups

No CRT, no exports 1.0 1.0 1.1

No CRT, exports 1.0 1.0 1.0

DllMain, no exports 1.0 1.0 1.1

DllMain, exports 1.0 1.0 1.0

CRT_INIT, no exports 1.0 1.0 1.0

CRT_INIT, exports 1.0 1.0 1.1

4b. DLLs Rebased

DLL Type Small DLL Large DLL Large DLL with
Fixups

No CRT, no exports 1.0 1.0 1.7

No CRT, exports 1.0 1.1 1.7

DllMain, no exports 1.0 1.1 1.7

DllMain, exports 1.0 1.0 1.7

CRT_INIT, no exports 1.0 1.1 1.7

CRT_INIT, exports 1.0 1.0 1.7

The Portable Executable File
Format from Top to Bottom
Randy Kath
Microsoft Developer Network Technology Group

Created: June 12, 1993

Abstract
The Windows NT® version 3.1 operating system introduces a new executable file format called the
Portable Executable (PE) file format. The Portable Executable File Format specification, though rather
vague, has been made available to the public and is included on the Microsoft Developer Network CD
(Specs and Strategy, Specifications, Windows NT File Format Specifications).

Yet this specification alone does not provide enough information to make it easy, or even reasonable, for
developers to understand the PE file format. This article is meant to address that problem. In it you'll find
a thorough explanation of the entire PE file format, along with descriptions of all the necessary structures
and source code examples that demonstrate how to use this information.

All of the source code examples that appear in this article are taken from a dynamic-link library (DLL)
called PEFILE.DLL. I wrote this DLL simply for the purpose of getting at the important information
contained within a PE file. The DLL and its source code are also included on this CD as part of the PEFile
sample application; feel free to use the DLL in your own applications. Also, feel free to take the source
code and build on it for any specific purpose you may have. At the end of this article, you'll find a brief list
of the functions exported from the PEFILE.DLL and an explanation of how to use them. I think you'll find
these functions make understanding the PE file format easier to cope with.

Introduction
The recent addition of the Microsoft® Windows NT® operating system to the family of Windows™
operating systems brought many changes to the development environment and more than a few changes
to applications themselves. One of the more significant changes is the introduction of the Portable
Executable (PE) file format. The new PE file format draws primarily from the COFF (Common Object File
Format) specification that is common to UNIX® operating systems. Yet, to remain compatible with
previous versions of the MS-DOS® and Windows operating systems, the PE file format also retains the
old familiar MZ header from MS-DOS.

In this article, the PE file format is explained using a top-down approach. This article discusses each of
the components of the file as they occur when you traverse the file's contents, starting at the top and
working your way down through the file.

Much of the definition of individual file components comes from the file WINNT.H, a file included in the
Microsoft Win32™ Software Development Kit (SDK) for Windows NT. In it you will find structure type
definitions for each of the file headers and data directories used to represent various components in the
file. In other places in the file, WINNT.H lacks sufficient definition of the file structure. In these places, I
chose to define my own structures that can be used to access the data from the file. You will find these
structures defined in PEFILE.H, a file used to create the PEFILE.DLL. The entire suite of PEFILE.H
development files is included in the PEFile sample application.

In addition to the PEFILE.DLL sample code, a separate Win32-based sample application called
EXEVIEW.EXE accompanies this article. This sample was created for two purposes: First, I needed a
way to be able to test the PEFILE.DLL functions, which in some cases required multiple file views
simultaneously¾hence the multiple view support. Second, much of the work of figuring out PE file format
involved being able to see the data interactively. For example, to understand how the import address
name table is structured, I had to view the .idata section header, the import image data directory, the
optional header, and the actual .idata section body, all simultaneously. EXEVIEW.EXE is the perfect
sample for viewing that information.

Without further ado, let's begin.

Structure of PE Files
The PE file format is organized as a linear stream of data. It begins with an MS-DOS header, a real-mode
program stub, and a PE file signature. Immediately following is a PE file header and optional header.
Beyond that, all the section headers appear, followed by all of the section bodies. Closing out the file are
a few other regions of miscellaneous information, including relocation information, symbol table
information, line number information, and string table data. All of this is more easily absorbed by looking
at it graphically, as shown in Figure 1.

{ewc msdncd, EWGraphic, bsd23457 0 /a "SDKL.BMP"}

Figure 1. Structure of a Portable Executable file image

Starting with the MS-DOS file header structure, each of the components in the PE file format is discussed
below in the order in which it occurs in the file. Much of this discussion is based on sample code that
demonstrates how to get to the information in the file. All of the sample code is taken from the file
PEFILE.C, the source module for PEFILE.DLL. Each of these examples takes advantage of one of the
coolest features of Windows NT, memory-mapped files. Memory-mapped files permit the use of simple
pointer dereferencing to access the data contained within the file. Each of the examples uses memory-
mapped files for accessing data in PE files.

Note Refer to the section at the end of this article for a discussion on how to use PEFILE.DLL.

MS-DOS/Real-Mode Header
As mentioned above, the first component in the PE file format is the MS-DOS header. The MS-DOS
header is not new for the PE file format. It is the same MS-DOS header that has been around since
version 2 of the MS-DOS operating system. The main reason for keeping the same structure intact at the
beginning of the PE file format is so that, when you attempt to load a file created under Windows version
3.1 or earlier, or MS DOS version 2.0 or later, the operating system can read the file and understand that
it is not compatible. In other words, when you attempt to run a Windows NT executable on MS-DOS
version 6.0, you get this message: "This program cannot be run in DOS mode." If the MS-DOS header
was not included as the first part of the PE file format, the operating system would simply fail the attempt
to load the file and offer something completely useless, such as: "The name specified is not recognized
as an internal or external command, operable program or batch file."

The MS-DOS header occupies the first 64 bytes of the PE file. A structure representing its content is
described below:

WINNT.H

typedef struct _IMAGE_DOS_HEADER { // DOS .EXE header
 USHORT e_magic; // Magic number
 USHORT e_cblp; // Bytes on last page of file
 USHORT e_cp; // Pages in file
 USHORT e_crlc; // Relocations
 USHORT e_cparhdr; // Size of header in paragraphs
 USHORT e_minalloc; // Minimum extra paragraphs needed
 USHORT e_maxalloc; // Maximum extra paragraphs needed
 USHORT e_ss; // Initial (relative) SS value
 USHORT e_sp; // Initial SP value
 USHORT e_csum; // Checksum
 USHORT e_ip; // Initial IP value
 USHORT e_cs; // Initial (relative) CS value
 USHORT e_lfarlc; // File address of relocation table
 USHORT e_ovno; // Overlay number
 USHORT e_res[4]; // Reserved words
 USHORT e_oemid; // OEM identifier (for e_oeminfo)
 USHORT e_oeminfo; // OEM information; e_oemid specific
 USHORT e_res2[10]; // Reserved words
 LONG e_lfanew; // File address of new exe header

 } IMAGE_DOS_HEADER, *PIMAGE_DOS_HEADER;

The first field, e_magic, is the so-called magic number. This field is used to identify an MS-DOS-
compatible file type. All MS-DOS-compatible executable files set this value to 0x54AD, which represents
the ASCII characters MZ. MS-DOS headers are sometimes referred to as MZ headers for this reason.
Many other fields are important to MS-DOS operating systems, but for Windows NT, there is really one
more important field in this structure. The final field, e_lfanew, is a 4-byte offset into the file where the PE
file header is located. It is necessary to use this offset to locate the PE header in the file. For PE files in
Windows NT, the PE file header occurs soon after the MS-DOS header with only the real-mode stub
program between them.

Real-Mode Stub Program
The real-mode stub program is an actual program run by MS-DOS when the executable is loaded. For an
actual MS-DOS executable image file, the application begins executing here. For successive operating
systems, including Windows, OS/2®, and Windows NT, an MS-DOS stub program is placed here that runs
instead of the actual application. The programs typically do no more than output a line of text, such as:
"This program requires Microsoft Windows v3.1 or greater." Of course, whoever creates the application is
able to place any stub they like here, meaning you may often see such things as: "You can't run a
Windows NT application on OS/2, it's simply not possible."

When building an application for Windows version 3.1, the linker links a default stub program called
WINSTUB.EXE into your executable. You can override the default linker behavior by substituting your
own valid MS-DOS-based program in place of WINSTUB and indicating this to the linker with the STUB
module definition statement. Applications developed for Windows NT can do the same thing by using the -
STUB: linker option when linking the executable file.

PE File Header and Signature
The PE file header is located by indexing the e_lfanew field of the MS-DOS header. The e_lfanew field
simply gives the offset in the file, so add the file's memory-mapped base address to determine the actual
memory-mapped address. For example, the following macro is included in the PEFILE.H source file:

PEFILE.H

#define NTSIGNATURE(a) ((LPVOID)((BYTE *)a + \
 ((PIMAGE_DOS_HEADER)a)->e_lfanew))

When manipulating PE file information, I found that there were several locations in the file that I needed to
refer to often. Since these locations are merely offsets into the file, it is easier to implement these
locations as macros because they provide much better performance than functions do.

Notice that instead of retrieving the offset of the PE file header, this macro retrieves the location of the PE
file signature. Starting with Windows and OS/2 executables, .EXE files were given file signatures to
specify the intended target operating system. For the PE file format in Windows NT, this signature occurs
immediately before the PE file header structure. In versions of Windows and OS/2, the signature is the
first word of the file header. Also, for the PE file format, Windows NT uses a DWORD for the signature.

The macro presented above returns the offset of where the file signature appears, regardless of which
type of executable file it is. So depending on whether it's a Windows NT file signature or not, the file
header exists either after the signature DWORD or at the signature WORD. To resolve this confusion, I
wrote the ImageFileType function (following), which returns the type of image file:

PEFILE.C

DWORD WINAPI ImageFileType (
 LPVOID lpFile)
{
 /* DOS file signature comes first. */
 if (*(USHORT *)lpFile == IMAGE_DOS_SIGNATURE)
 {
 /* Determine location of PE File header from
 DOS header. */
 if (LOWORD (*(DWORD *)NTSIGNATURE (lpFile)) ==
 IMAGE_OS2_SIGNATURE ||
 LOWORD (*(DWORD *)NTSIGNATURE (lpFile)) ==
 IMAGE_OS2_SIGNATURE_LE)
 return (DWORD)LOWORD(*(DWORD *)NTSIGNATURE (lpFile));

 else if (*(DWORD *)NTSIGNATURE (lpFile) ==

 IMAGE_NT_SIGNATURE)
 return IMAGE_NT_SIGNATURE;

 else
 return IMAGE_DOS_SIGNATURE;
 }

 else
 /* unknown file type */
 return 0;
}

The code listed above quickly shows how useful the NTSIGNATURE macro becomes. The macro makes
it easy to compare the different file types and return the appropriate one for a given type of file. The four
different file types defined in WINNT.H are:

WINNT.H

#define IMAGE_DOS_SIGNATURE 0x5A4D // MZ
#define IMAGE_OS2_SIGNATURE 0x454E // NE
#define IMAGE_OS2_SIGNATURE_LE 0x454C // LE
#define IMAGE_NT_SIGNATURE 0x00004550 // PE00

At first it seems curious that Windows executable file types do not appear on this list. But then, after a
little investigation, the reason becomes clear: There really is no difference between Windows executables
and OS/2 executables other than the operating system version specification. Both operating systems
share the same executable file structure.

Turning our attention back to the Windows NT PE file format, we find that once we have the location of
the file signature, the PE file follows four bytes later. The next macro identifies the PE file header:

PEFILE.C

#define PEFHDROFFSET(a) ((LPVOID)((BYTE *)a + \
 ((PIMAGE_DOS_HEADER)a)->e_lfanew + SIZE_OF_NT_SIGNATURE))

The only difference between this and the previous macro is that this one adds in the constant
SIZE_OF_NT_SIGNATURE. Sad to say, this constant is not defined in WINNT.H, but is instead one I
defined in PEFILE.H as the size of a DWORD.

Now that we know the location of the PE file header, we can examine the data in the header simply by
assigning this location to a structure, as in the following example:

PIMAGE_FILE_HEADER pfh;

pfh = (PIMAGE_FILE_HEADER)PEFHDROFFSET (lpFile);

In this example, lpFile represents a pointer to the base of the memory-mapped executable file, and
therein lies the convenience of memory-mapped files. No file I/O needs to be performed; simply
dereference the pointer pfh to access information in the file. The PE file header structure is defined as:

WINNT.H

typedef struct _IMAGE_FILE_HEADER {
 USHORT Machine;
 USHORT NumberOfSections;
 ULONG TimeDateStamp;
 ULONG PointerToSymbolTable;
 ULONG NumberOfSymbols;
 USHORT SizeOfOptionalHeader;
 USHORT Characteristics;
} IMAGE_FILE_HEADER, *PIMAGE_FILE_HEADER;

#define IMAGE_SIZEOF_FILE_HEADER 20

Notice that the size of the file header structure is conveniently defined in the include file. This makes it
easy to get the size of the structure, but I found it easier to use the sizeof function on the structure itself
because it does not require me to remember the name of the constant IMAGE_SIZEOF_FILE_HEADER
in addition to the IMAGE_FILE_HEADER structure name itself. On the other hand, remembering the
name of all the structures proved challenging enough, especially since none of these structures is
documented anywhere except in the WINNT.H include file.

The information in the PE file is basically high-level information that is used by the system or applications
to determine how to treat the file. The first field is used to indicate what type of machine the executable
was built for, such as the DEC® Alpha, MIPS R4000, Intel® x86, or some other processor. The system
uses this information to quickly determine how to treat the file before going any further into the rest of the
file data.

The Characteristics field identifies specific characteristics about the file. For example, consider how
separate debug files are managed for an executable. It is possible to strip debug information from a PE
file and store it in a debug file (.DBG) for use by debuggers. To do this, a debugger needs to know
whether to find the debug information in a separate file or not and whether the information has been
stripped from the file or not. A debugger could find out by drilling down into the executable file looking for
debug information. To save the debugger from having to search the file, a file characteristic that indicates
that the file has been stripped (IMAGE_FILE_DEBUG_STRIPPED) was invented. Debuggers can look in
the PE file header to quickly determine whether the debug information is present in the file or not.

WINNT.H defines several other flags that indicate file header information much the way the example
described above does. I'll leave it as an exercise for the reader to look up the flags to see if any of them
are interesting or not. They are located in WINNT.H immediately after the IMAGE_FILE_HEADER
structure described above.

One other useful entry in the PE file header structure is the NumberOfSections field. It turns out that you
need to know how many sections¾more specifically, how many section headers and section bodies¾are

in the file in order to extract the information easily. Each section header and section body is laid out
sequentially in the file, so the number of sections is necessary to determine where the section headers
and bodies end. The following function extracts the number of sections from the PE file header:

PEFILE.C

int WINAPI NumOfSections (
 LPVOID lpFile)
{
 /* Number of sections is indicated in file header. */
 return (int)((PIMAGE_FILE_HEADER)
 PEFHDROFFSET (lpFile))->NumberOfSections);
}

As you can see, the PEFHDROFFSET and the other macros are pretty handy to have around.

PE Optional Header
The next 224 bytes in the executable file make up the PE optional header. Though its name is "optional
header," rest assured that this is not an optional entry in PE executable files. A pointer to the optional
header is obtained with the OPTHDROFFSET macro:

PEFILE.H

#define OPTHDROFFSET(a) ((LPVOID)((BYTE *)a + \
 ((PIMAGE_DOS_HEADER)a)->e_lfanew + SIZE_OF_NT_SIGNATURE + \
 sizeof (IMAGE_FILE_HEADER)))

The optional header contains most of the meaningful information about the executable image, such as
initial stack size, program entry point location, preferred base address, operating system version, section
alignment information, and so forth. The IMAGE_OPTIONAL_HEADER structure represents the optional
header as follows:

WINNT.H

typedef struct _IMAGE_OPTIONAL_HEADER {
 //
 // Standard fields.
 //
 USHORT Magic;
 UCHAR MajorLinkerVersion;
 UCHAR MinorLinkerVersion;
 ULONG SizeOfCode;
 ULONG SizeOfInitializedData;
 ULONG SizeOfUninitializedData;
 ULONG AddressOfEntryPoint;
 ULONG BaseOfCode;
 ULONG BaseOfData;
 //
 // NT additional fields.
 //
 ULONG ImageBase;
 ULONG SectionAlignment;
 ULONG FileAlignment;

 USHORT MajorOperatingSystemVersion;
 USHORT MinorOperatingSystemVersion;
 USHORT MajorImageVersion;
 USHORT MinorImageVersion;
 USHORT MajorSubsystemVersion;
 USHORT MinorSubsystemVersion;
 ULONG Reserved1;
 ULONG SizeOfImage;
 ULONG SizeOfHeaders;
 ULONG CheckSum;
 USHORT Subsystem;
 USHORT DllCharacteristics;
 ULONG SizeOfStackReserve;
 ULONG SizeOfStackCommit;
 ULONG SizeOfHeapReserve;
 ULONG SizeOfHeapCommit;
 ULONG LoaderFlags;
 ULONG NumberOfRvaAndSizes;
 IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES];
} IMAGE_OPTIONAL_HEADER, *PIMAGE_OPTIONAL_HEADER;

As you can see, the list of fields in this structure is rather lengthy. Rather than bore you with descriptions
of all of these fields, I'll simply discuss the useful ones¾that is, useful in the context of exploring the PE
file format.

Standard Fields
First, note that the structure is divided into "Standard fields" and "NT additional fields." The standard fields
are those common to the Common Object File Format (COFF), which most UNIX executable files use.
Though the standard fields retain the names defined in COFF, Windows NT actually uses some of them
for different purposes that would be better described with other names.

· Magic. I was unable to track down what this field is used for. For the EXEVIEW.EXE sample
application, the value is 0x010B or 267.

· MajorLinkerVersion, MinorLinkerVersion. Indicates version of the linker that linked this image. The
preliminary Windows NT Software Development Kit (SDK), which shipped with build 438 of
Windows NT, includes linker version 2.39 (2.27 hex).

· SizeOfCode. Size of executable code.

· SizeOfInitializedData. Size of initialized data.

· SizeOfUninitializedData. Size of uninitialized data.

· AddressOfEntryPoint. Of the standard fields, the AddressOfEntryPoint field is the most interesting
for the PE file format. This field indicates the location of the entry point for the application and,
perhaps more importantly to system hackers, the location of the end of the Import Address Table
(IAT). The following function demonstrates how to retrieve the entry point of a Windows NT
executable image from the optional header.

PEFILE.C

LPVOID WINAPI GetModuleEntryPoint (
 LPVOID lpFile)
{
 PIMAGE_OPTIONAL_HEADER poh;

 poh = (PIMAGE_OPTIONAL_HEADER)OPTHDROFFSET (lpFile);

 if (poh != NULL)
 return (LPVOID)poh->AddressOfEntryPoint;
 else
 return NULL;
}

· BaseOfCode. Relative offset of code (".text" section) in loaded image.

· BaseOfData. Relative offset of uninitialized data (".bss" section) in loaded image.

Windows NT Additional Fields
The additional fields added to the Windows NT PE file format provide loader support for much of the
Windows NT-specific process behavior. Following is a summary of these fields.

· ImageBase. Preferred base address in the address space of a process to map the executable
image to. The linker that comes with the Microsoft Win32 SDK for Windows NT defaults to
0x00400000, but you can override the default with the -BASE: linker switch.

· SectionAlignment. Each section is loaded into the address space of a process sequentially,
beginning at ImageBase. SectionAlignment dictates the minimum amount of space a section can
occupy when loaded¾that is, sections are aligned on SectionAlignment boundaries.

Section alignment can be no less than the page size (currently 4096 bytes on the x86 platform) and
must be a multiple of the page size as dictated by the behavior of Windows NT's virtual memory
manager. 4096 bytes is the x86 linker default, but this can be set using the -ALIGN: linker switch.

· FileAlignment. Minimum granularity of chunks of information within the image file prior to loading.
For example, the linker zero-pads a section body (raw data for a section) up to the nearest
FileAlignment boundary in the file. Version 2.39 of the linker mentioned earlier aligns image files on
a 0x200-byte granularity. This value is constrained to be a power of 2 between 512 and 65,535.

· MajorOperatingSystemVersion. Indicates the major version of the Windows NT operating system,
currently set to 1 for Windows NT version 1.0.

· MinorOperatingSystemVersion. Indicates the minor version of the Windows NT operating system,
currently set to 0 for Windows NT version 1.0

· MajorImageVersion. Used to indicate the major version number of the application; in Microsoft
Excel version 4.0, it would be 4.

· MinorImageVersion. Used to indicate the minor version number of the application; in Microsoft
Excel version 4.0, it would be 0.

· MajorSubsystemVersion. Indicates the Windows NT Win32 subsystem major version number,
currently set to 3 for Windows NT version 3.10.

· MinorSubsystemVersion. Indicates the Windows NT Win32 subsystem minor version number,
currently set to 10 for Windows NT version 3.10.

· Reserved1. Unknown purpose, currently not used by the system and set to zero by the linker.

· SizeOfImage. Indicates the amount of address space to reserve in the address space for the loaded
executable image. This number is influenced greatly by SectionAlignment. For example, consider a
system having a fixed page size of 4096 bytes. If you have an executable with 11 sections, each
less than 4096 bytes, aligned on a 65,536-byte boundary, the SizeOfImage field would be set to 11
* 65,536 = 720,896 (176 pages). The same file linked with 4096-byte alignment would result in 11 *
4096 = 45,056 (11 pages) for the SizeOfImage field. This is a simple example in which each section
requires less than a page of memory. In reality, the linker determines the exact SizeOfImage by
figuring each section individually. It first determines how many bytes the section requires, then it

rounds up to the nearest page boundary, and finally it rounds page count to the nearest
SectionAlignment boundary. The total is then the sum of each section's individual requirement.

· SizeOfHeaders. This field indicates how much space in the file is used for representing all the file
headers, including the MS-DOS header, PE file header, PE optional header, and PE section
headers. The section bodies begin at this location in the file.

· CheckSum. A checksum value is used to validate the executable file at load time. The value is set
and verified by the linker. The algorithm used for creating these checksum values is proprietary
information and will not be published.

· Subsystem. Field used to identify the target subsystem for this executable. Each of the possible
subsystem values are listed in the WINNT.H file immediately after the
IMAGE_OPTIONAL_HEADER structure.

· DllCharacteristics. Flags used to indicate if a DLL image includes entry points for process and
thread initialization and termination.

· SizeOfStackReserve, SizeOfStackCommit, SizeOfHeapReserve, SizeOfHeapCommit. These fields
control the amount of address space to reserve and commit for the stack and default heap. Both the
stack and heap have default values of 1 page committed and 16 pages reserved. These values are
set with the linker switches -STACKSIZE: and -HEAPSIZE:.

· LoaderFlags. Tells the loader whether to break on load, debug on load, or the default, which is to let
things run normally.

· NumberOfRvaAndSizes. This field identifies the length of the DataDirectory array that follows. It is
important to note that this field is used to identify the size of the array, not the number of valid
entries in the array.

· DataDirectory. The data directory indicates where to find other important components of executable
information in the file. It is really nothing more than an array of IMAGE_DATA_DIRECTORY
structures that are located at the end of the optional header structure. The current PE file format
defines 16 possible data directories, 11 of which are now being used.

Data Directories
As defined in WINNT.H, the data directories are:

WINNT.H

// Directory Entries

// Export Directory
#define IMAGE_DIRECTORY_ENTRY_EXPORT 0
// Import Directory
#define IMAGE_DIRECTORY_ENTRY_IMPORT 1
// Resource Directory
#define IMAGE_DIRECTORY_ENTRY_RESOURCE 2
// Exception Directory
#define IMAGE_DIRECTORY_ENTRY_EXCEPTION 3
// Security Directory
#define IMAGE_DIRECTORY_ENTRY_SECURITY 4
// Base Relocation Table
#define IMAGE_DIRECTORY_ENTRY_BASERELOC 5
// Debug Directory
#define IMAGE_DIRECTORY_ENTRY_DEBUG 6
// Description String
#define IMAGE_DIRECTORY_ENTRY_COPYRIGHT 7
// Machine Value (MIPS GP)
#define IMAGE_DIRECTORY_ENTRY_GLOBALPTR 8
// TLS Directory
#define IMAGE_DIRECTORY_ENTRY_TLS 9
// Load Configuration Directory
#define IMAGE_DIRECTORY_ENTRY_LOAD_CONFIG 10

Each data directory is basically a structure defined as an IMAGE_DATA_DIRECTORY. And although data
directory entries themselves are the same, each specific directory type is entirely unique. The definition of
each defined data directory is described in "Predefined Sections" later in this article.

WINNT.H

typedef struct _IMAGE_DATA_DIRECTORY {
 ULONG VirtualAddress;
 ULONG Size;
} IMAGE_DATA_DIRECTORY, *PIMAGE_DATA_DIRECTORY;

Each data directory entry specifies the size and relative virtual address of the directory. To locate a
particular directory, you determine the relative address from the data directory array in the optional
header. Then use the virtual address to determine which section the directory is in. Once you determine
which section contains the directory, the section header for that section is then used to find the exact file
offset location of the data directory.

So to get a data directory, you first need to know about sections, which are described next. An example of
how to locate data directories immediately follows this discussion.

PE File Sections
The PE file specification consists of the headers defined so far and a generic object called a section.
Sections contain the content of the file, including code, data, resources, and other executable information.
Each section has a header and a body (the raw data). Section headers are described below, but section
bodies lack a rigid file structure. They can be organized in almost any way a linker wishes to organize
them, as long as the header is filled with enough information to be able to decipher the data.

Section Headers
Section headers are located sequentially right after the optional header in the PE file format. Each section
header is 40 bytes with no padding between them. Section headers are defined as in the following
structure:

WINNT.H

#define IMAGE_SIZEOF_SHORT_NAME 8

typedef struct _IMAGE_SECTION_HEADER {
 UCHAR Name[IMAGE_SIZEOF_SHORT_NAME];
 union {
 ULONG PhysicalAddress;
 ULONG VirtualSize;
 } Misc;
 ULONG VirtualAddress;
 ULONG SizeOfRawData;
 ULONG PointerToRawData;
 ULONG PointerToRelocations;
 ULONG PointerToLinenumbers;
 USHORT NumberOfRelocations;
 USHORT NumberOfLinenumbers;
 ULONG Characteristics;
} IMAGE_SECTION_HEADER, *PIMAGE_SECTION_HEADER;

How do you go about getting section header information for a particular section? Since section headers
are organized sequentially in no specific order, section headers must be located by name. The following
function shows how to retrieve a section header from a PE image file given the name of the section:

PEFILE.C

BOOL WINAPI GetSectionHdrByName (
 LPVOID lpFile,
 IMAGE_SECTION_HEADER *sh,
 char *szSection)
{
 PIMAGE_SECTION_HEADER psh;

 int nSections = NumOfSections (lpFile);
 int i;

 if ((psh = (PIMAGE_SECTION_HEADER)SECHDROFFSET (lpFile)) !=
 NULL)
 {
 /* find the section by name */
 for (i=0; i<nSections; i++)
 {
 if (!strcmp (psh->Name, szSection))
 {
 /* copy data to header */
 CopyMemory ((LPVOID)sh,
 (LPVOID)psh,
 sizeof (IMAGE_SECTION_HEADER));
 return TRUE;
 }
 else
 psh++;
 }
 }

 return FALSE;
}

The function simply locates the first section header via the SECHDROFFSET macro. Then the function
loops through each section, comparing each section's name with the name of the section it's looking for,
until it finds the right one. When the section is found, the function copies the data from the memory-
mapped file to the structure passed in to the function. The fields of the IMAGE_SECTION_HEADER
structure can then be accessed directly from the structure.

Section Header Fields
· Name. Each section header has a name field up to eight characters long, for which the first

character must be a period.

· PhysicalAddress or VirtualSize. The second field is a union field that is not currently used.

· VirtualAddress. This field identifies the virtual address in the process's address space to which to
load the section. The actual address is created by taking the value of this field and adding it to the
ImageBase virtual address in the optional header structure. Keep in mind, though, that if this image
file represents a DLL, there is no guarantee that the DLL will be loaded to the ImageBase location
requested. So once the file is loaded into a process, the actual ImageBase value should be verified
programmatically using GetModuleHandle.

· SizeOfRawData. This field indicates the FileAlignment-relative size of the section body. The actual
size of the section body will be less than or equal to a multiple of FileAlignment in the file. Once the
image is loaded into a process's address space, the size of the section body becomes less than or
equal to a multiple of SectionAlignment.

· PointerToRawData. This is an offset to the location of the section body in the file.

· PointerToRelocations, PointerToLinenumbers, NumberOfRelocations, NumberOfLinenumbers.
None of these fields are used in the PE file format.

· Characteristics. Defines the section characteristics. These values are found both in WINNT.H and in
the Portable Executable Format specification located on this CD.

Value Definition

0x00000020 Code section

0x00000040 Initialized data section

0x00000080 Uninitialized data section

0x04000000 Section cannot be cached

0x08000000 Section is not pageable

0x10000000 Section is shared

0x20000000 Executable section

0x40000000 Readable section

0x80000000 Writable section

Locating Data Directories
Data directories exist within the body of their corresponding data section. Typically, data directories are

the first structure within the section body, but not out of necessity. For that reason, you need to retrieve
information from both the section header and optional header to locate a specific data directory.

To make this process easier, the following function was written to locate the data directory for any of the
directories defined in WINNT.H:

PEFILE.C

LPVOID WINAPI ImageDirectoryOffset (
 LPVOID lpFile,
 DWORD dwIMAGE_DIRECTORY)
{
 PIMAGE_OPTIONAL_HEADER poh;
 PIMAGE_SECTION_HEADER psh;
 int nSections = NumOfSections (lpFile);
 int i = 0;
 LPVOID VAImageDir;

 /* Must be 0 thru (NumberOfRvaAndSizes-1). */
 if (dwIMAGE_DIRECTORY >= poh->NumberOfRvaAndSizes)
 return NULL;

 /* Retrieve offsets to optional and section headers. */
 poh = (PIMAGE_OPTIONAL_HEADER)OPTHDROFFSET (lpFile);
 psh = (PIMAGE_SECTION_HEADER)SECHDROFFSET (lpFile);

 /* Locate image directory's relative virtual address. */
 VAImageDir = (LPVOID)poh->DataDirectory
 [dwIMAGE_DIRECTORY].VirtualAddress;

 /* Locate section containing image directory. */
 while (i++<nSections)
 {
 if (psh->VirtualAddress <= (DWORD)VAImageDir &&
 psh->VirtualAddress +

 psh->SizeOfRawData > (DWORD)VAImageDir)
 break;
 psh++;
 }

 if (i > nSections)
 return NULL;

 /* Return image import directory offset. */
 return (LPVOID)(((int)lpFile +
 (int)VAImageDir. psh->VirtualAddress) +
 (int)psh->PointerToRawData);
}

The function begins by validating the requested data directory entry number. Then it retrieves pointers to
the optional header and first section header. From the optional header, the function determines the data
directory's virtual address, and it uses this value to determine within which section body the data directory
is located. Once the appropriate section body has been identified, the specific location of the data
directory is found by translating the relative virtual address of the data directory to a specific address into
the file.

Predefined Sections
An application for Windows NT typically has the nine predefined sections
named .text, .bss, .rdata, .data, .rsrc, .edata, .idata, .pdata, and .debug. Some applications do not need all
of these sections, while others may define still more sections to suit their specific needs. This behavior is
similar to code and data segments in MS-DOS and Windows version 3.1. In fact, the way an application
defines a unique section is by using the standard compiler directives for naming code and data segments
or by using the name segment compiler option -NT¾exactly the same way in which applications defined
unique code and data segments in Windows version 3.1.

The following is a discussion of some of the more interesting sections common to typical Windows NT PE
files.

Executable code section, .text
One difference between Windows version 3.1 and Windows NT is that the default behavior combines all
code segments (as they are referred to in Windows version 3.1) into a single section called ".text" in
Windows NT. Since Windows NT uses a page-based virtual memory management system, there is no
advantage to separating code into distinct code segments. Consequently, having one large code section
is easier to manage for both the operating system and the application developer.

The .text section also contains the entry point mentioned earlier. The IAT also lives in the .text section
immediately before the module entry point. (The IAT's presence in the .text section makes sense because
the table is really a series of jump instructions, for which the specific location to jump to is the fixed-up
address.) When Windows NT executable images are loaded into a process's address space, the IAT is
fixed up with the location of each imported function's physical address. In order to find the IAT in the .text
section, the loader simply locates the module entry point and relies on the fact that the IAT occurs
immediately before the entry point. And since each entry is the same size, it is easy to walk backward in
the table to find its beginning.

Data sections, .bss, .rdata, .data
The .bss section represents uninitialized data for the application, including all variables declared as static
within a function or source module.

The .rdata section represents read-only data, such as literal strings, constants, and debug directory
information.

All other variables (except automatic variables, which appear on the stack) are stored in the .data section.
Basically, these are application or module global variables.

Resources section, .rsrc
The .rsrc section contains resource information for a module. It begins with a resource directory structure
like most other sections, but this section's data is further structured into a resource tree. The
IMAGE_RESOURCE_DIRECTORY, shown below, forms the root and nodes of the tree.

WINNT.H

typedef struct _IMAGE_RESOURCE_DIRECTORY {
 ULONG Characteristics;
 ULONG TimeDateStamp;
 USHORT MajorVersion;
 USHORT MinorVersion;
 USHORT NumberOfNamedEntries;
 USHORT NumberOfIdEntries;
} IMAGE_RESOURCE_DIRECTORY, *PIMAGE_RESOURCE_DIRECTORY;

Looking at the directory structure, you won't find any pointer to the next nodes. Instead, there are two
fields, NumberOfNamedEntries and NumberOfIdEntries, used to indicate how many entries are attached
to the directory. By attached, I mean the directory entries follow immediately after the directory in the
section data. The named entries appear first in ascending alphabetical order, followed by the ID entries in
ascending numerical order.

A directory entry consists of two fields, as described in the following
IMAGE_RESOURCE_DIRECTORY_ENTRY structure:

WINNT.H

typedef struct _IMAGE_RESOURCE_DIRECTORY_ENTRY {
 ULONG Name;
 ULONG OffsetToData;
} IMAGE_RESOURCE_DIRECTORY_ENTRY, *PIMAGE_RESOURCE_DIRECTORY_ENTRY;

The two fields are used for different things depending on the level of the tree. The Name field is used to
identify either a type of resource, a resource name, or a resource's language ID. The OffsetToData field is
always used to point to a sibling in the tree, either a directory node or a leaf node.

Leaf nodes are the lowest node in the resource tree. They define the size and location of the actual
resource data. Each leaf node is represented using the following IMAGE_RESOURCE_DATA_ENTRY
structure:

WINNT.H

typedef struct _IMAGE_RESOURCE_DATA_ENTRY {
 ULONG OffsetToData;
 ULONG Size;

 ULONG CodePage;
 ULONG Reserved;
} IMAGE_RESOURCE_DATA_ENTRY, *PIMAGE_RESOURCE_DATA_ENTRY;

The two fields OffsetToData and Size indicate the location and size of the actual resource data. Since this
information is used primarily by functions once the application has been loaded, it makes more sense to
make the OffsetToData field a relative virtual address. This is precisely the case. Interestingly enough, all
other offsets, such as pointers from directory entries to other directories, are offsets relative to the location
of the root node.

To make all of this a little clearer, consider Figure 2.

{ewc msdncd, EWGraphic, bsd23457 1 /a "SDKL.BMP"}

Figure 2. A simple resource tree structure

Figure 2 depicts a very simple resource tree containing only two resource objects, a menu, and a string
table. Further, the menu and string table have only one item each. Yet, you can see how complicated the
resource tree becomes¾even with as few resources as this.

At the root of the tree, the first directory has one entry for each type of resource the file contains, no
matter how many of each type there are. In Figure 2, there are two entries identified by the root, one for
the menu and one for the string table. If there had been one or more dialog resources included in the file,
the root node would have had one more entry and, consequently, another branch for the dialog resources.

The basic resource types are identified in the file WINUSER.H and are listed below:

WINUSER.H

/*
 * Predefined Resource Types
 */
#define RT_CURSOR MAKEINTRESOURCE(1)
#define RT_BITMAP MAKEINTRESOURCE(2)
#define RT_ICON MAKEINTRESOURCE(3)
#define RT_MENU MAKEINTRESOURCE(4)
#define RT_DIALOG MAKEINTRESOURCE(5)
#define RT_STRING MAKEINTRESOURCE(6)
#define RT_FONTDIR MAKEINTRESOURCE(7)
#define RT_FONT MAKEINTRESOURCE(8)
#define RT_ACCELERATOR MAKEINTRESOURCE(9)
#define RT_RCDATA MAKEINTRESOURCE(10)
#define RT_MESSAGETABLE MAKEINTRESOURCE(11)

At the top level of the tree, the MAKEINTRESOURCE values listed above are placed in the Name field of

each type entry, identifying the different resources by type.

Each of the entries in the root directory points to a sibling node in the second level of the tree. These
nodes are directories, too, each having their own entries. At this level, the directories are used to identify
the name of each resource within a given type. If you had multiple menus defined in your application,
there would be an entry for each one here at the second level of the tree.

As you are probably already aware, resources can be identified by name or by integer. They are
distinguished in this level of the tree via the Name field in the directory structure. If the most significant bit
of the Name field is set, the other 31 bits are used as an offset to an
IMAGE_RESOURCE_DIR_STRING_U structure.

WINNT.H

typedef struct _IMAGE_RESOURCE_DIR_STRING_U {
 USHORT Length;
 WCHAR NameString[1];
} IMAGE_RESOURCE_DIR_STRING_U, *PIMAGE_RESOURCE_DIR_STRING_U;

This structure is simply a 2-byte Length field followed by Length UNICODE characters.

On the other hand, if the most significant bit of the Name field is clear, the lower 31 bits are used to
represent the integer ID of the resource. Figure 2 shows the menu resource as a named resource and the
string table as an ID resource.

If there were two menu resources, one identified by name and one by resource, they would both have
entries immediately after the menu resource directory. The named resource entry would appear first,
followed by the integer-identified resource. The directory fields NumberOfNamedEntries and
NumberOfIdEntries would each contain the value 1, indicating the presence of one entry.

Below level two, the resource tree does not branch out any further. Level one branches into directories
representing each type of resource, and level two branches into directories representing each resource by
identifier. Level three maps a one-to-one correspondence between the individually identified resources
and their respective language IDs. To indicate the language ID of a resource, the Name field of the
directory entry structure is used to indicate both the primary language and sublanguage ID for the
resource. The Win32 SDK for Windows NT lists the default value resources. For the value 0x0409, 0x09
represents the primary language as LANG_ENGLISH, and 0x04 is defined as
SUBLANG_ENGLISH_CAN for the sublanguage. The entire set of language IDs is defined in the file
WINNT.H, included as part of the Win32 SDK for Windows NT.

Since the language ID node is the last directory node in the tree, the OffsetToData field in the entry
structure is an offset to a leaf node¾the IMAGE_RESOURCE_DATA_ENTRY structure mentioned earlier.

Referring back to Figure 2, you can see one data entry node for each language directory entry. This node
simply indicates the size of the resource data and the relative virtual address where the resource data is
located.

One advantage to having so much structure to the resource data section, .rsrc, is that you can glean a
great deal of information from the section without accessing the resources themselves. For example, you
can find out how many there are of each type of resource, what resources¾if any¾use a particular
language ID, whether a particular resource exists or not, and the size of individual types of resources. To
demonstrate how to make use of this information, the following function shows how to determine the
different types of resources a file includes:

PEFILE.C

int WINAPI GetListOfResourceTypes (
 LPVOID lpFile,
 HANDLE hHeap,
 char **pszResTypes)
{
 PIMAGE_RESOURCE_DIRECTORY prdRoot;
 PIMAGE_RESOURCE_DIRECTORY_ENTRY prde;
 char *pMem;
 int nCnt, i;

 /* Get root directory of resource tree. */
 if ((prdRoot = PIMAGE_RESOURCE_DIRECTORY)ImageDirectoryOffset
 (lpFile, IMAGE_DIRECTORY_ENTRY_RESOURCE)) == NULL)
 return 0;

 /* Allocate enough space from heap to cover all types. */
 nCnt = prdRoot->NumberOfIdEntries * (MAXRESOURCENAME + 1);
 *pszResTypes = (char *)HeapAlloc (hHeap,
 HEAP_ZERO_MEMORY,
 nCnt);
 if ((pMem = *pszResTypes) == NULL)
 return 0;

 /* Set pointer to first resource type entry. */
 prde = (PIMAGE_RESOURCE_DIRECTORY_ENTRY)((DWORD)prdRoot +
 sizeof (IMAGE_RESOURCE_DIRECTORY));

 /* Loop through all resource directory entry types. */
 for (i=0; i<prdRoot->NumberOfIdEntries; i++)
 {

 if (LoadString (hDll, prde->Name, pMem, MAXRESOURCENAME))
 pMem += strlen (pMem) + 1;

 prde++;
 }

 return nCnt;
}

This function returns a list of resource type names in the string identified by pszResTypes. Notice that, at
the heart of this function, LoadString is called using the Name field of each resource type directory entry
as the string ID. If you look in the PEFILE.RC, you'll see that I defined a series of resource type strings
whose IDs are defined the same as the type specifiers in the directory entries. There is also a function in
PEFILE.DLL that returns the total number of resource objects in the .rsrc section. It would be rather easy
to expand on these functions or write new functions that extracted other information from this section.

Export data section, .edata
The .edata section contains export data for an application or DLL. When present, this section contains an
export directory for getting to the export information.

WINNT.H

typedef struct _IMAGE_EXPORT_DIRECTORY {
 ULONG Characteristics;
 ULONG TimeDateStamp;
 USHORT MajorVersion;
 USHORT MinorVersion;
 ULONG Name;
 ULONG Base;
 ULONG NumberOfFunctions;
 ULONG NumberOfNames;
 PULONG *AddressOfFunctions;
 PULONG *AddressOfNames;
 PUSHORT *AddressOfNameOrdinals;
} IMAGE_EXPORT_DIRECTORY, *PIMAGE_EXPORT_DIRECTORY;

The Name field in the export directory identifies the name of the executable module. NumberOfFunctions
and NumberOfNames fields indicate how many functions and function names are being exported from the
module.

The AddressOfFunctions field is an offset to a list of exported function entry points. The AddressOfNames
field is the address of an offset to the beginning of a null-separated list of exported function names.
AddressOfNameOrdinals is an offset to a list of ordinal values (each 2 bytes long) for the same exported
functions.

The three AddressOf... fields are relative virtual addresses into the address space of a process once the
module has been loaded. Once the module is loaded, the relative virtual address should be added to the
module base address to get the exact location in the address space of the process. Before the file is
loaded, however, the address can be determined by subtracting the section header virtual address
(VirtualAddress) from the given field address, adding the section body offset (PointerToRawData) to the
result, and then using this value as an offset into the image file. The following example illustrates this
technique:

PEFILE.C

int WINAPI GetExportFunctionNames (
 LPVOID lpFile,
 HANDLE hHeap,
 char **pszFunctions)

{
 IMAGE_SECTION_HEADER sh;
 PIMAGE_EXPORT_DIRECTORY ped;
 char *pNames, *pCnt;
 int i, nCnt;

 /* Get section header and pointer to data directory
 for .edata section. */
 if ((ped = (PIMAGE_EXPORT_DIRECTORY)ImageDirectoryOffset
 (lpFile, IMAGE_DIRECTORY_ENTRY_EXPORT)) == NULL)
 return 0;
 GetSectionHdrByName (lpFile, &sh, ".edata");

 /* Determine the offset of the export function names. */
 pNames = (char *)(*(int *)((int)ped->AddressOfNames -
 (int)sh.VirtualAddress +
 (int)sh.PointerToRawData +
 (int)lpFile) -
 (int)sh.VirtualAddress +
 (int)sh.PointerToRawData +
 (int)lpFile);

 /* Figure out how much memory to allocate for all strings. */
 pCnt = pNames;
 for (i=0; i<(int)ped->NumberOfNames; i++)
 while (*pCnt++);
 nCnt = (int)(pCnt. pNames);

 /* Allocate memory off heap for function names. */
 *pszFunctions = HeapAlloc (hHeap, HEAP_ZERO_MEMORY, nCnt);

 /* Copy all strings to buffer. */
 CopyMemory ((LPVOID)*pszFunctions, (LPVOID)pNames, nCnt);

 return nCnt;
}

Notice that in this function the variable pNames is assigned by determining first the address of the offset
and then the actual offset location. Both the address of the offset and the offset itself are relative virtual
addresses and must be translated before being used, as the function demonstrates. You could write a
similar function to determine the ordinal values or entry points of the functions, but why bother when I
already did this for you? The GetNumberOfExportedFunctions, GetExportFunctionEntryPoints, and
GetExportFunctionOrdinals functions also exist in the PEFILE.DLL.

Import data section, .idata
The .idata section is import data, including the import directory and import address name table. Although
an IMAGE_DIRECTORY_ENTRY_IMPORT directory is defined, no corresponding import directory
structure is included in the file WINNT.H. Instead, there are several other structures called
IMAGE_IMPORT_BY_NAME, IMAGE_THUNK_DATA, and IMAGE_IMPORT_DESCRIPTOR. Personally,
I couldn't make heads or tails of how these structures are supposed to correlate to the .idata section, so I
spent several hours deciphering the .idata section body and came up with a much simpler structure. I
named this structure IMAGE_IMPORT_MODULE_DIRECTORY.

PEFILE.H

typedef struct tagImportDirectory
 {
 DWORD dwRVAFunctionNameList;
 DWORD dwUseless1;
 DWORD dwUseless2;
 DWORD dwRVAModuleName;
 DWORD dwRVAFunctionAddressList;
 }IMAGE_IMPORT_MODULE_DIRECTORY,
 * PIMAGE_IMPORT_MODULE_DIRECTORY;

Unlike the data directories of other sections, this one repeats one after another for each imported module
in the file. Think of it as an entry in a list of module data directories, rather than a data directory to the
entire section of data. Each entry is a directory to the import information for a specific module.

One of the fields in the IMAGE_IMPORT_MODULE_DIRECTORY structure is dwRVAModuleName, a
relative virtual address pointing to the name of the module. There are also two dwUseless parameters in
the structure that serve as padding to keep the structure aligned properly within the section. The PE file
format specification mentions something about import flags, a time/date stamp, and major/minor versions,
but these two fields remained empty throughout my experimentation, so I still consider them useless.

Based on the definition of this structure, you can retrieve the names of modules and all functions in each
module that are imported by an executable file. The following function demonstrates how to retrieve all
the module names imported by a particular PE file:

PEFILE.C

int WINAPI GetImportModuleNames (
 LPVOID lpFile,
 HANDLE hHeap,
 char **pszModules)
{
 PIMAGE_IMPORT_MODULE_DIRECTORY pid;
 IMAGE_SECTION_HEADER idsh;

 BYTE *pData;
 int nCnt = 0, nSize = 0, i;
 char *pModule[1024];
 char *psz;

 pid = (PIMAGE_IMPORT_MODULE_DIRECTORY)ImageDirectoryOffset
 (lpFile, IMAGE_DIRECTORY_ENTRY_IMPORT);
 pData = (BYTE *)pid;

 /* Locate section header for ".idata" section. */
 if (!GetSectionHdrByName (lpFile, &idsh, ".idata"))
 return 0;

 /* Extract all import modules. */
 while (pid->dwRVAModuleName)
 {
 /* Allocate buffer for absolute string offsets. */
 pModule[nCnt] = (char *)(pData +
 (pid->dwRVAModuleName-idsh.VirtualAddress));
 nSize += strlen (pModule[nCnt]) + 1;

 /* Increment to the next import directory entry. */
 pid++;
 nCnt++;
 }

 /* Copy all strings to one chunk of heap memory. */
 *pszModules = HeapAlloc (hHeap, HEAP_ZERO_MEMORY, nSize);
 psz = *pszModules;
 for (i=0; i<nCnt; i++)
 {

 strcpy (psz, pModule[i]);
 psz += strlen (psz) + 1;
 }

 return nCnt;
}

The function is pretty straightforward. However, one thing is worth pointing out¾notice the while loop. This
loop is terminated when pid->dwRVAModuleName is 0. Implied here is that at the end of the list of
IMAGE_IMPORT_MODULE_DIRECTORY structures is a null structure that has a value of 0 for at least
the dwRVAModuleName field. This is the behavior I observed in my experimentation with the file and later
confirmed in the PE file format specification.

The first field in the structure, dwRVAFunctionNameList, is a relative virtual address to a list of relative
virtual addresses that each point to the function names within the file. As shown in the following data, the
module and function names of all imported modules are listed in the .idata section data:

E6A7 0000 F6A7 0000 08A8 0000 1AA8 0000
28A8 0000 3CA8 0000 4CA8 0000 0000 0000 (...<...L.......
0000 4765 744F 7065 6E46 696C 654E 616D ..GetOpenFileNam
6541 0000 636F 6D64 6C67 3332 2E64 6C6C eA..comdlg32.dll
0000 2500 4372 6561 7465 466F 6E74 496E ..%.CreateFontIn
6469 7265 6374 4100 4744 4933 322E 646C directA.GDI32.dl
6C00 A000 4765 7444 6576 6963 6543 6170 l...GetDeviceCap
7300 C600 4765 7453 746F 636B 4F62 6A65 s...GetStockObje
6374 0000 D500 4765 7454 6578 744D 6574 ct....GetTextMet
7269 6373 4100 1001 5365 6C65 6374 4F62 ricsA...SelectOb
6A65 6374 0000 1601 5365 7442 6B43 6F6C ject....SetBkCol
6F72 0000 3501 5365 7454 6578 7443 6F6C or..5.SetTextCol
6F72 0000 4501 5465 7874 4F75 7441 0000 or..E.TextOutA..

The above data is a portion taken from the .idata section of the EXEVIEW.EXE sample application. This
particular section represents the beginning of the list of import module and function names. If you begin
examining the right section part of the data, you should recognize the names of familiar Win32 API
functions and the module names they are found in. Reading from the top down, you get
GetOpenFileNameA, followed by the module name COMDLG32.DLL. Shortly after that, you get
CreateFontIndirectA, followed by the module GDI32.DLL and then the functions GetDeviceCaps,
GetStockObject, GetTextMetrics, and so forth.

This pattern repeats throughout the .idata section. The first module name is COMDLG32.DLL and the
second is GDI32.DLL. Notice that only one function is imported from the first module, while many
functions are imported from the second module. In both cases, the function names and the module name

to which they belong are ordered such that a function name appears first, followed by the module name
and then by the rest of the function names, if any.

The following function demonstrates how to retrieve the function names for a specific module:

PEFILE.C

int WINAPI GetImportFunctionNamesByModule (
 LPVOID lpFile,
 HANDLE hHeap,
 char *pszModule,
 char **pszFunctions)
{
 PIMAGE_IMPORT_MODULE_DIRECTORY pid;
 IMAGE_SECTION_HEADER idsh;
 DWORD dwBase;
 int nCnt = 0, nSize = 0;
 DWORD dwFunction;
 char *psz;

 /* Locate section header for ".idata" section. */
 if (!GetSectionHdrByName (lpFile, &idsh, ".idata"))
 return 0;

 pid = (PIMAGE_IMPORT_MODULE_DIRECTORY)ImageDirectoryOffset
 (lpFile, IMAGE_DIRECTORY_ENTRY_IMPORT);

 dwBase = ((DWORD)pid. idsh.VirtualAddress);

 /* Find module's pid. */
 while (pid->dwRVAModuleName &&
 strcmp (pszModule,
 (char *)(pid->dwRVAModuleName+dwBase)))

 pid++;

 /* Exit if the module is not found. */
 if (!pid->dwRVAModuleName)
 return 0;

 /* Count number of function names and length of strings. */
 dwFunction = pid->dwRVAFunctionNameList;
 while (dwFunction &&
 *(DWORD *)(dwFunction + dwBase) &&
 *(char *)((*(DWORD *)(dwFunction + dwBase)) +
 dwBase+2))
 {
 nSize += strlen ((char *)((*(DWORD *)(dwFunction +
 dwBase)) + dwBase+2)) + 1;
 dwFunction += 4;
 nCnt++;
 }

 /* Allocate memory off heap for function names. */
 *pszFunctions = HeapAlloc (hHeap, HEAP_ZERO_MEMORY, nSize);
 psz = *pszFunctions;

 /* Copy function names to memory pointer. */
 dwFunction = pid->dwRVAFunctionNameList;
 while (dwFunction &&
 *(DWORD *)(dwFunction + dwBase) &&
 *((char *)((*(DWORD *)(dwFunction + dwBase)) +
 dwBase+2)))
 {
 strcpy (psz, (char *)((*(DWORD *)(dwFunction + dwBase)) +

 dwBase+2));
 psz += strlen((char *)((*(DWORD *)(dwFunction + dwBase))+
 dwBase+2)) + 1;
 dwFunction += 4;
 }

 return nCnt;
}

Like the GetImportModuleNames function, this function relies on the end of each list of information to
have a zeroed entry. In this case, the list of function names ends with one that is zero.

The final field, dwRVAFunctionAddressList, is a relative virtual address to a list of virtual addresses that
will be placed in the section data by the loader when the file is loaded. Before the file is loaded, however,
these virtual addresses are replaced by relative virtual addresses that correspond exactly to the list of
function names. So before the file is loaded, there are two identical lists of relative virtual addresses
pointing to imported function names.

Debug information section, .debug
Debug information is initially placed in the .debug section. The PE file format also supports separate
debug files (normally identified with a .DBG extension) as a means of collecting debug information in a
central location. The debug section contains the debug information, but the debug directories live in
the .rdata section mentioned earlier. Each of those directories references debug information in the .debug
section. The debug directory structure is defined as an IMAGE_DEBUG_DIRECTORY, as follows:

WINNT.H

typedef struct _IMAGE_DEBUG_DIRECTORY {
 ULONG Characteristics;
 ULONG TimeDateStamp;
 USHORT MajorVersion;
 USHORT MinorVersion;
 ULONG Type;
 ULONG SizeOfData;
 ULONG AddressOfRawData;
 ULONG PointerToRawData;
} IMAGE_DEBUG_DIRECTORY, *PIMAGE_DEBUG_DIRECTORY;

The section is divided into separate portions of data representing different types of debug information. For
each one there is a debug directory described above. The different types of debug information are listed
below:

WINNT.H

#define IMAGE_DEBUG_TYPE_UNKNOWN 0
#define IMAGE_DEBUG_TYPE_COFF 1
#define IMAGE_DEBUG_TYPE_CODEVIEW 2
#define IMAGE_DEBUG_TYPE_FPO 3
#define IMAGE_DEBUG_TYPE_MISC 4

The Type field in each directory indicates which type of debug information the directory represents. As
you can see in the list above, the PE file format supports many different types of debug information, as
well as some other informational fields. Of those, the IMAGE_DEBUG_TYPE_MISC information is
unique. This information was added to represent miscellaneous information about the executable image
that could not be added to any of the more structured data sections in the PE file format. This is the only
location in the image file where the image name is sure to appear. If an image exports information, the
export data section will also include the image name.

Each type of debug information has its own header structure that defines its data. Each of these is listed
in the file WINNT.H. One nice thing about the IMAGE_DEBUG_DIRECTORY structure is that it includes
two fields that identify the debug information. The first of these, AddressOfRawData, is the relative virtual
address of the data once the file is loaded. The other, PointerToRawData, is an actual offset within the PE
file, where the data is located. This makes it easy to locate specific debug information.

As a last example, consider the following function, which extracts the image name from the
IMAGE_DEBUG_MISC structure:

PEFILE.C

int WINAPI RetrieveModuleName (
 LPVOID lpFile,
 HANDLE hHeap,
 char **pszModule)
{

 PIMAGE_DEBUG_DIRECTORY pdd;
 PIMAGE_DEBUG_MISC pdm = NULL;
 int nCnt;

 if (!(pdd = (PIMAGE_DEBUG_DIRECTORY)ImageDirectoryOffset
 (lpFile, IMAGE_DIRECTORY_ENTRY_DEBUG)))
 return 0;

 while (pdd->SizeOfData)
 {
 if (pdd->Type == IMAGE_DEBUG_TYPE_MISC)
 {
 pdm = (PIMAGE_DEBUG_MISC)
 ((DWORD)pdd->PointerToRawData + (DWORD)lpFile);

 nCnt = lstrlen (pdm->Data)*(pdm->Unicode?2:1);
 *pszModule = (char *)HeapAlloc (hHeap,
 HEAP_ZERO_MEMORY,
 nCnt+1;
 CopyMemory (*pszModule, pdm->Data, nCnt);

 break;

 }

 pdd ++;
 }

 if (pdm != NULL)
 return nCnt;
 else
 return 0;
}

As you can see, the structure of the debug directory makes it relatively easy to locate a specific type of
debug information. Once the IMAGE_DEBUG_MISC structure is located, extracting the image name is as
simple as invoking the CopyMemory function.

As mentioned above, debug information can be stripped into separate .DBG files. The Windows NT SDK
includes a utility called REBASE.EXE that serves this purpose. For example, in the following statement an
executable image named TEST.EXE is being stripped of debug information:

rebase -b 40000 -x c:\samples\testdir test.exe

The debug information is placed in a new file called TEST.DBG and located in the path specified, in this
case c:\samples\testdir. The file begins with a single IMAGE_SEPARATE_DEBUG_HEADER structure,
followed by a copy of the section headers that exist in the stripped executable image. Then the .debug
section data follows the section headers. So, right after the section headers are the series of
IMAGE_DEBUG_DIRECTORY structures and their associated data. The debug information itself retains
the same structure as described above for normal image file debug information.

Summary of the PE File Format
The PE file format for Windows NT introduces a completely new structure to developers familiar with the
Windows and MS-DOS environments. Yet developers familiar with the UNIX environment will find that the
PE file format is similar to, if not based on, the COFF specification.

The entire format consists of an MS-DOS MZ header, followed by a real-mode stub program, the PE file
signature, the PE file header, the PE optional header, all of the section headers, and finally, all of the
section bodies.

The optional header ends with an array of data directory entries that are relative virtual addresses to data
directories contained within section bodies. Each data directory indicates how a specific section body's
data is structured.

The PE file format has eleven predefined sections, as is common to applications for Windows NT, but
each application can define its own unique sections for code and data.

The .debug predefined section also has the capability of being stripped from the file into a separate debug
file. If so, a special debug header is used to parse the debug file, and a flag is specified in the PE file
header to indicate that the debug data has been stripped.

PEFILE.DLL Function Descriptions
PEFILE.DLL consists mainly of functions that either retrieve an offset into a given PE file or copy a portion
of the file data to a specific structure. Each function has a single requirement¾the first parameter is a
pointer to the beginning of the PE file. That is, the file must first be memory-mapped into the address
space of your process, and the base location of the file mapping is the value lpFile that you pass as the
first parameter to every function.

The function names are meant to be self-explanatory, and each function is listed with a brief comment
describing its purpose. If, after reading through the list of functions, you cannot determine what a function
is for, refer to the EXEVIEW.EXE sample application to find an example of how the function is used. The
following list of function prototypes can also be found in PEFILE.H:

PEFILE.H

/* Retrieve a pointer offset to the MS-DOS MZ header. */
BOOL WINAPI GetDosHeader (LPVOID, PIMAGE_DOS_HEADER);

/* Determine the type of an .EXE file. */
DWORD WINAPI ImageFileType (LPVOID);

/* Retrieve a pointer offset to the PE file header. */
BOOL WINAPI GetPEFileHeader (LPVOID, PIMAGE_FILE_HEADER);

/* Retrieve a pointer offset to the PE optional header .*/
BOOL WINAPI GetPEOptionalHeader (LPVOID,
 PIMAGE_OPTIONAL_HEADER);

/* Return the address of the module entry point. */
LPVOID WINAPI GetModuleEntryPoint (LPVOID);

/* Return a count of the number of sections in the file. */
int WINAPI NumOfSections (LPVOID);

/* Return the desired base address of the executable when
 it is loaded into a process's address space. */
LPVOID WINAPI GetImageBase (LPVOID);

/* Determine the location within the file of a specific
 image data directory. */
LPVOID WINAPI ImageDirectoryOffset (LPVOID, DWORD);

/* Function retrieve names of all the sections in the file. */
int WINAPI GetSectionNames (LPVOID, HANDLE, char **);

/* Copy the section header information for a specific section. */
BOOL WINAPI GetSectionHdrByName (LPVOID,
 PIMAGE_SECTION_HEADER, char *);

/* Get null-separated list of import module names. */
int WINAPI GetImportModuleNames (LPVOID, HANDLE, char **);

/* Get null-separated list of import functions for a module. */
int WINAPI GetImportFunctionNamesByModule (LPVOID, HANDLE,
 char *, char **);

/* Get null-separated list of exported function names. */
int WINAPI GetExportFunctionNames (LPVOID, HANDLE, char **);

/* Get number of exported functions. */
int WINAPI GetNumberOfExportedFunctions (LPVOID);

/* Get list of exported function virtual address entry points. */
LPVOID WINAPI GetExportFunctionEntryPoints (LPVOID);

/* Get list of exported function ordinal values. */
LPVOID WINAPI GetExportFunctionOrdinals (LPVOID);

/* Determine total number of resource objects. */
int WINAPI GetNumberOfResources (LPVOID);

/* Return list of all resource object types used in file. */
int WINAPI GetListOfResourceTypes (LPVOID, HANDLE, char **);

/* Determine if debug information has been removed from file. */
BOOL WINAPI IsDebugInfoStripped (LPVOID);

/* Get name of image file. */
int WINAPI RetrieveModuleName (LPVOID, HANDLE, char **);

/* Function determines if the file is a valid debug file. */
BOOL WINAPI IsDebugFile (LPVOID);

/* Function returns debug header from debug file. */
BOOL WINAPI GetSeparateDebugHeader(LPVOID,
 PIMAGE_SEPARATE_DEBUG_HEADER);

In addition to the functions listed above, the macros mentioned earlier in this article are also defined in the
PEFILE.H file. The complete list is as follows:

/* Offset to PE file signature */
#define NTSIGNATURE(a) ((LPVOID)((BYTE *)a + \
 ((PIMAGE_DOS_HEADER)a)->e_lfanew))

/* MS-OS header identifies the NT PEFile signature dword;
 the PEFILE header exists just after that dword. */
#define PEFHDROFFSET(a) ((LPVOID)((BYTE *)a + \
 ((PIMAGE_DOS_HEADER)a)->e_lfanew + \
 SIZE_OF_NT_SIGNATURE))

/* PE optional header is immediately after PEFile header. */

#define OPTHDROFFSET(a) ((LPVOID)((BYTE *)a + \
 ((PIMAGE_DOS_HEADER)a)->e_lfanew + \
 SIZE_OF_NT_SIGNATURE + \
 sizeof (IMAGE_FILE_HEADER)))

/* Section headers are immediately after PE optional header. */
#define SECHDROFFSET(a) ((LPVOID)((BYTE *)a + \
 ((PIMAGE_DOS_HEADER)a)->e_lfanew + \
 SIZE_OF_NT_SIGNATURE + \
 sizeof (IMAGE_FILE_HEADER) + \
 sizeof (IMAGE_OPTIONAL_HEADER)))

To use PEFILE.DLL, simply include the header file PEFILE.H and link the DLL to your application. All of
the functions are mutually exclusive functions, but some were written as much to support others as for the
information they provide. For example, the function GetSectionNames is useful for getting the exact
names of all sections. Yet to be able to retrieve the section header for a unique section name (one defined
by the application developer during compile), you would first have to get the list of names and then call
the function GetSectionHeaderByName with the exact name of the section. Enjoy!

Writing Scalable Applications for
Windows NT
John Vert
Windows NT Base Group

Revision 1.0: June 6, 1995

1. Introduction
One of the major goals of Microsoft® Windows NT® is to provide a robust, scalable symmetric
multiprocessing (SMP) operating system. By harnessing the power of multiple processors, SMP can
deliver a large boost to the performance and capacity of both workstation and server applications.
Scalable SMP client-server systems can be very effective platforms for downsizing traditional mainframe
applications. SMP also makes it easy to increase the computing capacity of a heavily loaded server by
adding more processors. Windows NT provides a great platform to base server applications on, but the
operating system is not solely responsible for performance and scalability. Applications hosted on
Windows NT must also be designed with these goals in mind. A perfectly efficient system devotes all of its
resources to any given problem. But without a carefully designed application, unnecessary system code
will be executed, leaving fewer resources available for the application to devote to the problem.

Windows NT provides many advanced features to make the development of efficient, scalable
applications easier. Other SMP operating systems have some of these features, but a few are unique to
Windows NT. Understanding and using these features is the key to realizing the full potential of Windows
NT SMP in your application. This article will cover the use of these features, and describe some of the
common pitfalls encountered in SMP programming. It assumes you have a good working knowledge of
Win32®, particularly overlapped input/output (I/O) and network programming.

2. Threads
Windows NT's basic unit of execution is the thread. Each process contains one or more threads. Threads
can run on any processor in a multiprocessor system, so splitting a single-threaded program into multiple
concurrent threads is a quick way to take advantage of SMP systems. A similar approach splits a single-
threaded server into multiple server processes. Traditional UNIX® SMP operating systems that do not
have native support for threads often use this approach. Since processes require more system overhead
than threads, a single multithreaded program is a more efficient solution on Windows NT.

In order to effectively split a single-threaded program into multiple threads, you need to understand how
threads work. Normally, a thread can be in one of three states at a given time.

· Waiting¾The thread cannot run until a specified event occurs.

· Ready¾The thread is ready to run, but no processor is currently available.

· Running¾The thread is currently running on a processor.

Any thread in either the ready or running state is runnable and may profitably use any available control
processing unit (CPU) cycles. The number of runnable threads is limited only by system resources, but
the number of currently running threads is limited by the number of processors in the system.

2.1 The Windows NT Scheduler
The Windows NT kernel is responsible for allocating the available CPUs among the system's runnable
threads in the most efficient manner. To do this, Windows NT uses a priority-based round-robin algorithm.
The Windows NT kernel supports 31 different priorities, and a queue for each of the 31 priorities contains
all the ready threads at that priority. When a CPU becomes available, the kernel finds the highest priority
queue with ready threads on it, removes the thread at the head of the queue, and runs it. This process is
called a context switch.

The most common reason for a context switch is when a running thread needs to wait. This happens for a
number of different reasons. If a thread touches a page that is not in its working set, the thread must wait
for memory management to resolve the page fault before it can continue. Many system calls, such as
WaitForSingleObject or ReadFile, explicitly block the running thread until the specified event occurs.

When a running thread needs to wait, the kernel picks the highest-priority ready thread and switches it
from the ready state to the running state. This ensures that the highest priority runnable threads are
always running. To prevent CPU-bound threads from monopolizing the processor, the kernel imposes a
time limit (called the thread quantum) on each thread. When a thread has been running for one quantum,
the kernel preempts it and moves it to the end of the ready queue for its priority. The actual length of a
thread's quantum currently varies from 15 milliseconds to 30 milliseconds across different Windows NT
platforms, but this may change in future versions.

Another reason for a context switch is when an event changes a higher-priority thread's state from waiting
to ready. In this case, the higher-priority thread will immediately preempt a lower-priority thread running on
the processor.

On a uniprocessor computer, only one thread can be in the running state, because there is only one
processor. A multiprocessor computer allows for one running thread per processor. It is important to
understand that a multiprocessor computer will not make a single thread complete its activity any faster.
The entire performance gain is a result of multiple threads running simultaneously. Even if your
application uses multiple threads, the threads must be able to work independently of each other to scale
effectively. If your application is too serialized (meaning that threads have interdependencies that force
them to wait for each other) there will not be enough runnable threads to distribute across the processors,
and some processors may be idle. Adding more processors will only increase the total CPU time spent
idle¾ it will not make your application run much faster.

Another factor to consider is whether your application is compute-bound (limited by the speed of the CPU)
or I/O-bound (limited by the speed of some I/O device, typically disk drivers or network bandwidth). If your
application is I/O bound and cannot saturate the CPU of a uniprocessor computer, adding more
processors is unlikely to make it run much faster. If your application spends most of its time waiting for the
disk, additional CPUs will just tighten the I/O bottleneck.

2.1 How Many Threads Do I Need?
There are two basic models for implementing a client-server application. The easiest to use is a single
thread that services all client requests in turn. However, this model suffers from the "too few threads"
syndrome, and will not work any faster on an SMP computer. It's not even a very good model for a
uniprocessor computer, because if the single thread ever blocks, no application work can be done.
Blocking on I/O, for example, is almost inevitable in any application. This model can be stretched to one
thread per processor, but the problem of evenly dividing client requests among the threads is difficult to
solve efficiently. If one of the threads needs to wait for I/O, there is still no way to prevent its CPU from
idling until the wait completes.

The model at the other end of the spectrum creates one thread for each client. This readily solves the
problem of providing enough threads to utilize all the CPUs. Because each client has its own dedicated
thread, there is no need to manually balance the entire client load over a few threads. But this is an
expensive solution that degrades with large numbers of clients. As the number of ready threads becomes
much greater than the number of processors, overall performance decreases. Each thread spends more
time waiting on the ready queue for its turn to run, and the kernel must spend more time context switching
the threads in and out of the running state.

Threads are not free, so a design that uses hundreds of ready threads can consume quite a lot of system
resources in the form of memory and increased scheduling overhead. Windows NT can swap out the
memory resources used by a waiting thread, but before a thread can become runnable, its resources
must be brought back into memory.

3. I/O Completion Ports
An ideal model would strike a balance between the two extremes. There should always be enough
runnable threads to fully utilize the available CPUs, but there should never be so many threads that the
overhead becomes too large. In fact, the ideal number of runnable threads is not related to the number of
clients at all, but to the number of CPUs in the server. Unfortunately, multiplexing a large number of
clients across a smaller number of runnable threads is difficult for an application to do. The application
cannot always know when a given thread is going to block, and without this knowledge it cannot activate
another thread to take its place. To solve this problem and make it easy for programmers to write efficient,
scalable applications, Windows NT version 3.5 provides a new mechanism called the I/O completion port.

An I/O completion port is designed for use with overlapped I/O. CreateIoCompletionPort associates the
port with multiple file handles. When asynchronous I/O initiated on any of these file handles completes, an
I/O completion packet is queued to the port. This combines the synchronization point for multiple file
handles into a single object. If each file handle represents a connection to a client (usually through a
named pipe or socket), then a handful of threads can manage I/O for any number of clients by waiting on
the I/O completion port. Rather than directly waiting for overlapped I/O to complete, these threads use
GetQueuedCompletionStatus to wait on the I/O completion port. Any thread that waits on a completion
port becomes associated with that port. The Windows NT kernel keeps track of the threads associated
with an I/O completion port.

Of course, WaitForMultipleObjects can produce similar behavior, so there must be a better reason for
inventing I/O completion ports. Their most important property is the controllable concurrency they provide.
An I/O completion port's concurrency value is specified when it is created. This value limits the number of
runnable threads associated with the port. When a thread waits on a completion port, the kernel
associates it with that port. The kernel tries to prevent the total number of runnable threads associated
with a completion port from exceeding the port's concurrency value. It does this by blocking threads
waiting on an I/O completion port until the total number of runnable threads associated with the port drops
below its concurrency value. As a result, when a thread calls GetQueuedCompletionStatus, it only
returns when completed I/O is available, and the number of runnable threads associated with the
completion port is less than the port's concurrency. The kernel dynamically tracks the completion port's
runnable threads. When one of these threads blocks, the kernel checks to see if it can awaken a thread
waiting on the completion port to take its place. This throttling effectively prevents the system from
becoming swamped with too many runnable threads. Because there is one central synchronization point
for all the I/O, a small pool of worker threads can service many clients.

Unlike the other Win32 synchronization objects, threads that block on an I/O completion port (by using
GetQueuedCompletionStatus) unblock in last in, first out (LIFO) order. Because it does not matter which
thread services an I/O completion, it makes good sense to wake the most recently active thread. Threads
at the bottom of the stack have been waiting for a long time, and will usually continue to wait, allowing the
system to swap most of their threads' memory resources out to disk. Threads near the top of the stack are
more likely to have run recently, so their memory resources will not be swapped to disk or flushed from a
processor's cache. The net result is that the number of threads waiting on the I/O completion port is not
very important. If more threads block on the port than are needed, the unused threads simply remain
blocked. The system will be able to reclaim most of their resources, but the threads will remain available if
there are enough outstanding transactions to require their use. A dozen threads can easily service a large
set of clients, although this will vary depending on how often each transaction needs to wait. Note that the
LIFO policy only applies to threads that block on the I/O completion port. The completion port delivers
completed I/O in first in, first out (FIFO) order. See the figure below.

{ewc msdncd, EWGraphic, bsd23458 0 /a "SDKV.WPG"}

Tuning the I/O completion port's concurrency is a little more complicated. The best value to pick is usually
one thread per CPU. This is the default if zero is specified at the creation of the I/O completion port. There
are a few cases where a larger concurrency is desirable. For example, if your transaction requires a
lengthy computation that will rarely block, a larger concurrency value will allow more threads to run. The

kernel will preemptively timeslice among the running threads, so each transaction will take longer to
complete. However, more transactions will be processing at the same time, rather than sitting in the I/O
completion port's queue, waiting for a running thread to complete. Simultaneously processing more
transactions allows your application to have more concurrent outstanding I/O, resulting in higher use of
the available I/O throughput. It is easy to experiment with different values for the I/O completion port's
concurrency and see their effect on your application.

The standard way to use I/O completion ports in a server application is to create one handle for each
client [by using ConnectNamedPipe or listen, depending on the interprocess communication (IPC)
mechanism], and then call CreateIoCompletionPort once for each handle. The first call to
CreateIoCompletionPort will create the port. Subsequent calls associate additional handles with the
port. After a client establishes a connection and the handles are associated with the I/O completion port,
the server application posts an overlapped read to the client's handle. When the client writes a request to
the server, this read completes and the I/O system queues an I/O completion packet to the completion
port. If the current number of runnable threads for the port is less than the port's concurrency, the port will
become signaled. If there are threads waiting on the port, the kernel will wake up the last thread
(remember, waits on I/O completion ports are satisfied in LIFO order) and hand it the I/O completion
packet. When there are no threads currently waiting on the port, the packet is handed to the next thread
that calls GetQueuedCompletionStatus. The Windows NT 3.5 Software Development Kit contains
source code for SOCKSRV, a simple network server that demonstrates this technique.

The most efficient scenario occurs when there are I/O completion packets waiting in the queue, but no
waits can be satisfied because the port has reached its concurrency limit. In this case, when a running
thread completes a transaction, it calls GetQueuedCompletionStatus to pick up its next transaction and
immediately picks up the queued I/O packet. The running thread never blocks, the blocked threads never
run, and no context switches occur. This demonstrates one of the most interesting properties of I/O
completion ports¾the heavier the load on the system, the more efficient they are. In the ideal case, the
worker threads never block, and I/O completes to the queue at the same rate that threads remove it.
There is always work on the queue, but no context switches ever need to occur. After a thread completes
one transaction, it simply picks the next one off the completion port and keeps going.

Occasionally, an application thread may need to issue a synchronous read or write to a handle
associated with an I/O completion port. For example, a network server may get partially through one
transaction before discovering it needs more data from the client. A normal read would signal the I/O
completion port, causing a different thread to pick up the I/O completion and process the remainder of the
transaction. For this reason, Win32 extends the semantics of ReadFile and WriteFile to allow an
application to override the I/O completion port mechanism on a per-I/O basis. The application makes a
normal overlapped call to ReadFile or WriteFile with an OVERLAPPED structure that contains a valid
hEvent handle. To distinguish this call from the normal case, the application also sets the low bit of the
hEvent handle. Because Win32 reserves the low two bits of a handle, ReadFile and WriteFile use the
low bit as a "magic bit" to indicate that this particular I/O should not complete to the I/O completion port.
Instead, the application uses the normal Win32 overlapped completion mechanism (wait on hEvent, or
call GetOverlappedResult with fWait==TRUE).

Windows NT 3.51 adds one more application programming interface (API) for dealing with I/O completion
ports. PostQueuedCompletionStatus lets an application queue its own special-purpose packets to the
I/O completion port without issuing any I/O requests. This is useful for notifying worker threads of external
events. For example, a clean shutdown might require each thread waiting on the I/O completion port to
perform thread-specific cleanup before calling ExitThread. Posting one application-defined "cleanup and
shutdown" packet for each worker thread notifies each worker thread to clean up and exit. Because the
caller of PostQueuedCompletionStatus has complete control over all the return values of
GetQueuedCompletionStatus, an application can define its own protocol for recognizing and handling
these packets.

4. Synchronization Primitives
Win32 provides a wide assortment of synchronization objects. These objects include events (both auto-
reset and manual-reset), mutexes, semaphores, critical sections, and even raw interlocked operations.
For simply protecting access to a data structure, all these objects will work fine. But in some
circumstances, tthey can vary dramatically in performance. Any efficient server application must
understand the tradeoffs inherent in each synchronization object.

4.1 Mutexes, Events, and Semaphores
Mutexes, events, and semaphores are all powerful synchronization objects provided directly by the
Windows NT kernel. Because they are real Win32 objects, they are inheritable, have security descriptors,
and can be named and used to synchronize multiple processes. WaitForMultipleObjects (and
MsgWaitForMultipleObjects) provide plenty of power and flexibility when combining multiple
synchronization objects of this type.

The kernel directly manages the synchronization of these objects, and will perform an immediate context
switch when a thread blocks on one of these objects. Because accessing synchronization objects
requires a kernel call, some overhead is involved. In cases where the synchronization period is very short
and very frequent, this overhead (and any resulting context switches) may be much greater than the
synchronization period.

4.2 Critical Sections
Unlike the flexible kernel synchronization objects, a Win32 critical section does only one thing. A critical
section is a very fast method for mutual-exclusion within a single multithreaded process.
EnterCriticalSection grants exclusive ownership of a critical section object, and LeaveCriticalSection
releases it. Because critical sections are not handle-based objects, they cannot be named, secured, or
shared across multiple processes. They also cannot be used with WaitForMultipleObjects or even
WaitForSingleObject. This simplicity allows them to be very fast at mutual-exclusion. When there is no
contention for a critical section, only a few instructions are needed to acquire or release it. When
contention for a critical section occurs, a kernel synchronization object is automatically used to allow
threads to wait for and release the critical section. As a result, critical sections are usually the fastest
mechanism for protecting critical code or data. The critical section only calls the kernel to context switch
when there is contention and a thread must either wait or awaken a waiting thread.

4.3 Spinlocks
In rare cases, it may be necessary to build your own synchronization mechanism. On an SMP system,
normal memory references are not atomic. If two processors are simultaneously modifying the same
memory location, one of the processor's updates will be lost. Performing atomic memory updates requires
special processor instructions. X86 architectures provide the LOCK prefix to exclusively lock the memory
bus for the duration of an instruction. RISC architectures (such as Mips, Alpha and PowerPC) provide a
load-linked/store-conditional sequence of instructions for atomic updates. There are three Win32
APIs¾InterlockedIncrement, InterlockedDecrement, and InterlockedExchange¾that use these
instructions to perform atomic memory references in a portable fashion. They can be used to implement
spinlocks or reference counts without relying on the Win32 synchronization primitives. Do not confuse
application-level spinlocks with the kernel spinlocks used internally by the Windows NT executive and I/O
drivers.

The performance of the interlocked routines varies greatly, depending on the underlying hardware.
Processor architecture, memory bus design, and cache effects all have a big impact on how fast the
hardware can perform interlocked operations. One way to implement a spinlock is to use a value of zero
to represent a free spinlock. When a thread needs to acquire the spinlock, it uses InterlockedExchange
to set its value to 1. The spinlock is acquired if the result of the InterlockedExchange is 0, otherwise the
attempt has failed and must be retried. There are many different strategies for retrying the lock acquisition
(or, "spinning"). The best method depends on many factors. The hardware, memory cache policy,
frequency of lock acquisition, and length of time the lock is held all make a difference. An important point
to remember when selecting a retry policy is that the interlocked routines can be very expensive in their
use of the system's memory bus. Spinning in a loop of InterlockedExchange calls is a good way to
reduce the available memory bandwidth and slow down the rest of the system. It is better to read the
lock's value in a loop, and only retry the InterlockedExchange when the lock appears free.

Spinlocks are a very efficient method of synchronizing small sections of code, but they do have some
serious drawbacks. If the thread that owns the spinlock blocks for any reason, (to wait for I/O or a page
fault, for example) all the threads in the application system must spin on the lock until the owning thread
completes its wait and releases the lock. Because the Windows NT kernel cannot tell the difference
between spinning on a spinlock and doing useful work, threads that are doing nothing but spinning will
waste valuable CPU time. Even if the thread does not block, the kernel may summarily preempt it when it
uses up its quantum or a higher priority thread becomes runnable. Again, because the Windows NT
kernel does not know when a thread owns a spinlock, there is no way it can avoid preempting threads
before they have a chance to release the lock. A Win32 synchronization object, on the other hand,
immediately context switches to another runnable thread instead of wasting time spinning.

Boosting a thread's priority to real time will protect it from being preempted by most of the other threads in
the system, but this is a fairly drastic solution. If real-time threads use all the CPUs, the system will
appear completely frozen. This makes it hard to debug your application or even terminate it if something
goes wrong! Because of these risks, Windows NT controls access to real-time threads that use its
security model. Only processes running in a user account with the right to increase scheduling priority
may change their thread priority to one of the potentially dangerous levels. Even real-time priority is not a
complete solution, because the kernel scheduler round-robins real-time threads at the same priority. If a
thread acquires a spinlock, then exhausts its quantum, any other thread trying to acquire the lock must
spin until the owning thread is rescheduled and releases the spinlock. To solve this, sophisticated
algorithms for spinning can be developed that detect when the owning thread has spent too much time
spinning and should yield to another thread. A thread can yield the remainder of its quantum by calling
Sleep with a sleep time of zero milliseconds. When this occurs, a yielding thread goes to the end of its
ready queue, and another thread of the same priority can be given the CPU. A backoff spin algorithm like
this is difficult to tune correctly for complex applications. Determining how long a thread should spin
before giving up and yielding is critically important. Unnecessary yielding negates any performance
advantage spinlocks have over critical sections, while insufficient yielding can occasionally cause drastic
performance degradation if a thread is preempted while owning a spinlock.

A spinlock's limitations are severe enough that they should not be considered unless your application
cannot tolerate the overhead of blocking in the kernel when a lock is owned. For this reason, you should
use critical sections instead.

5. Managing Memory Usage
Processor cycles are not the only resource managed by the operating system. Efficient use of physical
memory is critical to performance. Windows NT balances the available physical memory between the
system, the file cache, and the applications by using working sets. The working set of a process consists
of the set of resident physical pages visible to the process. When a thread accesses a page that is not in
the working set of its process, a page fault occurs. Before the thread can continue, the virtual memory
manager must add the page to the working set of the process. A larger working set increases the
probability that a page will be resident in memory, and decreases the rate of page faults. One of the most
critical parameters for a file server is the size of the file cache's working set. So in order to maximize file
server performance, a default Windows NT Server installation increases the file cache at the expense of
applications.

On the other hand, an application server's performance depends more on the working set of the
application than on the size of the file cache, so this parameter should be changed on an application
server. To change this setting, choose the Network applet from Control Panel. In the Installed Network
Software box, click Server, then click Configure. This brings up a dialog box that lets you change this
parameter to favor application performance.

Windows NT tries to do a good job of sharing physical memory between the system and the application,
but sometimes an application needs to reserve more memory resources than it would normally get. To
allow applications to request this special treatment, Windows NT version 3.5 introduces two new Win32
APIs: GetProcessWorkingSetSize and SetProcessWorkingSetSize. As with real-time priority threads,
increasing an application's working set requires great care in order to avoid unpleasant effects on the rest
of the system. Also like real-time priority threads, the process must hold the privilege to increase
scheduling priority in order to override the system's decisions with these APIs. Although the system will do
its best to honor the working set limits, low-memory situations can cause a process's working set to drop
below the minimum size. If an application needs to force certain pages of memory to remain resident, it
must use VirtualLock.

6. Caches
Computers that run Windows NT generally have a fast memory cache between the CPU and main
memory. This takes advantage of memory access locality to allow most of the CPU's memory references
to complete at the speed of the fast cache memory, instead of the much slower speed of main memory.
Without this cache, the slower speed of DRAM memory would cripple the performance of modern, high-
speed processors. In SMP systems, cache memory has an additional function that is vital to system
performance. Each processor's memory cache also insulates the main shared memory bus from the full
memory bandwidth demand of the combined processors. Any memory access that the cache can satisfy
will not need to burden the shared memory bus. This leaves more bandwidth available for the other
processors.

Any system that uses caches depends on the locality of memory accesses for good performance. SMP
systems that provide separate caches for each processor introduce additional issues that affect
application performance. Memory caches must maintain a consistent view of memory for all processors.
This is accomplished by dividing memory into small chunks (that make up a cache line) and by tracking
the state of each chunk present in one of the caches. To update a cache line, a processor must first gain
exclusive access to it by invalidating all other copies in other processors' caches. When the processor
has exclusive access to the cache line, it may safely update it. If the same cache line is continuously
updated from many different processors, that cache line will bounce from one processor's cache to
another. Because the processor cannot complete the write instruction until its cache acquires exclusive
access to the cache line, it must stall. This behavior is called cache sloshing, because the cache line
"sloshes" from one processor's cache to another.

One common cause of cache sloshing is when multiple threads continuously update global counters. You
can easily fix these counters by keeping separate variables for each thread, then summoning them when
required. A more subtle variant of the problem occurs when two or more variables occupy the same cache
line. Updating any of the variables requires exclusive ownership of the cache line. Two processors
updating different variables will slosh the cache line as much as if they were updating the same variable.
You can be remedy this by simply padding data structures to ensure that frequently accessed variables
do not share a cache line with anything else. Packing variables that are frequently accessed together into
a single cache line can also improve performance by reducing the traffic on the memory bus. Most current
systems have 32-byte cache lines, although cache lines of 64 bytes or more will show up in future
systems.

Cache sloshing can be simple to fix, but very difficult to find. A profiling tool that tracks the total time spent
in different functions is helpful, but plenty of guesswork and intuition is still necessary. Compare profiles of
your program running on configurations with different numbers of processors. Any functions that take
proportionally more time as the number of processors increases are likely victims of cache sloshing. As
more processors compete for the same cache lines, the instructions that access those cache lines will run
slower and slower. The function will not actually execute more instructions, but each instruction that
needs to wait for the cache will take longer to complete, thus increasing the total time spent in the
function.

7. Conclusion
After carefully designing and tuning your application, you may find that it still does not scale well.
Sometimes, it is not only the software that is responsible. The availability of Windows NT has inspired an
explosion of SMP computer designs. These computers range across a broad spectrum from personal
workstations to million-dollar superservers. Building an SMP system presents even more design tradeoffs
than building a uniprocessor system. As a result, many SMP computers vary widely in their overall
performance and scalability. Because no industry standard benchmark for these computers has emerged
yet, comparisons of different platforms can be difficult. Of course, existing benchmarks can test common
components such as the disk or video subsystem. However, the memory bus, one of the most critical
performance parameters for an SMP computer, can easily become a bottleneck for SMP applications.

While most computers scale well when the application runs mainly in the memory cache, many
applications require working sets that are much larger than the cache. When multiple processors are
continually contending for access to the main memory bus, the total main memory bandwidth is very
important. The listing below contains the source code for MEMBENCH, a short program that tests the raw
memory throughput of SMP computers. MEMBENCH measures the time required for multiple threads to
modify a large array. When each thread accesses the array sequentially, locality is high and scalability is
very good. As the stride used to step through memory increases, the locality decreases, causing more
cache misses and dramatically decreasing the overall throughput and scalability.

--*/
#include <windows.h>
#include <stdio.h>
#include <stdlib.h>

typedef struct _THREADPARAMS {
 DWORD ThreadIndex;
 PCHAR BufferStart;
 ULONG BufferLength;
 DWORD Stride;
} THREADPARAMS, *PTHREADPARAMS;

DWORD MemorySize = 64*1024*1024;
HANDLE StartEvent;
THREADPARAMS ThreadParams[32];
HANDLE ThreadHandle[32];
ULONG TotalIterations = 1;

DWORD WINAPI
MemoryTest(
 IN LPVOID lpThreadParameter
);

main (argc, argv)
 int argc;
 char *argv[];
{
 DWORD CurrentRun;
 DWORD i;
 SYSTEM_INFO SystemInfo;
 PCHAR Memory;
 PCHAR ThreadMemory;
 DWORD ChunkSize;
 DWORD ThreadId;
 DWORD StartTime, EndTime;
 DWORD ThisTime, LastTime;
 DWORD IdealTime;
 LONG IdealImprovement;
 LONG ActualImprovement;
 DWORD StrideValues[] = {4, 16, 32, 4096, 8192, 0};
 LPDWORD Stride = StrideValues;
 BOOL Result;

 //
 // If you have an argument, use that as the number of iterations.
 //
 if (argc > 1) {
 TotalIterations = atoi(argv[1]);

 if (TotalIterations == 0) {
 fprintf(stderr, "Usage: %s [# iterations]\n",argv[0]);
 exit(1);
 }
 printf("%d iterations\n",TotalIterations);
 }
 //
 // Determine how many processors are in the system.
 //
 GetSystemInfo(&SystemInfo);

 //
 // Create the start event.
 //
 StartEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
 if (StartEvent == NULL) {
 fprintf(stderr, "CreateEvent failed, error %d\n",GetLastError());
 exit(1);
 }

 //
 // Try to boost your working set size.
 //
 do {
 Result = SetProcessWorkingSetSize(GetCurrentProcess(), MemorySize,
 MemorySize*2);
 if (!Result) {
 MemorySize -= 10*1024*1024;
 }
 } while (!Result);

 printf("MEMBNCH: Using %d MB array\n", MemorySize / (1024*1024));

 //
 // Allocate a big chunk of memory (64MB).
 //
 Memory = VirtualAlloc(NULL,
 MemorySize,
 MEM_COMMIT,
 PAGE_READWRITE);
 if (Memory==NULL) {
 fprintf(stderr, "VirtualAlloc failed, error %d\n",GetLastError());
 exit(1);
 }

 do {
 printf("STRIDE = %d\n", *Stride);
 for (CurrentRun=1; CurrentRun<=SystemInfo.dwNumberOfProcessors;
 CurrentRun++) {

 printf(" %d threads: ", CurrentRun);
 //
 // Start the threads, and let them party on the
 // memory buffer.
 //
 ResetEvent(StartEvent);

 ChunkSize = (MemorySize / CurrentRun) & ~7;

 for (i=0; i<CurrentRun; i++) {
 ThreadParams[i].ThreadIndex = i;
 ThreadParams[i].BufferStart = Memory + (i * ChunkSize);

 ThreadParams[i].BufferLength = ChunkSize;
 ThreadParams[i].Stride = *Stride;

 ThreadHandle[i] = CreateThread(NULL,
 0,
 MemoryTest,
 &ThreadParams[i],
 0,
 &ThreadId);
 if (ThreadHandle[i] == NULL) {
 fprintf(stderr, "CreateThread %d failed, %d\n", i,
 GetLastError());
 exit(1);
 }
 }

 //
 // Touch all the pages.
 //
 ZeroMemory(Memory, MemorySize);

 //
 // Start the threads and wait for them to exit.
 //
 StartTime = GetTickCount();
 SetEvent(StartEvent);

 WaitForMultipleObjects(CurrentRun, ThreadHandle, TRUE,
INFINITE);
 EndTime = GetTickCount();

 ThisTime = EndTime-StartTime;

 printf("%7d ms",ThisTime);
 printf(" %.3f MB/sec",(float)(MemorySize*TotalIterations)/
 (1024*1024) / ((float)ThisTime / 1000));

 if (CurrentRun > 1) {
 IdealTime = (LastTime * (CurrentRun-1)) / CurrentRun;
 IdealImprovement = LastTime - IdealTime;
 ActualImprovement = LastTime - ThisTime;
 printf(" (%3d %%)\n",(100*ActualImprovement)/
 IdealImprovement);
 } else {
 printf("\n");
 }
 LastTime = ThisTime;

 for (i=0; i<CurrentRun; i++) {
 CloseHandle(ThreadHandle[i]);
 }
 }

 ++Stride;
 } while (*Stride);
}

DWORD WINAPI
MemoryTest(
 IN LPVOID lpThreadParameter
)
{

 PTHREADPARAMS Params = (PTHREADPARAMS)lpThreadParameter;
 ULONG i;
 ULONG j;
 DWORD *Buffer;
 ULONG Stride;
 ULONG Length;
 ULONG Iterations;

 Buffer = (DWORD *)Params->BufferStart;
 Stride = Params->Stride / sizeof(DWORD);
 Length = Params->BufferLength / sizeof(DWORD);
 WaitForSingleObject(StartEvent,INFINITE);

 for (Iterations=0; Iterations < TotalIterations; Iterations++) {
 for (j=0; j < Stride; j++) {

 for (i=0; i < Length-Stride; i += Stride) {

 Params->BufferStart[i+j] += 1;
 }
 }
 }
}

As with any application that needs tuning, developing a scalable application requires attention to small
details and careful design. Windows NT provides an excellent framework for taking advantage of powerful
SMP platforms, but it also provides features that are unfamiliar to most programmers. Understanding how
to combine powerful features such as threads, asynchronous I/O, and completion ports is the key to
unlocking the performance that Windows NT offers.

Windows NT Security in Theory
and Practice
Ruediger R. Asche
Microsoft Developer Network Technology Group

May 9, 1995

Abstract
This article is first in a series of technical articles that describe the implementation and application of a C+
+ class hierarchy that encapsulates the Windows NT® security application programming interface (API).
The series consists of the following articles:

"Windows NT Security in Theory and Practice" (introduction)

"The Guts of Security" (implementation of the security class hierarchy)

"Security Bits and Pieces" (architecture of the sample application suite)

"A Homegrown RPC Mechanism" (description of the remote communication implemented in the sample
application suite)

In this article, I will discuss security coding on a rather high level; that is, I will show how security can
manifest itself in server code without presenting the actual code. CLIAPP/SRVAPP, a sample application
suite that consists of a database client and server, illustrates the concepts introduced in this article series.

Introduction
If you have a rather hazy notion of what security programming in Win32® is about, or if you are interested
in security programming from a conceptual point of view, this article is for you. If you are already familiar
with the concepts of security programming and would like to see working code, or you wish to plug the C+
+ security library I provide into your server application, you should skim the last section of this article to
get an idea of what the sample application suite does, and then proceed with the next article in this series,
"The Guts of Security.".

Security should be fairly straightforward to implement in an operating system, right? I mean, all it should
take to assign a certain security level to an arbitrary object is a single function call, such as
GrantAccessTo or DenyAccessTo, right?

Unfortunately, the Windows NT® security application programming interface (API) doesn't appear to be
that straightforward. It includes a plethora of functions that relate to security, and already the task of, say,
opening up an object to only one user is very complex.

To utilize the security API appropriately, you need to understand it at several levels:

· The first level is understanding the data structures: access control lists (ACLs), access control
elements (ACEs), security descriptors (SDs), and security IDs (SIDs). The C++ classes I provide
will allow you to exploit Windows NT security without working with these data structures directly. In
the article "The Guts of Security," I explain how these C++ classes are implemented.

· The second level is understanding the semantics of ACLs (although you don't need to understand
how they work). Depending on the order in which ACLs are built, access to the same user may or
may not be granted. In the "Toying with Security" section later in this article, we will see how this
ordering affects you.

· The third level is understanding how the operating system itself employs security. You can think of
the security API as a set of services that are provided for server applications to protect objects from
unauthorized access by clients, similar to the way the event log API provides services that help
device drivers and applications log errors and notification events.

As long as these services are used only by third-party applications, it is fairly easy to understand
how security works. However, Windows NT is a secure operating system (to stick with our previous
definition, the operating system uses the services provided by the security API), and furthermore,
networks based on Windows NT also rely on security very heavily. Therefore, the way security is
incorporated into the system itself is rather obscure. (I will examine this issue in a future article.)

Before I dive into the subject matter, let me make a few suggestions for further reading that supplements
the discussion in this article. First, you should definitely read Robert Reichel's two-part article "Inside
Windows NT Security," which appeared in the April 1993 and May 1993 issues of the Windows/DOS
Developer's Journal. Robert is one of the key developers of the Windows NT security subsystem, and his
discussion of the security components and data structures is probably the most comprehensive
information you can find on the subject. Second, for a conceptual discussion of security and how it fits into
the architecture of a network based on Windows NT, you should read the Resource Guide in the Windows
NT version 3.1 Resource Kit.

Who Needs Security?
Before I go into any details, let me clarify why you might need security. You may not have to bother with
security at all, unless the following holds true for you:

You are writing a server application, that is, an application that several users can access, and your
application provides data structures that are restricted to only a subset of those users.

Note that this is a fairly broad definition, and deliberately so. Here are a few examples of applications that
fit this category.

For stand-alone computers (that is, machines that are not tied into a network), you can write a service that
starts up as Windows NT boots and keeps running even as multiple users log on and off the same
machine. The service could provide information that is visible only to a few users¾for example, if you wish
to compile usage patterns or logon data, you might want to restrict access to that data to the machine's
administrator(s).

A number of privileges are restricted on the system level. For example, the system Registry is protected
so that only users with special privileges are allowed to add device drivers to the system. This is for
security reasons¾for example, a malicious user could misuse a device driver's ability to monitor user
input to spy on other users' work. Security can also help stabilize your system. Consider a poorly written
device driver installed by an unauthorized user. Such a driver could crash the machine while another user
is working. By restricting the ability to register new device drivers to trusted users, we can shield a
Windows NT machine from this kind of misuse.

A large number of server applications that work over a network as well as stand-alone will benefit from
some kind of hook into the security system. For example, a database server might serve several users at
the same time, some of whom may not be allowed to see some of the data in a given database. Let us
assume that everybody in your company can query your employee database. Administrative personnel
will need to access all the information on employees, whereas everyone else should be able to see only
job titles and office numbers. If you restrict the database fields that contain information on salary and
benefits to administrative personnel, you can, in effect, allow everyone in the company to use the same
database without compromising security and privacy. We will look into this possibility later in this article.

A Microscopic View of Security
One of the problems with security is that there is nothing fancy or glitzy about applying the security API.
Other people in my group write code that rotates teapots, displays animated images in a window, pops up
cool new Windows® 95 controls, sends data back and forth through a MAPI channel, and so on. I always
seem to pick the boring stuff. . .

As complex as security under Windows NT may appear, it is rather straightforward on a microscopic level.
Each Windows NT domain (or domain group) keeps a database of users that the domain knows about. A
user who wishes to work on a computer within a Windows NT domain must identify himself or herself
using a user name and a password. As soon as the security system verifies the password against the
user database, the user (and every process he or she starts) is associated with an access token, an
internal data structure that identifies the user.

The first thing you must know about security under Windows NT is that it is user-centric; that is, each line
of code that attempts to access a secured object must be associated with a particular user¾a user who
must identify himself or herself to the client machine using a password. Each security check is made
against the user identification. It is not possible, for example, to write code that prevents Microsoft® Excel
from accessing an object. You can secure an object against access from Joe Blow running Microsoft
Excel, but if Carla Vip is allowed to access the object, she can do so using Microsoft Excel or any other
application she pleases¾as long as Carla identifies herself on the client machine, using a password that
is known only to her.

The security API, complicated as it may appear, accomplishes only two things:

· Auditing: A log entry is generated every time a specified operation on a specified object is
attempted.

· Restricting object access: A function that a client application calls may succeed, fail with return code
Error 5 (access denied), or fail for another other reason, depending on how the server assigns
privileges.

I am absolutely serious. That is all. Error 5. Access denied. Instead of that error message, the user may
see a dialog box that reads something like: "You do not have the privilege to remove the eggs from the
carton." Internally, the application that pops up this dialog box probably contains code along the following
lines:

if (!RemoveEggsFromCarton() && GetLastError() == ACCESS_DENIED)
 AfxMessageBox("You do not have the privilege to remove the eggs
 from the carton");

Security Mechanisms
Windows NT uses two mechanisms that cause a failed access attempt to return Error 5: verification
against rights and verification against privileges. A right pertains to an action on an object, such as the
right to suspend a thread or the right to read from a file. Rights are always associated with a certain object
and a known user. For example, the right to read from a file must be associated with a file (to which this
right is applied) and with a user who does or doesn't have that right. Likewise, the right to suspend a
thread is useless unless it is associated with a specific thread and a user.

Privileges are predefined rights that pertain to operations on the system. For example, there are privileges
to debug applications, to back up and restore storage devices, and to load drivers. Privileges are centered
around users, not objects.

To make the distinction between the two a little bit clearer, let's look at the data structures that implement
rights and privileges: A right is specified in a data structure called an access control list, or ACL. An ACL is
normally associated with an object. A user is represented by an access token. When a user tries to
access a secured object, his or her access token is checked against the object's ACL. The access token
contains the unique identifier (the security ID, or SID) that represents the user. Each right in an ACL is
associated with a SID; this way, the security subsystem knows the rights associated with each user.

Privileges, on the other hand, are encoded in the access token, so no objects are associated with them.
To determine whether a user is allowed to do something that is associated with a privilege, the security
subsystem examines the access token.

Furthermore, whereas rights require the specification of an action (the right to do what?¾for example, to
read a file or to suspend a thread), privileges do not (that is, the user either does or does not hold them).
The action that goes with the privilege is implied in the privilege itself.

The reason why privileges are encoded in the access token is that most privileges override security
requirements. For example, a user who is allowed to back up a storage device must be able to bypass file
security¾adding a new ACE to every single file on a hard drive just to allow the user to touch the file is
simply not feasible. Thus, the code to back up a storage device first checks to see whether the user
attempting the backup has backup privileges; if so, individual file security is ignored.

The set of privileges that can be associated with an access token is hardcoded and cannot be extended
by an application. Server applications can implement customized security regulations using specific rights
and generic mappings.

There are two types of ACLs: discretionary (DACL) and system (SACL). DACLs regulate object access,
and SACLs regulate auditing.

Controlling access
In most cases, Error 5 is generated internally by a Windows NT-specific Win32 function called
AccessCheck. This function takes as input a user's access token, a desired privilege, and an ACL (this
simplification is good enough for now; we'll look into details later). An ACL is basically a list of small data
structures (called access control elements, or ACEs), each of which specifies one user or a group of
users, a set of rights, and the information on whether the rights are granted or denied. For example, an
ACL might have an ACE that reads, "The right to remove eggs from the carton is explicitly denied to the
users Elephant and Bozo," followed by an ACE that contains the entry, "The right to remove eggs from the
carton is explicitly granted to Betty Crocker and all users in the CHEFS group."

ACLs are typically associated with objects and can be built dynamically from your server application. For
example, if a file object is associated with an ACL, whenever an application tries to open that file object,
the ACL will be consulted to determine whether the user who is running the application is allowed to open
the file.

The AccessCheck function is called internally from a number of system functions, for example,
CreateFile (when a user attempts to open a file on an NTFS partition or on a named pipe) and
OpenFileMapping. However, a Win32 server application can call AccessCheck directly, thereby
protecting any object it wishes to.

Note that functions of the security API are called only by server applications; clients never request or
employ security directly. All that clients ever see of Windows NT security is Error 5. This allows Windows
NT security to work regardless of which software the client is running. All that is required is the server's
ability to identify the client in the domain's security database and translate any incoming request from the
client to a function call on the server side. This function either calls AccessCheck implicitly, or its result
may or may not be sent, depending on the outcome of AccessCheck on the server side. (This sounds
very abstract, but I do exactly that in the server application later on.)

Part of the confusion in Windows NT security is the fact that calls to AccessCheck can be very obscure.
For example, the ability of Windows NT to monitor attempts to install device drivers is a very shady
notion¾which "object" does a user try to access when attempting to add a device driver? Where exactly
does the system call AccessCheck and display an error to the user if necessary?

In the case of device drivers, the answer is not too difficult: Because device drivers and the system
interact through the Registry (Windows NT loads device drivers by traversing a Registry subtree,
interpreting each entry, and trying to execute the driver binaries that are specified in the individual
Registry keys), the objects that Windows NT protects are Registry keys, which are securable objects
under Windows NT. On the Win32 API level, any attempt to manipulate the Registry will be translated into
one of the functions that work on the Registry, such as RegOpenKey, which calls AccessCheck
internally.

Note that aside from the Registry protection, there is also a security issue with the driver binaries. A
frustrated hacker who is denied access to the Registry could still replace an existing driver executable file
with a file that clones the existing driver and also has additional functionality¾this process does not
require access to the Registry, so how can Windows NT prevent this kind of misuse? Rather easily, by
requiring that the driver binaries reside on an NTFS partition, and by restricting access to the binaries.
This way, an attempt to replace the driver binary (which will inevitably end in a DeleteFile or CreateFile
call on the Win32 API level) will be trapped by AccessCheck, and our malicious hacker will be out of
luck.

Other system-provided, secured objects may be more difficult to figure out. For example, what exactly
prevents a user from accessing a protected network share? What refuses to let you open the service
control manager on a remote machine? What is it on the system level that makes Windows NT airtight?
Or, even trickier, what makes some of the security functions themselves fail with Error 5, access denied?
Imagine what would happen if an application could freely manipulate its access token or call a security
function to change the privileges on objects it can see. In that case, it would be easy to bypass security by

simply adjusting the entries in the ACLs and tokens. Thus, there must be some kind of "meta-security";
that is, a mechanism to protect the security features themselves from misuse. How is that implemented?

Tune in again next week for our next episode. . . I will discuss the secure architecture of Windows NT
itself in a future article. This article and its siblings, "The Guts of Security" and "Security Bits and Pieces,"
deal only with the easy issue: how to secure your objects in your server application. Back to our main
program after these exciting messages from our sponsor.

Note that one of the consequences of a security implementation based on AccessCheck is that security
relies heavily on architectures that allow only well-known entry points to secured objects. For example,
the Windows version 3.1 family of operating systems includes a large number of different entry points to
the file system: int 21h (which interacts with the file system), int 13h (which interacts with the disk device
driver), and several types of C run-time and Windows API functions (such as OpenFile and _fopen) that
provide file system access. It would make no sense from a security point of view to call a function such as
AccessCheck in the internal implementation of OpenFile, when an application could simply call _fopen
and bypass file security. As long as all variations of file-open calls are translated into one "secured" call,
we are fine; but as soon as one variation performs security checks and another doesn't, we have a
security problem.

As a side note, this "open file system" architecture in the 16-bit Windows system is one of the major
headaches for vendors who provide security add-ons, such as encryption software and hardware.

When you write a secured server application, it is absolutely necessary that you design your application to
be airtight; that is, you must protect all means by which clients may access your sensitive data. In the
sample application, I show how remote access from a client to a server may be protected, but if the client
and server happen to reside on the same machine, and the shared memory in which the database
resides is not protected, the client can "sneak into" the database, thus violating security. One of the
challenges of a secured system is to make the sensitive data airtight¾this may be a fairly intricate task, as
we saw in the case where protecting Registry entries alone is not good enough to protect a machine's
device drivers.

Access Right Types
With the security API, the system can help you regulate access to almost any kind of object. But what
does "access" mean? Isn't the type of access you imply when you talk about database fields something
completely different from accessing, say, the message loop of another window?

Exactly, and that is why "access" is a fairly generic term in the security API. Instead of hard-coding access
types such as "the right to open, close, read from, or write to an object," access in Windows NT is defined
as a collection of bits in a mask. The security subsystem matches the bits in the user's access mask with
the bits in the object's access mask. This enables us to design an employee database, for example, in
such a way that administrators can read and write information on payroll and benefits; managers can
read, but cannot write to, these database fields; and nobody else has read or write access.

By the same token, your application can define its very own access types. For example, if your application
wants to secure an OpenGL™ object that can be shared (in the sense that several users could call
functions that manipulate the object on the screen), you could simply define unique access rights for all
the cool things you can do with OpenGL objects (for example, rotate, stretch, flip, and remove), and
assign each user who works on the image a unique subset of those rights.

The security API can work with three groups of rights:

· Standard rights (rights that provide the same operation for each object type).

· Specific rights (rights that mean something specific for each object type¾objects of two different
types may have the same bits in the rights mask set, but different interpretations of what those
rights mean).

· Generic rights, which are roughly placeholders (rights such as GENERIC_READ and
GENERIC_WRITE, which are applicable to almost all object types, but mean different things for
different object types). Generic rights are mapped to standard and specific rights. This mechanism
allows a server to establish a notion of "writing" and "reading" an object without really defining these
actions. For example, for a database object in the CLIAPP/SRVAPP sample application suite,
"reading" the database means "retrieving records," and "writing" means "adding or deleting
records." A server application can work with generic rights, regardless of whether reading and
writing refers to a file or to a database object, and the objects themselves can determine how the
generic rights translate into specific rights.

So far, this has been a really abstract discussion. Let's look at some hands-on examples to clarify what
we talked about.

Toying with Security
I argued earlier that servers are the only applications that need to call security API functions, so they can
regulate access by client applications. Thus, a sample that demonstrates security requires at least two
parts: a server application that allows or disallows a client to remove eggs from the carton, and a client
application that attempts to remove the eggs.

Consequently, the sample code that I've provided with this article consists of two parts: a server
application (SRVAPP.EXE) and a client (CLIAPP.EXE). To minimize the potential harm, my sample
application suite does not work on eggs, but on data structures in memory. Let's see what you need to run
these applications.

Setting Up Your Hardware
To run the sample code, you need at least one computer running Windows NT. This will be the server
machine. The server machine will contain the data to be opened or denied to users.

This data will be accessed by applications running on a client machine. The client machine can be the
same as the server machine, or it can be another machine running either Windows NT or any other
operating system that can execute Win32 binaries and log onto a Windows NT domain (for example,
Windows for Workgroups 3.11 with Win32s® extensions, or Windows 95). Please see the next section,
"The Secret of Logging On," for more information on what happens when a user identifies himself or
herself.

The server machine must be able to access security information for the user who logs onto the client
machine. If you set up the client and server on the same machine, this requirement is automatically met. If
the client is on a different machine, you must log onto the client machine as a user on a domain that the
server can access.

Because security is based on users, you should first create a few test user accounts under which you can
log onto the client machine. (On a Windows NT Server machine, you can use the User Manager for
Domains application to create these accounts. On a Windows NT Workstation machine, the "normal" User
Manager will do, as long as you have administrative privileges on the machine.) You should also create a
few groups (also with the User Manager), and set up a few assignments between users and groups. For
my test purposes, I created two groups, OOZLES and WABBOTS, and four users, Lillo, Gnorps, Alf, and
Picard. I assigned users to groups as follows (we will come back to this scenario later on):

· Lillo is a member of WABBOTS, but not OOZLES.

· Gnorps is a member of OOZLES, but not WABBOTS.

· Alf is a member of both OOZLES and WABBOTS.

· Picard is not a member of either WABBOTS or OOZLES.

In the Windows NT security model, a user is identified by two components: the user name and a domain
name. To create a user account on a specific domain, you must have administrative privileges on that
domain. You will not need administrative privileges to run the tests, but only to create the user accounts
and groups.

If you do not have the appropriate privileges to create new accounts in your domain, you can run both the
server and the client applications on machines that are on the same network (for example, your corporate
network), using users and user groups that already exist in your network's domain.

As I mentioned before, the client application does not have anything to do with security. It simply tries to
access shareable objects that the server owns; all the code that manages security resides in the server.
All the client will notice in terms of security is that it may be denied certain operations on the shared
objects¾some API functions that the client calls may simple return the Error 5 (access denied) instead of
succeeding.

The Secret of Logging On
Now let me clarify what "logging on as" means. If your server machine is running the Windows NT Server
operating system, you can use the User Manager for Domains application from the Administrative Tools
Group to create user accounts. You can then configure the client machine to belong to the domain that
Windows NT Server administers. A user who wants to log onto the client machine must identify himself or
herself through an account that the server machine administers.

However, if the server is running the Windows NT Workstation operating system, a user on the client
machine cannot use an account on the server. Note that if the user who is logged onto the server
machine has administrative privileges, he or she can maintain user accounts on that local machine¾in
that respect, Windows NT is a stand-alone domain that follows the same security rules as a multi-
machine domain. The only difference is that client machines cannot register themselves as belonging to
the domain defined by a workstation.

However, you can still run the sample application suite, even if you are not running Windows NT Server.
Do the following:

· Designate a Windows NT Workstation machine as the server machine. On this machine, log on as
an administrator and create a few accounts (as we discussed in the last section).

· Put copies of CLIAPP.EXE and SRVAPP.EXE in a shared directory on the server machine.

· From the client machine (which, as we discussed earlier, does not need to run Windows NT), log
onto the server using the following LAN Manager command:

net use drive: \\server\share /user:server\account *

where drive is the drive letter you wish to use for the connection, server is the name of the server
machine, share is the share that contains CLIAPP.EXE, and account is an account on the server.

For example, if the server machine is called SLACKER, and you create the above user accounts on
that machine's domain, the logon would look something like this on the client side:

net use K: \\slacker\database /user:slacker\lillo *

Using the password that the server machine assigned to the user account, you can now log onto the
server machine and run the server application remotely. The server will now treat the client machine as if
it were the user for whom we created an account. This is possible through a process known as
impersonation: When the client connects to the share where CLIAPP.EXE resides, the server treats this
connection as if the specified user had logged onto the server.

Using the Sample Application Suite
The sample application suite, which consists of a server application and a client application, demonstrates
how to secure named pipes, mutexes, file mappings, and private objects.

Server side
The server application is a little database server. Bring up SRVAPP.EXE on the server machine and
experiment with the commands in the Database menu: You can insert records (in this case, a record
simply consists of two integer values), view the contents of the database, and remove records. No magic
to that whatsoever. The main purpose of the server application is to provide a shell that demonstrates
how to regulate access to the database from a client application¾that is, the server accepts database
requests from remote clients, decides whether the access is allowed (according to security requirements
that the user of the server application specifies), and, depending on the outcome, grants or denies the
database requests to the client.

Note that the database software is homegrown: that is, I supply all the logic and code to maintain the
database. In this age of automation and powerful database controls, it makes little sense to reinvent the
wheel. Fortunately, the encapsulation mechanisms of C++ allow easy replacement of the database, so for
future enhancements of the server application, I plan to replace the homegrown database with an existing
database control (for example, an OLE automation object provided by a database server application).

You can use two techniques to allow a client application to utilize the server's database:

· Let the client and server access the database locally, via shared memory. (This technique works
only if the client and server applications are executed on the same machine.)

· Let the client and server access the database remotely, through network access. To use this
technique, select the Wait to Connect command from the server's File menu.

See the third article in this series, "Security Bits and Pieces," for more information on these techniques.

Client side
On the client machine, follow these steps:

1. Log onto the client machine, using one of the test accounts that you created (to stick with the above
sample, you could choose Lillo). Make sure that the server has been prepared to wait for incoming
connections (you should have selected Wait to Connect from the server's File menu), then choose
Connect to Server from the client's Remote Access menu, and specify the name of the server
machine in the dialog box.

Note Here lurks an opportunity for confusion. I mentioned earlier that security is user-based,
but a named pipe is identified by the name of the machine on which the pipe was created. Thus, if
the name of the server machine is SLACKER and you log onto the server machine as Gnorps, all
security checks are performed based on the identification of Gnorps, but a named pipe is created
using the name SLACKER. (Please see the "Garden Hoses at Work" article in the Development
Library for more information on named pipes.)

The client should now display a line in its main window saying that the named pipe could not be
opened due to error¾"access denied." Hah! We got 'im!

2. Now go back to the server application, choose Cancel Wait from the File menu, choose Named
Pipe from the Permissions menu, and enter the following information in the Named Pipe Security
dialog box:

· Set User to "Lillo" or whatever account you used to log onto the client application.

· Leave Domain blank for the time being. (This option defaults to the domain that you used to log
onto the server machine.)

· Choose Grant Access as the access type. This will grant Lillo access to the named pipe. Note that
in my sample application suite, "grant access" means "grant the user access to all operations
on the pipe," although you can change the code to selectively grant or deny read or write
access to the pipe (we will see later on how this can be accomplished).

3. Now choose Wait to Connect again from the server's File menu, and select Connect to Server from
the client's Remote Access menu, again choosing the name of the server machine. You should now
see a message from the client application, saying that the connection has been established. Here
we see the first application of security: granting a user access to a named-pipe object.

4. Now choose Disconnect from Server from the client's Remote Access menu. The server should now
display the message, "Client terminated connection."

5. Bring up the Named Pipe Security dialog box from the server application's Permissions menu
again, and deny access to WABBOTS. Choose Wait to Connect from the server's File menu again,
and try to reestablish the connection as before. You should now receive the error message, "Could
not open pipe¾access denied" in the client's window again. Makes sense, doesn't it? After all, Lillo
is a member of WABBOTS, so denying WABBOTS access to the named pipe should also block
Lillo.

Note You can change the permissions on the pipe while the pipe is connected, but if you do
that, you will not see any change in behavior until the pipe is disconnected and reconnected to a

new client. The security system performs the access check whenever a client attempts to open the
pipe. If the opening is successful, the access rights do not change until the pipe disconnects. For
example, if you decide that a certain user (who currently has read/write permissions on the pipe)
should only have read permissions on the pipe, you can change the permissions whenever you like.
However, as long as that user has successfully opened the client end of the pipe for reading and
writing, he or she can read from, and write to, the pipe until the pipe is disconnected. That is why
you should have the client disconnect every time before you make security changes.

Take some time to play with the rights to your heart's delight¾the Permissions dialog box lets you grant,
deny, or revoke previously granted or denied rights. Try to get a feeling for how group rights relate to user
rights; for example, what happens if access is denied to Lillo but granted to WABBOTS when the client is
logged on as Alf? What happens if you have a more complex hierarchy of user groups (say, a three-level
hierarchy) in which individual users are excluded from a high-level group, but included in a lower-level
group? (For example, if both OOZLES and WABBOTS belong to the BALLOONS hyper-group, what if
Lillo is in BALLOONS and WABBOTS, but not in OOZLES?)

What happens in the case of ambiguous rights? To test this, log off the client machine and log on as Alf,
who, as you may recall, is a member of both OOZLES and WABBOTS. Grant WABBOTS access to the
named pipe, and deny access to OOZLES. When the client tries to access the named pipe now, it should
see the dreaded "access denied" message.

Does that mean that denying access is stronger than granting access? After all, as a member of both
WABBOTS and OOZLES, Alf is both granted and denied access, so why is the client denied access when
it tries to access the named pipe? Even stranger, if we now explicitly grant access to Alf, the client will still
be denied access! How come?

There is a reason for everything. When Alf tries to connect to the named pipe, Alf's identity is matched
against all access rights in order, and the first right that contains Alf is applied. The code that I provide
deliberately adds all access-deny rights to the beginning of the list. When the code that tries to open the
named pipe traverses the list of assigned rights, the first access that applies to Alf is the one that reads
"access denied to OOZLES." As soon as the security system encounters this entry, the security check
function returns immediately, regardless of what follows the entry in the security list. If the entry "access
granted to WABBOTS" appeared before the "access denied to OOZLES" entry, the security system would
return with an access grant.

So why does my application code stuff all of the denied rights in front of the granted rights? Remember
that for each object that is associated with a set of rights, a user who has not explicitly been granted
access is automatically denied it. Thus, we could simply grant access to the users who we believe should
access the object, and let everybody else die in the default case. So why do we need access-denied
entries at all?

Very simple: to refine rights we have granted before. Let us assume that we want everyone in the
OOZLES group except Alf to be able to access the named pipe. Because OOZLES is potentially a fairly
large group, we do not want to enumerate all users within OOZLES and grant each one (except Alf)
access. An easier way to exclude Alf would be to deny access to Alf explicitly while granting access to
OOZLES. That is where it makes perfect sense to put all access-denied elements in front of the list: While
traversing the list of rights, the system would find Alf's denied entry first and return, whereas for every
other user in OOZLES, the system would scan the list until it found the access-granted element.

More Security. . .
When you have tired of toying with this kind of thing, you are ready for the next step. Go back to a
security assignment in which the client can successfully open a connection with the server. On the server
side, add a few records to the database, then select View Contents from the server's Database menu.
You should now see a few entries in the server's menu reading something like, "Element x has values y
and z."

Now do the same thing on the client side: Select View Contents from the client's Remote Access menu.
You should now see a number of messages on the server side reading, "Remote retrieve succeeded,"
and on the client side, you should see the same messages you saw earlier on the server side: "Element x
has values y and z."

When I got to this point in my application design, I was pretty happy: I had designed a complete little
RPC-based database server and client application in which the database could be accessed from both
sides over a network. However, no security was yet involved (except for the named-pipe protection), so I
added what you can see next.

Try to add a record from the client, using the Add Record command from the Remote Access menu. On
the server side, you will see, "Remote insert failed¾propagating error Access Denied," and on the client
side, you will very simply see the message, "Could not insert element¾access denied."

Why is that? Simple: I have designed the application such that the client can always read from the
database, but not write to it unless that privilege is explicitly granted. Both inserting and removing records
is considered writing to the database, so the client can enumerate the contents of the database (read
from it), but cannot add or remove contents (write to it).

You have probably already spotted the Database command in the server's Permissions menu. Now is the
time to use it: Bring up the Permissions/Database dialog box and use it exactly as you used the
Permissions/Named Pipe dialog box. Grant access to the user in whose context the client application
runs, and voilà! The next time the client application attempts to add a record, you will see the message,
"Remote insert succeeded!" on the server and client sides, and viewing the contents of the database on
either side will give you the new record. The same thing works with record deletions.

Phew! Now we have not only a client-server database system, but a secured client-server database
system, on which the server can restrict access to the database to known and trusted users! Doesn't that
cover all we wanted to demonstrate?

Yes and no. I made a point earlier that security must be airtight, and there is one more thing you should
do before turning off your computer.

Shut down the client application, and restart it on the server machine. Yes, you heard right: For this test
run, we will execute both the client and server applications on the same machine. It should come as no
surprise to you that the application suite will behave exactly as it did before¾with one little exception:
When you select Open Shared Database from the client's Local Access menu, you will see the error
message, "Access denied." (Attempting this option when the client and server are executing on different
machines returns the message, "The filename is incorrect.") We have seen that one before, right? And
the last time we saw this, we modified the Permissions dialog boxes, so let's choose the Shared File
command from the server's Permissions menu and grant access to the user under whose name we
logged on.

Now selecting the Open Shared Database command should succeed. Miraculously, the Add a Record,
Remove a Record, and View Contents commands in the client's Local Access menu are not only enabled,
but invoking them always succeeds, regardless of the permissions! Whew! To confirm that something
weird is going on, grant the current user access to the named pipe (just as you did when the client and
server executed on different machines), open a connection, and verify that the client is now denied

remote access, but can party on the database via the shared file! Security violation? Anarchy?

Not really. This little experiment demonstrates that a server application must be very careful in restricting
access to its sensitive data through all paths available to the client. In our little case, we are fine because
the client cannot access the shared memory unless it is granted explicit permission. However, if the code
had not secured the shared memory area, it would have given the client a "trap door" for accessing the
data, although the "proper" (in this case remote) access to the database was appropriately protected.
Making a server application airtight can be one of the major challenges in security design.

Summary
We have established a context for Windows NT security programming and illustrated the concepts with a
"black box" sample application suite. You should now have a conceptual idea of how security
programming for Windows NT works. I'm sure you are dying to figure out how the server was coded to
incorporate all the security magic. (Yeah, right. . . As I write that, I look out the window and wish I had
brought in my motorbike today.) If so, you should proceed with the article "The Guts of Security," which
goes into all of the gory details of security programming.

Developing Transport-independent
Applications Using the Windows
Sockets Interface
Presented by: David Treadwell

David Treadwell has been active in Windows Sockets since its inception, acting
as a coauthor of the specification and developing the Windows NT Windows
Sockets interface.

Portions of this session are reprinted, with permission, from "Plug into Serious
Network Programming with the Windows™ Sockets API" by J. Allard, Keith
Moore, and David Treadwell, Microsoft Systems Journal, July 1993, © 1993
Miller Freeman Inc.

Introduction
In today's heterogeneous networks, one thing is clear: closed, proprietary standards are unwelcome. As
the business of networking computers has evolved over the last two decades, hardware and software
providers have learned that cooperation can yield very rewarding results. The Windows Sockets effort
represents an extremely usable open networking standard developed by over 20 cooperating vendors in
the networking community.

The Windows Sockets API (Application Programming Interface) provides applications with an abstraction
of the networking software below it. The present Windows Sockets specification, version 1.1, defines this
abstraction for the TCP/IP, or Internet protocol family. For many, the TCP/IP protocols represent the
greatest common denominator between the many distinct systems that make up today's enterprise
networks. In fact, the TCP/IP protocols were developed in a manner similar to the Windows Sockets
specification: open cooperation between many interested parties with different requirements. Windows
Sockets doesn't stop at TCP/IP, however. The level of abstraction is complete enough to support other
protocol families as well, for example: the Xerox Network System (XNS) protocols, Digital's Dec-net
protocol, or Novell's IPX/SPX family. For many, the attraction to Windows Sockets is the ability to develop
and/or run a Windows Sockets-compatible application over any vendor's Windows Sockets-compliant
TCP/IP implementation, while providing the ability to move the application easily to other networking
protocols.

Windows Sockets is implemented as a DLL (dynamic link library) provided by the vendor of the given
network protocol software. A Windows Sockets developer leverages the APIs from both Windows Sockets
as well as the Windows operating system itself to create a network-aware Windows application. The
following diagram illustrates the basic building blocks used to create a Windows Sockets application. The
areas shaded in grey are provided by the network protocol vendor.

{ewc msdncd, EWGraphic, bsd23459 0 /a "SDKD.BMP"}

The Basic Building Blocks of a Windows Sockets Application

The goal of this article is to offer developers a taste of this powerful new API. We assume that the reader
is familiar with both networking basics as well as Windows programming. To keep things simple, we will
focus our discussion on using Windows Sockets to develop network applications over the TCP/IP protocol
family, but will include several tips on how other transport protocols are supported with Windows Sockets.

Today, over 30 application vendors have announced the development of commercial applications to
Windows Sockets such as X Windows servers, terminal emulators, and email systems. Several
commercial and public domain versions of Windows Sockets-compliant TCP/IP stacks are available, and
both Windows NT and Chicago include Windows Sockets implementations which are capable of
supporting transport protocols in additions to TCP/IP, such as IPX/SPX. Many corporate developers are
standardizing on Windows Sockets for heterogeneous client-server application development under
Microsoft Windows.

Whether you're developing client-server, peer-to-peer, or distributed network applications, Windows
Sockets represents a standard networking API for Microsoft Windows which will allow you to develop
flexible networking applications for TCP/IP and other networking protocols.

The Birth of Windows Sockets...
The Windows Sockets specification is the result of a cooperative effort among over 20 vendors in the
TCP/IP community. The charter of the group was simple: to design a binary-compatible API for the TCP/IP
protocol family under Microsoft Windows, allowing for future support of additional transport protocols. The
effort, led by Martin Hall of JSB Corporation, was kicked off at a Birds of a Feather session at the Fall '91
Interop networking conference.

Infuriated by a lack of standardization, TCP/IP application vendors like JSB were forced to develop their
applications to be aware of several divergent APIs. This allowed their applications to run over multiple
vendors' TCP/IP implementation, making their products available to the widest possible audience. With
over 10 different TCP/IP implementations on the market, many vendors created an abstraction layer to
the network interface, creating a common denominator which could be supported by all of their target
implementations. Their application was then developed to this proprietary abstraction layer. Providers, or
code which glued the application to a specific vendor's TCP/IP implementation, were developed for each
of the TCP/IP implementations which the application desired to support.

This approach was both costly and frustrating. Application vendors were continuously updating their
provider modules as TCP/IP implementors modified or updated their libraries. Moreover, new
implementations were springing up quickly, and it took time before the appropriate provider could be
made available to customers. Application vendors found it difficult to maintain, test, and support the
multiple providers. This caused TCP/IP implementors difficulty as well, especially if a critical third- party
application didn't run over their implementation. Customers were forced to choose a TCP/IP
implementation based on their application needs rather than the merit of vendors' transports.

It would appear that getting the developers of TCP/IP transports and applications to work this out would
make a lot of sense. Martin Hall acted as the catalyst to get things going quickly. In fact, vendors were so
motivated to straighten out the TCP/IP networking API confusion that in just nine months the Windows
Sockets committee published the first version of the specification. The first anniversary of the effort was
christened by several technology and interoperability demonstrations at Fall Interop '92. The message
was clear: Windows Sockets was real.

Windows Sockets Architectures
How are Windows NT and Chicago able to support several transport protocols with a single API set? The
answer lies in the carefully designed network architectures of these operating systems. Because an
understanding of the underlying network architecture is always helpful and frequently mandatory in
designing and implementing fast, robust networking applications, we'll briefly describe how Windows
Sockets fits into these operating systems.

Windows Sockets in Windows NT
The key to transport-independent Windows Sockets support in Windows NT is a common kernel-mode
transport interface called Transport Device Interface, or TDI for short. All of the networking components of
Windows NT go through TDI to access a transport protocol's services. TDI abstracts key differences
between protocols, such as the format of transport addresses, and provides common entry points for
typical transport features like sending data.

{ewc msdncd, EWGraphic, bsd23459 1 /a "SDKD.BMP"}

Networking Architecture of Windows NT

All the kernel-mode networking components of Windows NT use the TDI interface to speak to the
transport layers below them. This use of a common interface allows easy addition or removal of transport
protocols, since each transport protocol is completely separated from the layers which use it; in fact, each
transport is packaged as a separate driver file.

However, TDI is not the only kernel-mode transport interface available in Windows NT. There is also the
Streams interface which is based on the AT&T SVR4 Streams environment. Streams is useful for porting
existing transport protocols to NT quickly and easily. However, it does impose a performance overhead on
all transactions, since there is a mapping layer between the TDI calls made by upper layers and the
internal interfaces used by Streams. The TCP/IP and IPX/SPX transport protocols supplied with the
original release of Windows NT existed in the Streams environment, but Daytona, the next release of
Windows NT, will include native TDI implementations of these transport protocols for improved
performance.

The use of TDI as the interface underneath Windows Sockets solves most of the issues with multiple
transport support, but some additional issues do remain. For example, because each transport protocol
uses a different address format, how could Windows Sockets know which addresses are broadcast
addresses? How can the Windows Sockets DLL know which transport device name corresponds to a
given type of socket? And how can transports supply their own unique socket options like TCP/IP's
SO_DONTROUTE option?

The answer is the use of user-mode "helper DLLs" which the Windows Sockets DLL (wsock32.dll) uses
for carefully defined functionality. Each of the TDI transport protocols exposed through Windows Sockets
supplies one of these helper DLLs as well as placing information in NT's registry about where to find the
helper DLLs and what sorts of sockets each supports. The Windows Sockets DLL then calls into the
helper DLL's entry points to learn about the format of transport addresses, to process transport-specific
socket options, and more.

{ewc msdncd, EWGraphic, bsd23459 2 /a "SDKD.BMP"}

Windows Sockets Architecture of Windows NT

In addition to 32-bit Windows Sockets applications supported through wsock32.dll, Windows NT also
supports 16-bit Windows Sockets applications through the file winsock.dll. This file is composed of
minimal entry points which call into NT's "WOW" (Windows-on-Windows) subsystem, which widens the
parameters to 32-bits and calls into wsock32.dll for the actual networking support. Thus, winsock.dll acts
as a "thunking layer" between 16-bit applications and the rest of the operating system, which is all 32-bit.

Windows Sockets in Chicago
Note The information in this section pertains to the next major release of Windows, code named
Chicago. All of the information in this section is preliminary and subject to change.

Chicago also supports multiple transports under Windows Sockets, using the same names, wsock.dll and
winsock.dll, for the system DLLs so that application binary compatibility is preserved. However, internally
the architecture of Windows Sockets in Chicago is significantly different than NT's architecture.

{ewc msdncd, EWGraphic, bsd23459 3 /a "SDKD.BMP"}

Windows Sockets Architecture of Chicago

One of the key differences between the Chicago and NT Windows Sockets architectures is that there is
no thunking involved for 16-bit applications. The Windows Sockets DLL is cross-compiled into two
different files, WSOCK32.DLL and WINSOCK.DLL. Each of these speaks directly to the underlying VxDs
(virtual device drivers) which provide Windows Sockets support, thereby eliminating an extra layer for 16-
bit applications.

Next, Chicago has multiple kernel-mode transport interfaces, including both TDI and the ECB (event
control block) interface. Therefore, the drivers which translate between Windows Sockets calls and the
transport drivers are different for each transport. The WINSOCK.386 VxD points the user-mode DLLs at
the appropriate kernel driver, then the DLLs access WSTCP.386 or WSNW.386, which in turn speak to
their transports over each transport's interface.

The Sockets Paradigm
The Sockets paradigm was first introduced in Berkeley UNIX® (BSD) in the early 1980s. Initially designed
as a local IPC (inter-process communication) mechanism, sockets evolved into a network IPC mechanism
for the built-in TCP/IP protocol family. A socket simply defines a bidirectional endpoint for communication
between processes. Bidirectional simply implies that Windows Sockets allow applications to transmit as
well as receive data through these connections.

A socket has three primary components: the interface to which it is bound (specified by an IP address),
the port number, or ID to which it will be sending or receiving data, and the type of socket (either stream
or datagram). Typically, a server application listens on a well-known port over all installed network
interfaces. On the other hand, a client generally initiates communication from a specific interface from any
port that the system has available. The type of the socket (stream or datagram) depends entirely on the
needs of the application. Windows Sockets is closely related to the Berkeley sockets model; many of the
APIs are identical, or very close. In addition to the Berkeley-style functions, Windows Sockets offers a
class of asynchronous extensions which facilitate the development of more "Windows-friendly"
applications. These extensions will be discussed in detail later in this article.

Stream vs. Datagram Sockets
The Windows Sockets model offers service for both connection-oriented and connectionless protocols. In
the TCP/IP protocol family, TCP provides a connection-oriented service, whereas UDP (user datagram
protocol) offers connectionless service. In the sockets model, connection-oriented service is offered by
stream sockets, connectionless service is provided by datagram sockets.

TCP is a reliable, connection-oriented protocol, used by applications which either plan to exchange large
amounts of data at a time, or by applications which require reliability and sequencing. For example, FTP
(file transfer protocol), a protocol which facilitates the binary or ASCII transfer of arbitrarily large files,
represents an application written to TCP or stream sockets. In contrast, if an application is willing to
manage its own sequencing or reliability, or is using the network for low-bandwidth iterative processing,
UDP is often used. An application which keeps system clocks synchronized by periodically broadcasting
its system time would probably be written to use UDP.

Network-byte Order
Since Windows Sockets applications can't possibly be aware of what type of remote computer system
that they will be dealing with a priori, it is necessary to define a common data representation model for
vital information. Sockets chose the big-endian model for the "on-the-wire" data representation, known as
network byte order.

The Windows Sockets interface offers APIs to application programmers to do the necessary conversion
between the local system representation (or host byte order) and network byte order. There is no harm in
using these routines on systems which store data in big-endian natively, in fact, it's encouraged. By
religiously using the byte-ordering APIs, your code can be used on systems with different internal
representations without inheriting byte-ordering problems, thereby making your code more portable.

A Guided Tour of the Windows Sockets API
Although the Windows Sockets specification defines all of the Windows Sockets functions and structures,
this guided tour of the API will give you a basic understanding of the building blocks of a Windows
Sockets application. Following the walkthrough, we will discuss the use of Windows Sockets by the
WormHole sample application.

The Basic Structures
Although the Windows Sockets specification contains about a dozen different structures, application
developers will quickly become familiar with a few that are required by nearly all Windows Sockets
applications.

struct sockaddr {
 u_short sa_family;
 char sa_data[14];
};
struct sockaddr_in {
 short sin_family;
 u_short sin_port;
 struct in_addr sin_addr;
 char sin_zero[8];
};

The sockaddr structure is used by Windows Sockets to specify a local or remote endpoint address to
which to connect a socket. An endpoint address simply contains the appropriate information to send data
between two sockets on different systems. As the contents of endpoint addresses differ between network
protocol families, the sockaddr structure was designed to accommodate endpoint addresses of variable
size, satisfying requirements of many common network protocol families. The first field of a sockaddr
contains the family number identifying the format of the remaining part of the address.

In the Internet address family, the sockaddr_in structure is used to store the endpoint address information
and is cast to type sockaddr for the functions which require it. Other address families must define their
own sockaddr_ structures as appropriate for their needs. For TCP/IP, the sockaddr_in structure breaks
the endpoint address into its two components: port ID (sin_port) and IP address (sin_addr), and pads the
remaining eight bytes of the endpoint address with a character string (sin_zero). The port and IP address
values are always specified in network byte order. The value for sin_family under TCP/IP is always
AF_INET (address family Internet).

struct hostent {
 char FAR * h_name;
 char FAR * FAR * h_aliases;
 short h_addrtype;
 short h_length;
 char FAR * FAR * h_addr_list;
};

The hostent structure is generally used by the Windows Sockets database routines to return host, or
system, information about a specified system on the network. The host structure contains the primary
name for a system including optional aliases for the primary name. Additionally, it contains a list of
address(es) for the specified system. This information is generally sought for the remote system to which

an application is connecting using the Windows Sockets database routines described later.
struct protoent {
 char FAR * p_name;
 char FAR * FAR * p_aliases;
 short p_proto;
};

struct servent {
 char FAR * s_name;
 char FAR * FAR * s_aliases;
 short s_port;
 char FAR * s_proto;
};

The protoent and servent structures are also filled by the Windows Sockets database routines. These
structures contain information about a particular protocol (TCP, or UDP,) or service (finger or telnet, for
example) respectively. Along with the primary name and an array of aliases for the protocol or service,
these structures also contain their corresponding 16-bit IDs, necessary to build a valid TCP/IP endpoint
address.

typedef struct WSAData {
 WORD wVersion;
 WORD wHighVersion;
 char szDescription[WSADESCRIPTION_LEN+1];
 char szSystemStatus[WSASYS_STATUS_LEN+1];
 unsigned short iMaxSockets;
 unsigned short iMaxUdpDg;
 char FAR * lpVendorInfo;
} WSADATA;

Finally, the WSAData structure is filled in by a Windows Sockets DLL when an application calls the
WSAStartup() API. Along with Windows Sockets version information, the structure also contains vendor-
specific information, such as the maximum number of sockets available and the maximum datagram size.
The szDescription and szSystemStatus members can be used by an implementation to identify itself and
the current status of the DLL. For example, an implementation may return the text "Joe's ShareWare
Windows Sockets implementation v1.2. 10/22/92" in szDescription. The specification of the lpVendorInfo
member is completely up to an implementor and is not defined in the Windows Sockets specification.

Setting Up, and Cleaning Up Your Windows Sockets Application
As mentioned earlier, Windows Sockets offers some extensions to the Berkeley sockets paridigm to allow
your application to be more "friendly" in the Windows Environment. All such functions are preceded by the
characters "WSA", which is short for "Windows Sockets API." Although the use of WSA functions is
strongly advised, there are two WSA functions that your application can't avoid: WSAStartup() and
WSACleanup().

WSAStartup() "attaches" your application to Windows Sockets and causes the Windows Sockets DLL to
initialize any structures that it might need for operation. Additionally, WSAStartup() performs version
negotiation and forces an internal Windows Sockets reference count to be incremented. This reference
count allows Windows Sockets to maintain the number of applications on the local system requiring
Windows Sockets services and structures. The version negotiation allows an application to determine
whether or not the underlying Windows Sockets implementation is able to support the same version of the
Windows Sockets specification that the application is written to. A Windows Sockets implementation may
or may not support multiple versions of the specification. Other Windows Sockets-specific information
may also be filled in such as the vendor of the implementation, the maximum datagram size supported,
maximum number of sockets which an application can open, and more.

The following startup code is authored to run only under version 1.1 (the most current version of the
Windows Sockets specification) or later, and requires that at least six sockets be available to the calling
application.

#define WS_VERSION_REQD 0x0101
#define WS_VERSION_MAJOR HIBYTE(WS_VERSION_REQD)
#define WS_VERSION_MINOR LOBYTE(WS_VERSION_REQD)
#define MIN_SOCKETS_REQD 6

WSADATA wsaData;
char buf[MAX_BUF_LEN];
int error;

.

.

.
error=WSAStartup(WS_VERSION_REQUIRED,&wsaData);
if (error !=0) {

/* Report that Windows Sockets did not respond to the WSAStartup() call
*/

sprintf(buf,"winsock.dll not responding.");
MessageBox (hWnd, buf. "Windows Sockets Error",MB_OK);

shutdown_app();
}

if ((LOBYTE (wsaData.wVersion) < WS_VERSION_MAJOR) ||
(LOBYTE (wsaData.wVersion) == WS_VERSION_MAJOR &&
 HIBYTE (wsaData.wVersion) < WS_VERSION_MINOR)) {

/* Report that the application requires Windows Sockets version
WS_VERSION_REQD */

/* compliance and that the winsock.dll on the system does not support
it. */

sprintf(buf,"Windows Sockets version %d.%d not supported by
winsock.dll",

 LOBYTE (wsaData.wVersion), HIBYTE (wsaData.wVersion));
MessageBox (hWnd, buf. "Windows Sockets Error",MB_OK);
shutdown_app();

}

if (wsaData.iMaxSockets < MIN_SOCKETS_REQUIRED) {

/* Report that winsock.dll was unable to support the minimum number of
*/
 /* sockets (MIN_SOCKETS_REQD) for the application
*/

sprintf(buf,"This application requires a minimum of %d supported
sockets.",

 MIN_SOCKETS_REQUIRED);
MessageBox (hWnd, buf. "Windows Sockets Error",MB_OK);
shutdown_app();

}
.

A Windows Sockets application generally callsWSACleanup() during its own cleanup, decrementing the
internal reference count and letting Windows Sockets know that it's no longer needed by the calling
application. Whatever cleanup this function forces is implementation-specific and shielded from the
application. The application author should, however, check for any possible error conditions from
WSACleanup() and report them before exiting, as this information might indicate a network layer problem
in the system.

Error Handling
In order to provide a consistent mechanism for reporting errors and to ensure safety of Windows Sockets
applications in multithreaded versions of Windows (like Windows NT), the WSAGetLastError() API was
introduced as a means to get the code for the last network error on a particular thread. Under Windows
3.x, thread safety is not an issue, although WSAGetLastError() is still the appropriate way to check for
extended error codes. Many functions in the Windows Sockets API set return an error code in the event
that there was a problem, and rely on the application to call WSAGetLastError() to get more detailed
information on the failure. The following code illustrates how an application might report an error to a user:

LPHOSTENT host_info;
char user_buf[MAX_BUF], appl_buf[MAX_BUF];
.
.
.
/* Attempt to resolve hostname specified by user_buf,return meaningful */
/* message to the user in the event of an error. */

host_info=gethostbyname(user_buf);
if(host_info==NULL){

sprintf(buf,"Windows Sockets error %d: Hostname: %s couldn't be
resolved.",

 WSAGetLastError(),user_buf);
MessageBox (hWnd,buf,"Windows Sockets Error",MB_OK);}

.

.

.

In addition to the WSAGetLastError() API, an application may choose to use the WSASetLastError() API
to set a network error condition which will be returned by a subsequent WSAGetLastError() call.
Obviously, anyWindows Sockets calls made between a WSASetLastError() and WSAGetLastError() pair
will override the code set by the WSASetLastError() call.

Database Routines
The TCP/IP protocol relies on the binary representations for addresses and various other identifiers.
However, end users and programmers prefer to use easy-to-remember names (such as ftp,
rhino.microsoft.com). It is therefore necessary to provide a common method to resolve both services and
hostnames into their respective binary equivalents. To solve this, the Windows Sockets specification
offers a set of APIs known as the database routines.

The database routines fall into three categories
host resolution Learning the IP address for a host based on

system, or host name
protocol
resolution

Learning the protocol ID of a specific member
of a protocol family (TCP, for example)

service resolution Learning the port ID of a service based on a
service name/protocol pair

All the database routines return information in structures defined in the previous section.

Applications use the gethostbyname() and gethostbyaddr() functions to learn about the names and IP
address(es) of a particular system, knowing only the name or the address of the system. Both calls return
a pointer to a hostent structure as defined in the previous section. The gethostbyname() call simply
accepts a pointer to a null-terminated string representing the name of the system to resolve. The
gethostbyaddr() instead accepts three parameters: a pointer to the address (in network byte order), the
length of the address, and the type of address.

Generally the hostname or IP address is offered to the application by the user to specify a remote system
to connect to, and the IP address is resolved by Windows Sockets by either parsing a local hosts file, or
querying a DNS (domain name system) server. The details of the resolution however, are specific to the
implementation, abstracted from the application by these APIs.

The getservbyname() and getservbyport() functions return information about well-known Windows
Sockets services, or applications. Each of these system calls return a pointer to a servent structure, as
defined in the previous section. Typically an application will use these calls to determine the port ID for a
well-known service (such as FTP) to create an endpoint address.

The following code fragment demonstrates the use of the getservbyname() function to fill in the
sockaddr_in structure which will be used to connect a socket to a well-known port (the FTP protocol port
over TCP):

char buf [MAX_BUF_LEN];
struct sockaddr_in srv_addr;
LPSERVENT srv_info;
LPHOSTENT host_info;
SOCKET s;
.
.
.
/* Get FTP service port information */

srv_info=getservbyname("ftp","tcp");

if (srv_info== NULL) {
/* Couldn't find an entry for "ftp" over "tcp" */

sprintf(buf,"Windows Sockets error %d: Couldn't resolve FTP service
port.",

 WSAGetLastError());
MessageBox (hWnd,buf,"Windows Sockets Error",MB_OK);
shutdown_app();

}

/* Set up socket */

srv_addr.sin_family = AF_INET;
srv_addr.sin_addr.s_addr = INADDR_ANY;
srv_addr.sin_port=srv_info->s_port;

The example uses getservbyname() to resolve the port number of the FTP service over TCP. The port ID
is used to construct the sockaddr_in structure (endpoint address) for future use by the application. As we
mentioned before, the address family for TCP/IP is always assigned as AF_INET. We use the
INADDR_ANY macro to specify any local IP interface to accept incoming connections (more on this later).

To round out the database routines, getprotobyname() and getprotobynumber() fill in a protoent structure,
sometimes used by applications to create a socket over a particular protocol (e.g., UDP or TCP). More
often, however, an application will use the SOCK_DGRAM and SOCK_STREAM macros to create either
datagram or stream sockets.

Data Manipulation Routines
There are several routines that convert values between network byte order and host (or local system)
byte order. Windows Sockets offers byte-ordering routines for 16- and 32-bit values from both host byte
order and network byte order. The htons() function takes a 16-bit value (a short), and converts it from host
byte order to network byte order ¾ hence the name htons (host to network short). The other byte-ordering
functions available are htonl(), ntohs(), and ntohl().

There are two other useful routines offered by Windows Sockets which convert IP addresses between
strings and network byte-ordered 32-bit values. These functions are inet_ntoa() and inet_addr(). These
routines are useful to convert the IP address of an endpoint user input. In the following example, a TCP-
based server application uses the inet_ntoa() function to log incoming connection attempts:

SOCKET cli_sock, srv_sock;
LPSOCKADDR_IN cli_addr;
char *cli_ip, buf[MAX_BUF];
int len;
.
/* Accept incoming connection, create new local socket cli_sock */

cli_sock=accept(srv_sock,(LPSOCKADDR)&cli_addr,&len);

if (cli_sock==INVALID_SOCKET){
return(ERROR);

}

/* Convert endpoint IP address from network byte order to ASCII */

cli_ip=inet_ntoa(cli_addr.sin_addr);
sprintf(buf,"Incoming connection request from: %s.\n",cli_ip);
log_event(buf);

Setting Up Client and Server Sockets
Most Windows Sockets applications are asymmetrical; that is, there are generally two components to the
network application ¾ a client and a server. Frequently, these components are isolated into separate
programs. Sometimes, these components are integrated into a single application (such as our sample
application). When both the client and server components of a networking application are integrated, the
application is generally referred to as a "peer" application. Both the client and the server components go
through different procedures to ready themselves for networking by making a number of Windows
Sockets API calls. The following state diagrams illustrate the state transitions for setting up client- and
server-side socket applications:

{ewc msdncd, EWGraphic, bsd23459 4 /a "SDKD.BMP"}

Setting up a server-side stream-based application

{ewc msdncd, EWGraphic, bsd23459 5 /a "SDKD.BMP"}

Setting up a client-side stream socket-based application

The socket() call creates an endpoint for both client- and server-side application communication. When
calling socket(), the application specifies the protocol family and either the socket type (stream or
datagram), or the specific protocol which it expects to use (for example, TCP). Both the client- and server-
side of a network application use the socket() call to define their respective endpoints. socket() returns a
socket descriptor, an integer which uniquely identifies the socket created within Windows Sockets.

Server-side connection setup
Once the socket is created, the server-side associates the freshly created socket descriptor and a local
endpoint address via the bind() API. The local endpoint address is comprised of two pieces of data, the IP
address and the port ID for the socket. The local IP address is used to determine which interfaces the
server application will accept connection requests on; the port ID identifies the TCP or UDP port on which
connections will be accepted. It is for these two values that the network byte-ordering routines (htonl(),
htons(), etc..) were created. These values must always be represented in network byte order.

Alternatively, an application may substitute the value INADDR_ANY in place of a valid local IP address,
and the system will accept incoming requests on any local interface, and will send requests on the "most
appropriate" local interface. In fact, most server applications do exactly this. To associate a socket with
any valid system port, provide a value of 0 for the .sin_port member of the sockaddr_in structure. This will
select an unused system port between 1025 and 5000. As mentioned before, most server applications
listen on a specified port, and client applications use this mechanism to obtain an unused local port. Once
an application uses this mechanism to obtain a valid local port, it may call getsockname() to determine the
port the system selected.

The listen() API sets up a connection queue. It accepts only two parameters, the socket descriptor and
the queue length. The queue length identifies the number of outstanding connection requests that will be
allowed to queue up on a particular port/address pair, before denying service to incoming connections.

The accept() API completes a stream-based server-side connection by accepting an incoming connection
request, assigning a new socket to the connection, and returning the original socket to the listening state.
The new socket is returned to the application, and the server can begin interacting with the client over the
network.

Client-side connection setup
From the client's perspective, the application also creates a socket using the socket() call. The bind()
command is used to bind the socket to a locally specified endpoint address which the server will use to
transmit data back to the client. Once a local endpoint association is made, the connect() API establishes
a connection with a remote endpoint. This routine initiates the network connection between the two

systems. Once the connection is made, the client can begin interaction with the server on the network.

Although the client may choose to call bind(), it is not necessary to do so. Calling connect() with an
unbound socket will simply force the system to choose an IP interface and unique port ID and mark the
socket as bound. Most client-side applications neglect the bind() call as there are rarely specific
requirements for a particular local interface/port ID pair.

The following code fragments create and connect a pair of stream-based sockets using the API flow
outlined above:

Server-side (connection-oriented)
#define SERVICE_PORT 5001

SOCKET srv_sock, cli_sock;
struct sockaddr_in srv_addr, cli_addr;
char buf[MAX_BUF_LEN];

/* Create the server-side socket */

srv_sock=socket(AF_INET,SOCK_STREAM,0);
if (srv_sock==INVALID_SOCKET){

sprintf(buf,"Windows Sockets error %d: Couldn't create socket.",
 WSAGetLastError());
MessageBox (hWnd,buf,"Windows Sockets Error",MB_OK);
shutdown_app();

}

srv_addr.sin_family=AF_INET;
srv_addr.sin_addr.s_addr=INADDR_ANY;
srv_addr.sin_port=SERVICE_PORT; /* specific port for server to
listen on */

/* Bind socket to the appropriate port and interface (INADDR_ANY) */

if (bind(srv_sock,(LPSOCKADDR)&srv_addr,sizeof(srv_addr))==SOCKET_ERROR){
sprintf(buf,"Windows Sockets error %d: Couldn't bind socket.",

 WSAGetLastError());
MessageBox (hWnd,buf,"Windows Sockets Error",MB_OK);
shutdown_app();

}

/* Listen for incoming connections */

if (listen(srv_sock,1)==SOCKET_ERROR){

sprintf(buf,"Windows Sockets error %d: Couldn't set up listen on
socket.",

 WSAGetLastError());
MessageBox (hWnd,buf,"Windows Sockets Error",MB_OK);
shutdown_app();

}

/* Accept and service incoming connection requests indefinitely */

for (; ;) {
cli_sock=accept(srv_sock,(LPSOCKADDR)&cli_addr,&addr_len);
if (cli_sock==INVALID SOCKET){

sprintf(buf,"Windows Sockets error %d: Couldn't accept incoming \
 connection on socket.",WSAGetLastError());

MessageBox (hWnd,buf,"Windows Sockets Error",MB_OK);
shutdown_app();
}
.
/* Client-server network interaction takes place here */
.
closesocket(cli_sock);

}

Client-side (connection-oriented)
/* Static IP address for remote server for example. In reality, this would
be
 specified as a hostname or IP address by the user */

#define SERVER "131.107.1.121"

struct sockaddr_in srv_addr,cli_addr;
LPSERVENT srv_info;
LPHOSTENT host_info;
SOCKET cli_sock;
.
/* Set up client socket */

cli_sock=socket(PF_INET,SOCK_STREAM,0);

if (cli_sock==INVALID_SOCKET){

sprintf(buf,"Windows Sockets error %d: Couldn't create socket.",
 WSAGetLastError());
MessageBox (hWnd,buf,"Windows Sockets Error",MB_OK);
shutdown_app();

}

cli_addr.sin_family=AF_INET;
cli_addr.sin_addr.s_addr=INADDR_ANY;
cli_addr.sin_port=0; /* no specific port req'd */

/* Bind client socket to any local interface and port */

if (bind(cli_sock,(LPSOCKADDR)&cli_addr,sizeof(cli_addr))==SOCKET_ERROR){

sprintf(buf,"Windows Sockets error %d: Couldn't bind socket.",
 WSAGetLastError());
MessageBox (hWnd,buf,"Windows Sockets Error",MB_OK);
shutdown_app();

}

/* Get the remote port ID to connect to for FTP service */

srv_info=getservbyname("ftp","tcp");

if (srv_info== NULL) {

sprintf(buf,"Windows Sockets error %d: Couldn't resolve FTP service
port.",

 WSAGetLastError());
MessageBox (hWnd,buf,"Windows Sockets Error",MB_OK);
shutdown_app();

}

srv_addr.sin_family = AF_INET;
srv_addr.sin_addr.s_addr = inet_addr(SERVER);
srv_addr.sin_port=srv_info->s_port;

/* Connect to FTP server at address SERVER */

if (connect(cli_sock,(LPSOCKADDR)&srv_addr,sizeof(srv_addr))==SOCKET_ERROR)
{

sprintf(buf,"Windows Sockets error %d: Couldn't connect socket.",
 WSAGetLastError());

MessageBox (hWnd,buf,"Windows Sockets Error",MB_OK);
shutdown_app();

}
/* Client-server network interaction takes place here */

Although the above fragment makes use of the bind() API, it would be just as effective to skip over this
call as there are no specific local port ID requirements for this client. The only advantage that bind()
offers is the accessibility of the port which the system chose via the .sin_port member of the cli_addr
structure which will be set upon success of the bind() call.

For connectionless, or "datagram" sockets, Windows Sockets usage is a little simpler. Since the
communication in datagram sockets is connectionless, it is not necessary to use the APIs necessary for
creating a connection, namely: connect(), listen(), and accept(). The flow of Windows Sockets APIs that a
typical connectionless client-server pair will generally traverse follows:

{ewc msdncd, EWGraphic, bsd23459 6 /a "SDKD.BMP"}

Setting up a server-side datagram-based application

{ewc msdncd, EWGraphic, bsd23459 7 /a "SDKD.BMP"}

Setting up a client-side stream-based application

As pictured above, a client may choose to connect() the datagram socket for convenience of multiple
sends to the remote endpoint. Connecting a datagram socket will cause all sends to go to the connected
address, and any datagrams received from a remote address different than the connected address are
discarded by the system. Generally, connectionless clients use the sendto() API to transmit application
data. The sendto() call requires that the destination's endpoint address be specified with every call to the
API. By connecting a datagram socket, a client sending a large amount of data to the same destination
can simply use the send() API to transmit, without having to specify a remote endpoint with every call, and
the client need not concern itself with the possibility of receiving unwanted data from other hosts.
Depending on the type of application you are developing, and the Windows Sockets implementation
below your application, connecting datagram sockets may improve performance of your application.

Some sample code illustrates how the TFTP protocol (a connectionless protocol for file transfer) client
and server might be implemented over Windows Sockets:

Server-side (connectionless)
SOCKET srv_sock;
struct sockaddr_in srv_addr;

.

.
/* Create server socket for connectionless service */

srv_sock=socket(PF_INET,SOCK_DGRAM,0);

if (srv_sock==INVALID_SOCKET){

sprintf(buf,"Windows Sockets error %d: Couldn't create socket.",
 WSAGetLastError());
MessageBox (hWnd,buf,"Windows Sockets Error",MB_OK);
shutdown_app();

}

/* Resolve TFTP service port to listen on */

srv_info=getservbyname("tftpd","udp");

if (srv_info== NULL) {

sprintf(buf,"Windows Sockets error %d: Couldn't resolve TFTPd service
port.",

 WSAGetLastError());
MessageBox (hWnd,buf,"Windows Sockets Error",MB_OK);
shutdown_app();

}

srv_addr.sin_family = AF_INET;
srv_addr.sin_addr.s_addr = INADDR_ANY; /* Allow the server to accept
connections /* over any
interface */
srv_addr.sin_port=srv_info->s_port;

/* Bind remote server's address and port */

if (bind(srv_sock,(LPSOCKADDR)&srv_addr,sizeof(srv_addr))==SOCKET_ERROR){

sprintf(buf,"Windows Sockets error %d: Couldn't bind socket.",

 WSAGetLastError());
MessageBox (hWnd,buf,"Windows Sockets Error",MB_OK);
shutdown_app();

}

/* Client-server network interaction takes place here */

Client-side (connectionless)
/* Static IP address for remote server for example. In reality, this would
be
 specified as a hostname or IP address by the user */

#define SERVER "131.107.1.121"

struct sockaddr_in srv_addr,cli_addr;
LPSERVENT srv_info;
LPHOSTENT host_info;
SOCKET cli_sock;

.

.
/* Create client-side datagram socket */

cli_sock=socket(PF_INET,SOCK_DGRAM);
if (cli_sock==INVALID_SOCKET){

sprintf(buf,"Windows Sockets error %d: Couldn't create socket.",
 WSAGetLastError());
MessageBox (hWnd,buf,"Windows Sockets Error",MB_OK);
shutdown_app();

}

cli_addr.sin_family=AF_INET;
cli_addr.sin_addr.s_addr=INADDR_ANY;
cli_addr.sin_port=0; /* no specific local port req'd */

/* Bind local socket */
if (bind(cli_sock,(LPSOCKADDR)&cli_addr,sizeof(cli_addr))==SOCKET_ERROR){

sprintf(buf,"Windows Sockets error %d: Couldn't bind socket.",
 WSAGetLastError());
MessageBox (hWnd,buf,"Windows Sockets Error",MB_OK);
shutdown_app();

}

/* Resolve port information for TFTP service */

srv_info=getservbyname("tftp","udp");
if (srv_info== NULL) {

sprintf(buf,"Windows Sockets error %d: Couldn't resolve TFTP service
port.",

 WSAGetLastError());
MessageBox (hWnd,buf,"Windows Sockets Error",MB_OK);
shutdown_app();

}

srv_addr.sin_family = AF_INET;
srv_addr.sin_addr.s_addr = inet_addr(SERVER);
srv_addr.sin_port=srv_info->s_port;

if (connect(cli_sock,(LPSOCKADDR)&srv_addr,sizeof(srv_addr))==SOCKET_ERROR)
{

sprintf(buf,"Windows Sockets error %d: Couldn't connect socket.",
 WSAGetLastError());
MessageBox (hWnd,buf,"Windows Sockets Error",MB_OK);
shutdown_app();

}
/* Client-server network interaction takes place here */

Since a connectionless client (such as TFTP) will undoubtedly be doing successive transmissions with the
server (especially during long transfers), we have chosen to connect the socket, allowing the use of the
send() and recv() APIs rather than sendto() and recvfrom(). The use of connect() with datagram
sockets is purely optional.

Sending and Receiving Data (stream sockets)
Once an application successfully establishes a socket connection, it is ready to start transferring data
over the connection. With stream (TCP) sockets, data transfer is said to be "reliable," meaning that the
application may assume that the underlying transport will ensure that the data gets to the remote host
without duplication or corruption. When a connection is established on a stream socket, a the TCP
transport creates a "virtual circuit" between the two machines. This circuit remains open until both
applications decide that they are done sending data on the circuit (typically a "graceful" close), or until a
network error occurs which causes the circuit to be terminated abnormally.

An application sends data using the send() API. This API takes a socket descriptor, a pointer to a buffer to
send, the length of the buffer, and an integer which specifies flags which can modify the behavior of
send(). To receive data, an application uses the recv() API, which takes a pointer to a buffer to fill with
data, the length of the specified buffer, and a flags integer. recv() returns the number of bytes actually
received, and send() returns the number of bytes actually sent. Note that applications should always
check the return codes of send()and recv() for the number of bytes actually transferred, since it may be
different from the number requested. Because of the stream-oriented nature of TCP sockets, there isn't
necessarily a one-to-one correspondence between send() and recv() calls. For example, a client
application may perform ten calls to send(), each for 100 bytes. The system may combine or "coalesce"
these sends into a single network packet, so that if the server application did a recv() with a buffer of 1000
bytes, it would get all the data at once.

Therefore, an application must not make any assumptions about how data will arrive. A server which
expects to receive 1000 bytes should call recv()in a loop until it has received all of the data:

SOCKET s;
int bytes_received;
char buffer[1000];
char *buffer_ptr;
int buffer_length;

.

.
buffer_ptr = buffer;
buffer_length = sizeof(buffer);

/* Receive all outstanding data on socket s */

do {
 bytes_received = recv(s, buffer_ptr, buffer_length, 0);
 if (bytes_received == SOCKET_ERROR) {

sprintf(buf,"Windows Sockets error %d: Error while receiving data.",

 WSAGetLastError());
MessageBox (hWnd,buf,"Windows Sockets Error",MB_OK);
shutdown_app();
}

 buffer_ptr += bytes_received;
 buffer_length -= bytes_received;
} while (buffer_length > 0);

Likewise, an application which wants to send 1000 bytes should send() in a loop until all of the data has
been sent:

SOCKET s;
int bytes_sent;
char buffer[1000];
char *buffer_ptr;
int buffer_length;

buffer_ptr = buffer;
buffer_length = sizeof(buffer);

/* Enter send loop until all data in buffer is sent */

do {
 bytes_sent = send(s, buffer_ptr, buffer_length, 0);
 if (bytes_sent == SOCKET_ERROR) {

sprintf(buf,"Windows Sockets error %d: Error while sending data.",
 WSAGetLastError());

MessageBox (hWnd,buf,"Windows Sockets Error",MB_OK);
shutdown_app();
}

 buffer_ptr += bytes_sent;
 buffer_length -= bytes_sent;
} while (buffer_length > 0);

Sending and Receiving Data (datagram sockets)
Data transmission on datagram sockets is significantly different from stream sockets. The most important
difference is that transmission is not reliable on datagram sockets. This means that if an application
attempts to send data to another application, the system does nothing to guarantee that the data will
actually be delivered to the remote application. Reliability will tend to be good on LANs (local-area
networks, such as a network connecting several computers within a single building), but can be very poor
on WANs (wide-area networks, such as the Internet which connects hundreds of thousands of computers
worldwide).

The next important difference in datagram sockets is that they are connectionless. This means that there
is no default remote address assigned to them. For this reason, an application which wants to send data
must specify the address to which the data is destined with the sendto() API. In addition, an application
typically wants to know where data came from, so it receives data with the recvfrom() API, which returns
the address of the sender of the data.

The final significant difference in data transmission for datagram sockets is that it is "message oriented."
This means that there is a one-to-one correspondence between sendto() and recvfrom() calls, and that
the system does not coalesce data when sending it. For example, if an application makes 10 calls to
sendto() with a buffer of two bytes, the remote application will need to perform 10 calls to recvfrom() with
a buffer of at least two bytes to receive all the data.

Below is a code fragment from a datagram sockets application which echos datagrams back to the
sender.

SOCKET s;
SOCKADDR_IN remoteAddr;
int remoteAddrLength = sizeof(remoteAddr);
BYTE buffer[1024];
int bytesReceived;

for (; ;) {
/* Receive a datagram on socket s */

 bytesReceived = recvfrom(s, buffer, sizeof(buffer),0,
 (PSOCKADDR)&remoteAddr, &remoteAddrLength);

/* Echo back to the server as long as bytes were received */

 if (bytesReceived != SOCKET_ERROR ||
 sendto(s, buffer, bytesRecieved, 0,

 (PSOCKADDR)&remoteAddr, remoteAddrLength) ==
 SOCKET_ERROR){

sprintf(buf,"Windows Sockets error %d: Error while sending data.",
 WSAGetLastError());

MessageBox (hWnd,buf,"Windows Sockets Error",MB_OK);
shutdown_appl();
}

}

As mentioned earlier, it is possible to connect() a datagram socket. Once a datagram socket is connected,
all data is sent and received from the remote address to which the datagram is connected, so it is
possible to use the send() and recv() APIs on connected datagram sockets.

Terminating a Connection
An application has several options for terminating a connection. The simplest is to call the closesocket()
API, which takes only a socket descriptor as input. This API frees resources associated with a socket and
initiates the graceful close sequence. This sequence is completed when the remote application also
closes its socket.

If an application determines that it is done sending data, but may want to receive more data, it can call the
shutdown() API. This API notifies the remote end that the local application won't be sending any more
data, but may continue to receive data.

Lastly, an application may cause an "abortive" or "hard" close on a connection with the SO_LINGER
socket option in conjunction with closesocket(). Setting the linger timeout to 0 causes the circuit to be
terminated immediately, regardless of whether the remote end has completed its data transfer, and any
unreceived or unsent data is dropped. Therefore, this option should be used with caution and only if the
results are understood and intended. The following code fragment demonstrates how to perform a hard
close on a connection:

LINGER lingerInfo;
INT err;
SOCKET s;

/* First set the linger timeout on the socket to 0. This will */
/* cause the connection to be reset. */

lingerInfo.l_onoff = 1;
lingerInfo.l_linger = 0;

setsockopt(s, SOL_SOCKET, SO_LINGER, (char
*)&lingerInfo,sizeof(lingerInfo));
closesocket(s);

How can an application know that the remote end has terminated the connection? The answer depends
on whether the remote end terminated the connection gracefully or abortively. If the termination was
abortive, then send() and recv() calls will fail with the error WSAECONNRESET. This indicates to an
application that data may have been lost, and the error condition should be reported to the user.

If the termination was graceful, then any recv() calls made after all data has been received will return the
value zero as the number of bytes received. This indicates that the remote end has gracefully terminated
its end of the connection and the local end may close the socket without fear of data loss. The following
code fragment illustrates how an application initiates a graceful close and then waits for the remote end to
close gracefully before closing the socket.

SOCKET s;
INT err;
BYTE buffer[1024];

err = shutdown(s , 1);
if (err == SOCKET_ERROR) {

sprintf(buf,"Windows Sockets error %d: Error during shutdown.",
 WSAGetLastError());
MessageBox (hWnd,buf,"Windows Sockets Error",MB_OK);
shutdown_appl();

}

/* Receive the rest of the pending data */

while ((err = recv(s, buffer, sizeof(buffer), 0) != 0) {

 if (err == SOCKET_ERROR) {
sprintf(buf,"Windows Sockets error %d: Error while receiving data.",

 WSAGetLastError());
MessageBox (hWnd,buf,"Windows Sockets Error",MB_OK);
shutdown_appl();
}
.
.

 /* do something with the data we received. */
.
.

}

/* The other side has also terminated. we can safely close now */

closesocket(s);

Note that in this example the application keeps calling recv() until it returns zero bytes received. If an

application closes a socket and there is data available to be received, or data later arrives, then the
system will abort the connection and throw out the data, since there is nobody to give the data to. Well-
behaved applications should ensure that they receive all data before closing a socket.

The Windows Sockets Extensions

Asynchronous Windows Sockets Calls
By default, an application's socket calls will block until the requested operation can be completed. For
example, if an application wishes to receive data from another application, its call to the recv() API will not
complete until the other application has sent data which can be returned to the calling application.

This model is sufficient for simple applications, but more sophisticated applications may not wish to block
for an arbitrarily long period for a network event. In fact, in Windows 3.1, blocking operations are
considered poor programming practice because applications are expected to call PeekMessage() or
GetMessage() regularly in order to allow other applications to run and to receive user input.

To support the sophisticated applications which fit better within the Windows programming paradigm,
Windows Sockets supports the concept of "nonblocking sockets." If an application sets a socket to
nonblocking, then any operation which may block for an extended period will fail with the error code
WSAEWOULDBLOCK. This error indicates to the application that the system was unable to perform the
requested operation immediately.

How, then, does an application know when it can successfully perform certain operations? Polling would
be one (poor) solution. The optimal mechanism is to use the asynchronous notification mechanism
provided by the WSAAsyncSelect() API. This routine allows an application to notify a Windows Sockets
implementation of certain events which are of interest, and to receive a Windows message when the
events occur. For example, an application may indicate interest in data arrival with the FD_READ
message, and when data arrives the Windows Sockets DLL posts a message to the application's window
handle. The application receives this message in a GetMessage() or PeekMessage() call and can then
perform the corresponding operation.

The following code fragment demonstrates how an application opens and connects a TCP socket and
indicates that it is interested in being notified when one of three network events occurs:

· data arrives on the socket

· it is possible to send data on the socket

· the remote end has closed the socket

/* Static IP address for remote server for example. In reality, this would
be
 specified as a hostname or IP address by the user */

#define SERVER "131.107.1.121"

#define SOCKET_MESSAGE WM_USER+1
#define SERVER_PORT 4000

struct sockaddr_in srv_addr;
SOCKET cli_sock;

.

.

.
/* Create client-side socket */

cli_sock=socket(PF_INET,SOCK_STREAM,0);

if (cli_sock==INVALID_SOCKET){
sprintf(buf, "Windows Sockets error %d: couldn't open socket.",
 WSAGetLastError());
MessageBox(hWnd,buf,"Windows Sockets Error",MB_OK);
shutdown_appl();

}

srv_addr.sin_family = AF_INET;
srv_addr.sin_addr.s_addr = inet_addr(SERVER);
srv_addr.sin_port=SERVER_PORT;

/* Connect to server */

if (connect(cli_sock,(LPSOCKADDR)&srv_addr,sizeof(srv_addr))==SOCKET_ERROR)
{

sprintf(buf,"Windows Sockets error %d: Couldn't connect socket.",
 WSAGetLastError());
MessageBox (hWnd,buf,"Windows Sockets Error",MB_OK);
shutdown_appl();

}

/* Set up async select on FD_READ, FD_WRITE, and FD_CLOSE events */

err = WSAAsyncSelect(cli_sock, hWnd, SOCKET_MESSAGE, FD_READ|FD_WRITE|
FD_CLOSE);
if (err == SOCKET_ERROR) {

sprintf(buf,"Windows Sockets error %d: WSAAsyncSelect failure.",
 WSAGetLastError());
MessageBox (hWnd,buf,"Windows Sockets Error",MB_OK);
shutdown_appl();

}

When one of the specified network events occurs, the specified window handle hWnd receives a
message containing a wMsg of SOCKET_MESSAGE. The wParam field of the message will have the
socket handle, and lParam contains two pieces of information: the low word contains the event that
occurred (FD_READ, FD_WRITE, or FD_CLOSE) and the high word contains an error code, or 0 if there
was no error. Code similar to the following fragment, which would belong in an application's main window
procedure, may be used to interpret a message from WSAAsyncSelect():

long FAR PASCAL _export WndProc(HWND hWnd, UINT message, UINT wParam, LONG
lParam)
{

INT err;

switch (message) {

case ...:
/* handle Windows messages */
.
.
.
case SOCKET_MESSAGE:

/* A network event has occurred on our socket. Determine which network
 event occurred. */

switch (WSAGETSELECTEVENT(lParam)) {
case FD_READ:

/* Data arrived. Receive it. */

err = recv(cli_sock, Buffer, BufferLength, 0);
if (WSAGetLastError() == WSAEWOULDBLOCK) {

/* We have already received the data. */
break;

}
if (err == SOCKET_ERROR) {

sprintf(buf, "Windows Sockets error %d: receive error.",
 WSAGetLastError());

MessageBox(hWnd,buf,"Windows Sockets Error",MB_OK);
shutdown_appl();

}
.
.
/* Do something useful with the data. */
.
.
break;

case FD_WRITE:
/* We can send data. */

err = send(cli_sock, Buffer, BufferLength, 0);
if (err == SOCKET_ERROR) {

if (WSAGetLastError() == WSAEWOULDBLOCK) {
/* Send buffers overflowed. */
break;
}
sprintf(buf, "Windows Sockets error %d: send failed.",
 SAGetLastError());
MessageBox(hWnd,buf,"Windows Sockets Error",MB_OK);
shutdown_appl();

}
break;

case FD_CLOSE:
/* The remote closed the socket. */

closesocket(cli_sock);
break;

}

break;
}

.

An important part of the behavior of WSAAsyncSelect() is that after the Windows Sockets DLL has posted
a message for a particular network event, the DLL refrains from posting another message for that event
until the application has called the "reenabling function" for that event. For example, once an FD_READ
has been posted, no more FD_READ messages will be posted until the application calls recv(). This
prevents an application's message queue from being overflowed with messages for a single network
event.

Using WSAAsyncSelect() can simplify and improve organization in Windows applications by allowing
them to be fully event-driven. Such an application responds to network events in much the same way it
responds to user events such as a mouse click. In addition, applications which make use of
WSAAsyncSelect() are better behaved Windows applications since they must frequently call
PeekMessae() or GetMessage() in order to receive the network messages.

Asynchronous Database Routines
Just as simple network operations like recv() can block for extended periods of time, so can the database
routines like gethostbyname(), especially is they go through DNS which can require considerable time
due to the network activity involved. In order to allow well-behaved Windows Applications to use the
database routines, the Windows Sockets API supplies asynchronous versions of the database routines.
Their use is similar to the synchronous database routines with two important exceptions:

· Completion of the operation is indicated via a Windows message, as with WSAAsyncSelect().

· The application is required to include a buffer which is filled in by the Windows Sockets DLL with
the information requested by the application. This is in contrast to the synchronous database
routines which return a pointer to space owned by the Windows Sockets DLL.

In order to make an asynchronous database call, an application passes in information about the call, a
window handle to receive the completion message, a message code, and a buffer for the output
information. The Windows Sockets API defines a constant, MAXGETHOSTSTRUCT, which is the
maximum size of a hostent structure. An application should use a buffer of this size to pass to the
asynchronous database routines in order to be guaranteed that all the output information will fit in its
buffer. A call to WSAAsyncGetHostByName() may be as follows:

#define GETHOST_MESSAGE WM_USER+2

BYTE HostBuffer[MAXGETHOSTSTUCT];
HANDLE TaskHandle;

/* Resolve hostname "hostname" asynchronously */

TaskHandle = WSAAsyncGetHostByName(hWnd, GETHOST_MESSAGE, "hostname",
HostBuffer, MAXGETHOSTSTUCT);

if (TaskHandle == SOCKET_ERROR) {

sprintf(buf, "Windows Sockets error %d: Hostname couldn't be resolved.",
WSAGetLastError());

MessageBox(hWnd,buf,"Windows Sockets Error",MB_OK);
shutdown_appl();

}

WSAAsyncGetHostByName() and the other asynchronous database routines return a "task handle" which
uniquely refers to the operation in progress. This task handle allows an application which may have
multiple outstanding asynchronous database routines to associate completion messages with the request,
since the task handle is returned in the completion message as wParam.

To receive and process the completion message, an application will do the following in its window

procedure:
long FAR PASCAL _export WndProc(HWND hWnd, UINT message, UINT wParam, LONG
lParam)
{

INT err;

switch (message) {
case ...:
/* handle Windows messages */
.
.
.

case GETHOST_MESSAGE:

/* An asynchronous database routine completed. */
if (WSAGETASYNCERROR(lParam) != 0) {

sprintf(buf, "Windows Sockets error %d: Hostname couldn't be
 resolved.", WSAGetLastError());

MessageBox(hWnd,buf,"Windows Sockets Error",MB_OK);
shutdown_appl();

}
.
.
/* HostBuffer now contains a host buffer, use info from it. */
.
.

}

Windows Sockets on Windows NT
Although the initial focus of Windows Sockets was for Windows 3.1 16-bit applications, Windows NT
supports Windows Sockets as well. To run existing 16-bit Windows Sockets applications, Windows NT
supplies winsock.dll. In addition, Windows NT offers 32-bit Windows Sockets support in the DLL called
wsock32.dll. In general, all of the Windows Sockets routines in the 32-bit DLL are identical to their 16-bit
counterparts, although their parameters are widened to 32-bits.

The most significant difference in programming Windows Sockets applications for Windows NT is that
Windows NT is a fully preemptive, multithreaded operating system. Therefore, if an application blocks on
a Windows Sockets call, the rest of the system is not negatively impacted. In addition, it is feasible to
write a multithreaded application which uses one thread to process user input and another to block on
sockets calls. Such an application could use the blocking sockets calls and still be responsive to user
input.

The asynchronous Windows Sockets calls are still advantageous in Windows NT. The most significant
advantage is that they allow an application to be fully event-driven, fitting better within the Windows
programming paradigm. In addition, 32-bit versions of Windows Sockets will soon be available for
Win32s. An application written to use the asynchronous routines can be easily ported to Win32s without
the negative system impacts of blocking calls.

Transport Independence
We've focused on TCP/IP for most of this article, but we promised to describe how an application can use
Windows Sockets other transport protocols in Windows NT and Chicago. Constrained by space, we'll
focus on the highlights and the key features that differentiate different transport protocols, and on the
mechanisms for opening sockets for use with different transport protocols.

Although these are not explicitly addressed in the Windows Sockets specification, the fact that the
fundamental job of a transport protocol is data transfer, along with the fact that Windows Sockets provides
a rich interface for low-level data transfer in applications, make the interface to Windows Sockets over
different transport protocols quite feasible. In fact, having a common, well-known API interface allows
applications to be ported quickly between different transport protocols, and there are several successful
examples of this.

Because of the architecture of the Windows Sockets components of Windows NT and Chicago, all
supported transports are accessed through the same DLL, wsock32.dll. In fact, a single application may
simultaneously use sockets of different transport protocols.

An application uses the parameters to the socket() API to specify the protocol it desires. For example, a
TCP socket is opened with

s_tcp = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

while an SPX socket is opened with
s_spx = socket(AF_IPX, SOCK_SEQPACKET, NSPROTO_SPX);

After opening a socket for a specific protocol, all actions performed on the socket go through the specified
protocol. In the above example, if the application did a listen() on the s_tcp socket but not on the s_spx
socket, it would receive incoming connects through TCP but not receive incoming connects through SPX.

Protocol Characteristics
An application which uses different transport protocols must be aware of the different characteristics of
transport protocols. While all transport protocols share the same fundamental purpose of bidirectional
data transfer, many details of the data transfer differ. Following is a list of key characteristics of transport
protocols that Windows Sockets applications need to be aware of.

Addressing
The most obvious difference between different transport protocols is the way in which each uses transport
addresses, or "sockaddrs" in Windows Sockets terms. Virtually all transport protocols expose different
address formats to applications, the one exception being Netbios protocols which all use the same
address format.

A number of Windows Sockets APIs take sockaddrs as input or output parameters, including bind(),
ccept(), sendto(), recvfrom(), getsockname(), and getpeername(). For all these APIs a sockaddr is
really two arguments: a pointer to the sockaddfr structure itself and a length integer which gives the
number of bytes in the sockaddr. For many transport protocols the length of a sockaddr is always the
same, but sockaddr lengths may differ between transport protocols. For example, a TCP/IP sockaddr has
16 bytes and an IPX/SPX sockaddr has 14 bytes.

The format of sockaddr structures used by a transport protocol is specified in the af or "address family"
argument to the socket() API. All TCP/IP sockets (including both TCP and UDP sockets) are opened with
the AF_INET address family, while IPX/SPX sockets are opened with AF_IPX. Other transport protocols
use different address family values as defined in the header file winsock.h.

It is up to an application to fill in a sockaddr when bind()ing to a local address or connect()ing to a
remote address, and also to interpret the sockaddrs returned from the accept(), sendto(), recvfrom,
getpeername(), and getsockname() APIs.

Connection-Oriented vs. Connectionless
In a connection-oriented transport, applications are required to establish a virtual circuit (sometimes
abbreviated to VC) before data transfer can take place. Virtual circuit establishment is asymmetric: one
side, the server, must make known to the transport its willingness to receive incoming connections via the
listen() API. The other side, the client, initiates the circuit with the connect() API, and the server can
obtain a socket for the circuit with the accept() API. Once the circuit is established, data transfer takes
place with the send() and recv() APIs. There is protocol-level activity which results from this circuit
establishment, and more protocol activity tears down the circuit when the sockets are closed. TCP and
SPX are examples of connection-oriented transport protocols.

In a connectionless transport, there is no circuit establishment required for data transfer. An application
only needs to open and bind a socket, after which it may use the sendto() and recvfrom() APIs to send
and receive data. Of course, in order to specify the remote address for sending data or the address from
which received data was sent, an application must specify a sockaddr to these routines. UDP and IPX are
examples of connectionless transport protocols.

It is possible to use the connect() API on sockets opened for connectionless protocols. This is merely an
application convenience, allowing the application to use the send() and recv() APIs, and this does not
result in any protocol activity. If a socket is connected in this manner, it will only receive packets sent from
the connected address; other packets destined for the socket are silently discarded.

Reliable vs. Unreliable Data Delivery
Most physical networks are inherently unreliable. They can drop data, corrupt it, deliver it out of order, and
deliver multiple copies of it. Some transport protocols hide this unreliability from applications by using
protocol-level mechanisms to ensure that data is delivered in the correct order, without loss, corruption, or
duplication. Other transport protocols do not make these guarantees; they simply make a best effort to get
the data to its intended recipient, but physical network failures can lead to data integrity problems.

Because they have less inherent overhead, unreliable protocols often provide better performance,
especially for applications which send small amounts of data in a request-response (transaction) format.
However, connectionless protocols impose the burden on the application of doing whatever reliability
guarantees are necessary, and therefore lead to more complicated applications. Reliable protocols are
usually simpler for the application at the expense of a higher cost in system resources and performance.

Typically, connection-oriented protocols are reliable, while connectionless protocols are unreliable. While
this is true of all the transport protocols supported by Windows NT, it is not required that these always go
hand-in-hand.

Orderly Release
For a connection-oriented transport, there are two ways to terminate a virtual circuit: orderly and abortive.
In an orderly release, both sides get a chance to indicate that they have sent all the data they intend to
send, and only when both sides are done is the actual circuit terminated. For such a release it is possible
to have one side indicate that it is done sending with the shutdown() API while the other side continues
sending. In an abortive termination of a virtual circuit, one side decides that it is time to terminate the
circuit and unilaterally ends the connection. If the other side attempts to use the connected socket, the
request fails.

By default, closesocket() also attempts an orderly release of the connection. However, under several
circumstances, such as pending unreceived, outstanding send() calls, and more, a closesocket() will
result in an abortive close.

All transport protocols support the concept of an abortive release, but not all protocols support orderly
release. If an application attempts an orderly release on a transport which does not support orderly
release, the connection is terminated abortively. TCP supports orderly release, while SPX supports only
abortive release.

Stream-Oriented vs. Message-Oriented
Connection-oriented transport protocols can be either stream-oriented or message-oriented. In a
message-oriented transport protocol, each block of data is sent and received as a single block of data. An
individual message is never broken down when received, although a transport protocol may be forced to
break down a message if it is larger than the physical network's maximum transmission unit (MTU).
However, this is transparent to the application.

In a stream-oriented transport, data is sent and received as a continuous stream of data without any
message boundaries. The transport protocol is free to coalesce data from discrete send() calls and
deliver it to a single recv() call as well as to break down the data buffer given to a single send() call and
deliver it to several recv() calls. An application has no control over how these breakdowns occur, and an
application gets no notification of how data was sent. If an application needs to communicate in discrete
messages, it is the responsibility of the application to do message framing, for example by proceeding
message data by the length of the message on send and receiving until the specified length has arrived.

Some message-oriented protocols support stream semantics in addition to message semantics. If an
application opens a socket with SOCK_STREAM on such a transport, then the transport ignores all
message boundaries when transmitting and receiving data. It simply delivers data as it becomes available
without regard to whether the data comprises a complete message. This feature is handy for maximizing
application portability. Note, however, that stream-oriented transport protocols cannot implement
message-oriented semantics due to lack of information.

Expedited Data
Some connection-oriented transport protocols support the concept of expedited data, also referred to as
urgent data or out-of-band data. Data sent with the MSG_OOB flag in the send() API is sent as expedited
data, and the transport protocol makes every effort to deliver the data as quickly as possible. Often the
data is delivered out of order so that it gets to the other application as quickly as possible. Applications
interested in maximum portability should avoid expedited data since it is not supported by all transport
protocols.

Connect and Disconnect Data
A few transport protocols support connect and disconnect data, where a small amount of data is sent by
each side when a virtual circuit is established or terminated. This data can be anything, but is often
negotiation information about the version of software connecting, etc. Again, applications desiring protocol
portability should avoid this feature since it is not universally supported.

Broadcasts
Most connectionless transport protocols support broadcast in the same fashion, where any bound socket
can send a broadcast if the SO_BROADCAST option is set, and broadcasts sent to the appropriate local
endpoint are received without any additional work on the part of the application. Netbios transports,
however, handle broadcasts somewhat differently. In order to receive broadcasts, an application must
bind to the Netbios broadcast address, which is an asterisk (*) followed by 15 spaces (ASCII character
0x20). This means two things: a socket must be specially bound to receive broadcasts, and applications
can't depend on receiving broadcasts intended only for a specific application, since all Netbios broadcasts
are delivered to this address. In other protocols such as UDP/IP and IPX, broadcasts are delivered to a
socket only if the broadcast was sent to the same port to which the socket was bound.

Guidelines for Transport Independence
The Windows Sockets interfaces of Windows NT and Chicago are designed to fully support all of the
transport protocol characteristics listed above. This allows transport-specific applications to fully utilize all
the idiosyncrasies of a particular protocol. However, when writing transport-independent applications, it is
important to minimize or, preferably, eliminate all uses of features that are not supported by all transport
protocols.

Many of the resulting guidelines are fairly obvious:

· Don't send or attempt to receive expedited data. If you must be able to receive expedited data to
be compatible with older software, use the SO_OOBINLINE socket option and treat expedited
data as normal data in your data reception code.

· Never use connect or disconnect data. If you need to include information at the start or end of a
transmission, put it in the normal data stream.

· If you control your application's on-the-wire data format, perform your own message framing for
both stream and message protocols. Message framing means to make the length of the message
self-describing, for example, by including the message length as the first two bytes of the
message. The application can then read two bytes, know the total message size, and read the
remainder of the message. This abstracts the distinction between message-oriented and stream-
oriented transport protocols.

· Assume that the transport protocol doesn't support a graceful close. It is always possible to do an
abortive close, but a graceful close is not always supported. Use an application-level protocol to
ensure that all data has been correctly transmitted.

· Typically, both connectionless and connection-oriented transport protocols will be available on
any given machine. Therefore, it is reasonable to use whichever is most convenient for your
application, which will typically be connection-oriented since it frees the application from having to
worry about reliable data delivery.

Where is Windows Sockets Headed?
Although Windows Sockets is a new technology, much evolution has already taken place in the TCP/IP
community. Microsoft's new 32-bit operating system, Windows NT, will offer Windows Sockets support for
both 16- and 32-bit Windows applications. Microsoft is encouraging third-parties and corporate
developers to use Windows Sockets as the client-server and distributed application API by including the
Windows Sockets API as part of WOSA, the Windows Open Services Architecture

Several PC-based TCP/IP implementations are offering Windows Sockets support, and over two-dozen
application vendors are shipping Windows Sockets-compatible applications. Moreover, many corporations
are standardizing on Windows Sockets as the API of choice for client-server networking application
development.

The Windows Sockets waters may remain calm for a short while, probably only long enough to allow
application vendors and TCP/IP implementors to produce 1.1-compatible offerings. There are already
some ideas of what features future revisions of the specification may incorporate: transparent transport
independence, access to raw sockets for lower-level network functions, and the ability to share a
connected socket between different applications to name a few.

The success of the Windows Sockets effort has spawned two similar undertakings: Windows SNMP and
ONC/RPC for Windows. Both of these efforts strive to provide application vendors with a common API
across divergent implementations under Microsoft Windows. Many of the participants of these efforts
come from the Windows Sockets group, but more interested parties are joining every day.

If Windows Sockets is a sign of things to come in Windows networking, application development under
Microsoft Windows will continue to become easier, more flexible, and more powerful.

WormHole ¾ A Sample Application
In order to demonstrate how Windows Sockets might really work in a real application, we developed
WormHole. WormHole is a peer Windows Sockets application which allows users to establish network
"wormholes" between systems and then drag and drop files to one another. The WormHole program is a
simple MDI (multiple document interface) application which runs as a 16-bit application on Windows 3.1
systems with a Windows Sockets compliant TCP/IP implementations. WormHole can be conditionally
compiled as a 32-bit Windows NT application which will run over NT's 32-bit TCP/IP transport and 32-bit
Windows Sockets interface. The makefile explains how to compile this application for Windows NT.

In order to demonstrate as many Windows Sockets concepts as possible, WormHole utilizes both stream
and datagram sockets, and is completely event-driven (asynchronous). This allows a WormHole to
simultaneously service multiple client connections and act as a WormHole client. "Host windows" are
created when a user specifies a destination system (either by IP address or hostname) to connect with.
Specifying a remote system does not establish a network connection, it simply creates a host window on
the client to provide feedback during file transfers.

"Wormholes" (connections) are established everytime a user initiates a file transfer by dragging a file from
the file manager into a host window. We refer to the system on which this happens as the WormHole
client. The WormHole application implements a very simple protocol which would not be entirely
uncommon in a production environment. The wormhole setup takes place over a simple pair of datagram
frame transactions, followed by stream connection establishment which facilitates the file transfer. The
following diagram illustrates the transactions for connection establishment. Remember that since
WormHole is a peer application, every instance of WormHole on the network is capable of acting as both
a WormHole client and a WormHole server simultaneously.

{ewc msdncd, EWGraphic, bsd23459 8 /a "SDKD.BMP"}

The WormHole Protocol

The wormhole establishment begins on the client side by sending a FILE frame datagram which specifies
to the server the name of the file to transfer, the length of the file, and a unique transaction identifier (xid).
The xid allows the server to distinguish between multiple outstanding FILE requests. The server
acknowledges the FILE request with either a PORT frame or a NACK frame. A PORT frame informs the
client that the server will accept an incoming file, returning a specified stream socket port for the client to
connect to as well as the xid specified in the original request. If the server wishes to refuse the FILE
request, it may respond with a NACK (negative acknowledgment) frame which contains the xid it is
refusing and optionally an error code (for example, "insufficient disk space", "duplicate filename").

Upon receipt of a PORT frame, the client establishes a stream socket connection to the specified port and
begins to transfer the file. Since the server is listening on a port it created in association with a particular
transaction, and it knows the file name and length, it is not necessary to transfer anything aside from the
actual file data. Once the entire file has been received by the server, the stream connection is shut down
gracefully.

WormHole Protocol Frame Types and Contents

Datagram Connection
Request

Datagram Connection
Acknowledge

Datagram Connection
Refuse

FILE PORT NACK
Transaction ID Transaction ID Transaction ID
File length Port Number Error code (optional)
File name

Because the connection request (FILE), acknowledgment (PORT) and refuse (NACK) frames are all
transmitted on the network using an unreliable datagram protocol, it is quite possible for these frames to
be lost in the shuffle of network activity. This said, the WormHole protocol also implements some retry
timers to allow a client to retry a failed connection request. A WormHole client will retry a connection
request by retransmitting up to four FILE frames to the server. To keep things simple, the server does not
implement a retry timer on possible lost PORT or NACK frames. We instead rely on the client to resend a
FILE request in the event that a PORT frame gets lost.

Since the server creates a local window, transaction association, and the like upon receipt of a FILE
frame, it does maintain a timer per file transaction to allow for the cleanup of acknowledgment (PORT)
frames which go unanswered. Finally, since the file transfer itself takes place over reliable stream
sockets, it is not necessary to implement these types of precautions for the actual file transfer. WormHole
simply relies on the failure of the send() and recv() APIs in the event of network or connection problems.

Windows Sockets API Function Overview
Socket Functions

accept() An incoming connection is acknowledged and
associated with an immediately created socket.
The original socket is returned to the listening
state.

bind() Assign a local name to an unnamed socket.
closesocket() Remove a socket descriptor from the per-process

object reference table. Only blocks if SO_LINGER
is set.

connect() Initiate a connection on the specified socket.
getpeername() Retrieve the name of the peer connected to the

specified socket descriptor.
getsockname() Retrieve the current name for the specified socket
getsockopt() Retrieve options associated with the specified

socket descriptor.
htonl() Convert a 32-bit quantity from host byte order to

network byte order.
htons() Convert a 16-bit quantity from host byte order to

network byte order.
inet_addr() Converts a character string representing a number

in the Internet standard "." notation to an Internet
address value.

inet_ntoa() Converts an Internet address value to an ASCII
string in "." notation i.e. "a.b.c.d".

ioctlsocket() Provide control for descriptors.
listen() Listen for incoming connections on a specified

socket.
ntohl() Convert a 32-bit quantity from network byte order

to host byte order.
ntohs() Convert a 16-bit quantity from network byte order

to host byte order.
recv()* Receive data from a connected socket.
recvfrom()* Receive data from either a connected or

unconnected socket.
select()* Perform synchronous I/O multiplexing.
send()* Send data to a connected socket.
sendto()* Send data to either a connected or unconnected

socket.
setsockopt() Store options associated with the specified socket

descriptor.
shutdown() Shut down part of a full-duplex connection.
socket() Create an endpoint for communication and return

a socket descriptor.

*These functions may block if acting on a blocking socket

Database Functions

gethostbyaddr()* Retrieve the name(s) and address corresponding to
a network address.

gethostname() Retrieve the name of the local host.
gethostbyname()* Retrieve the name(s) and address corresponding to

a host name.
getprotobyname()* Retrieve the protocol name and number

corresponding to a protocol name.
getprotobynumber()* Retrieve the protocol name and number

corresponding to a protocol number.
getservbyname()* Retrieve the service name and port corresponding

to a service name.
getservbyport()* Retrieve the service name and port corresponding

to a port.

*These functions may block if acting on a blocking socket

Windows Sockets Asynchronous Extensions
WSAAsyncGetHostByAddr() A set of functions which provide asynchronous
WSAAsyncGetHostByName() versions of the standard Berkeley
WSAAsyncGetProtoByName() getXbyY() functions. For example, the
WSAAsyncGetProtoByNumber() WSAAsyncGetHostByName() function provides an

asynchronous message based
WSAAsyncGetServByName() implementation of the standard Berkeley
WSAAsyncGetServByPort() gethostbyname() function.
WSAAsyncSelect() Perform asynchronous version of select()
WSACancelAsyncRequest() Cancel an outstanding instance of a

WSAAsyncGetXByY() function.
WSACancelBlockingCall() Cancel an outstanding "blocking" API call
WSACleanup() Sign off from the underlying Windows Sockets DLL.
WSAGetLastError() Obtain details of last Windows Sockets API error
WSAIsBlocking() Determine if the underlying Windows Sockets DLL

is already blocking an existing call for this thread
WSASetBlockingHook() "Hook" the blocking method used by the underlying

Windows Sockets implementation
WSASetLastError() Set the error to be returned by a subsequent

WSAGetLastError()
WSAStartup() Initialize the underlying Windows Sockets DLL.
WSAUnhookBlockingHook() Restore the original blocking function

Obtaining the Specification
Before you get too excited about writing a Windows Sockets application, it's probably a good idea to get
your hands on the specification itself. The current version of the specification is 1.1 and it is distributed
electronically on the Internet and Compuserve. If you're not able to obtain the specification electronically,
ask a Windows Sockets vendor ¾ they are generally willing to provide you with a copy on disk.

The most recent versions of the specification are available via anonymous FTPon rhino.microsoft.com or
sunsite.unc.edu (in the directory /pub/micro/pc-stuff/ms-windows/winsock). On Compuserve, check the

Microsoft Software Library forum (go msl). A variety of different formats are readily available: .doc
(Microsoft Word), .wri (Microsoft Windows Write), .ps (PostScript), .txt (ASCII text), or .rtf (Rich Text
Format). In addition to the specification, you will also find Joel Goldberger's extremely useful Windows
Sockets online help file (winsock.hlp), sample applications and other nifty stuff.

Note:

For developers familiar with the 1.0 specification, the Microsoft Word and PostScript versions of the 1.1
specification offer "change-bars" in the left-hand margin to denote changes made to the 1.0 specification.

The Windows Sockets Electronic Discussion List
If you're interested in Windows Sockets, your comments, experience and feedback is welcome. Currently,
there is an electronic mailing list of several hundred Windows Sockets developers, users and wizards
which offer technical support and discussion of the Windows Sockets API. To subscribe, e-mail
listserv@sunsite.unc.edu, including as both subject and body the line "SUBSCRIBE WINSOCK <your
internet address>". If you're a Usenet user, the mailing list is cross-posted to the alt.winsock newsgroup.
In addition, you also might want to peruse the comp.programmer.win-32 and comp.protocols.tcp-ip.ibmpc
groups which frequently see Windows Sockets-related traffic.

WARRANTY DISCLAIMER

THESE MATERIALS ARE PROVIDED "AS-IS", FOR INFORMATIONAL PURPOSES ONLY. NEITHER
MICROSOFT NOR ITS SUPPLIERS MAKES ANY WARRANTY, EXPRESS OR IMPLIED WITH
RESPECT TO THE CONTENT OF THESE MATERIALS OR THE ACCURACY OF ANY INFORMATION
CONTAINED HEREIN, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. BECAUSE SOME STATES /
JURISDICTIONS DO NOT ALLOW EXCLUSIONS OF IMPLIED WARRANTIES, THE ABOVE
LIMITATION MAY NOT APPLY TO YOU.

IN NO EVENT SHALL MICROSOFT OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES
WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER
PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE THIS MICROSOFT
PRODUCT, EVEN IF MICROSOFT HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
BECAUSE SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR
CONSEQUENTIAL OR INCIDENTAL DAMAGES, THE ABOVE LIMITATION MAY NOT APPLY TO YOU.
MICROSOFT'S ENTIRE LIABILITY AND YOUR EXCLUSIVE REMEDY SHALL BE, AT MICROSOFT'S
OPTION, EITHER (A) RETURN OF THE PRICE PAID OR (B) REPAIR OR REPLACEMENT OF THE
MICROSOFT PRODUCT THAT DOES NOT MEET MICROSOFT'S STATED WARRANTY AND THAT IS
RETURNED TO MICROSOFT WITH A COPY OF YOUR RECEIPT.

